)

(&
ﬁf‘

—

CUTTER CONSORTIUM
What Is Happening to the Global
Software Village?
Is There Still a Case for Distributed
Software Development?
AGILE PROJECT MANAGEMENT ADVISORY SERVICE
Executive Report, Vol. 3, No. 1
—

FELLOWS OF THE
CUTTER BUSINESS TECHNOLOGY COUNCIL

ROB AUSTIN
JAMES BACH
ToM DEMARCO
JiM HIGHSMITH
TiM LISTER
DicK NOLAN
KEN ORR
ED YOURDON

What Is Happening to the Global Software Village?

Is There Still a Case for Distributed Software Development?

AGILE PROJECT MANAGEMENT
ADVISORY SERVICE

Executive Report, Vol. 3, No. 1

by E.M. Bennatan

At the dawn of the 21st century,
software development is an inter-
national activity. It is not uncom-
mon to find parts of development
organizations dispersed in distant
locations. The world of software
is indeed shrinking, and the global
village is becoming more and
more a reality. But after the
events of September 11, many
wonder whether this trend will
continue. Will changes in global
relationships and travel behavior
affect the way software is being
developed? Is a distributed soft-
ware organization still a wise
choice for today’s corporations?

These questions are being deliber-
ated in many boardrooms not just
throughout corporate America but
throughout the corporate world.

In order for companies to make
the best decision, it is necessary
to fully understand the advantages
and the disadvantages of distrib-
uted software development (DSD),
the problems and solutions that
exist, and the tools and technol-
ogy that have been developed to
support it. This Executive Report
provides the information neces-
sary to help companies make
these decisions. As we shall see,
even with the concerns that have
recently arisen, and possibly
because of these concerns, there
are many situations in which dis-
tributed software development is
a sound corporate strategy.

AN EXAMPLE

An impressive cadre of infrastruc-
ture, tools, and techniques has

been developed over the past two
decades to support distributed
organizations. A global communi-
cation infrastructure has indeed
made the world seem much
smaller, and many organizations
have amassed a great deal of
experience developing software
in this shrinking world.

Let’s consider a real-life example
from my tenure at Motorola lead-
ing one of the company’s inter-
national development centers,
where we developed a large
wireless telephony system (see
Figure 1). The consumer units
were designed and manufactured
in Fort Worth, Texas, USA; the soft-
ware for the infrastructure was
designed in Tel Aviv, Israel; the
infrastructure was manufactured
in Chicago, Illinois, USA; and the

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

T T = =
v P } ;
o % i & 1., =i

= L

x]
Fy - 4 - =

CHICAGO

- " a= -

Figure 1 — Motorola’s wireless telephony project teams.

testing and maintenance was
provided from Bangalore, India.

A project management nightmare?
Quite the contrary. Actually, the
project ran smoothly, was devel-
oped on time, and had software
problems comparable to those of
a project developed at a central
location.

This should not be surprising.
Developing high-tech projects,
particularly software, at several
locations is becoming increasingly
common. What are the factors
that are driving this trend? When
is distributed development better
than centralized development?

Both centralized development and
DSD have their advantages and
disadvantages. Centralized devel-
opment is the classic way of

developing software, and it may
even appear to be the natural
way of doing things. But there
are many instances where this is
not necessarily so. Consider the
previous Motorola example of a
DSD project. By producing the
maintenance software in India, a
local center of expertise was also
being established in India that is
capable of supporting the system
in-country after its delivery. A
centralized project would not
have provided this advantage.

Even on a national level, central-
ized development may not always
be the best solution. Within the
US, there are regional proficiencies.
Examples are: data processing
expertise is more abundant in the
New York area; aerospace in Florida;
graphics and Internet-based

technologies in California;

and telephony in the Midwest.
Companies have a tendency,
therefore, to establish centers of
expertise where the experts are.

On the international level, other
factors play an important role in
choosing locations for develop-
ment centers, such as government
incentives (e.g., Ireland, India,
Israel), business needs (devel-
oping close to your market),

and lower development costs.
However, global development
produces several challenges, pri-
marily resulting from the inherent
communication difficulties across
distances, and also from some
unexpected areas — such as cul-
tural or local interpretations of
documentation. Gary Anthes,
writing in Computerworld, relates
the story of a software developer
having to travel from England to
Germany to observe a problem
being reported by a team of
German software testers.
Apparently the documentation
said “to type a blank” and the
testers were dutifully keying in
“b-l-a-n-k” [1].

But there are even greater prob-
lems to overcome. Traveling from
England to Germany is not as great
a hassle as having to travel from
Chicago to Bangalore (a trip
undertaken by this author many
times). The good news is that there

The Agile Project Management Advisory Service Executive Report is published by the Cutter Consortium, 37 Broadway, Suite 1, Arlington, MA
02474-5552, USA. Client Services: Tel: +1 781 641 9876 or, within North America, +1 800 492 1650; Fax: +1 781 648 1950 or, within North America,
+1 800 888 1816; E-mail: service@cutter.com; Web site: www.cutter.com/consortium/. ISSN: 1536-2981. ©2002 by Cutter Consortium. All rights
reserved. Unauthorized reproduction in any form, including photocopying, faxing, and image scanning, is against the law.

VOL. 3, NO. 1

www.cutter.com/consortium/

http://www.cutter.com/consortium/
mailto://service@cutter.com
http://www.cutter.com/consortium/

EXECUTIVE REPORT

are solutions provided by tech-
niques, tools, and infrastructure.

The problems posed by DSD
have generated a great deal of
interest over the past few years.
The Institute of Electrical and
Electronics Engineers, Inc. (IEEE)
devoted an entire issue of its soft-
ware journal to the subject [14],
and has organized several work-
shops [15] covering many new
development tools and envi-
ronments for both large-scale
distributed projects and smaller,
faster e-projects. In particular,
the distributed development of
Internet software has been a
rapidly growing phenomenon,
notably in Japan [17].

Lucent Technologies’ Bell Labs
has also devoted significant atten-
tion to the resolution of distributed
development issues and has
established a research team in
that area. The Lucent research
team summed up the questions it
was studying as: “How can Lucent
best use its people and capital
resources to produce products
with the desired cost, develop-
ment interval, and quality when
these resources are geographi-
cally distributed?”!

In the pages ahead we wiill review
some of the best practices in DSD.
We will look at a few real com-
pany experiences and see what
they have learned. We will con-
sider how a decision for or against

1See www.bell-labs.com/org/11359/
colab_prod/.

©2002 CUTTER CONSORTIUM

DSD can be made; we will review
some of the DSD methodologies
and tools that exist; and we will
discuss the structure of a distrib-
uted organization. We will then
try to answer some of the ques-
tions about the impact of the cur-
rent economy and the events of
September 11, and we will
attempt to look into the future.

WHAT CHARACTERIZES
DISTRIBUTED DEVELOPMENT?

Let’s start by clarifying what we
mean by a distributed develop-
ment project.

Distributed development refers to
a project that is being developed
at several remote sites. The defin-
ition is not entirely rigorous as
there are no specific criteria that
address when distance becomes
significant, such as in the case of
teams divided between different
floors of a building, different adja-
cent buildings, or different build-
ings on a single campus. And
what if the development at the dif-
ferent sites is not simultaneous?
What if the different project com-
ponents are really independent
projects in their own right? The
definition of a distributed develop-
ment project is more one of con-
venience to enable us to address
solutions for problems that arise
when remote teams need to work
together to develop a common
project.

The distinguishing feature of a
distributed system is therefore
distance, and the distance is such
that it produces specific challenges

that can affect our ability to suc-
cessfully complete the project.
Different types of distance pro-
duce different types of problems,
but the primary effect of distance
is that it stretches the time needed
for problem resolution [12]. This
is what software organizations
need to be aware of when they
split up teams, whether they are
divided between buildings, cities,
states, or countries. Trivial as this
seems, many project managers
tend to overlook this.

Bridging the distance is the
essence of any effort aimed at
making a distributed project work
well. This requires communica-
tions infrastructure, tools, methods,
and techniques, and, above all,

an understanding of the human
aspect of distributed teams.

How exactly does distance affect
team communication? Well,
centralized team members have
virtually unlimited opportunities
to meet both formally and infor-
mally; even impromptu encoun-
ters at the water cooler can be
an opportunity to exchange infor-
mation, brainstorm, or just casu-
ally develop friendships between
teamn members. These encoun-
ters are important not just because
of the ease of information
exchange, but also because of
the team-building relationships
that they can promote.

Let’s see how this would work in
a simple distributed team. We
can imagine a typical distributed
software project where three

VOL. 3, NO. 1

teams have divided the project
into three parts (see Figure 2).
The teams are distant from each
other and cannot efficiently meet
on a daily basis. On an overall
project level, the three teams
must function as a single team
with a common goal: the success-
ful completion of the full project.
On a local level, each team func-
tions with a significant degree of
independence to achieve a local
goal: the successful completion
of the locally assigned part of

the project. The degree of inde-
pendence may vary, but it is
significantly less than that of

a centralized team.

Different companies have adopted
this model in different ways.

Their approach to DSD depends
on many factors such as the loca-
tion of the remote sites, the nature
of the distributed project being
developed, the internal culture
within the company, and the com-
pany’s previous experiences.

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

There is much experience on
which to draw. Today, 203 of the
US Fortune 500 companies already
engage in offshore outsourcing
[27]. They draw from more than
50 nations that are currently par-
ticipating in collaborative software
development internationally [4].

WHAT HAVE COMPANIES
LEARNED FROM DSD?

There are common themes
throughout the stories related by
companies on their experiences
with distributed development.
Their success and failure have
invariably been linked to their
success or failure in bridging the
human communications gap.

This is always a major challenge
in DSD because any form of
remote team communication will
always be inferior to direct human
contact. Hence, the other advan-
tages of a distributed project must
always outweigh this disadvantage.

v

Project

Management

- - - - - » Communication Path

—

Ll

Figure 2 — Simplified example of a distributed team.

VOL. 3, NO. 1

To put DSD more in perspective,
let’s discuss some of the lessons
learned from the experiences

of Alcatel and Motorola and one
distributed experience in North
America: the ESCOT project.

We will then go on to discuss the
characteristics and best practices
of DSD in more detail.

The Alcatel Experience:
The Importance of Collocation
and Coherence

Christof Ebert from Alcatel in
Belgium and Philip De Neve from
Alcatel in India collaborated on
an IEEE Software article on their
company’s experiences [8]. They
report on the lessons they learned
from some of the company’s sev-
eral thousand engineers who are
dispersed in more than 15 devel-
opment centers in Europe, the US,
Asia, and Australia.

Ebert and De Neve identified the
advantages of distributed develop-
ment, such as time-zone effective-
ness and reduced costs, as well
as drawbacks, such as the addi-
tional overhead and expense for
planning and managing people,
language and cultural barriers,
and jealousy (due to the different
circumstances of some of the
development sites). They list
three of the primary drivers for
adopting a global DSD strategy:

1. To be locally present for cus-
tomization and after-sales
service and to show the local
customers how many new jobs
were created, which in turn
could justify more contracts

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

2. To support the growing number
of acquisitions and mergers,
which add new markets, prod-
ucts, engineers, and creativity to
the existing team

3. The ability to hire young engi-
neers with the necessary skills
at a reasonable cost even in
countries where neither the
market nor the acquisitions
would justify them

The Alcatel report relates to the
company’s experience in the
Switching and Routing Business
Division, which is highly software-
intensive with 80%-90% of the
business’s research and develop-
ment budget devoted to software.
Most of the division’s global
development locations are at
Capability Maturity Model (CMM)
Level 2 with few at Level 3.
Clearly, this is an excellent testbed
for DSD, and, indeed several valu-
able lessons were learned from
the experience.

Ebert and De Neve challenge a
prevailing virtual team concept
that would assume that anyone
anywhere can be a member of
any team. They recommend
building what they refer to as
coherent and collocated teams
of fully allocated engineers.

Coherence means splitting the
development work during devel-
opment according to feature con-
tent and assembling each team
so that it can implement a set of
related functionality.

©2002 CUTTER CONSORTIUM

Collocation means that engineers
working on such a set of coherent
functionality should sit in the
same building, perhaps within the
same room. Locations providing
experts with minor contributions
should have them relocate to a
more central project location for
as long as they are needed on

the project.

Full allocation implies that engi-
neers working on a project should
not be distracted by different tasks
in other projects. Alcatel found
that it would take two to three
times the effort if people worked
on several assignments in parallel.

Clearly, these requirements of a
team are worthy for any type of
project. They are particularly
important in a distributed environ-
ment when communications and
management are a challenge.

Alcatel found it useful to classify
development staff into the follow-
ing key roles:

® Core competence — highly
experienced senior developers
decide on architecture evolu-
tion, specify features, and
review critical design decisions
in the entire product line.

B Engineering — the majority
of resources responsible for
designing and integrating new
functionality for all software.

B Service — specific functions
for a group of projects with
short or repetitive assignments,
including industrialization,

documentation, and mainte-
nance activities.

These functions are allocated

to various development teams,
which together constitute the
project team (there may be core
competence teams, engineering
teams, service teams, or even
multifunctional teams). Alcatel
used this classification of team
functions as the basis for its
method of allocating work to
the various teams.

The Alcatel report also discusses
the challenge of a changing and
ever-improving organization that
is heavily committed to DSD.
Change, being often evolutionary,
does not always occur at once
across an organization, especially
a large organization. It can pro-
duce incoherence among the vari-
ous development sites, resulting
in more complicated commun-
ication. This challenge was
addressed by ensuring that all
development locations working in
one product line use the same
process, methodology, and termi-
nology, even when changes occur.
This needed to be carried out with-
out suppressing the ability of the
company to change (which is
firmly recognized by the authors as
important for company survival).

What about language? Alcatel is
based in France, so the issue of a
standard language is both a tech-
nical obstacle and a political one.
Interestingly, Alcatel chose English
as the common language within
the company.

VOL. 3, NO. 1

Lastly, Ebert and De Neve con-
clude that their company benefits
considerably from the very act of
mixing teams from different global
locations and cultures. Other
companies have arrived at similar
conclusions and have found that
the interaction provides a diversity
that promotes fresh thinking,

new perspectives, and effective
brainstorming.

The ESCOT Project Experience:
Working with Autonomous Teams

Not all successful DSD endeavors
are large projects. In fact, there
are numerous successful exam-
ples of small DSD projects. Such
is the case of a recent education
software project supported by the
US National Science Foundation.
The project, reported recently by
a teamn headed by Alexander
Repenning of the University of
Colorado [22] recounts the experi-
ence of a large testbed called
Educational Software Compo-
nents of Tomorrow (ESCOT) for
the teaching of mathematics.
ESCOT is a digital library being
developed by a large pool of geo-
graphically distributed stakehold-
ers in the US and Canada. The
teams are relatively autonomous
and are responsible for develop-
ing entire components, which are
then added to the library.

A distinction of this type of project
is that it may still succeed even if
some components are not deliv-
ered or are delivered late. This

is quite different from the Alcatel
experience where different teams

VOL. 3, NO. 1

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

contribute critical elements to the
project, without which the project
may not be completed.

In addition to the development of
the educational software testbed,
the ESCOT project also had a sec-
ond research goal: the exploration
of the DSD process with the spe-
cific objective of building and
deploying reliable software
rapidly. The project employed a
development process well suited
for a distributed environment
called Component-Oriented Rapid
Development (CORD). CORD
resembles Extreme Programming
and is well suited for fairly
autonomous teams. It includes
the following elements:?

B The project start includes cen-
tralized analysis and design that
attermnpt to anticipate connectiv-
ity issues (between the mod-
ules) that will arise later.

B Development is distributed to
independent teams after initial
centralized analysis and design
is complete.

B Development is component-
centered. This refers to the
development of well-defined
and distinct elements of the
digital library system (the com-
ponents). This approach is
well suited for distributed
teamns using different tools and
platforms because each com-
ponent can be regarded almost
as a mini-project on its own.

2See [22] for a more detailed description of
the CORD process steps.

B Development and delivery
are cross-platform. Individual
developers (and users) can
use the platform of their choice.
Cross-platform development is
possible with the appropriate
tools, such as the CORBA? archi-
tecture and infrastructure or the
Java programming language.

A conclusion from the ESCOT
experience was that component-
based approaches appear to be
ideally suited for DSD. The use of
the CORD method was found to
be effective for projects with an
aggressive project schedule, par-
ticularly in building educational
applications. CORD’s component-
based nature enabled a high
degree of parallelism involving
distributed teams of domain
experts, component framework
coordinators, developers, and
others involved in the software’s
development process.

The ESCOT production teams
developed components on PC
Windows, Macintosh, and Unix
platforms using the process ele-
ments described above. Though
several problems were reported
(few would have surprised a DSD
veteran), the ESCOT experience
was successful. Among the
lessons learned from the ESCOT
project were:

B The importance of increasingly
formal design representations
to improve communications

3See www.omg.org/gettingstarted/
corbafaq.htm for an overview of CORBA.

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

between the distributed team
members and to avoid pre-
mature design commitments

B The need for a component
framework coordinator, to
ensure that components are
properly integrated

®m High test time, due to frequent
platform- and virtual-machine-
dependent implementation
discrepancies that required a
significant number of additional
development cycles for debug-
ging and workaround
implementation

The Motorola Experience:
Using Liaisons

While Alcatel concluded that a
standard process across global
teams was important, Motorola
took a different approach. A
recent article by Robert Battin

et al. reports on the experience

at Motorola developing a trial
cellular system (called 3G Trial)
with a global engineering team [2].

One of the incentives for using a
distributed team was the unavail-
ability of development staff; only
about 20% of the required staff
was available at Motorola’s
Arlington Heights-based facility
near Chicago. The solution came
from Motorola’s software develop-
ment centers worldwide. The
project was staffed with engineers
from six different centers (see
Figure 3) across three continents.

One of the solutions employed
by the project’s Chicago-based

©2002 CUTTER CONSORTIUM

China
" us
Japan

Ed India

- Singapore

Australia

Figure 3 — Motorola’s 3G Trial project development centers [2].

management was the use of
liaisons from the remote develop-
ment sites. The liaisons were
engineers from each location who
moved to Chicago for up to three
months. Their responsibility dur-
ing this period was to meet the
Chicago team, learn the system,
help complete the system-level
requirements and specifications,
and communicate this informa-
tion back to the development
staff at their home location. The
Motorola report describes the liai-
son model as a key factor in the
successful completion of the proj-
ect. Not only did the liaisons learn
the system, but, more importantly,
they developed relationships with
the Chicago team and thus rein-
forced trust between the teams.

Once the liaisons returned home,
the classic DSD problems of
communications between teams
appeared. They were addressed
through intranet connectivity, con-
ference calls, and travel. Travel

was reserved for those instances
where physical presence was
absolutely required due to
expense of travel in terms of
both time and financial cost.

The 3G Trial project was a rich
learning experience in areas of
communication, development
methodology, team structure, and
local culture. Following are some
of the lessons that were learned.

Loss of Communication Richness

® Physical distances and time
zones. As related above, these
issues were resolved through
liaisons and later through
intranet, conference calls,
and travel.

B Domain expertise. This refers
to the need for specific infor-
mation and expertise to be
transferred from the company’s
domain experts to the remote
teams. This too was resolved
by the liaisons.

VOL. 3, NO. 1

Coordination Breakdowns

B Architecture. This refers to
the innovative technology that
was not familiar to all remote
teams. This was resolved
through low coupling between
well-defined project compo-
nents and their interfaces, a
task assignment strategy based
on local available expertise,
and the abilities of the local
facility.

B Software integration. Inte-
gration of components from
remote sites is a classic DSD
challenge. This was resolved
through step-wise incremental
integration, as opposed to “big
bang” integration.

B Software configuration
management (SCM).
Configuration management too
is a classic DSD challenge. This
was resolved through a com-
mon SCM tool with multisite
replication and a centralized
problem report repository.

Problems of Geographic Dispersion

B Vendor support. This refers to
the need for global support for
development tools acquired
from third-party vendors. This
was resolved by ensuring inter-
national support contracts with
the vendors and by using cen-
tralized reports for problems
found in the tools.

B Government issues. This
refers to immigration, visa, and
travel issues; import and export
rules; procedures for customs

VOL. 3, NO. 1

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

clearance; and US restrictions
on export of some high-tech
tools. This was resolved
through experience and by
learning the rules and regula-
tions of each country.

Loss of “Teamness”

m Differing development
processes. Different processes
is also a common DSD prob-
lem. The Motorola team
resisted the temptation of
trying to impose a common
process (in contrast to the
Alcatel experience). This short-
ened the learning curve by
letting each team begin pro-
ducing immediately using
the process that it knew.
However, the definition of the
work products and the working
vocabulary was standardized.
Also, it was ensured that each
location’s process encom-
passed a complete develop-
ment lifecycle.

Cultural Differences

m US impression of inter-
national development.
Motorola team members report
that cultural differences were
less of an issue for them. They
attribute this to the vast experi-
ence that their company has
had with global customers.
There was, however, a concern
among the US engineering
team about the ability of the
other teams to deliver function-
ing software. It was the act of
working with the other global
teams, and especially with the

liaisons, that made the US team
comfortable with its overseas
colleagues.

According to the Motorola
report, the company’s experi-
ences with global development
have been mostly positive. My
own experiences at Motorola
were similar. In fact, in one
measure of quality — defects
per lines of code — the global
sites’ code was marginally
superior to the US team’s code.

DECISION CRITERIA FOR A
DISTRIBUTED ENVIRONMENT

A Major Driving Force: The Need
for More Software Developers

With all these problems facing
distributed development, why
then have Alcatel, Motorola, and
other development organizations
adopted it? One of the reasons is
the shortage of development engi-
neers and the opening of a wider
market to recruit developers.
Though the demand for computer
professionals ebbs and flows, as
we have learned from the history
of the past half-century, the trend
has always been upward. Each
new phase produces a stronger
demand than its previous phase.
Can we expect this trend to
continue?

A decade ago, a prominent soft-
ware author foresaw massive
unemployment in the ranks of
American programmers, systems
analysts, and software engineers
[26]. This prediction was based
upon an expectation that inter-
national competition would put

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

American programmers out of
work by the end of the 1990s
just as Japanese competition put
American automobile workers
out of work in the 1970s.

It didn’t happen. In fact, there
was never such a high demand
for software professionals in
America as there was at the end
of the 20th century. Was this pre-
diction wrong, or was the timing
off by a decade? Though the cur-
rent economic slowdown has
reduced the demand for software
professionals (and indeed for
most professionals), it has not
been caused by international
competition.

Even in the current sluggish econ-
omy, it is not bad to be a software
engineer. This is true worldwide.
Lawrence West provided some
additional interesting data that
seems to indicate that we are
nowhere near seeing a lessening
of the software engineer shortage
in the US [25].

This is not an America-only
quandary. The Wall Street Journal
reported in 2000 that Western
Europe had a shortage of 850,000
IT sector jobs with the shortage
expected to grow to 1.7 million by
2003 [23]. Though this report pre-
dates the events of September 11,
the data was so strong that many
analysts predict that any effect of
the events will be temporary. A
good case can therefore be made
for corporations worldwide to
continue to strategize for a short-
age of computer professionals

©2002 CUTTER CONSORTIUM

even in the face of the current
economy.

The most common response to
this shortage over the past several
decades has been increased train-
ing of computer professionals.

But colleges and universities have
never really been able to keep up
with the growing demand. Other
solutions are needed.

Distributed development has pro-
vided a partial solution, though not
an easy one to successfully imple-
ment. We have seen that, in addi-
tion to the communications gap,
there are problems to be over-
come in determining development
methods at multiple sites, project
management, the division of work
between the teams, and team
structure. We will look at how
these problems are being over-
come, but first let us consider why
all these problems do not scare
off companies from using DSD.

When Is a Distributed Strategy
Warranted?

James Herbsleb and Deependra
Moitra [11] of Lucent Technologies,
have listed five factors that,

when present, favor distributed
development:

1. The development resource
problem: the need to capitalize
on the global resource pool
to successfully and cost-
competitively use scarce
resources, wherever located

2. The business advantage of
proximity to the market,

including knowledge of cus-
tomers and local conditions,
as well as the good will engen-
dered by local investment

3. The quick formation of virtual
corporations and virtual teams
to exploit market opportunities

4. Severe pressure to improve
time to market by using time
zone differences in “round-
the-clock” development

5. The need for flexibility to capi-
talize on merger and acquisition
opportunities wherever they
present themselves

In addition we may add the
advantage discussed in the
Alcatel story:

B The desire to benefit from
cultural diversity

These factors will not be equally
compelling for all companies.

Due to the weakened global econ-
omy, the shortage of development
resources may be less of a factor
today for some companies than

it was two or three years ago.
However, for the very same rea-
son, local investment may be
more of a factor today due to the
need of foreign governments to
provide new jobs. The factor of
proximity to the customer is gen-
erally evergreen in distant markets
due to the invariable high cost of
supporting remote systems.

At the beginning of this section,
we may have wondered whether
DSD was ever a good strategy.

VOL. 3, NO. 1

We can now state that the answer
is: yes, DSD is sometimes a good
strategy. But does it necessarily
have to be an arduous strategy?
As we shall see, it need not be so.
In the following sections, we will
discuss some of the many meth-
ods, tools, and techniques that
have evolved over the last two
decades to ease the challenges
of distributed development.

METHODOLOGIES AND
TECHNIQUES IN DSD

What are the areas in DSD that
require special methods and tech-
niques? We have seen that com-
munication is one such area, but
the challenges of communications
are so substantial that they are
practically synonymous with DSD.
Most of the DSD-specific methods
and tools are geared toward bridg-
ing the communications gap
caused by the distance between
development locations. This
affects the following four areas

of the project:

1. Work allocation. In a distrib-
uted project, all teams need to
communicate with each other;
they need to coordinate their
work so that all the project
pieces fit together and form
a complete working system.
Though this is true in any proj-
ect, it is a major consideration
in DSD. As we have seen, when
there is a distance between the
teams, communication and
coordination become more
complicated. Work allocation

VOL. 3, NO. 1

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

for each team must be orga-
nized to minimize this difficulty.

2. Project management. It should
not be surprising that the man-
agement of a distributed team
requires special management
processes and techniques.
Distributed management differs
from central management just
as a federal government func-
tions differently than a central-
ized government.

3. Infrastructure. The infrastruc-
ture for a distributed team is
very different from that needed
for a centralized team. Without
Internets and intranets, e-mail,
fax machines, and voice and
video telecommunications, a
distributed project would not
be possible.

4. Team structure. Obviously,
by its very nature, a distributed
organization cannot be struc-
tured as a central organization.
The distance between the
teams and the differences in
work practices and in culture
require special attention to
team organization. Here, too,
it is interesting to note the simi-
larities between the team struc-
ture of distributed project and
the structure of a federal gov-
ernment. In many ways, the
circumstances are not dissimilar.

These are not the only areas that
require attention. After all, a
distributed project is first and fore-
most a project and, as such, is
subject to all the challenges of

a regular project. Obviously, all
the methods and tools used in
regular projects are also applica-
ble in distributed projects, but
some of them are more compli-
cated, such as configuration man-
agement, integration, and testing.

Let’s start by looking at the
method by which the develop-
ment work is allocated to the
remote teams.

Partitioning a Software Project

Can all projects be partitioned?
Software is considered the more
creative, or even artistic, of the
engineering disciplines, and,

as such, it is more difficult to
partition. Imagine the result if
Leonardo da Vinci had partitioned
the Mona Lisa between his associ-
ates, or if Gershwin had subcon-
tracted out parts of “Rhapsody in
Blue.” Is software development
so creative that partitioning should
be avoided?

Not surprisingly, the answer
depends on the type of software
project. Not all software projects
can be, or should be, partitioned.
It is a question of how closely
together people need to work.
For example, the software for a
video game* is highly creative and
thus requires a high level of inter-
action between its developers so
it may best be developed at a sin-
gle location. On the other hand, a
large, commercial data-processing
4Today’s video game software is quite
complex with projects often taking around

40 person-years to develop over a period
of two years.

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

project could require less inter-
action between its developers and
therefore would more easily lend
itself to partitioning between
several development sites.

The level of interaction between
the developers is a function of:

B The way in which the project
is designed

B The characteristics of the
project

In any branch of engineering,
modular design practices are
often a key factor for successful
implementation. It is the basis

of the divide-and-conquer
approach to development of com-
plex projects. It makes the project
simpler — more manageable.

Modularity also enables a project
to be subcontracted, or allocated
to different development teams.
For example, a suitably modular
designed bridge can be parti-
tioned into several components
that can then be manufactured at
different locations and shipped to
a single site for assembly.

This is no different in software
development. Modular software
design is always good practice but
especially so in a distributed proj-
ect, as is evident from the analogy
of the bridge.

Let’s take a closer look at the
characteristics of a project that
make it partitionable.’

5This is also called chunking [19].

©2002 CUTTER CONSORTIUM

The concept of partitionability is
closely linked to the concept of
loose coupling, which has been
around in computer engineering
(both hardware and software)
since the early days of structured
design. In very broad terms,
loosely coupled components are
parts of a system that are relatively
independent and have few points
of interaction between them. In
software design, loose modular
coupling makes testing and inte-
gration easier [19].

We can therefore state that a soft-
ware project is considered to

be patrtitionable when it can be
broken into loosely coupled com-
ponents. In a distributed develop-
ment environment, this reduces
the need for communication
between the development teams.

A distributed project must be
designed from the ground up with
partitioning in mind. There are
many ways to do this:

B By functionality or features [20]
B By architectural subsystem

B By development phase

B By expertise

B By product version

B By a combination of the above

Partitioning by functionality means
that each location is allocated one
or more complete functions of the
system. In a functional system
design, the major project compo-
nents can usually be designed for

loose coupling; therefore, this is
an ideal approach for a distributed
project.

In large projects, the concept of
a subsystem is critical. It is the
highest level of the divide-and-
conquer technique (also called
stepwise refinement), without
which large software projects
would be unmanageable. Sys-
tems are always divided into sub-
systems by major functionality
and are thus similar to partitioning
by functionality. Subsystems are
a natural choice for distributed
development, and, in fact, very
large software projects are com-
monly developed that way.

Partitioning by development phase
is not particularly suitable for
DSD except when there is some
justification for specific phases
being developed at different loca-
tions [19]. A common and rather
obvious example would be the
development of a project at one
location while the maintenance
team is located at the site where
the system is installed. Also,
occasionally, the requirements

of a system may be developed

at a location that is different from
the development site. The US
Department of Defense has been
employing such tactics for many
years, occasionally using different
contractors for the development
of the requirements and for the
implementation of the other
phases of the project.®

6This is rarely an option for iterative develop-
ment paradigms such as spiral methods
(e.g., Extreme Programming).

VOL. 3, NO. 1

Partitioning by expertise is some-
what of a paradox. On the one
hand, it is a poor way to partition
a software project, but on the
other hand, it is not uncommon.
The reason is not surprising:
development of complex software
will occur where the experts are
located (particularly when the
experts will not or cannot come
to where the project office is
located). One way to resolve this
paradox is to start out by noting
the location of the expertise and
to use that knowledge as a guide
in functionally partitioning the
project.

For many software products, parti-
tioning the development by prod-
uct version is suitable for DSD.

An example may be the develop-
ment of a video game on a Sony
Playstation platform and assigning
another facility to port the game to
other platforms (e.g., Nintendo or
Microsoft). This can happen par-
allel to the development of the
main version or after the main
version is complete.

Lastly, a combination of the
above software partitioning
methods can sometimes provide

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

a good solution; for example, by
using local expertise to guide the
functional decomposition of a
project. Another example would
be incremental functionality
where the initial project is devel-
oped at one location and addi-
tional functionality is added at

a different location (e.g., foreign
language localization).

Mockus and Weiss [19] report on
their research at Bell Labs into
defining an algorithm for DSD par-
titioning. The algorithm is based
on an iterative process that allo-
cates modification requests
(defined as the elements of a new
feature) to sets of assignments
and continuously improves the
allocation based on coupling
between the sets. The result is

a number of loosely coupled sets
of assignments that corresponds
to the number of distributed
development locations.

At Alcatel, Ebert and De Neve [8]
researched best DSD practices
and reported on their allocation
strategy, which employed an
iterative/functional method of
allocation. This meant that pro-
gressive versions of the system

were released with new function-
ality added at each step. This
approach is typical of the large
legacy telephony systems devel-
oped at Alcatel, which were
discussed earlier.”

Table 1 summarizes the different
methods of partitioning a DSD
project. Though the characteris-
tics of each project may suggest
a specific partitioning method,
there are no strict rules on how
to choose the winning strategy.
As we can see from the Alcatel,
Motorola, and ESCOT projects,
experience is the ultimate guide
for success.

The same approach to partitioning
can be applied both to large proj-
ects with multiple remote teams
and to smaller projects with
remote individual developers
(who can be considered a team
of one). Clearly, the smaller the
project, and the lesser the number
of teamns, the easier the partition-
ing. For larger projects, the
divide-and-conquer approach
"The iterative/function approach has also been
the method of choice for many Web and PC-
based applications: Microsoft’s DOS and

Windows operating systems were developed
that way.

Table 1 — Methods of Partitioning a Distributed Software Project

By Functionality | By Subsystem By Development By Expertise By Product
Phase Version
Partition by Partition by Assign Partition based | Assign upgrade
clusters of high-level system | requirements, on the expertise | versions,
software component testing, or of the locations | language
features maintenance localization, etc.

Partition by combination of the above (e.g., functionality and expertise)

VOL. 3, NO. 1

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

There are the makings of a complexity function in this discussion where the
basic arguments are the number of remote teams, the number of people

in each team, a measure of the diversity between the teams, the diversity
within the teams, and the distances between them. There is a challenge
here for someone to describe a function that acts upon these arguments
together with the partitioning of the project and produces a measure of
the project complexity. This would produce an excellent early indication

of the extent of the expected DSD challenge.

significantly reduces their com-
plexity by turning them into a col-
lection of smaller subprojects,
which are then easier to partition.

DSD Project Management

The opening example in this
report, quoted from my own
tenure at Motorola, concludes
with the rhetorical question: was
the example a project manage-
ment nightmare? It is indeed a
fitting question to ask because,

as all software project managers
know, communications within the
development team are a key fac-
tor in successfully managing the
project. This is no different from
any form of management — be it
managing a Fortune 100 corpora-
tion or commanding an army.

Sun Tzu recognized this 2,500
years ago, when he stated: “A
well-developed communications
network links your mind to your
men so that instead of a collection
of individuals more or less headed
in the same direction, you now
have a unit. Good communica-
tions is the key to controlling large
groups of men.” [18]

The Motorola wireless telephony
project, described earlier, was
developed in the mid-1990s.

In many ways, its management
was typical of large DSD projects.

©2002 CUTTER CONSORTIUM

With teams in the US, Israel,

and India, there was no problem
confirming Sun Tzu’s assertion:
communications were indeed the
primary management challenge.

The methods that resolve these
management challenges can be
divided into:

1. Software project processes.
A DSD project is first and fore-
most a software project and, as
such, requires all the standard
processes necessary for the
successful management of
software development.

2. Tools and technology. There
is a wide range of tools and
technology available to help
bridge the communications
gap between facilities.

3. DSD-specific management
methods. It is the distance
between the teams that
requires specific methods
of management.

Process: One Standard Versus Many

One of the main challenges of
software development process in
a distributed project is the diver-
sity of processes between the
locations. From a management
perspective, many of the elements

that affect the direction, organiza-
tion, and administration of the
project may be different, such as:
the development methodology,
the development standards, the
reporting format (e.g., status or
progress reports), and particularly
the terminology, which defines
the technical language between
the teams.

There are opposing perspectives
on how this problem should

be addressed. In the Motorola
experience related earlier,

Battin recommends not imposing
a common process. The rationale
is that learning a common process
takes valuable time, and the learn-
ing curve would impact the proj-
ect’s delivery schedule.

Alcatel’s Ebert takes the opposite
position and recommends rigor-
ously enforcing a CMM Level 3
interactive process model.

These opposing views may well
be explained by the nature of

the two organizations. Alcatel
appears to promote a more
process-based homogenous orga-
nization across all facilities, while
Motorola tolerates more diversity.
Clearly, there are advantages and
disadvantages to both approaches.
In a homogenous organization,
the Alcatel practice of standardiz-
ing process makes sense, and in
a diverse organization, Motorola’s
strategy makes sense. However,
irrespective of the degree of diver-
sity, the successful management
of a DSD project requires modern

VOL. 3, NO. 1

development processes just like
any other type of software project.

The Evolution of Intelligent Tools

The use of tools and technology is
what makes the management of
DSD possible. In the early days of
software development, a distrib-
uted team would be all but impos-
sible to manage. Modern day
technology, from fax machines

to the Internet, have shaped the
global village, where distances
seem to have shrunk. The two
principal mediums that have
helped achieve this are:

1. Improved telecommunications,
including reliable and inexpen-
sive phone service, videocon-
ferencing, fax machines, e-mail,
and the Internet

2. Easy, convenient, and inexpen-
sive travel

The telecommunications revolu-
tion has also spurred a host of
intelligent tools and applications
that are transported by the global
communications infrastructure.
Many of the applications are
geared toward making the man-
agement of remote locations
more practicable [22, 24].
These applications have
become increasingly intelligent
in their ability to help manage
complex project tasks.

Intelligent software programs
are not a new phenomenon.
In software development, they
can help with such tasks as

VOL. 3, NO. 1

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

decisionmaking (a natural candi-
date for artificial intelligence).
Popular versions of decision-
making applications are used for
such tasks as the purchase choice
between several automobiles
based on the users’ preferences
and priorities and the grading

of the candidate automobiles
according to those preferences.

The concept of an intelligent assis-
tant® for distributed projects was
presented at an IEEE workshop in
1999 by Rory O’Connor and John
Jenkins [21]. The O’Connor study
based its research on the asser-
tion that users of existing project
management tools could benefit
greatly from the inclusion of intel-
ligent assistants’ techniques when
used together with the users’
familiar tools. The study listed
three applicable project activities
where intelligent assistants can
be valuable:

1. Project planning — particularly
scheduling

2. Process management — in
areas that support the frame-
work and rules of project
management.

3. Risk analysis — tools that
help assess risk throughout
the project lifecycle

8This was by no means a new concept, and, in
fact, the authors traced it as far back as to the
fourth century BC when Socrates claimed to
have a nonhuman intelligent assistant, which
he called Daemon. The development of com-
puter technology raised interest in the concept
at many stages, one of the early implementa-
tions being Eva in the 1980s — a computer
software application that was purported to
function as a personal psychoanalyst.

One of the characteristics of these
activities is that they have the
potential to accumulate vast
amounts of information during
the project lifecycle. This infor-
mation is often too much for an
individual to absorb, particularly
when diverse and distant teams
are producing the information.
When captured into a database,
intelligent assistants can process
and analyze this information
and provide valuable guidance
to the developers and project
management.

Examples of intelligent tools are
the Distributed Software Project
Management Tool (DSPMtool)
[24], which gathers, analyzes,
integrates, and disseminates the
outputs of various software proj-
ect management processes, and
MS-Project, which has the intelli-
gence to resolve planning con-
flicts between several different
teams. More about these and
other DSD tools in the “Overview
of Tools and Technology” section
starting on page 15.

DSD-Specific Management Methods

Erran Carmel, who has written
extensively on DSD, states that an
organization cannot function with-
out coordination and control, and
distance creates difficulties in
both [4]. Carmel grouped the
approaches to alleviating the
problems of distance into six
centripetal forces that exert
inward pressure on the team

for more effective performance:

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

1. Collaborative technology
2. Team building
3. Leadership

4. Product architecture and
task allocation

5. Software development
methodology

6. Telecommunications
infrastructure

These forces cannot be expected
to come to bear on their own.
They need to be part of the overall
project management DSD strategy
for bridging the communication
gap. Simply stated, project man-
agement must have a plan to
address each of these six spheres
of action. Just as we recom-
mended earlier that a distributed
project should be designed from
the ground up with partitioning

in mind, so we can state that the
project management plan for a
distributed project must be cre-
ated from the beginning with

DSD in mind.

Table 2 lists the basic steps to
develop a DSD project manage-
ment plan:

This is not a serial process. Steps
1, 2, and 3 can be implemented to
a large degree in parallel. Step 4
can iterate back to step 3 and

so forth.

©2002 CUTTER CONSORTIUM

Table 2 — Steps to Generate a DSD Project Management Plan

Step 1

Create a preliminary project management plan
(e.g., use IEEE Std. 1058)

Step 2
teams

Study the characteristics of each of the distributed

Step 3

Identify DSD challenges, (i.e., areas that require
specific solutions such as: communication,
culture, local methods and processes, government
regulations, travel, available expertise, and
available resources)

Step 4

challenges

Using the preliminary plan as a starting point,
expand and enhance the plan to address the DSD

OVERVIEW OF TOOLS
AND TECHNOLOGY

As we have seen, a major role

of technology in a distributed
project is the bridging of the
communications gap. James
Herbsleb, who has been leading
Bell Lab’s research into distrib-
uted development, concludes that
the problem with multisite devel-
opment is largely one of the delay
caused by intersite communi-
cations [10, 11]. We know that
people communicate more when
they are located at the same site,
and the distance between the
sites makes the resolution of
problems more difficult.

Today’s telecommunications tech-
nology has the ability to bring
remote locations closer together.
Most, if not all, tools in the DSD
project manager’s toolbox, are
based, one way or another, on
telecommunications. The
Internet, videoconferencing,
e-mail, fax transmissions, and
improved phone service have

brought remote sites closer
together and have thus changed
the way we work. Corporate
communications networks now
span the globe with broadband
data capacities and high reliability
and availability. This has provided
the infrastructure on which more
sophisticated tools can run.

The Bell Labs study identified the
need for a more advanced toolset
and concluded that the common
communications tools were not
enough to resolve the distance
problem. Following are some of
the areas in which new advanced
tools and intelligent applications
are being developed:

B Cross-site project management
systems

B Cross-site configuration control
B Fast file transfer mediums

B Cross-site problem manage-
ment systems [17]

VOL. 3, NO. 1

The following paragraphs discuss
some of the tools that are avail-
able today for distributed projects.’

B Project planning — this
includes tools that help parti-
tion the overall project plan
into individual team plans.

B Process management — these
are the tools that support the
framework and rules of soft-
ware development, such as
configuration management.

B Project supervision — this
includes the facilities and tools
that support the flow of infor-
mation between the teams and
the project manager, the quality
assurance team, and the con-
figuration management team.
In a small project, the project
manager may hold all, or some,
of these responsibilities.

B Interteam communications —
this includes the media that
enable the teams to easily and

9See also [21].

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

effectively exchange informa-
tion and hold discussions.

B Identification of risks and the
resolution of problems — this
includes tools that address spe-
cific risks and problems related
to DSD, such as the loss of
communication, incompatibility
of implemented tasks, or the
security of data.

The project planning and process
management tools are among the
core functions required in the
early stages of project launch. In
particular, configuration manage-
ment, which is important in any
software development system, is
especially critical in a distributed
environment. This is the disci-
pline that controls the individual
parts of the overall system, admin-
isters changes to the items,
records their implementation sta-
tus, and verifies compliance with
the project’s specified require-
ments. Clearly, if not done well,
this can be a frustrating challenge

Table 3 — Examples of DSD Support Tools

DSD Activity

Examples of Tools

Communication between teams

TeamPortal [9]
Microsoft’s NetMeeting

DSD planning

Microsoft Project

Problem tracking

Rational’s ClearQuest Multisite

Project management

DSPMtool [24]

Change control

Rational ClearQuest Multisite

Configuration management

Concurrent Versions System

Module/document
check-in/check-out

Workgroup Cache [16]
CHIME [7]

Problem tracker

Pragmatic Software’s

Software Planner

Hitachi’s Problem Management
System [17]

Overall software engineering
environment

PROSYT [5]

VOL. 3, NO. 1

in any distributed environment.
This is one of the chief areas
where DSD either succeeds

or fails.

The interteam communications
tools become more important to
the project as the teams grow.
Toward the end of the project,
the critical phases of testing

and integration cannot occur
without them.

As we have seen, some DSD tools
function as intelligent assistants,
analyzing data from several
sources. In other cases, DSD tools
are no more than an integrated
set of individual tools that cover
different project activities.
Obviously, the ideal is for these
tools to work together (though in
DSD, that is not yet common).

Table 3 provides examples of both
commercially available tools and
internally developed proprietary
tools.!? This is not a list of recom-
mendations but rather a collection
of examples.

TEAM-RELATED ISSUES

Loss of teamness was a concern
mentioned by Battin in his experi-
ences with DSD at Motorola.
There is strength in a good team
that exceeds the sum of the
strengths of the team members.
In a distributed environment, the
effect of this benefit can be lost.

100f the many communications tools and
software applications that support distributed
development environments, many are com-
mercially available but several are proprietary
and were internally developed by large
corporations.

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

A basic challenge in establishing a
distributed team structure is the
cultivation of as much team spirit
as possible. This goes hand in
hand with the establishment of
the communications infrastruc-
ture and the project management
structure, and with the partitioning
of the project. How then is team
spirit promoted within the overall
organization of the distributed
project?

First, the basics of team building
are valid for a distributed team.
Virtually all team-related issues
that arise in software projects
require no less attention in a dis-
tributed project. However, some
of them are more greatly stressed
in a distributed environment, and
these include team structure, issues
of trust, sensitiveness to differ-
ences in culture, and motivation.

Team Structure

“The structure of the system mir-
rors the structure of the organiza-
tion that designed it.” This sounds
like a statement made recently
after observing the impact of dis-
tributed teams on system archi-
tecture and design. It wasn’t. It
was, in fact, written back in 1968
by M.E. Conway and is referred to
as Conway’s law [6].

As we have seen, the structure

of the system determines the ease
in which it can be partitioned;
consequently, the relationship
between the structure of the team
and the structure of the software
seems to conform to Conway’s

©2002 CUTTER CONSORTIUM

law. This is especially true in a
distributed software project.

Conway continued that this rela-
tionship is a necessary conse-
quence of the communications
needs of the people doing the
work. This, almost 35 years ago.
It is therefore important for the
project management office to fully
appreciate that, in a distributed
development environment, it may
be the team that determines the
structure of the software and not
the reverse. Because the final
product doesn’t care how it was
built (i.e., the software’s users are
not sympathetic to development
constraints), project management
must be able to fully evaluate

the impact of the distributed team
on the appearance of the final
product.

The following list summarizes
some of the considerations in
establishing a distributed team
structure:

B The availability of a team is not
in itself sufficient justification
for it filling a set of openings
in the staffing of a project.
Though diversity can be a
blessing in disguise [8], there
must be some reasonable
level of cohesion between the
teamns in regard to project goal,
project leadership, quality
of work, cooperation, and
exchange of information. If any
teamn falls short in one of these
areas, its contribution to the
project could turn out to be
less valuable in comparison

to the danger of it disrupting
the project.

The lessons of Conway’s law
should be taken into account
fully to ensure that the
intended team structure does
not create a poor system struc-
ture. The team structure must
promote some acceptable
rationale in the way the soft-
ware will be architected and
partitioned. Ideally, the team
structure should be shaped
according to loosely coupled
work allocations.

One of the main consequences
of a distributed team structure
(in comparison to a centralized
team) is the additional over-
head for team leadership. Due
to the relative independence of
the local teams, local leadership
and team structure must be
clearly defined, with account-
ability and authority spelled out
both on the team level and on
the individual level.

Similarly, central leadership,
team structure, and individual
roles must be clearly defined,
with unambiguous designa-
tion of central authority and
responsibility.

Support functions such as qual-
ity assurance and configuration
management must also be
clearly defined and well coordi-
nated both on the local and
central level.

The available infrastructure
should be included in the
determination of the team

VOL. 3, NO. 1

structure. This includes the
accessibility of the software
project elements as well as

the site itself (e.g., the location
designated for the project man-
agement office should be easily
accessible from all other sites).

Finally, it is noteworthy to recall
one of the conclusions of the
Alcatel report [8] discussed
earlier. The report strongly
advised that DSD teams be
coherent (teams should be struc-
tured based on work allocation of
features/functionality), collocated
(within each team, members
should work close to each other),
and fully allocated (100% dedica-
tion of each team member’s time
to the project).

Issues of Trust Between Sites

Local patriotism, tribalism, or
clanning is a human trait as old

as humanity itself. In fact, it is one
of the constituents of team spirit
that, as we have seen, is quite

a desirable quality. Competition
between teams can be positive,
but it can have negative effects,
too. This is especially true
between distributed teams.

Personal contact is an important
catalyst for promoting trust
between people.!" The distance
between distributed teams
reduces the opportunities for per-
sonal contact and thus increases
the risk of a growing distrust.

!t is true that personal contact also has the
potential for promoting distrust between
people. The outcome is a question of what
happens during the personal contact.

VOL. 3, NO. 1

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

This is one of the areas where a
natural solution exists: travel.

A recent report from Lucent [12]
recounts the experiences in this
area of one of the company’s
departments. Lucent’s real-time
embedded systems department is
engaged in a number of cross-site
collaborations, within its own
product group, with other corpo-
rate divisions, and with other
companies. The challenges
included working with teams with
different languages, cultures, and
within different time zones.

The report reveals the initial lack
of trust between two sites due to
concerns about job security. This
led to a reluctance to share infor-
mation, and the sites did not
appear to regard themselves as
partners cooperating toward the
same end. This manifested itself
in what the report called “unchari-
table” interpretations of behavior.
For example, if someone said,
“We can’t make that change,” it
was often interpreted as, “We
don’t find it convenient to make
that change.”

Lucent reports that improvement
occurred when members of the
two teams began to meet. One of
the developers was quoted as say-
ing: “Things eased a lot when we
met these people face to face,
instead of over the telephones
and e-mail. We worked more
closely and resolved things much
quicker.” Working face to face let
the developers establish common
goals and purposes. Also, the

time spent at the other site famil-
iarized each party with the termi-
nology and style of the other.

Clearly, there must be some limi-
tations placed on travel, as it is
expensive in terms of both time
and cost. However, good working
relationships can also be fostered
by encouraging frequent contact
by other means — not as a substi-
tute for travel, but in addition to it.
E-mail is a useful medium, but
voice contact (the telephone) is
better, and videoconferencing is
better still.

In fact, e-mail can be a rather
poor medium for developing rela-
tionships, as it suffers from two
serious shortcomings: it has no
secondary language support (such
as voice intonation or body lan-
guage), and it does not provide
immediate acknowledgement of
understanding. This means that
there is a delay in the correction
of a misunderstood e-mail mes-
sage, which provides time for mis-
understandings to fester. Phone
calls are almost always better
relationship-builders.

Issues of Culture

Earlier in this report, we discussed
a misunderstanding between
British and German developers
due to the way each interpreted
the wording of an instruction.
People from different cultures do
not just interpret things differently;
they also react to them differently
(behavioral differences). This

is less of an issue for nationally

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

distributed teams (e.g., within
the US) but more of an issue for
globally distributed teams.

Carmel [4] employs a term called
cultural distance. It is a measure
of the degree of difference between
the project center (usually from
where the project is managed)
and the remote locations. This
distance usually manifests itself

in one of two forms: organiza-
tional culture or national culture.

Organizational culture refers to
the culture of systems develop-
ment, such as the use of method-
ologies and project management
practices. Carmel relates the
case of a Korean customer who
recently accused an Indian out-
sourcing company of becoming
“too American” in that they were
devoting too much attention to
documentation and were too
stringent about deadlines.

National culture includes an
ethnic group’s norms, values, and
spoken language, often delineated
by national boundaries of coun-
tries. American companies gen-
erally prefer to work in foreign
locations where cultural distance
is small — for example, in Ireland
— or where the language barriers
are minimal, such as India or the
Philippines.

Carmel discusses an alleviation of
cultural distance through the role
of expatriates or well-traveled
individuals functioning as cultural
liaisons, in a somewhat similar
manner to the Motorola 3G

©2002 CUTTER CONSORTIUM

project liaison discussed earlier.
However, Carmel sees the role as
ongoing (with frequent travel back
and forth), in contrast to the
Motorola liaison function that
focused mainly on the initial
stages of the project.

Herbsleb also focuses on the
issues of culture in global
development [11]. He brings the
example of diverse teams not
understanding each other. He
observes from his experiences at
Lucent that when people are puz-
zled about how to respond to
what they see as odd-sounding
messages, they often just ignore
them or make uncharitable attri-
butions about the sender’s inten-
tions or character. At the extreme,
this has the potential of mimicking
the tower of Babylon syndrome
when communication totally
breaks down.

Of the two forms of cultural dis-
tance, organizational culture is
often easier to deal with. Project
management has more control
over organization culture
(deciding on policies, standards,
methods, and tools) than over
national culture (which basically
boils down to using or not using a
specific team). As we have seen,
in organizational culture there are
two basic approaches: institution-
alizing standard processes and
methods across all teams (the
path chosen in the Alcatel report),
or accepting the divergence of
work methods and making them
a factor in the scheme of project
development (the path chosen in

the Motorola report). How do you
choose between the two?

The answer is related to the
degree to which the remote
teams are integrated into the over-
all organization. In a tightly knit
corporate structure, the Alcatel
approach is possible and may be
preferable. In a more loosely inte-
grated organization, the Motorola
approach may be preferable. The
best path can therefore be deter-
mined by observing the structure
of the organization.

These are not rigid rules. Most
organizations are neither com-
pletely inflexible nor completely
flexible, and just have tendencies
one way or the other (this is true
of both Alcatel and Motorola). For
each individual distributed proj-
ect, it is the degree of integration
between the candidate develop-
ment sites that should determine
the decision on the appropriate
organizational culture.'?

The distance produced by
national culture can be more of

a challenge, primarily because
most people are familiar with only
one culture: their own. However,
being aware of the problem is
often a major part of its solution.
Thus, a useful tactic in global
development is to sensitize all
members of all teams to the issue
of cultural distance, early in the
project. Ensuring awareness of

2Unfortunately, there is not always a decision
to be made. Organizational culture is often
predetermined by the corporate culture and
is thus relatively inflexible.

VOL. 3, NO. 1

the issue, together with occa-
sional visits between teams and
the use of liaisons, can signifi-
cantly moderate the problem.

Team Motivation

Asked by an interviewer what he
thought was the most efficient
weapon in his arsenal, a renowned
general once responded: “With-
out a doubt, high motivation.”

Studies have shown a vast differ-
ence between the productivity of
software developers [3]. There
are many factors that determine
productivity, but motivation is key.
In a given situation, the function of
project management and the envi-
ronment in which the project is
developed can have significant
impact on the motivation and the
productivity of the teams.

It is project management’s respon-
sibility to promote the motivation
of teams. According to Fredrick
Herzberg, the two strongest moti-
vators are, by far, recognition and
sense of achievement [13]. These
are two factors that can easily get
lost in the complexity of a large,
distributed organization.

In a distributed environment,
these two factors apply equally
on the team level (recognition of
the team’s efforts and the team’s
sense of achievement) and on
the individual level (recognition
of each team member’s efforts
and their sense of achievement).

It is the local team leader’s
responsibility to celebrate local

VOL. 3, NO. 1

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

dedication and achievement and
to provide the local vision for the
team. On the overall project level,
it is the project manager’s respon-
sibility, together with the manage-
ment team, to recognize team
dedication and achievement and to
provide the overall project vision.

This is one of the reasons why
travel is doubly important for the
managers of a DSD project. It
reinforces a critical link between
the remote team and the project
leadership, and it provides a sense
of belonging. This is the best
opportunity for project leader-
ship to publicly recognize the
achievements of the remote
teams and thus to strengthen
their motivation.

Similar to the issue of culture, just
the awareness of the difficulty in
motivating a distributed team is in
itself part of the solution. This is
an issue that must receive atten-
tion from the earliest phases of
the project.

ON A PERSONAL NOTE

My experiences with distributed
software development at Motorola
included many of the distinctions
that we have been discussing.

At the early stages of every proj-
ect, there was always an under-
tone of concern about whether
we should have preferred central-
ized development.

It was only later in the project —
when the organization was
defined, the teams were in
place, and development was

under way — that the questions
faded. Why was this so? Possibly
because the preference for cen-
tralization is ingrained in our
human nature — we don’t like

to relinquish control. And, also,
possibly because there was a
basic fear of the unfamiliar.

Interestingly, a second distributed
project with the same teams was
easier to initiate than the first. It
had been demonstrated that the
strategy worked, and the teams
had become more familiar with
each other and, more importantly,
with Motorola’s Chicago-based
personnel.

How well did teams from the US,
India, and Israel work together?
Not too well, at first. The cultures
were vastly different. At one
stage, a team from Cork, Ireland,
was also involved in the distrib-
uted experience. The US team,
coming from the company’s main
corporate center, felt that they
owned the project, and, to a large
extent, they did. The Israeli team,
with an entrepreneurial spirit, also
felt that they owned the project,
and to a large extent, they didn’t.
The Indian team, with their well-
defined Software Engineering
Institute Level 5 process and their
polite culture, had a tough time
dealing with their less-formal US
and Israeli colleagues. The Irish
team probably melded best with
the others, as on the one hand,
there was nothing in their culture
that strongly differentiated them
from the other teams, and, on the
other hand, they were responsible

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

for a well-defined, very loosely
coupled part of the project.

As the project progressed (over

a period of almost two years),

the teams learned to work better
together. This was also achieved
through tools and infrastructure
that improved as the project pro-
ceeded. Travel was a major factor
in the development of cordial rela-
tionships between the teams, and,
as more people met face to face,
the frictions and misunderstand-
ings faded.

Though there was a basic set of
project processes and methodolo-
gies in place, each location had its
own flavor, which, in the case of
the Indian team, was substantially
different to the other teams. Most,
but not all, tools were similar.

And none of the projects could
have succeeded without
Motorola’s sophisticated world-
wide corporate communications
network and its intranet.

CONCLUSION

On both the national and global
levels, the case for distributed
software development is being
proven daily. Most major develop-
ment corporations, and many
smaller ones, have adopted

DSD as part of their strategy.

As technology continues to pro-
vide better solutions and the
global village becomes more and
more of a reality, a vast reservoir
of software developers becomes
increasingly accessible.

©2002 CUTTER CONSORTIUM

We asked at the beginning of this
report: “Will changes in global
relationships and travel behavior
affect the way software is being
developed? Is a distributed soft-
ware organization still a wise
choice for today’s corporations?”
We have reviewed many of the
factors that can help you answer
these questions.

First, the need to capitalize on the
national or even global resource
pool is still valid, though possibly
in a temporarily diminished form.
Also, the business advantages,
such as proximity to the market,
are still valid. The need to develop
good will with foreign govern-
ments is more valid today than
ever. Therefore, it appears that
distributed development remains a
sound strategy for companies with
the right type of project. These
are the projects that have a clear
DSD business advantage and are
suitable to be divided between
times (they are partitionable).

As for the long-term future of
DSD, technology will continue to
develop, infrastructure will con-
tinue to improve, and this will
make travel less critical. The phe-
nomenon of the global village will
continue regardless of whatever
happens to airline travel. And if
airline travel eventually returns

to its previous level, and many
expect that it will, then it will

only further reinforce this trend.

As the old saying goes, the proof
is in the pudding. For distributed
development, the best proof of its

merit is in the fact that so many
companies have adopted it as part
of their strategy, linking remote
global and national development
locations together. Apparently, the
global village is alive and well.

REFERENCES

1. Anthes, Gary H. “Software
Development Goes Global,”
Computerworld, June 28, 2000
(www.cnn.com/2000/TECH/
computing/06/28/global.
development.idg/).

2. Battin, Robert D., Ron Crocker,
Joe Kreidler, and K. Subramanian.
“Leveraging Resources in Global
Software Development,” IEEE
Software, March/April 2001.

3. Bennatan, E.M. On Time
Within Budget: Software Project
Management Practices and
Techniques, 3rd edition. John
Wiley & Sons, 2000.

4. Carmel, Erran, and Ritu
Agarwal. “Tactical Approaches
for Alleviating Distance in Global
Software Development,” IEEE
Software, March/April 2001.

5. Cugola, Gianpaulo, and Carlo
Ghezzi. “Design and Implement-
ation of PROSYT: A Distributed
Process Support System,” IEEE
2nd Workshop on Coordinating
Distributed Software Development
Projects, Stanford University,
California, USA, 16-18 June 1999.

6. Conway, M.E. “How Do

Committees Invent?” Datamation,
April 1968, Vol. 14, No. 4, pp. 28-31.

VOL. 3, NO. 1

7. Dossick, Stephen E., and Gail E.

Kaiser. “Distributed Software
Development with CHIME,” ICSE-
99 Second Workshop on Software
Engineering over the Internet,
University of Calgary, May 1999.

8. Ebert, Christof, and Philip De
Neve. “Surviving Global Software
Development,” IEEE Software,
March/April, 2001.

9. Handel, Mark, and Graham
Wills. “TeamPortal: Providing
Team Awareness on the Web,”
Product Development Collab-
oratory, Lucent Technologies,
Bell Labs, 2001.

10. Herbsleb, James D., Audris
Mockus, Thomas A. Finholt, and
Rebecca E. Grinter. “Distance,
Dependencies, and Delay

in Global Collaboration,”
Proceedings of CSCW 2000,
December 2000.

11. Herbsleb, James D., and
Deependra Moitra. “Global
Software Development,” IEEE
Software, March/April 2001.

12. Herbsleb, James D.,

and Rebecca E. Grinter.
“Architectures, Coordination,
and Distance: Conway’s Law
and Beyond,” IEEE Software,
September/October 1999.

13. Herzberg, Fredrick I. “One
More Time: How Do You Motivate
Employees?” Harvard Business

Review, September/October 1987.

VOL. 3, NO. 1

AGILE PROJECT MANAGEMENT ADVISORY SERVICE

14. IEEE Software, “Global
Software Development,”
March/April 2001.

15. IEEE 2nd Workshop on
Coordinating Distributed Software
Development Projects, Stanford
University, California, 1999.
http://wwwagr.informatik.
uni-kl.de/~koetting/WETICE9Y/.

16. Kaiser, Gail, Christopher
Vaill, and Stephen Dossick.

“A Workgroup Model for Smart
Pushing and Pulling,” IEEE
FEighth International Workshops
on Enabling Technologies:
Infrastructure for Collaborative
Enterprises, June 1999.

17. Kudo, Yutaka, Shinobu
Koizumu, Osamu Ohno, Hiroshi
Kawabe, and Yukari Furuhata.
“Problem Management System
for Distributed Software Develop-
ment,” ICSE-98 Workshop on
Software Engineering over the
Internet, University of Calgary, 1998.

18. Kuo, T.W. (translator/editor).
Sun Tzu: Manual for War, ATLI
Press, 1989.

19. Mockus, Audris, and David
M. Weiss. “Globalization by
Chunking: A Quantitative
Approach,” IEEE Software,
March/April 2001.

20. Murer Tobia, Michael L. Van De
Vanter. “Replacing Copies with
Connections: Managing Software
Across the Virtual Organization,”
IEEE 2nd Workshop on Coordi-
nating Distributed Soffware
Development Projects, Stanford

University, California, 16-18
June 1999.

21. O’Connor, Rory, and John
Jenkins. “Using Agents for
Distributed Software Project
Management,” IEEE 2nd
Workshop on Coordinating
Distributed Software Development
Projects, 16-18 June 1999, Stanford
University, California.

22. Repenning, Alexander, Andri
loannidou, Michele Payton,
Wenming Ye, and Jeremy
Roschelle. “Using Components
for Rapid Distributed Software
Development,” IEEE Software,
March/April 2001.

23. Rhoads, C. “Germany Faces
Storm over Tech Staffing,” Wall
Street Journal, March 7, 2000.

24. Sujaputra, Raymond,

and Piyush Maheshwari. “A
Distributed Software Project
Management Tool,” IEEE 2nd
Workshop on Coordinating
Distributed Software Development
Projects, Stanford University,
California, 16-18 June 1999.

25. West, Lawrence A., and Walter
A. Bogumil. “Immigration and the
Global IT Work Force,” Commun-
ications of the ACM, July 2001,

Vol. 44, No. 7.

26. Yourdon, Edward. The
Decline and Fall of the American
Programmer. Prentice Hall, 1993.

27. “Offshore’s New Horizons,”
Global Technology Business,
March 2000, Vol. 3, No. 3, pp. 12-15.

www.cutter.com/consortium/

http://www.cutter.com/consortium/

EXECUTIVE REPORT

FURTHER READING

Agarwal, Ritu, and Thomas W.
Ferratt. “Crafting an HR Strategy
to Meet the Need for IT Workers,”
Communications of the ACM, July
2001, Vol. 44, No. 7.

Altmann, Josef, and Heinz Dobler.
“Organizational Aspects of
Distributed Software Develop-
ment,” Proceedings of the 6th
Interdisciplinary Information
Management Talks, Zadov, CZ,
1998, Trauner Universitatsverlag,
pp. 111-120.

Altmann, Josef, and Gustav
Pomberger. “Cooperative
Software Development: Concepts,
Model and Tools,” Proceedings

of TOOLS-30 Conference, IEEE
Society Press, 1999.

Baentsch, Michael, Georg Molter,
and Peter Sturm. “WebMake,
Integrating Distributed Software
Development in a Structure-
Enhanced Web,” The Third
International World-Wide Web
Conference: Technology, Tools
and Applications, Darmstadt,
Germany, 10-14 April 1995.

Benford, Steve, Chris Greenhalgh,
Tom Rodden, and James Pycock.
“Collaborative Virtual Environ-
ments, Communications of the
ACM, July 2001, Vol. 44, No. 7.

Boyer, David G., Mauricio Cortes,
James Herbsleb, and Mark J.
Handel. “Virtual Community
Awareness,” Product Develop-
ment Collaboratory, Lucent
Technologies, Bell Labs, 2001.

©2002 CUTTER CONSORTIUM

Boyer, David G., Mauricio Cortes,
and Mark J. Handel. “Presence
Awareness Tools for Virtual
Enterprises,” Product Develop-
ment Collaboratory, Lucent
Technologies, Bell Labs, 2001.

Dargan, PA. “The Ideal
Collaborative Environment,”
Crosstalk: The Journal of Defense
Software Engineering, April 2001.

Embar, Chellam. “The State of
Software Development in India,”
Crosstalk: The Journal of Defense
Software Engineering, August
2001.

Favela, Jesus, and Feniosky
Pena-Mora. “An Experience
in Collaborative Software
Engineering Education,” IEEE
Software, March/April 2001.

Finholt, Thomas A., Elena Rocco,
Danial Bree, Nishant Janin, and
James D. Herbsleb. “NotMeeting:
A Field Trial of NetMeeting in

a Geographical Distributed
Organization,” Product
Development Collaboratory,
Lucent Technologies, Bell

Labs, 2001.

Govindarajan, Vijay, and Anil K.
Gupta. “Building an Effective
Global Business Team,” MIT Sloan
Management Review, Summer
2001.

Gupta, Phalguni. “Growth
Scenario of IT Industries in India,”
Communications of the ACM, July
2001, Vol. 44, No. 7.

Heeks, Richard, S. Krishna, Brian
Nicholson, and Sundeep Sahay.
“Synching or Sinking: Global
Software Outsourcing
Relationships,” IEEE Software,
March/April 2001.

Lai, Vincent S. “Interorganiza-
tional Communication with
Intranets,” Communications of
the ACM, July 2001, Vol. 44, No. 7.

Mander, Keith. “The Decline
and Fall of the American
Programmer?” Communications
of the ACM, July 2001, Vol. 44,
No. 7.

Schuff David, and Robert St. Louis.
“Centralization vs. Decentral-
ization of Application Software,”
Communications of the ACM,

June 2001, Vol. 44, No. 6.

Tobias, Murer, and Michael L. Van
De Vanter. “Replacing Copies
with Connections: Managing
Software Across the Virtual
Organization,” IEEE Eighth
International Workshop

on Enabling Technologies:
Infrastructure for Collaborative
Enterprises, Stanford University,
California, 16-18 June 1999.

Trauth, Eileen M. “Mapping
Information-Sector Work to the
Work Force,” Communications of
the ACM, July 2001, Vol. 44, No. 7.

Whitehead, Jim. “The Future of
Distributed Software Development
on the Internet,” Web Techniques,
October 1999.

VOL. 3, NO. 1

CUTTER CONSORTIUM

©000od

—0 Agile Project Management Senior Consultants
- - Cutter Consortium has assembled the
AdVlSO ry Se rvice world’s preeminent IT consultants —

a distinguished group of internationally

Today’s projects require a new perspective. Instead of best recognized experts committed to delivering

practices, you’ve got to consider the next practices. The Agile top-level, critical, objective advice.

Erol ect Management Advi sory Serviceis de§1gned t.o help you Each Consortium practice area features
implement a balance of practices that support innovation, a team of Senior Consultants whose
discipline, and adaptability. You’ll discover which of the major credentials are unmatched by any other
Agile Methodologies are right for your organization, and you’ll get service provider.

a platform on which you can begin to create project management The Senior Consultants who write for
methodologies that support your enterprise. the Agile Project Management Advisory

Service — and are available for inhouse
workshops and custom consulting

- - - engagements — include:

=0 As a client, you will receive: gag

¢ Jim Highsmith, Director

® Monthly Executive Reports and Summaries — providing e Scott W. Ambler
strategic advice from today’s project management experts e Sam Bayer
e E.M. Bennatan
® Twice-monthly Executive Updates — with analysis of exclusive » Tom Bragg
project data * Robert N. Charette
e Alistair Cockburn
® Weekly E-Mail Advisors by Practice Director Jim Highsmith * Doug DeCarlo
e Tom DeMarco
. . . e Jan Hayes
=0 Topics Covered in the Executive e Ron Jeffries
Reports and Updates include: e Brian Lawrence
e Tim Lister
® The effects of Agile Methodologies on system architecture, user * Michael C. Mah
interface design, database design, and software design : ?;T]ngr'wx
® Best strategies for executing second-generation e-projects « Chris Pickering
® Trends in length, team size, and project type for agile projects « Roger Pressman
® How to remain agile while using rigorous methods e Ram Reddy

e James Robertson
e Suzanne Robertson
¢ Alexandre Rodrigues

® Proven ways to improve organizational decisionmaking
® Performing risk assessments using object-oriented metrics

® Successful strategies for managing distributed software teams » Johanna Rothman
® What project managers need to know to leverage requirements e Lou Russell
® Optimizing software inspection practices to maximize the return * Rob Thomsett
. e Colin Tully
on investment

e Richard Zultner

'For More Information:
To learn more about Cutter Consortium’s Agile Project M anagement Advisory Service, contact David Gijsbers
by phone at +1 781 641 5104, by fax at +1 781 648 1950, or send e-mail to dgijsbers@cutter.com.

About Cutter Consortium:
Cutter Consortium offers high-level advisory services, on-site assessments, consulting, and training to help
organizations forge solutions to the IT challenges they face. The Consortium is dedicated to providing completely
objective information and to customizing its services to meet each client’s needs.

Cutter Consortium, 37 Broadway, Suite 1, Arlington, MA 02474, USA
Phone: +1 781 648 8700; Fax: +1 781 648 1950
Web site: www.cutter.com/consortium/

secccsscceap Cutter Consortium: Helping Organizations Leverage IT for Competitive Advantage and Business Success

http://www.cutter.com/consortium/

CUTTER CONSORTIUM

ABOUT THE CUTTER CONSORTIUM
Cutter Consortium’s mission is to help senior executives leverage technology for competitive
advantage and business success.

Cutter’s offerings are entirely unique in the research/analyst industry sector because they are pro-
duced and provided by the top thinkers in IT today — a distinguished group of internationally rec-
ognized experts committed to providing high-level, critical advice and guidance. These experts
provide all of Cutter’s written deliverables and perform all of the consulting and training
assignments.

Cutter Consortium’s products and services include: high-level advisory/research services, online
and print publications, benchmarking metrics, management and technical consulting, and
advanced training. The content is aimed at both a technical and business audience with an
emphasis on strategic processes and thinking.

An independent, privately held entity that has no allegiance or connections to any computer ven-
dors, Cutter has a well-earned reputation for its objectivity. Cutter’s more than 5,300 clients
include CIOs, CEOs, CFOs, and senior IT managers in Fortune 500 companies and other
businesses, national and state government, and universities around the world.

As a smaller information provider, the Consortium customizes its services to meet each client’s
individual needs and ensure them access to the experts.

FOR MORE INFORMATION

To learn more about the Cutter Consortium, call 800 964 5118 (toll-free in North America) or
+1 781 648 8700, send e-mail to sales@cutter.com, or visit the Cutter Consortium Web site:
www.cutter.com.

CUTTER CONSORTIUM
37 Broadway, Suite 1, Arlington, MA 02474-5552, USA
Tel: +1 781 648 8700; Fax: +1 781 648 8707
sales@cutter.com
WWW.Ccutter.com

