
1

Keywords
software development process, team software development,
distributed software engineering

1 INTRODUCTION
Any team of software developers has to coordinate itself
with respect to task scheduling and access to common
documents, e.g. to the source code. Groupware and
workflow management systems offer solutions for task
scheduling and process enactment [Dev]. Concurrent access
to common system documents, like the source code may be
coordinated by using version and configuration management
systems (VCMS) like SCCS, RCS, or ClearCase. In co-
located teams, these VCMSs frequently employ pessimistic
locking techniques to coordinate the access to common
documents. This means, that only one team member obtains
a writeable copy of a source file. Other team members have
to wait until the document owner releases his/her lock or
they have to communicate their change requests to the
document owner.

With the worldwide growing business of the software-
industry comes the need of more flexibility and adaptability
for single developers, respectively for whole developer-
teams. A software-developer who works for a big company
and develops a software-system with other team members in
several other countries all over the world, has to coordinate
his/her results with the members of his/her group.

Existing approaches do not work for such distributed
software development over the internet. First, most
groupware and workflow systems do not work well over the
internet. In addition, since the team is distributed and cannot
meet on a regular basis for coordination purposes, an even
more sophisticated groupware and workflow system is
required, cf. [JSZ97]. Second, strict locking techniques do
not work for distributed software development teams. In a
distributed team, it might become difficult to contact the
owner of some documents because he/she may have different
working hours or he/she is just not on-line at the moment.

This paper proposes a distributed software development
process based on (1) a VCM system with optimistic locking
concepts (i.e. CVS) and on (2) a tight integration of VCM
and workflow system and on (3) special project access
software that allows to work off-line most of the time and
that coordinates document access and workflow update
during on-line update sessions.

2 MAIL B ASED WORKFLO W ENGINE
Integrating workflow in the development process and
combining it with VCM access allows a better support for
software engineers participating in several projects. With
such a coupling, information given to the developer can be
more specific. As an example Figure1 shows the software
developing process that has been used in our department in
several projects.

Since our development teams are not co-located, we use an
optimistic locking concept provided by the CVS-System
[CVS]. The upper part of Figure1 shows the original CVS-
System. CVS supports highly distributed software
development with version control and automatic merge
algorithms. Each developer in the team has a local writeable
copy of the software and is able to work off-line when there
is no internet access, temporarily. CVS manages a central
repository and local copies can be synchronized whenever
needed. Synchronizing a local copy with the repository is
done by calculating deltas and storing them in the repository.

If one team member wants to upload his/her changes on the
software (author), he/she sends a so called ‘checkin’
command to the CVS-System together with some workflow
data. First, a pretty printer, initiated by CVS, runs over all
source code files in the local workspace. This ensures a
standardized formatting and preserves indentation changes
in the source code caused by different editor tools. For
example, one developer uses tabs to indent the source and
another one uses spaces. Without pretty printing, opening a
file in an editor using spaces whereas the file has last been
edited using tabs, means that all lines will be marked as
changed without really changing a line. After pretty printing
all source code files, the CVS-System calculates the deltas
and sends a notification mail to each team member. Those
members can now download the changes sending an ‘update’
command. In addition, the CVS-System can be configured,
e.g. to send notification mails to certain team members,
subscribed for the modified application parts.

In order to provide a better workflow process, we have
extended the original CVS-System by an email based review
workflow engine called ‘distributed software development
clerk’ (DSD), shown in the lower part of Figure1. The
review process is initiated by collecting the additional
workflow data provided by the author. The additional
workflow data and the delta produced by the CVS is sent to
the DSD clerk via email. The delta includes all changed,
added, or deleted lines of code including a context range of

Position Paper

Distrib uted Software Development using Jini

Jörg Niere, Matthias Gehrke
Department of Mathematics and Computer Science

University of Paderborn
Warburger Str. 100
D-33098 Paderborn

Germany
[nierej|mgehrke]@uni-paderborn.de

Albert Zündorf
Institute for Software

Technical University of Braunschweig
Gaußstr. 11

D-38023 Braunschweig
Germany

zuendorf@ips.cs.tu-bs.de



2

40 lines. Workflow data might be a reference to the fixed
bug, a todo item number, status information, or the time
working on the project to finish a task.

According to extreme-programming and the 4-eye principle,
all code uploaded into the repository has to be reviewed in
order to detect certain defects, early, to achieve common
understanding, and to guarantee common coding and
documentation standards. Therefore the DSD clerk sends an
email to another developer of the team. For fairness reasons,
the reviewers are managed as a round-robin list. Since the
team is working distributed by not working at the same time,
the reviewer can make the review during the next week. (The
deadline stems from our practical experiences.) Has a
developer reviews outstanding over one week (excepting e.g.
vacations), he/she is not able to upload his/her changes into
the repository until the review(s) are done. This forces a
permanent review process and avoids a little bit the situation
that a code to be reviewed is changed before the review is
finished.

Reviewing itself means that the reviewer has to look over the
changed lines of code and checks if all points in the provided
style guide are fulfilled. This checklist contains items like
english as project language, documenting each class and
method, using understandable variable names, and
implementation guides for design elements, e.g. associations
between classes.

When a team member has done a review it is send back to
the DSD clerk via email and the clerk forwards the mail to
the original author. The mail is not directly send to the

author, in order to support an anonymous review process.
This means that all identification possibilities are left out of
the review mail in order to avoid personal conflicts between
team members. Finally, the original author is responsible to
integrate the desired changes of the reviewer. The developer
does not have to justify his reaction to the reviewer. This
avoids an endless cycle of reviews and discussions of
different solutions preferred by developers, and leads to a
better and more productive work climate.

Whether the author decides to integrate the notes of a
reviewer or not, the review process including all review
mails are stored in a separate database. This allows to track
hindsight, whether the reviewer has not seen a problematic
part in the review or the author has not reacted on the notes.
When an error occurs in a certain part of the software, the
author as well as the reviewer gets an email, automatically.
This creates a self improving process.

We also store statistic data for each checkin, e.g. author, lines
changed, lines added, lines deleted, time used etc. The
statistic data can be evaluated during the process and may
lead to project management actions to hold for example the
next release shipping deadline. Also the team leader (project
manager) may get an email to see the progress of the project
and to be able to intervene whenever needed.

PRACTICAL EXPERIENCES
As mentioned before, we are using the combined CVS/DSD-
System in several projects. Students at our university have to
perform a practical training which is a little software
engineering project (10 kLOC) done in groups by 8-10

Root
dir1

file1
file2
...

dir2

...
...

local workspace of author repository

DSD

CVS

DSD
Clerk

author

reviewer

team leader

cvs ci -m"..."-<workflow data>

delta

delta

notificationmail

Database

delta

cvs update -d

delta/workflow datamail

dataexchange

mail copies

review reportmail

review mail

review reportmail

Root
dir1

file1,v
file2,v
...

dir2

...
...

Root
dir1

file1
file2
...

dir2

...
...

Root
dir1

file1
file2
...

dir2

...
...

local workspace of other
team members

team members

teamrole

application

dataflow
mail flow

useraction

Figure1 Combining mail based review workflow with repository access

access check

original cvssystem

additionalworkflow support



3

students. Each group has its own repository starting with a
legacy system in it and each student has equal rights as
author and reviewer. A layer project where we are using the
CVS/DSD-System is our Fujaba environment. Fujaba is an
UML case tool written in 100% pure Java. The project has
over 470.000 LOC developed by a team of 10 to 20 persons
(PhD, graduated students) over the last three years.

Overall, the experiences using the CVS/DSD-System are
very good in the beginning, novice developers have some
objections resulting from the different kind of development
and from the effort to make reviews. However, the positive
results preponderate. The produced source code has a high
quality, is well understandable, easy to maintain, and thereby
easily reusable. The reviewing process leads also to a
common coding standard, less code duplication in the
project, and in addition, it trains the developers. The training
leads to a high education of the developers because
reviewing is also a kind of learning from other developer’s
experiences. Finally, the review process facilitates the
integration of new developers.

In addition, we started the Fujaba project as a local
development team and since we are publishing the
environment and invite users all over the world to join our
development team, the CVS/DSD-System has shown good
experiences. Especially the coupling of the repository and
the workflow to integrate novices is very effective although
the developers have completely different knowledge and
experiences in programming.

Although we have made very good experiences with the
current process there are some problems concerning the mail
based workflow. Typically, mails are unstructured and mails
can also be very different, e.g. plain text mails and html
format mails. Parsing them in an adequate structured format
is very hard. In addition, mails get lost, mails are not
recognized as workflow mails, mail servers have down times,
etc. All these problems can disturb or destroy (parts of) the
workflow and can not be handled in an appropriate manner.

3 COMMON PROJECT ENVIR ONMENT WITH JINI
As described in the previous chapter, our approach with the
mail-based CVS/DSD-System is a good solution and helps
the developers to cooperate, coordinate and integrate their
source code very easily. However, with the beginning of
distributed development over the internet it becomes more
and more inoperative. As our developers started to develop at
home, used the internet to connect to the server, and used
different tools (e.g. other mail-tools) for developing, they got
several new problems and we had to find a better solution.

One possible way is a server-based internet application,
accessible with a standard internet-browser. In this case it is
possible to store and retrieve important data via the internet.
For every user the server creates a personalized task list
which e.g. contains the reviews he/she has to do. The
information is presented in a normalized manner and the
developer is supported with standard browser-based
interfaces. With this approach most problems using the
email-based solution can be solved.

Unfortunately, a web-based solution inherits other
difficulties. It is necessary to be connected to the internet to

do the work, e.g. to make the reviews or read new tasks.
Furthermore the network infrastructure (internet) itself
contains problems concerning reliability and availability.
Therefore it is not possible to connect to the internet at every
time (connect to an internet-provider) and make adjustments.
Another problem is the use of different kinds of locally
installed applications or different kinds of browsers. These
browsers support different kinds of HTML-, jscript-, vbscript
or Java-Versions, which sometimes leads to completely
different results or even makes it impossible to work with the
system. Finally, this makes it very difficult to implement the
needed application with internet technologies, because the
possibilities for web-based user interfaces are not sufficient
enough to realize all needed functionality. These problems
lead us to the deliberation that it is mandatory, that every
developer uses the same applications to communicate and
work with the project management system.

To overcome the problems mentioned above we have
decided to implement a stand-alone application, which on
the one hand supports all CVS-functionality and on the other
hand supports additional functionality like workflow for
reviews, bugtracking or statistic analysis. We call this the
“Distributed Software Development Client” (DSD-Client).
At this point we have to observe another difficult situation,
because in this solution it becomes necessary to install,
update and maintain the DSD-Client software on every local
machine of every developer. This is a very expensive and
time spending job including all update problems. These
problems reach from the distribution of different lingos of
the DSD-Client to different versions on different operating
systems. To solve these problems we use the Jini-technology.

Jini© [EDW00] is a relatively new architecture from SUN
Microsystems® and is completely implemented in Java©. It
allows different kinds of programs to connect spontaneously
and use services from other programs. Therefore, a program
asks the net for a special kind of service and will get a
receipt if that service is available, without the knowledge
where the service is hosted. This architecture reveals a very
good solution for reliability and scalability, because every
Jini-service can be started several times on many different
machines.

In our approach (Figure2) we split the original CVS into
many small modules to make the application easier to
maintain and easier to extend (extended-CVS-Client). All
CVS-commands, like add, diff, checkin, etc. are separated
into single modules where each module is implemented in
the Java Intelligent Network Infrastructure (Jini) and
becomes a single Jini-service.

In our solution we have implemented a very thin client
(DSD-Client) which seeks and executes Jini-services. This
locally stored client connects to the system and downloads
the corresponding Jini-service (e.g. CVS-”checkin”-service).
This situation is illustrated in Figure2. The Client seeks for
an available Jini-service, downloads and executes it. In
addition, we have added other Jini-services to the CVS-Jini-
Services to support further functionality. One extension is
the implementation of a Jini-service, that connects to a
relational database and stores additional data for statistical or
reviewing reasons. This Jini-service can be automatically



4

used by other Jini-services (e.g. “CVS-checkin”-service) to
store information. The stored information can now be
extracted, separated and used to initiate an automatic
reviewing process, which is used e.g. to control the
correctness of new or modified source code. One great
benefit for the use of the Jini-technology is, that the
distribution of a new software is not necessary, because the
needed classes are downloaded on demand and the user gets
the current version at every time. When a developer wants to
submit his/her changes he/she connects to the internet,
activates his/her DSD-Client and transfers the changes,
where the DSD-Client ensures that the current version of the
corresponding Jini-Service will be used.

In the last paragraph, we described a solution to handle the
update problem. In this solution the developer has to be
connected to the internet (on-line) to do his job. This is not
satisfying, because the developer must be able to do his job
even when no connection exists (off-line). At least, he/she
should be able to view and update his/her task lists. In this
case it must be possible to store the needed programs (Jini-
Services downloaded by DSD-Client) and needed data on
the local machine. After the developer finished his/her work,
he/she establishes a connection to the internet and transfers
the results back to the server.

To reduce network traffic, it is possible to implement an
automatic caching/storing mechanism to allow off-line-work
and reduce on-line-costs. Therefore, theClassLoading
mechanism of Java can be extended, that the user gets the
possibility to store a version of the Jini-services (in DSD-
Client) on his/her local machine preventing to load the whole
Jini-Service every time he works with the system. Once a
connection is established, the system verifies the versions of
the Jini-Services on the DSD-Client with the actual version
available on the net and transfers differences from the net to
the DSD-Client. After verifying the versions of the DSD-

Client, the locally stored data will be verified, too, and the
differences will be exchanged.

This data can be the results of the reviewing process or other
data like to-do items or bug reports. For example if an
application crashes the thrown exception is analysed and the
corresponding line of code is determined. Then the
responsible author of that line is retrieved and the bug report
is automatically forwarded to him. With this solution it is
possible to route a bug report directly to the developer and
initiate a workflow to solve this bug and inform the bug
reporter when the bug was fixed.

In addition, it is possible to store data for statistical purposes.
This may be the amount of modified source code during a
given week, the amount of received/solved bug reports
during the last year, or the date the last time a given
developer has checked-in his new source code.

4 CONCLUSIONS AND FUTURE WORK
Team coordination based on CVS is common practice in
many distributed and open source software development
projects. Examples for a workflow management system that
works well for large distributed development teams are bug
tracking systems like BugZilla [Pro], also used in many open
source projects. However, an integration of CVS and a
workflow management system allows a better support for the
developers in the team but is not yet state-of-the art.

This work proposes such an integration based on light-
weight project access systems exploiting Jini technology.
The proposed CVS/DSD-System based on Jini services
facilitates project monitoring and keeps all team members
up-to-date. Due to the established reviewing process, we
have achieved high quality coding standards. Common
design issues are easily enforced by adding them to the
review check lists.

The development of the Jini based project access system to
support a common working environment for each developer
is current work. However, Jini access to the CVS/DSD-
System is done. Integrating a caching mechanism for Jini
services to enable off-line work and reduce network traffic
needs to be completed. Jini services for reviewing, agenda
control and workflow support are still under development.

For the Fujaba environment see http://www.fujaba.de/

REFERENCES
[CVS] CVS.Concurrent Versions System - The open stan-

dard for version control. http://www.cvshome.org/.

[Dev] Lotus Development.Domino Workflow - Buisiness
Processes. http://www.lotus.com/world/germany.nsf/_/
Produkte.

[Edw00]W.K. Edwards.Core-Jini. Sun Microsystems Press
- Java Series. Prentice Hall, 2000.

[JSZ97] J.H. Jahnke, W.Schäfer, and A.Zündorf.An experi-
ment in building a light-weight process-centered envi-
ronment supporting team software processes. Software
Process Improvement and Practice, 3(3), John Wiley &
Sons, 1997.

[Pro] Mozilla.org Project.BugZilla "A bug tracking sys-
tem". http://bugzilla.mozilla.org/.

Figure2 Jini service infrastructure


