Safira: A Tool for Evaluating Behavior Preservation

Melina Mongiovi

Department of Computing Systems, Federal University of flaenGrande
{melina@copin.ufcg.edu.br}

Abstract (s)
We propose a tool (Safira) capable of determining if a transée ﬂ e L
tion is behavior preserving through test generation foitieatim- D \i{j qa —
pacted by transformation. We use Safira to evaluate muttgiin oput o haaa
ing and refactoring tools. We have detected 17 bugs in Mydench AN Dt /
27 bugs in refactorings implemented by Eclipse and JRRT. [DR“" tostsuite] Program fmpmm‘ﬁ

Test suite 1 Changes Methods

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Tools and Techniques Figure 1. Safira architecture

General Terms Reliability, Design

tion. Safira yields a test case whenever it detects a behevémge.
We propose an approach to evaluate mutation testing tosksdba

] on Safira and on a Java program generator (JDolly [8]). Wetuse i
1. Introduction to evaluate 11 mutations of MuJava [6] and fouridbugs in all
Evaluating whether a program transformation is behaviesgnv- .Of them. We. have also. used Saf!ra and JDolly to test refagforin
ing is required in several tasks, such as refactoring anctiount |mple_mentat|0n_s foII_owmg a previous approach [8]. We foaT
testing. In refactoring activities, tools are required ts@re that ~ PU9S in refactorings implemented by Eclipse and JRRT [3].

a transformation preserves behavior. On the other handationt .

testing tools must introduce behavior changes on to progyr&w 2. Safira

Keywords Refactoring, Testing

ery transformation must contain a set of conditions statingn The major steps performed by Safira are explained as follows:
behavior must be preserved. However, itis not an easy tafsk10 sty the original (source) and the modified (target)gueons are
mally establlsh.condltlons for Java on account of its nonatse- passed as parameters by developers. The change impactemnaly
mantics. For this reason, a number of refactoring and nuutagist- checks both the original and modified programs (Step 1) rinég
ing tools are likely to present bugs. , by decomposing the transformation into primitive ones §Sitel).
Some approaches [3, 9] have formally established a number of Secondly, for each primitive transformation, Safira idiéesi the
refactoring conditions for a subset of Java. Steimann anesTH] entities impacted by it (Step 1.2). Finally, Safira idensifieset of
have formally specified a set of refactoring conditions teslato methods in common that exercises, directly or indirecthpacted
Java visibility. However, these conditions are not provemsl with entities (Step 1.3). A method in common must have the same

respect to a formal semantics. In fact, it represents a@mgél o gjgnature in the source and target programs. After thistestéte
formally propose sound refactoring [4]. A similar probleappens js’generated only for the identified methods (Step 2). This e

in the mutation testing area. Some approaches have sudgesys then executed on the source (Step 3) and on the target pregram
to avoid certain kinds oéquivalent mutants— a mutant that is (Step 4). Safira reveals a set of tests that passes on soogrampr
functionally equivalent to the original program. Based oavp but fails on target program. If this set is empty, the devefop
ous work [9], Steimann and Thies have proposed an approach tojncreases confidence that the transformation has not intest
generate mutants based on negating the conditions recfoired behavior changes. Otherwise, test cases show behaviogehan
refactoring [10]. Schuler and Zeller [5] have proposed goragch Our approach is illustrated in Figure 1.
to detect quivalent mutants based on qhanges in test gavera In order to identify the entities impacted by a transforioafi
However, a simpler, safer and more practical approach to@e \ye decompose a transformation into primitive ones by foithaw
whether a transformation preserves behavior is required. a similar approach as the one used by Chianti [2]. The settof en
We propose a tool, called Safira, to evaluate whether a trans-jes impacted by the transformation encompasses the ufithe o
formation is behavior preserving. This tool generates aseite entities impacted by each primitive transformation. Weehesn-
focusing on exercising only the entities impacted by a fiamsa- sidered nine primitive transformations: add and removeraptg

class, add and remove an empty method, add and remove a field,

add and remove extends and modify a method body. We have for-

malized the set of impacted methods and constructors fdr eac

primitive transformation. Safira uses Randoop [1] to autizaly

generate unit tests. Randoop, randomly, generates a festfau

the classes and methods received as parameters within &rtitne
Copyright is held by the author/owner(s). specified by the developer. Randoop executes the prograes to r
SPLASH'11 Companion, October 22-27, 2011, Portland, Oregon, USA. ceive a feedback gathered from executing test inputs asatey
ACM 978-1-4503-0940-0/11/10. created, to avoid generating redundant and illegal inputseates

Table 1. Results of the MuJava evaluation using Safira and JDolly

Mut. Typ Mut. Equiv. Mut. Bugs 1stBug(s) Time (s) ‘

AOIU 227 1(0.44%) 1 1040 1338 |
ISD 101 2 (1%) 337 1969
AOIS 454 57 (12%) 1070 9727
OMR 185 31 (16%) 34 2000
IHD 58 25 (43%) 16 1227
OMD 100 56 (56%) 27 1580
IOR 69 66 (95%) 40 2857
IHI 100 38 (38%) 23 2652
10D 21 12 (61%) 6 196
JID 195 63 (32%) 35 5870

2
1
2
2
1
2
2
1
2
Jsi 100 100 (100%) 1 26 109

method sequences incrementally, by randomly selectingthade
call to apply and selecting arguments from previously aoiesed
sequences. Each sequence is executed and checked against a s
contracts.

3. Evaluation

We used Safira to assess mutation testing tools (Sectioradl)
refactoring engines (Section 3.2).

3.1 Mutation Testing

Mutation testing can help developers to evaluate theirsigise. It
consists of introducing defects on to the code in order toifpdts
behavior. If a test suite fails to detect behavior changeeéds to

be improved. There are a number of mutation testing toots) asg
MuJava [6]. However, these tools may generate equivaletdmig!
Then when a test suite does not kill a mutant, developers ¢to no
know whether the problem resides in their test suite or itns a

refactoring tools. They found a number of bugs in refactiin-
plementations of Eclipse and JRRT. We used their approatiwéo
replaced SafeRefactor for Safira. The impact analysis pagd
by Safira allows to generate tests guided by the change im¥act
evaluate the results comparing our approach with theirsring of
time consuming, test suite and correctness. We evaluat&hde

of refactorings. We detect&¥ bugs related to behavioral changes.

4. Conclusion

Safira found a number of bugs in refactoring and mutation test
ing tools. To understand inheritance, this/super, packageessi-
bility modifiers and other Java constructs in isolation meysim-

ple. However, when they are taken together, the task becoores
trivial. So, it is difficult to propose all the conditions ngiced by a
transformation to preserve behavior, considering the /isobpe

of Java language. For example, a simple transformatiomgihg

the access modifier, may have an impact on a humber of Java con-
structs [9].

Steimann and Thies [9] formalized some refactoring coodti
to change visibility. By negating some conditions, theygmsed an
approach to generate mutants [10]. However, they did natddy
prove the conditions were correct. It is not simple to forsnal
specify such conditions. Javalanche has identified a nuraber
program invariants. If a mutation does not violate thesariants,
then they are more likely to be equivalent mutants [5]. Tha to
implements four mutations. When Safira detects some behavio
change, it yields a test case different from all previousepghes.
Our technique is simple, and can be used to evaluate any Kkind o
mutations. It can also be useful for testing tools.

Schafer et al. [3] formally specified a number of refactgsin
and implemented them in JRRT, which outperformed Eclipse in
terms of correctness. However, we have identified a nhumber of
bugs in JRRT. They already fixed some of the bugs found by us.

equivalent mutant. We can use Safira in the program and on its safeRefactor [7] has also identified the same bugs which were

mutant. If Safira does not detect any behavior changes, afese
improve confidence that it is an equivalent mutant. HoweWet,
finds a behavior change, Safira yields a test case by meansasf wh
developers can improve their test suite.

Testing mutation testing tools is nontrivial, since one dsee
structurally complex inputs such as programs. Moreovemran
cle is required to determine whether a transformation isabeh
preserving. We propose an approach to test mutation tetstolg
based on Safira. To begin with, a number of programs are gedera
by JDolly, a Java program generator which, exhaustivelyegses

detected in Eclipse and JRRT. However, we have reduced she te
suite and the total analysis time in 74% and 30%, respeytivel
account of our change impact analyzer. Moreover, Safirasis le
dependent on the time limit used to generate tests. As fuiark,

we intend to evaluate other refactoring and mutationsrgdtols.

References

[1] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedbdaected
random test generation. I€SE pages 75-84, 2007.

programs up to a given scope. It specifies a subset of Java metal2] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip. Chianti: arfiaimpact

model in Alloy, a formal specification language. JDolly rises, as
input, a scope (the maximum number of packages, classeds,fiel

and methods that a program must have), and the additional con

straints. For every program generated, we use MuJava toajene
mutants. Finally, Safira evaluates whether each mutannigifin-
ally different from the original program.

For each mutation, we generated 100 programs using JDolly.

We evaluated 11 mutations of MuJava and tested all of thensby u
ing a scope up to 4. For instance, our approach found 25 dquotva
mutants for the IHD mutation. Some of them are related todhees
bug. We manually analyzed them and classified in 2 distingsbu
The first equivalent mutant was detected in 16 seconds. Wedfou
17 bugs in 11 mutations.

3.2 Refactoring

Safira was also used in the refactoring context to assisiafees
in refactoring activities. We implemented an Eclipse ping— the
user selects a refactoring to apply. Then the plug-in repehtether
the transformation preserves behavior or not. Soares] gdro-

posed an approach based on JDolly and SafeRefactor [7]tto tes

analysis tool for java programs. IG@SE, pages 664-665, 2005.

[3] M. Schéafer and O. de Moor. Specifying and implementiefactorings.
In OOPSLA pages 286-301, 2010.

[4] M. Schafer, T. Ekman, and O. de Moor. Challenge proposal
Verification of refactorings. I®PLPV, pages 6772, 2009.

[5] D. Schuler and A. Zeller. (Un-)Covering equivalent mitt& InICST,
pages 45-54, 2010.

[6] Y. seung Ma, J. Offutt, and Y. R. Kwon. MuJava: an autordatiass
mutation system.Software Testing, Verification and Reliabiity5:
97-133, 2005.

[7] G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making iaiog
refactoring saferlEEE Software27:52-57, 2010.

[8] G. Soares, M. Mongiovi, and R. Gheyi. Identifying tooasty
conditions in refactoring implementations. IBSM, 2011. To appear.

[9] F. Steimann and A. Thies. From public to private to absRefactoring
java programs under constrained accessibilityEGOOPR pages 419—
443, 2009.

[10] F. Steimann and A. Thies. From behaviour preservatiopehaviour
modification: constraint-based mutant generationlG8E pages 425—
434, 2010.

