
Safira: A Tool for Evaluating Behavior Preservation

Melina Mongiovi
Department of Computing Systems, Federal University of Campina Grande

{melina@copin.ufcg.edu.br}

Abstract
We propose a tool (Safira) capable of determining if a transforma-
tion is behavior preserving through test generation for entities im-
pacted by transformation. We use Safira to evaluate mutationtest-
ing and refactoring tools. We have detected 17 bugs in MuJava, and
27 bugs in refactorings implemented by Eclipse and JRRT.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Tools and Techniques

General Terms Reliability, Design

Keywords Refactoring, Testing

1. Introduction
Evaluating whether a program transformation is behavior preserv-
ing is required in several tasks, such as refactoring and mutation
testing. In refactoring activities, tools are required to ensure that
a transformation preserves behavior. On the other hand, mutation
testing tools must introduce behavior changes on to programs. Ev-
ery transformation must contain a set of conditions statingwhen
behavior must be preserved. However, it is not an easy task tofor-
mally establish conditions for Java on account of its non-trivial se-
mantics. For this reason, a number of refactoring and mutation test-
ing tools are likely to present bugs.

Some approaches [3, 9] have formally established a number of
refactoring conditions for a subset of Java. Steimann and Thies [9]
have formally specified a set of refactoring conditions related to
Java visibility. However, these conditions are not proven sound with
respect to a formal semantics. In fact, it represents a challenge to
formally propose sound refactoring [4]. A similar problem happens
in the mutation testing area. Some approaches have suggested ways
to avoid certain kinds ofequivalent mutants— a mutant that is
functionally equivalent to the original program. Based on previ-
ous work [9], Steimann and Thies have proposed an approach to
generate mutants based on negating the conditions requiredfor a
refactoring [10]. Schuler and Zeller [5] have proposed an approach
to detect equivalent mutants based on changes in test coverage.
However, a simpler, safer and more practical approach to evaluate
whether a transformation preserves behavior is required.

We propose a tool, called Safira, to evaluate whether a trans-
formation is behavior preserving. This tool generates a test suite
focusing on exercising only the entities impacted by a transforma-

Copyright is held by the author/owner(s).

SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

Figure 1. Safira architecture

tion. Safira yields a test case whenever it detects a behaviorchange.
We propose an approach to evaluate mutation testing tools based
on Safira and on a Java program generator (JDolly [8]). We use it
to evaluate 11 mutations of MuJava [6] and found17 bugs in all
of them. We have also used Safira and JDolly to test refactoring
implementations following a previous approach [8]. We found 27

bugs in refactorings implemented by Eclipse and JRRT [3].

2. Safira
The major steps performed by Safira are explained as follows:
Firstly, the original (source) and the modified (target) programs are
passed as parameters by developers. The change impact analyzer
checks both the original and modified programs (Step 1), beginning
by decomposing the transformation into primitive ones (Step 1.1).
Secondly, for each primitive transformation, Safira identifies the
entities impacted by it (Step 1.2). Finally, Safira identifies a set of
methods in common that exercises, directly or indirectly, impacted
entities (Step 1.3). A method in common must have the same
signature in the source and target programs. After this a test suite
is generated only for the identified methods (Step 2). The tests are
then executed on the source (Step 3) and on the target programs
(Step 4). Safira reveals a set of tests that passes on source program
but fails on target program. If this set is empty, the developer
increases confidence that the transformation has not introduced
behavior changes. Otherwise, test cases show behavior changes.
Our approach is illustrated in Figure 1.

In order to identify the entities impacted by a transformation,
we decompose a transformation into primitive ones by following
a similar approach as the one used by Chianti [2]. The set of enti-
ties impacted by the transformation encompasses the union of the
entities impacted by each primitive transformation. We have con-
sidered nine primitive transformations: add and remove an empty
class, add and remove an empty method, add and remove a field,
add and remove extends and modify a method body. We have for-
malized the set of impacted methods and constructors for each
primitive transformation. Safira uses Randoop [1] to automatically
generate unit tests. Randoop, randomly, generates a test suite for
the classes and methods received as parameters within a timelimit
specified by the developer. Randoop executes the program to re-
ceive a feedback gathered from executing test inputs as theyare
created, to avoid generating redundant and illegal inputs.It creates



Table 1. Results of the MuJava evaluation using Safira and JDolly

method sequences incrementally, by randomly selecting a method
call to apply and selecting arguments from previously constructed
sequences. Each sequence is executed and checked against a set of
contracts.

3. Evaluation
We used Safira to assess mutation testing tools (Section 3.1)and
refactoring engines (Section 3.2).

3.1 Mutation Testing

Mutation testing can help developers to evaluate their testsuite. It
consists of introducing defects on to the code in order to modify its
behavior. If a test suite fails to detect behavior change, itneeds to
be improved. There are a number of mutation testing tools, such as
MuJava [6]. However, these tools may generate equivalent mutants.
Then when a test suite does not kill a mutant, developers do not
know whether the problem resides in their test suite or it is an
equivalent mutant. We can use Safira in the program and on its
mutant. If Safira does not detect any behavior changes, developers
improve confidence that it is an equivalent mutant. However,if it
finds a behavior change, Safira yields a test case by means of which
developers can improve their test suite.

Testing mutation testing tools is nontrivial, since one needs
structurally complex inputs such as programs. Moreover, anora-
cle is required to determine whether a transformation is behavior
preserving. We propose an approach to test mutation testingtools
based on Safira. To begin with, a number of programs are generated
by JDolly, a Java program generator which, exhaustively, generates
programs up to a given scope. It specifies a subset of Java meta-
model in Alloy, a formal specification language. JDolly receives, as
input, a scope (the maximum number of packages, classes, fields,
and methods that a program must have), and the additional con-
straints. For every program generated, we use MuJava to generate
mutants. Finally, Safira evaluates whether each mutant is function-
ally different from the original program.

For each mutation, we generated 100 programs using JDolly.
We evaluated 11 mutations of MuJava and tested all of them by us-
ing a scope up to 4. For instance, our approach found 25 equivalent
mutants for the IHD mutation. Some of them are related to the same
bug. We manually analyzed them and classified in 2 distinct bugs.
The first equivalent mutant was detected in 16 seconds. We found
17 bugs in 11 mutations.

3.2 Refactoring

Safira was also used in the refactoring context to assist developers
in refactoring activities. We implemented an Eclipse plug-in — the
user selects a refactoring to apply. Then the plug-in reports whether
the transformation preserves behavior or not. Soares et al.[8] pro-
posed an approach based on JDolly and SafeRefactor [7] to test

refactoring tools. They found a number of bugs in refactoring im-
plementations of Eclipse and JRRT. We used their approach, but we
replaced SafeRefactor for Safira. The impact analysis performed
by Safira allows to generate tests guided by the change impact. We
evaluate the results comparing our approach with theirs in terms of
time consuming, test suite and correctness. We evaluated 10kinds
of refactorings. We detected27 bugs related to behavioral changes.

4. Conclusion
Safira found a number of bugs in refactoring and mutation test-
ing tools. To understand inheritance, this/super, package, accessi-
bility modifiers and other Java constructs in isolation may be sim-
ple. However, when they are taken together, the task becomesnon-
trivial. So, it is difficult to propose all the conditions required by a
transformation to preserve behavior, considering the whole scope
of Java language. For example, a simple transformation, changing
the access modifier, may have an impact on a number of Java con-
structs [9].

Steimann and Thies [9] formalized some refactoring conditions
to change visibility. By negating some conditions, they proposed an
approach to generate mutants [10]. However, they did not formally
prove the conditions were correct. It is not simple to formally
specify such conditions. Javalanche has identified a numberof
program invariants. If a mutation does not violate these invariants,
then they are more likely to be equivalent mutants [5]. The tool
implements four mutations. When Safira detects some behavior
change, it yields a test case different from all previous approaches.
Our technique is simple, and can be used to evaluate any kind of
mutations. It can also be useful for testing tools.

Schäfer et al. [3] formally specified a number of refactorings
and implemented them in JRRT, which outperformed Eclipse in
terms of correctness. However, we have identified a number of
bugs in JRRT. They already fixed some of the bugs found by us.
SafeRefactor [7] has also identified the same bugs which were
detected in Eclipse and JRRT. However, we have reduced the test
suite and the total analysis time in 74% and 30%, respectively, on
account of our change impact analyzer. Moreover, Safira is less
dependent on the time limit used to generate tests. As futurework,
we intend to evaluate other refactoring and mutations testing tools.

References
[1] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed

random test generation. InICSE, pages 75–84, 2007.

[2] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip. Chianti: a change impact
analysis tool for java programs. InICSE, pages 664–665, 2005.

[3] M. Schäfer and O. de Moor. Specifying and implementing refactorings.
In OOPSLA, pages 286–301, 2010.

[4] M. Schäfer, T. Ekman, and O. de Moor. Challenge proposal:
Verification of refactorings. InPLPV, pages 67–72, 2009.

[5] D. Schuler and A. Zeller. (Un-)Covering equivalent mutants. InICST,
pages 45–54, 2010.

[6] Y. seung Ma, J. Offutt, and Y. R. Kwon. MuJava: an automated class
mutation system.Software Testing, Verification and Reliability, 15:
97–133, 2005.

[7] G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program
refactoring safer.IEEE Software, 27:52–57, 2010.

[8] G. Soares, M. Mongiovi, and R. Gheyi. Identifying too strong
conditions in refactoring implementations. InICSM, 2011. To appear.

[9] F. Steimann and A. Thies. From public to private to absent: Refactoring
java programs under constrained accessibility. InECOOP, pages 419–
443, 2009.

[10] F. Steimann and A. Thies. From behaviour preservation to behaviour
modification: constraint-based mutant generation. InICSE, pages 425–
434, 2010.


