Making aspect-oriented refactoring safer

Gustavo Soares, Diego Cavalcanti, Rohit Gheyi

Federal University of Campina Grande, Brazil
{gsoares, diegot, rohit}@dsc.ufcg.edu.br

Abstract. Developers may refactor part of the object-oriented (OO)
code into aspects in order to improve modularity. However, since most
refactoring tools have a limited or no support for aspect-oriented (AO)
constructs, developers have to apply manual steps. Even the aspect-aware
refactorings contain bugs. Developers need a better support for making
AO refactorings safer. In this paper, we propose a tool for evaluating
whether AspectJ transformations preserve behavior. We evaluate it in
8 non-behavior-preserving transformations applied by Eclipse. Our tool
detected all of them. Additionally, we compared the OO version and
its refactored AO version of two real case studies. Our tool found a non-
behavior-preserving transformation. We also analyzed 23 design patterns
implemented in Java and AspectJ. Our tool identified that the AO and
OO versions of the State pattern are not equivalent. Finally we evaluated
two JML compilers that generate AO code. Our tool identified a bug in
one of them.

1 Introduction

Aspect-oriented (AO) programming aims at increasing modularity by allowing
the separation of crosscutting concerns [9], such as persistence and exception
handling. AspectJ [10] is a general purpose aspect-oriented extension to the
Java language. Developers may apply refactorings [14] to extract part of the
object-oriented (OO) code into aspects.

Existing Integrated Development Environments (IDEs), such as Eclipse and
Netbeans, offer limited or no support to refactor AO programs. For instance,
the Eclipse 3.6 IDE with AJDT 1.2.0 only supports the aspect-aware refactor-
ings: Renaming, and Pull Out and Pull In Intertype Declaration. However, they
contain bugs (Section 2). Moreover, a number of useful refactorings [13] imple-
mented by Eclipse, such as Fxtract Method, do not consider aspects. Therefore,
developers usually have to manually refactor aspect-oriented programs, which is
an error-prone and a time consuming activity. In general, they use test suites
to guarantee behavior-preservation. They need a better tool support for making
aspect-oriented refactorings safer.

Inspired by the Fowler’s catalog [4], Monteiro and Fernandes [12] proposed
27 refactorings that can be used to introduce aspects and improve the design
of AO programs. Cole and Borba [2] formally specify aspect-oriented behavior-
preserving transformations, and use them for deriving aspect-oriented refactor-

ings. Wloka et al. [25] propose a tool support for extending currently OO refac-
toring implementations for considering aspects. Specifying and implementing
refactorings is difficult. For instance, most of the current Java refactoring im-
plementations do not check all preconditions allowing non-behavior-preserving
transformations [21]. In fact, for complex languages such as Java, proving refac-
torings with respect to a formal semantics is considered a challenge [19]. This
problem is even worse with the presence of aspects. We need a practical way to
evaluate whether a transformation preserves behavior. In this way, developers
can use it to improve confidence that the transformations applied by refactoring
tools preserve behavior.

In our previous work [21,20], we proposed a tool (SAFEREFACTOR) for de-
tecting behavioral changes in OO transformations. SAFEREFACTOR analyzes a
transformation and generates unit tests specific for detecting behavioral changes.
We evaluated it in OO transformations with up to 100KLOC. Our tool was useful
for detecting a number of bugs in Eclipse and Netbeans.

In this paper, we make small changes in SAFEREFACTOR in order to extend
it to the AO context (Section 3). We evaluated SAFEREFACTOR in 37 programs
and their AO counterpart. They are supposed to be equivalent. First, we eval-
uated in 8 defective refactorings performed by Eclipse with AJDT 2.1.0 that
change program’s behavior in the presence of aspects. SAFEREFACTOR detected
all of them. Then, we used our tool to evaluate four transformations performed
in two real case studies [23] (20 and 23 KLOC) to modularize exception handling
in aspects. SAFEREFACTOR identified a behavioral change in one of the trans-
formations. We also evaluated whether 23 design patterns implemented in Java
and AspectJ [7] are equivalent. SAFEREFACTOR found that the implementations
of the State pattern are not equivalent. Finally, we tested two JML compilers
implemented using AspectJ [17,18]. As test inputs, we use two JML programs
(6 and 9 KLOC), and SAFEREFACTOR compares the behavior of the compiled
programs. SAFEREFACTOR found that the compiled programs have different be-
havior.

In summary, the main contribution of this paper is the following:

— An evaluation of SAFEREFACTOR in 37 programs and their AO counterpart
(Section 4).

2 DMotivating Example

In this section, we present a defective refactoring performed by Eclipse 3.6 with
AJDT 2.1.0 that introduces a behavioral change.

Consider the A class, its subclass B, and the AspectB aspect presented in
Listing 1.1. The B class declares methods k and test. Moreover, AspectA de-
clares the n method in A through an inter-type declaration. The test method
yields 10. By using Eclipse 3.6 with AJDT 2.1.0 to apply the Rename Inter-type
Declaration refactoring to A.n changing its name to A.k, it yields the program
presented in Listing 1.2. Eclipse changed the inter-type’s name and updated
its references. However, this transformation introduces a behavioral change: the

test method yields 20 (target version) instead of 10 (original version). After the
transformation, it calls B.k instead of the A.k method.

Listing 1.1. Original version Listing 1.2. Target version
class A {} class A {}
class B extends A { class B extends A {
int k() { int k() {
return 20; return 20;
} }
int test () { int test () {
return n(); return k();
} }
} }
aspect AspectA { aspect AspectA {
int A.n() { int A.k(Q) {
return 10; return 10;
} }
} }

Fig. 1. Applying the Rename Inter-type Declaration refactoring of Eclipse leads to a
behavioral change.

The previous problem is small, likely to be detected by a developer or a
test suite. However, the current tool support for applying AO refactorings is
limited. Moreover, there are only a small number of aspect-aware refactorings
implemented. Usually, developers have to manually apply transformations and
check whether they are sound. However, this activity is time-consuming and
error-prone. The Java semantics is not simple [6]. For example, a simple trans-
formation changing the access modifier may have an impact on a number of Java
constructs [22]. By including AspectJ constructs such as, pointcuts, advices, and
inter-type declarations, this task can be even harder. In this paper, we show that
SAFEREFACTOR can be useful for making aspect-oriented refactoring safer.

3 SafeRefactor

In this section, we present an overview of SAFEREFACTOR. It is a tool use-
ful for detecting behavioral changes in transformations applied to sequential
Java/AspectJ programs [21].

The tool analyzes a transformation and generates a number of tests suited for
detecting behavioral changes. The analysis consists of identifying the common
methods, that is, methods with same signature before and after the transforma-
tion. Next, SAFEREFACTOR generates a test suite for the methods previously
identified within a given time limit. Since the tool focuses on identifying com-
mon methods, it executes the same test suite before and after the transformation.

SAFEREFACTOR. uses Randoop [16], a Java unit test generator, to perform the
test case generation. Randoop randomly generates tests for a set of classes and
methods given a time limit or a maximum number of tests. Finally, the tool
executes the tests before and after the transformation, and evaluates the results:
if they are different, the tool reports a behavioral change, and yields the unit
tests that reveal it. Otherwise, we improve confidence that the transformation
is behavior-preserving. Figure 2 illustrates this process.

/_r A \
/UL
REFACTOR 3
1 2 <7)
Tool Developer 4& o

Input \ /

Z> Run test suite D Program Common
methods

=

Test suite [i Changes

Fig. 2. SAFEREFACTOR’s technique: 1) It identifies the methods with same signature
before and after the transformation; 2) It generates a test suite for the identified meth-
ods using Randoop; 3) It runs the tests on the source program; 4) It runs the tests
on the target program; 5) Finally, SAFEREFACTOR evaluates the results: if they are
different, the tool reports a behavioral change, otherwise, we increase confidence that
the transformation preserves behavior.

Consider the transformation presented in Figure 1. SAFEREFACTOR receives
as input the programs shown in Listings 1.1 and 1.2. First, it identifies the
methods with the same signature on both versions: B.k and B.test. Next, it
generates in 1 second (time limit) 12 unit tests for these methods. Finally, it
runs the test suite on both versions and evaluates the results. A number of
tests (11) passed in the source program but they did not pass in the refactored
program. Listing 1.3 shows one of the generated tests that reveals the behavioral
change. The test passes in the source program since the value returned by B. test
is 10, but it fails in the target program since the value returned by B.test in
this version is 20. Therefore, SAFEREFACTOR reports a behavioral change.

Listing 1.3. A unit test revealing a behavioral change in the transformation performed
by Eclipse from Listing 1.1 to Listing 1.2.

public void test() {
B var0 = new B();

long varl = varO.test ();
assertTrue (varl == 10);

}

The first step of SAFEREFACTOR consists of identifying the common meth-
ods. We modified the original version of SAFEREFACTOR for allowing it to iden-
tify methods added in the classes by aspect inter-type declarations. We identify
them by analyzing the class bytecode.

4 Evaluation

We evaluated our technique in 8 defective refactorings applied by Eclipse, 2 real
case studies, 23 design patterns and 2 JML compilers'. They are described in
Sections 4.2-4.5. Section 4.1 describes the experimental setup.

4.1 Experimental Setup

We run the experiment on a dual-processor 2.2 GHz laptop with 4 GB RAM and
running Mac OS 10.6.7. We used the command line interface of SAFEREFACTOR.
It receives three parameters: source and target program paths, and time limit
to generate tests. We used the default time limit of 2s to generate tests in the
transformations described in Sections 4.2 and 4.4. This time limit is enough to
test transformations applied to small programs. On the other hand, we used a
time limit of 90s to evaluate the transformations in Sections 4.3 and 4.5.

4.2 Defective Refactorings
Subject Characterization

By applying the Eclipse refactorings in small toy examples created by us, we
manually identified 8 transformations applied by Eclipse IDE 3.6 that introduce
behavioral changes in AO programs. Eclipse is a popular Java IDE with a number
of automated refactorings and offers refactoring support for AspectJ.

Table 1 describes the transformations. Each subject contains a small set of
classes, pointcuts, advices, and inter-type declarations. For instance, the example
shown in Figure 1 is the Subject 5 of our evaluation. Since AJDT 2.1.0 delivered
in 2010, the Rename refactorings of Eclipse are aspect-aware. In Subjects 1-5, we
apply transformations performed by these aspect-aware refactoring implemen-
tations. On the other hand, in Subjects 6-8, we apply different kinds of useful
OO refactorings (Push Down Method, Pull Up Method, and Inline Method) per-
formed by Eclipse that are unaware of aspects. In practice, since refactoring tools
have a limited support for AO refactorings, developers may have to manually
perform a transformation or use an OO refactoring implementation to automate
part of the transformation, and manually check whether it preserves behavior.

1 All experiment data are available at: http://dsc.ufcg.edu.br/ spg/papers.html

http://dsc.ufcg.edu.br/~spg/papers.html

Table 1. A catalog of transformations performed by Eclipse that introduce behav-
ioral changes in the presence of aspects; Column Test: number of tests generated by
SAFEREFACTOR; Column Fail: number of tests that have different results after the
transformation; Result: the result of the SAFEREFACTOR’s evaluation.

e R Y]

1 Rename Class Behavior Change
2 Rename Method 83 24 Behavior Change
3 Rename Field 167 1 Behavior Change
4 Rename Intertype Declaration 171 160 Behavior Change
5 Rename Intertype Declaration 119 118 Behavior Change
6 Push Down Method 200 188 Behavior Change
7 Pull Up Method 192 180 Behavior Change
8 Inline Method 219 24 Behavior Change

Results

SAFEREFACTOR detected behavior changes in all transformations in less than
8s. Table 1 contains the number of generated tests (Column Tests) and the num-
ber of tests that detects the behavioral change (Column Fail) for each subject.
Column Result indicates whether SAFEREFACTOR identified a behavior change.

In some aspect-aware refactorings (Subjects 2 and 3), Eclipse did not up-
date pointcuts, leading to behavioral changes. Pointcuts may use wildcards that
may impose additional challenges when checking preconditions. The behavioral
changes in Subjects 4 and 5 are due to OO features, such as overloading and
overriding. In the presence of aspects, this problem is even worse.

4.3 Real Case Studies
Subject Characterization

Taveira et al. [23] present two approaches to modularize exception handling
mechanism. They change an OO version into equivalent ones: OO’ (a class mod-
ularizes it) and AO (an aspect modularizes it), as depicted by Figure 4.3. Eight
programmers working in pairs performed the changes. They relied on refactoring
tools, pair review, and unit tests to assure behavioral preservation.

They refactored JHotDraw and CheckStylePlugin to use the approach pro-
posed. We use SAFEREFACTOR to evaluate the OO to AO versions, and the OO’
to AO versions (see Figure 4.3) of JHotDraw and CheckStylePlugin. The OO,
OO’ and AO versions must be equivalent. Table 2 contains the four transforma-
tions evaluated by SAFEREFACTOR. It shows the program’s name, its size, and
the pair of versions evaluated. In our previous work [21], we use SAFEREFACTOR
to evaluate the OO to OO’ refactoring applied to JHotDraw and CheckStyle-
Plugin. We found a behavioral-change in the refactoring applied to JHotDraw.

00 refactoring

~ AO

AD refactoring

Traditional exception handling approach

Refactored OO version

Refactored AC version

Fig. 3. Two alternative refactorings to modularize exception handling code.

Table 2. Refactoring real applications; Column KLOC: nonblank, non-comment lines
of code; Column Test: number of tests generated by SAFEREFACTOR; Column Fail:
number of tests that have different results after the transformation; Result: the result
of the SAFEREFACTOR’s evaluation.

9 23 0 -

JHotDraw 00 and AO 893 132
10 JHotDraw 23 OO0’ and AO 585 120 113 Behavior Change
1 CheckStylePlugin 20 00 and AO 3423 0 129
12 CheckStylePlugin 20 OO0’ and AO 3546 0 117
Results

SAFEREFACTOR did not detected behavioral changes in the OO and AO versions
in Subjects 9 and 11 (Table 2). In Subject 12, we also did not find a behavioral
change between OO’ and AO versions of CheckStylePlugin. We improve con-
fidence that these transformations are sound. Table 2 contains the number of
generated tests (Column Tests) and the number of tests detecting the behav-
ioral change (Column Fail) for each subject. Column Result indicates whether
SAFEREFACTOR identified a behavior change. The symbol - indicates that no
behavior change was found.

In our previous work [21], we found a behavioral change in the OO and OO’
versions of JHotDraw. In Subject 10, we evaluated the OO’ and AO versions,
and SAFEREFACTOR also detected this behavioral change. To perform the OO
refactoring, developers extracted the code inside the try, catch, and finally
blocks to methods in specific classes that handle exceptions. Some classes that
implement Serializable were refactored.

class A implements Serializable {
Object clone() {
try { ... }
catch (IOException e) { ... }
}
}

Developers changed the clone method and introduced the handler attribute
to handle exceptions. However, they forgot to serialize this new attribute.

class A implements Serializablef{
ExceptionHander handler;
Object clone() {
try { ... %
catch (IOException e) {
handler.handle(e);
X
}
}

class ExceptionHandler { ... 1}

Thus, when the clone method try to serialize the object, an exception is
thrown. Therefore, a bug was introduced in the code. On the other hand, in the
AO version, developers extracted the exception handling code to aspects. Since
it was not needed to introduce new fields in the classes to handle exceptions,
this problem did not happen in the AO version. They used tools and a test
suite do guarantee behavior preservation. However, we do not have a good tool
support for refactoring AO code. It is simple to apply a small transformation
and introduce a behavioral change.

4.4 Design Patterns
Subject Characterization

Hannemann and Kiczales [7] implemented 23 design patterns [5] in Java. The
same patterns were also implemented in AspectJ. They compared them with
respect to locality, reusability, composability, and (un)pluggability. Table 3 sum-
marizes the patterns implemented by them. We use SAFEREFACTOR to evaluate
whether their OO and AO implementations are equivalent.

Results

We identified behavioral changes in 4 out of 23 implementations of the design
patterns [7] (Table 3). They implemented OO and AO versions of the queue
data structure to illustrate the State pattern (Subject 32). This pattern allows
an object to behave differently according to its internal state. They implemented
the Queue class to represent a queue and the abstract class State representing
the queue states (Empty, Normal, and Full), as depicted by Figure 4.4. Each
queue must contain at most three elements.

In the OO version, the state transitions are performed in each class represent-
ing a possible state. For instance, the following part of code shows the insert
method from the Empty class, which changes the queue’s state to normal and
add an element.

public boolean insert(Queue queue, 0Object arg) {
Normal nextState = new Normal ();
queue .setState (nextState) ;

Table 3. The GoF design patterns implemented in Java and AspectJ.

| Subject | __Design Pattern | Test | Fail | Total Time(s) | __Result _|
13 Abstract Factory 48 0 10 -
14 Adapter 70 0 7 -
15 Bridge 107 0 8 -
16 Builder 178 0 8 -
17 Chain of Responsibility 8 0 9 -
18 Command 6 0 9 -
19 Composite 234 0 9 -
20 Decorator 84 0 7 -
21 Facade 104 0 8 -
22 Factory Method 59 0 10 -
23 Flyweight 72 0 8 -
24 Interpreter 14 0 8 -
25 Iterator 70 0 9 -
26 Mediator 5 0 0 -
27 Memento 93 0 7 -
28 Observer 60 0 8 -
29 Prototype 131 76 8 Behavior Change
30 Proxy M7 0 8 -
31 Singleton 1 0 7 -
32 State 44 26 8 Behavior Change
539 Strategy 8 0 7 -
34 Template Method 138 54 8 Behavior Change
35 Visitor 27 1 7 Behavior Change

+insert{Object) ’ +insert(Object)
+removeFirst()

+removeFirst()

y 2 i i i
State.insert|Object) | Empty | Mormal Full
State.removeFirst

0 +insert{Object) +insert{Object) +insert{Object)

+removeFirst()

+removeFirst() +removeFirst()

Fig. 4. The class diagram of a Queue using the State design pattern.

return nextState.insert(context, arg);

}

On the other hand, in the AO version, they implemented the state transitions
in an aspect. The aspect declares the state objects (empty, normal, full), and an
advice makes the state transition after the invocation of the insert method.

public aspect QueueStateAspect {

protected Empty empty = new Empty();

protected Normal normal = new Normal ();

protected Full full = new Full();

after (Queue queue, State gs, Object arg):
call(boolean State+.insert(0Object)) && ... {

if (gqs == empty) {

normal . insert (arg) ;
queue.setState (normal);

}

}

SAFEREFACTOR detected a behavioral change. Listing 1.4 shows a test case
generated by SAFEREFACTOR that reveals a behavioral change. It instantiates
the q1 queue and adds one element to it. Next, it instantiates another queue g2
and add three elements. All elements were correctly inserted in the OO version.
However, the last element could not be inserted into the queue in the AO version.
The r4 variable yields false. It states that the queue is full (it contains three
elements).

Listing 1.4. A unit test revealing a behavioral change in the State pattern.

public void test () {
Queue g1 = new Queue();
boolean rl = gl.insert("elementl");
Queue g2 = new Queue();
boolean r2 = g2.insert("elementl");
boolean r3 = g2.insert("element2");
boolean r4 q2.insert ("element3");
assertTrue(rl == true);

assertTrue (r2 == true);
assertTrue(r3 == true);
assertTrue(r4 == true);

}

Aspects are singleton by default in AspectJ [10]. Notice that the fields of
the QueueStateAspect aspect are only instantiated when the aspect is created.
Therefore, the same state is shared by all queues. Normal contains an array
for storing three elements. When we insert an element in q1, it is inserted in
this array. However, when we create q2, this array is not cleared. Therefore, we
can only include two elements in q2. To avoid this problem, they could have

instantiated an aspect for every new queue instance. AspectJ allows per-object
aspects by using the perthis and pertarget keywords [10].

We also found simple behavioral changes in three design patterns (Sub-
jects 29, 34 and 35). Some methods yield different String messages.

4.5 JML Compiler
Subject Characterization

The Java Modeling Language (JML) [11] is a behavioral interface specification
language used to specify contracts, such as pre and post conditions and invariants
with annotations. The JML compiler (jmlc) reads a Java program annotated with
JML and produces an instrumented bytecode with additional code to check the
program correctness against restrictions imposed by the JML specification.

Rébelo et al. [17] propose a JML compiler (ajmic) implemented using AspectJ
to avoid using reflection, which was used in jmlc. In this way, they could use JML
with Java ME applications, which do not support reflection. Later, they proposed
an optimized version of this compiler (ajmlc optimized) [18]. They optimized the
bytecode size and running time.

We evaluated the JML compilers implemented in AspectJ (ajmlc and ajmlc
optimized) using SAFEREFACTOR. We use two Java programs annotated with
JML (JAccounting and JSpider) as test inputs for the compilers (Table 4). For
each input, SAFEREFACTOR compares the behavior of the programs yielded by
these compilers. The programs compiled by ajmlc and ajmlc optimized must be
equivalent.

Table 4. Evaluation of JML compilers.

N S 3 M T P T

JSpider 27 Behavior Change
37 JAccount 6 643 15 118 Behavior Change

Results

SAFEREFACTOR detected behavioral changes in Subjects 36 and 37. The pro-
grams compiled using ajmlc and ajymlc optimized are not equivalent.

A class invariant should be checked before and after a method call. How-
ever, it must only be checked after an object is created. By analyzing the tests
reported by SAFEREFACTOR, we detected that, ajmlc checks invariants before
each constructor. This leaded to false invariant violation warnings. For example,
consider the following class specifying a person.

public class Person {
private /*@ spec_public @%*/ int height;
//@invartant height > 0;
//@pre i > 0;
public Person(int i) {
this.height = ij;
}
}

The Person class contains the height attribute, and a constructor that sets
the height of each person. An invariant states that each person must have a
height greater than 0. Moreover, the Person constructor has an precondition
specifying that the parameter i must be greater than 0. Now, suppose we would
like to instantiate this class.

Person gustavo = new Person(178);

The previous code compiled by ajmlic optimized is normally executed. How-
ever, it throws a warning due to postcondition violation when compiled by ajmlc.
By analyzing the code generated by the compilers to check the constructor pre-
condition, we notice the ajmlc implements this check in an intertype declaration.

before (Person p, int i): execution(Person.new()) {
boolean b = p.checkPrePerson(i);

}

boolean Person.checkPrePerson(int i) {
return (i > 0);

}

The checkPrePerson method is invoked by an advice before the execution
of the constructor. Notice that this method belongs to Person. Therefore, by
calling it, the invariants of this class will also be checked. However, since the
constructor was not initialized so far, the height attribute is still 0 leading to
an invariant warning.

On the other hand, the ajmlc optimized changes the previous checking code
by applying the Inline method intertype within before-execution refactoring [18].
Part of the resulting code is shown next.

before (Person p, int i): execution(Person.new()) {
boolean b = (i > 0);
}

Notice that the inter-type declaration was removed. Therefore, ajmlc contains
a bug.

SAFEREFACTOR also detected a behavioral change during a postcondition
evaluation of a JAccount method. In a test case generated by SAFEREFAC-
TOR, the code compiled with ajmlic optimized throws the JMLEvaluationError
exception, as expected. However, the code compiled with ajmlc throws

JMLInternalExceptionalPostconditionError. These exceptions have differ-
ent meaning. The former occurs when an exception is thrown during the post-
condition evaluation, such as NullPointerException. The latter notifies an in-
ternal exceptional postcondition violations.

4.6 Threats to Validity

Construct validity. Behavioral changes in three design patterns (Subjects 29,
34 and 35) seem to be related not to bugs but to subtle differences in the OO
and AO implementations such as the message returned by a method.

Internal validity. SAFEREFACTOR cannot detect behavioral changes in the
standard output (System.out.println) messages and exception messages. More-
over, the time limit used for generation tests may have influences in the detection
of behavioral changes. Therefore there may be unrevealed behavioral changes in
the evaluated subjects.

External validity. Although SAFEREFACTOR generates tests only for common
methods, it can be used to evaluated transformation that change method signa-
tures. For instance, consider a rename method from A.m(..) to A.n(..). The
set of methods that Step 1 identifies doesn’t include them. A similar situation
occurs when renaming a class. We can’t compare the renamed method’s behavior
directly, but SAFEREFACTOR compare them indirectly if a method in common
calls them.

5 Related Work

The term refactoring was coined by Opdyke [15,14] as a behavior-preserving pro-
gram transformation that improves some quality (reusability, maintainability) of
the resulting code. Opdyke [14] proposes a number of refactorings for C++ and
specifies conditions to guarantee behavior preservation. However, there was no
formal proof of the correctness of these conditions. Later on, Tokuda and Ba-
tory [24] found some faults in these refactorings.

Monteiro and Fernandes [12] proposed a catalog of 27 aspect-oriented refac-
torings [4]. These refactorings aim at introducing aspects and improve the design
of them. They can be used as guide for proposing tool supported refactorings.
However, they do not prove them sound. We can apply their refactorings and
use our tool to improve confidence that the transformation is correct.

Cole and Borba [2] formally specify aspect-oriented programming laws (each
law defines a bidirectional semantics-preserving transformation) for AspectJ.
By composing them, they derive AspectJ refactorings. Each law formally states
preconditions. They proved one of them sound with respect to a formal semantics
for a subset of Java and AspectJ [3]. They can be very useful for implementing
aspect-aware refactoring tools.

Wloka et al. [25] propose a tool support for extending currently OO refac-
toring implementations for considering aspects. They developed an impact anal-
ysis tool for detecting change effects on pointcuts to generate pointcut updates.

Binkley et al. [1] present a human guided automated approach to refactor OO
programs to the AO. Hannemann et al. [8] introduce a role-based refactoring ap-
proach to help programmers modularize crosscutting concerns in aspects. These
work contribute for improving tool support for refactoring aspect-oriented pro-
grams. Our work is complementary to them. We propose a more practical ap-
proach for detecting behavioral changes in AO transformations.

Some work have refactor OO programs to AO to investigate benefits of as-
pects. Hannemann and Kiczales [7] present 23 design patterns [5] in OO and
AO. Taveira et al. [23] modularize exception handling in OO and AO code. The
study shown that AOP promotes reuse of exception handling code. We used
SAFEREFACTOR to evaluate transformations applied in these case studies.

6 Conclusions

Our earlier work presents our technique and its implementation
(SAFEREFACTOR) for making OO program refactorings safer [21,20]. Here,
we make small changes to SAFEREFACTOR in order to extend it to the AO
context. We evaluated SAFEREFACTOR in 37 subjects. SAFEREFACTOR was
able to detect a number of non-behavior-preserving transformations [7,23,18].
The transformations presented in Section 4 were applied by refactoring tools or
by developers that have a strong background in Java and AspectJ. However,
the Java/AspectJ semantics is nontrivial, which imposes challenges in checking
and performing refactorings. For instance, pointcuts may use wildcards making
difficult to check preconditions, and a small transformation can have an impact
on a number of different parts of the program. Therefore, it is not simple to
apply them without a good tool support.

As future work, we intend to improve our static analysis for checking the
impact of the change. It must take into consideration aspect constructs, such as
pointcuts and inter-type declarations. In this way, we can improve performance
and generate tests only for the methods affected by the transformation.

Acknowledgment

We would like to thank Paulo Borba, Tiago Massoni, Sérgio Soares, Fernando
Castor, Leopoldo Mota, Mércio Ribeiro and Henrique Rébelo. We gratefully
thank the anonymous referees for useful suggestions. This work was partially
supported by the National Institute of Science and Technology for Software
Engineering (INES)?, funded by CNPq grants 573964/2008-4, 477336/2009-4
and 304470,/2010-4.

References

1. Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P.: Automated refactor-
ing of object oriented code into aspects. In: ICSM. pp. 27-36 (2005)

2 http://www.ines.org.br

http://www.ines.org.br

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Cole, L., Borba, P.: Deriving refactorings for AspectJ. In: AOSD. pp. 123-134

2005

éole,)L., Borba, P., Mota, A.: Proving aspect-oriented programming laws. In:
FOAL. pp. 1-10 (2005)

Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
1999

(Gamrzia, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (2005)

Gosling, J., Joy, B., Jr, G.L.S., Bracha, G.: The Java Language Specification. Sun
microsystems (2005)

Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: OOPSLA. pp. 161-173 (2002)

. Hannemann, J., Murphy, G.C., Kiczales, G.: Role-based refactoring of crosscutting

concerns. In: AOSD. pp. 135-146 (2005)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Trwin, J.: Aspect-oriented programming. In: ECOOP. pp. 220-242 (1997)
Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications Co. (2003)

Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. SIGSOFT Software Engineering Notes
31, 1-38 (2006)

Monteiro, M., Fernandes, J.: Towards a catalog of aspect-oriented refactorings. In:
Proceedings of AOSD ’05. pp. 111-122. ACM, New York, NY, USA (2005)
Murphy, G.C., Kersten, M., Findlater, L.: How are Java software developers using
the Eclipse IDE? IEEE Software 23(4), 76-83 (2006)

Opdyke, W.: Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of
Ilinois at Urbana-Champaign (1992)

Opdyke, W., Johnson, R.: Refactoring: An aid in designing application frameworks
and evolving object-oriented systems. In: SOOPA. pp. 145-160 (1990)

Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: ICSE. pp. 75-84 (2007)

Rebélo, H., Soares, S., Lima, R., Ferreira, L., Cornélio, M.: Implementing Java
modeling language contracts with AspectJ. In: SAC. pp. 228-233 (2008)

Rebélo, H., Lima, R., Cornelio, M.L., Leavens, G.T., Mota, A.C., Oliveira, C.:
Optimizing JML features compilation in ajmlc using aspect-oriented refactorings.
In: SBLP. pp. 117-130 (2009)

Schéfer, M., Ekman, T., de Moor, O.: Challenge proposal: Verification of refactor-
ings. In: PLPV. pp. 67-72 (2009)

Soares, G., Gheyi, R., Massoni, T., Cornélio, M., Cavalcanti, D.: Generating unit
tests for checking refactoring safety. In: SBLP. pp. 159-172 (2009)

Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program refactoring safer.
IEEE Software 27, 52-57 (2010)

Steimann, F., Thies, A.: From public to private to absent: Refactoring Java pro-
grams under constrained accessibility. In: ECOOP. pp. 419-443 (2009)

Taveira, J.C., Queiroz, C., Lima, R., Saraiva, J., Soares, S., Oliveira, H., Temudo,
N., Aratjo, A., Amorim, J., Castor, F., Barreiros, E.: Assessing intra-application
exception handling reuse with aspects. In: SBES. pp. 22-31 (2009)

Tokuda, L., Batory, D.: Evolving object-oriented designs with refactorings. ASE
8(1), 89-120 (2001)

Wloka, J., Hirschfeld, R., Hansel, J.: Tool-supported refactoring of aspect-oriented
programs. In: AOSD. pp. 132-143 (2008)

	Making aspect-oriented refactoring safer

