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Abstract. Program refactorings in IDEs are commonly implemented in an ad
hoc way, since checking correctness with respect to a formal semantics is pro-
hibitive. These tools may perform erroneous transformations, not preserving
behavior. In order to detect these errors, developers rely on compilation and
tests to attest that behavior is preserved. Compilation errors, for instance, are
simple to identify by tools. However, changes in behavior very often go unde-
tected. We propose a technique for generating a test suite that is specific to
pinpoint incorrect refactorings. In each refactoring, we identify program parts
that are common to the program before and after refactoring, and automatically
generate a comprehensive set of unit tests for the initial program aided by a test
generator. As such, the create test suite is run on the program before and after
automatic refactoring, which does not require also to refactor the test suite itself
in our technique, as may occur sometimes in traditional refactoring scenarios.
Our technique is evaluated against a benchmark of 16 refactoring cases which
present errors when performed by mainstream refactoring tools. This evaluation
has been successful in detecting more than 93% of those errors.

1. Introduction

The term refactoring was coined by Opdyke [Opdyke and Johnson 1990, Opdyke 1992]
as behavior-preserving program transformations that improve some quality (reusability,
maintainability) of the resulting code, later popularized by Fowler [Fowler 1999]. The
cornerstone of his definition is that refactorings must maintain correct compilation and
the observable behavior. In practice, refactoring is either performed by manual steps,
which are error-prone and time consuming, or by refactoring tools.

Program refactorings in IDEs are commonly implemented in an ad hoc way, since
checking correctness with respect to a formal semantics is prohibitive. Therefore, of-
ten refactoring tools allow transformations that do not compile or preserve behavior.
Daniel et al. [Daniel et al. 2007] present several errors in refactoring tools that cause
compilation problems. On the other hand, Schifer et al. [Schifer et al. 2008] and Ek-
man et al. [Ekman et al. 2008] detect errors in automated refactorings regarding behavior
preservation. Some authors also show some possible errors, by formalization of refactor-
ings [Borba et al. 2004, Massoni et al. 2008].

Mostly, these defects result from omissions in tool development processes and
detecting the errors is not a simple task which can be easily done by the developers.
The tools usually lack appropriate theories specifying all conditions that are required
to refactor with behavior preservation — the transformations are not proven sound with



respect to a formal semantics. For instance, Cornélio [Cornélio 2004] formalizes a com-
prehensive catalog of refactorings — according to a formal semantics given to a Java-
like language — but the results from this and other similar approaches are hardly ap-
plied in developing refactoring tools. Formally verifying refactorings is indeed a chal-
lenge [Schifer et al. 2009], and this effort will surely take a long time before it becomes
industry standard. Currently, we need a better way to deal with semantic errors (non
behavior-preserving transformations). This is the goal of this paper.

The current practice to avoid refactoring errors relies on compilation and tests to
assure semantics preservation, which may not be satisfactory to critical software develop-
ment. Compilations errors are simple to identify by IDEs; they only check whether the
target version is amenable to correct compilation. However, often test suites are not good
at catching semantic errors during transformations. Moreover, it is common in refactoring
tools that the test suite also gets refactored, which is unsuitable, as the original intention
for the test suite may be lost.

In this paper, we propose a technique for generating unit tests for sequential
object-oriented programs (we focus on Java) that are useful for identifying semantic er-
rors, specially for within refactoring tools. Our approach generates tests for the common
parts of the source and target versions of a program — they represent the program before
and after applying the refactoring, respectively. In order to avoid refactoring the test suite,
our approach only generates tests that can be run both in the source and target programs.
This increases the probability in finding errors. In our approach we generate unit tests,
run on the source version, and only if no test fails, the same test suite is also run on the
target version. If some defect is found on target, we conclude the behavior has changed
and hence the transformation is not safe to be applied. It is important to mention that our
approach can be also combined with traditional testing approaches [Fowler 1999] as well.

We evaluate our technique in 16 non-trivial transformations that were manually
identified by Ekman et al. [Ekman et al. 2008] and by us. These transformations are con-
tained in the catalog of mainstream refactoring tools (such as Eclipse [Eclipse.org 2009],
Netbeans [Sun Microsystems 2009], JBuilder [Embarcadero Technologies 2009] and In-
telliJ [Jet Brains 2009]), but they introduce subtle semantic errors in at least one of the
tools. As result, our approach identified the semantic errors in 93% of the subjects. The
main contributions of this paper are the following:

e An approach for generating a test suite for sequential object-oriented programs
that 1s useful for checking refactoring safety (Section 3);

e An evaluation of 16 transformations introducing behavioral changes that are not
detected by the best refactoring tools. (Section 4).

2. Motivating Example

In this section, we demonstrate the problem with refactoring tools by means of a mo-
tivating example. It shows a transformation applied by a refactoring tool that presents
subtle errors in maintaining program behavior. Opdyke [Opdyke and Johnson 1990,
Opdyke 1992] proposed refactorings as behavior-preserving program transformations in
order to support the iterative design of object-oriented application frameworks.

Each refactoring contains a number of conditions by which it is supposed to pre-
serve behavior. For instance, in order to introduce a class, naming conflicts must be



Figure 1. Rename Variable - Incorrect handling of super accesses

Listing 1. Source Program Listing 2. Target Program
class Circle { class Circle {
static double roundPI = 3.2; static double PI = 3.2;
double radius = 1; double radius = 1;
double area(){ double area(){
return Plxradiusxradius; return Plxradiusxradius;
} t
} }

absent. Besides conditions that are useful to preserve program well-formedness, refac-
torings may also include conditions that preserve its semantics. The perfect scenario is
a catalog of refactorings whose conditions are proved to be enough for preserving se-
mantics, probably with respect to a formal semantics (in a theorem prover, for instance)
stating the minimum set of conditions. However, this activity is very time consuming and
requires considerable expertise.

Don Roberts [Roberts 1999] proposes the refactoring browser tool. Later on, sev-
eral tools were built, such as: Eclipse, JBuilder, IntelliJ, JDeveloper and NetBeans. The-
ories that formally state some refactoring conditions are hardly applied in tool develop-
ment. In order to check refactoring correctness, developers must assure behavior preser-
vation by successive compilation and tests. This is the cornerstone of Opdyke’s definition,
by which refactorings must maintain correct compilation and observable behavior.

In order to understand our example, consider a graphical design system containing
circles, rectangles and other geometric shapes (Subject 2 — we are going to evaluate it
using our technique in Section 4). Listing 1 shows a program with the C'ircle class. It
contains a method called area, which uses the static variable P/ from standard package
M ath, but not using a qualified name.

In this example, we can apply the Rename Variable refactoring, renaming the static
variable roundPI to PI. The resulting code is presented in Listing 2. If this refactoring
is applied in NetBeans and JDeveloper, the behavior is not preserved [Ekman et al. 2008].
In the case a circle with radius 1 has in the source program an area equals to 3.14 (with
precision of 2 digits), which is different from the area of the target program (which is
3.2). Therefore, the transformation does not preserve behavior, then a semantic error is
introduced. Eclipse detects this semantic error and prevents the developer from applying
this transformation.

The above problem is small, likely to be detected promptly by a developer or a test
suite. However, more subtle semantic errors may be very difficult to pinpoint specially
in larger programs. Moreover, different refactoring tools may check a different set of
enabling conditions, as noticed in the previous example. This scenario is not desirable in
practice, which may reduce overall software quality.

Tests play an important role in refactoring. However, it is common during refac-
torings that test suites also get refactored. Consequently, they may fail to detect errors
introduced by IDEs. A simple example is when we apply Rename Method refactoring. In



this case, the source and target program are checked against different tests suites. Addi-
tionally, the Rename Method refactoring may not preserve the behavior of a program in
some situations, as shown by Ekman et al. [Ekman et al. 2008]. Therefore, we should be
careful in these situations.

In this paper, we propose a technique which generates a test suite for refactorings
in Section 3 that is useful for finding non-trivial semantic errors as shown in Section 4.
The generated test suite, which can be run on source and target versions, exercise the
changes introduced by the transformation.

3. Technique

In this section, we propose a technique for generating a set of unit tests that may be
useful for finding semantic errors after sequential object-oriented program refactorings.
Our goal is to generate a single suite of unit tests to be run on both source (original)
and target (refactored) versions of a program. This property can improve confidence that
the refactoring is correct, since it avoids running different test suites to each program, a
possible source of bugs in automatic refactoring. Next we present our technique, which
currently is specific for Java, although it can be similarly used for other object-oriented
languages.

The technique is broken in five sequential steps for each refactoring application,
as depicted in Figure 2. Firstly (Step 1), a static analysis identifies methods in common
in both source and target versions; these methods will be the aim of the generated tests.
Step 2 aims at generating unit tests for methods identified in Step 1. Notice that the first
two steps ensure that the same tests can be run on the source and target versions. In Step 3,
the generated test suite is run on the source. If no test fails, the same test suite is also run
on the target version (Step 4). If the tests run successfully on the Step 4, the programmer
can have more confidence that the transformation does not introduce behavioral changes.
Therefore, the refactoring can be safely applied (Step 5).
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In order to achieve this goal, our technique performs a static analysis on the source
and target versions (Step 1). The idea is to identify a set of methods that are appropriate
for generating tests, aiming at detecting behavioral changes. Since we want to run the
same test suite in both versions, we find a set of methods that are in common in both
versions. Several options may be implemented for mechanizing this technique. For in-
stance, one can use Java reflection in order to gather common methods from the source
and target versions. We consider as common methods only methods that have exactly the
same modifier, return type, name, parameters types and exceptions thrown. For example,
in Listing 1, both source and target programs include the area method, with identical
signatures.

Additionally, there are several alternatives to obtain the target version of the pro-
gram for static analysis, even before the final application of the automatic refactoring.
Refactoring IDEs, such as Eclipse, present features that allow users to visualize a pre-
view version of the refactoring — then the static analysis can be applied to this previewed
version. Also, the refactoring can be applied, then the program gets analyzed, and if the
whole process detects semantic errors, the refactoring can be undone (IDEs also present
the undo feature for refactorings).

After identifying a set of useful methods, Step 2 is carried out, in which unit tests
are generated. For this task, RANDOOP can be used; it is fully automatic for randomly
generating tests cases, requiring no inputs from the user. RANDOOP has found seri-
ous errors in widely-deployed commercial and open-source software, such as Sun’s JDK
1.5 [Pacheco et al. 2007]. A test suite that is generated by RANDOOP typically consists
of a sequence of method calls that create and mutate objects with random values, plus an
assertion about the result of a final method call. Listing 3 presents a test case generated by
RANDOAQP that has found errors in the JDK 1.5 Collection API. This test consists in ex-
ercising a LinkedList being wrapped by a TreeSet object. Next, the Collections utility
class is exercised through the unmodi fiableSet method, whose return value’s equality is
unsuccessfully tested.

Listing 3. A test case generated by RANDOOP that reveals an error in JDK 1.5
Collection API.

public static void testl () {
LinkedList 11 = new LinkedList();
Object ol = new Object();
11.addFirst(ol);
TreeSet t1 = new TreeSet(11);
Set sl = Collections.unmodifiableSet(tl);
Assert.assertTrue(sl.equals(sl)); // This assertion fails

The original RANDOQOP algorithm takes four parameters: a list of target classes
for the tests, a list of contracts, a list of filters, and a time limit after which the genera-
tion process halts. The default filters, contracts and time limit (10 seconds) can be used.
For the technique, we use as input the list of classes (the location where the methods
are defined) resulting from the static analysis performed in Step 1. More specifically, we
modified RANDOOP to consider additional arguments. For instance, it is configured to
generate tests that only call methods that are common from classes present in the source
and target versions of the program. RANDOOP contains a method canU se(Method m)



in the randoop.util. De fault Re flection Filter class. It defines whether a method can
be used in a test sequence of a test case. Besides the default checks performed by RAN-
DOQP, we also include an additional verification on whether the method m belongs to the
set of methods identified in Step 1. These changes aim at running that the same test suite
on both versions, without modifications.

RANDOOP contains a set of default contracts. For example, sl.equals(sl) must
be true, as presented in Listing 3. Users can extend these with additional contracts, in-
cluding domain-specific ones. A contract is created programmatically by implementing
a public interface. Algorithm 1 summarizes Steps 1 and 2. Require clause defines the
input parameters. In this algorithm, the static — analysis method (line 1) from Step 1
defines the methods to be tested, from an intersection of classes from both versions of the
program. The mod: fied — randoop (line 4) method generates a test suite (Step 2).

Algorithm 1 Test Suite Generation Algorithm
Require: source program pl.
Require: source program p2.

1: methods < static-analysis(pl,p2)

2: classes < classes(pl) N classes(p2)

3: timelimit + 10

4: suite <— modified-randoop (methods,classes,timelimit)
5: return suite

Then we can run the generated test suite using the JUnit framework, first on the
source version (Step 3). If it runs successfully, then we run on the target version (Step 4).
Developers can also run their custom made test suite in order to increase confidence that
the transformation does not introduce behavioral changes. Finally, if the tests run success-
fully on both versions, the refactoring can be accomplished (Step 5). It is important to
mention that our technique does not prove that the refactoring is correct, but it improves
the developer’s confidence that a given transformation preserves behavior.

4. Evaluation

In the following subsections, we show how our technique can detect a number of non-
behavior preserving transformations that are considered to be refactorings by extensively
tested industrial-strength tools [Schifer et al. 2009], such as Eclipse, JBuilder, NetBeans,
and IntelliJ. As mentioned before, we focus on semantic errors, since compilation errors
are cheap to be detected by any compiler (we just have to compile the resulting code).

Next we characterize the subjects (Section 4.1) and give more details about some
of them (Sections 4.2, 4.3and 4.4). Finally, we present a discussion (Section 4.5) about
our results.

4.1. Characterization

Firstly, we describe our subjects (transformations that introduce behavioral changes that
are not detected by the best refactoring tools). We considered 16 subjects in our experi-
ment, including most transformations identified by Ekman et al. [Ekman et al. 2008] and



Figure 3. Push Down Method Refactoring - Incorrect handling of super accesses

Listing 4. Source Version Listing 5. Target Version
public class A { public class A {
public int k(){return 23;} public int k(){return 23;}
} ¥
public class B extends A { public class B extends A {
public int k() {return 42;} public int k(){return 42;}
public int m(){ }
return super.k(); public class C extends B {
} public int m() {
return super.k();
public class C extends B { }
public int test(){ public int test (){
return new C() .m() ; return new C() .m();
} }
} ¥

others identified by us. We also included some subjects that are very similar to the sub-
jects from Ekman et al., although with variations that improve evaluation. Each subject
is composed by a small set of classes which can report non-trivial errors in refactorings
tools. For instance, our subjects contain methods with primitive and non-primitive param-
eters and return types; we also consider void methods. Due to RANDOOP, the current
implementation of our technique only generates tests for public methods of sequential
programs. Moreover, our technique does not work when threads are considered. For eval-
uating each subject, we used an automated tool we have developed. For this purpose,
we kept separate source and target versions implemented in Java — the refactoring is ap-
plied before the evaluation. This separation does not invalidate the results achieved, since
the focus is on the effectiveness of the technique in finding semantic errors during refac-
torings activities. We considered in our evaluation the following refactorings: Extract
Method, Encapsulate Field, Pull Up Method, Push Down Method and Rename (Class,
Field, Method and Local Variable). Some of them are described in detail in this section;
the entire set of tested subjects are showed in Table 1. All subjects present a behavioral
change that goes undetected by at least one refactoring tool: Eclipse 3.4.2, JBuilder 2007,
NetBeans 6.0, JDeveloper 11g and IntelliJ 8.0.

4.2. Push Down Method
Subject 7. Listing 4 shows a program with three classes amenable to refactoring.

Suppose that we would like to apply the Push Down Refactoring [Fowler 1999],
pushing down the method m from class B to C. The resulting code is presented in List-
ing 5. We can apply this refactoring in Eclipse, IntelliJ, JBuilder and NetBeans. However
the behavior is not preserved. If we run the test method in the source and target versions,
it yields 23 and 42, respectively.

Using our technique, when we analyze the versions of Figure 3, we first identify
the methods in common in both versions: A.k(), B.k() and C'test(); the method m does
not is considered because it is in different classes in source and target versions. Then, we
use our modified RANDOQOP to automatically generate a number of unit tests specifically



Figure 4. Rename Method Refactoring - Renaming Method Can Lead to Shadow-
ing of Statically Imported Method

Listing 7. Source Version Listing 8. Target Version
import static java.lang.String.x; import static java.lang.String.x;
public class A { public class A {

static String m(int i) { static String valueOf(int i){
return "42"; return "42";

} }

public int test() { public int test() {
return Integer.parselnt( return Integer.parselnt(

valueOf (23)); valueOf (23));
} }
} }

applied to these methods. In the previous example, it generates 1943 tests. Finally, we
run them in JUnit and find that 1807 tests fails in the target version. Listing 12 presents a
test case generated by RANDOOP. This test case passes in the source version, but not in
the target one.

Listing 6. Test Case that reveals an error

public void testclasses7 () throws Throwable {
C var0 = new C();
int varl = varO.test();
assertEquals ((int)23, (int)(java.lang.Integer)varl);

}

4.3. Rename Method

Subject 4. Listing 7 shows a program to which the Rename refactoring is applied, specif-
ically to method m that becomes valueO f in the class A. In the source version, valueO f
presented in test is imported from the class String. The resulting code is presented in
Listing 8. The method valueO f presented in test refers to the local valueO f method
defined.

We can apply this refactoring in Eclipse, JBuilder, NetBeans, and JDeveloper. If
we run the test method in the source and target versions, it yields 23 and 42, respectively.
Therefore, it does not preserve behavior. Our technique generates 100 unit tests. JUnit
reports 99 failures in the target version.

4.4. Encapsulate Field

Subject 5. Listing 9 shows a program with two classes and a public attribute 7. We would
like to apply Encapsulate Field refactoring in the local public variable 7. The resulting
code is presented in Listing 10.

We can apply this refactoring in Eclipse, JBuilder, NetBeans, IntelliJ, and JDevel-
oper. If we run the getV alue method in the source and target versions, it yields 23 and 42,
respectively, showing that behavior is not preserved. Using our technique, we generate
2098 unit tests. JUnit reports 2095 failures in the target.



Figure 5. Encapsulate Field Refactoring - No Check for Overloading Problems

Listing 9. Source Version

Listing 10. Target Version

public class A {
public int i;

public class B extends A {
public int getI() {
return 42;
}
public int getValue () {
A a = new B();
a.i = 23;
return a.i;
}
}

4.5. Discussion

The current implementation of our technique detects semantic errors of public methods
that return values (¢nt, double or objects). Suppose the example presented in Listing 11.

public class A {
private int i;
public void setI(int i) {
this.i = i;
}

public int getl () {
return i;
}
}
public class B extends A {
public int getl () {
return 42;
}
public int getValue() {
A a = new B();
a.setl(23);
return a.getl();

}
}

Listing 11. A subject containing a method returning an Object.

public class A {
public int k() { return 23; }

public class B extends A {
public int k() { return 42; }

public int m() { return super.k(); }

}

public class C extends B {
public D test (){
D d = new D();
d.setF(m());
return d;

}

}
public class D {

int f = 23;

public void setF(int x) {
this . f = x;

}

public int getF() {
return this.f;

}




Applying the Push Down Method refactoring by moving m from class B to class
C, the method test yields a D object with a different behavior. With our technique,
this kind of error can be detected, since RANDOOP generates the following test case
presented in Listing 12:

Listing 12. RANDOOP Test Case

public void testclasses22 () throws Throwable {
C var0 = new C();
D varl = varO.test();
int var2 = varl.getF();
assertEquals ((int)23, (int)(java.lang.Integer)var2);

}

Notice that the test sequence contains a call to test, and it applies the method
getF. The getter methods must be present, so RANDOOP can generate a sequence of
calls that exposes the semantic error. However, if the method is void, we may not detect
a semantic error if the class does not declare the appropriate getter methods for the fields.
Accordingly, this need is certainly a guideline that developers should follow when using
our approach.

Our benchmark 1is composed by subjects that cover different er-
rors [Ekman et al. 2008]. For instance, a Push Down Method refactoring may lead
to incorrect handling of super, field, type and private method accesses, whereas the
Extract Method may lead to incorrect handling of dataflow analysis. The Encapsulate
Field refactoring may introduce a problem due to overloading problems. Moreover,
some errors are caused by Rename refactorings: undiagnosed shadowing, shadowing of
inherited member types, shadowing of static import, shadowing by fields and shadowing
of statically imported method.

In summary, our technique detected problems in all 16 subjects but 1. Table 1
shows the complete results of our experiment. It shows the number of classes and methods
that are in common in both versions, the number of tests generated by RANDOOP, and
the number of tests that identify semantic errors in the target version. We only include
subjects small enough to expose the error. If we include larger examples, RANDOOP
tends to generate more tests. It also may be interesting to increase the time limit, so more
tests can be generated in order to exercise the changes introduced by the transformation.

Subject 14 contains a difference in the standard output (System.out.printin)
messages, which the current implementation of our technique cannot identify. As a future
work, we aim at changing RANDOQOP to generate tests based on testing patterns that are
useful for identifying those kinds of errors.

Finally, Subject 15 extracts a class with the same name (Point) of a different class
in another package (java.awt.Point). In this case, behavior is changed. Since the class is
renamed, we do not generate any test for the new and old classes. We generate a test suite
that can be run in both versions. If the common base code does not exercise the modified
parts, it is difficult to detect a semantic error introduced by renaming refactorings. As the
technique focus on common methods and classes, names are important. However, errors
introduced by the Rename Field refactoring are easier to be detected. Subject 15 may be
very rare in practice, since it is easy to introduce a compilation error. It is common to



Table 1. Summary of the Refactoring Experiment

Subject | Classes | Methods | Refactoring Tests | Errors
1 4 2 rename class 101 99

2 1 1 rename field 6 4

3 1 2 rename local variable | 100 | 99

4 1 1 rename method 100 | 99

5 2 2 encapsulate field 2098 | 2095
6 1 2 extract method 2740 | 2737
7 3 3 push down method 1943 | 1807
8 2 1 push down method 101 | 99

9 3 3 push down method 101 | 99
10 2 2 push down method 101 | 99
11 3 3 pull up method 4 1

12 3 3 push down method 2190 | 2145
13 3 5 push down method 2682 | 548
14 3 3 push down method 300 |0

15 2 0 extract class 100 |99
16 3 4 push down method 3263 | 1404

some class to have a java.awt.Point variable calling a method that is not presented in
the new extracted class. Therefore, we may have a compilation error. In our case, this
does not happen because the experiment only contains a few classes and methods.

5. Related Work

Refactoring tools may contain bugs. Ekman et al. [Ekman et al. 2008] catalog a num-
ber of non-trivial compilation and semantic errors resulting from refactoring tools, when
applying refactorings such as Rename Element and Encapsulate Field. Schifer et
al. [Schifer et al. 2008] present an approach to solve the problem for rename refactor-
ing. We present a simple technique for finding semantic errors, regardless the refactoring
category. It is hard to examine all kinds of refactorings in order to define all enabling
conditions. Their benchmark [Ekman et al. 2008] is used in this paper as a benchmark,
and our technique was able to pinpoint all their semantic errors, except two of them: one
with concurrency, that our technique does not support; and other with changes in the stan-
dard output (System.out.printin). The current implementation of our technique cannot
detect them.

Daniel et al. [Daniel et al. 2007] propose an approach to check whether refac-
toring tools do not introduce compilation errors, which are simple to identify. Their ap-
proach generates a number of inputs to check whether the tools are correct. This approach
complements ours. We focus on finding behavioral changes that are more difficult to be
detected.

Formally verifying program refactorings is a challenge [Schifer et al. 2009].
Some approaches have been contributes in this direction. An approach [Gheyi 2007] pro-
poses and formally proves in a theorem prover with respect to a formal semantics and
formal equivalence notion encoded in Prototype Verification System (PVS) a number of



refactorings for a formal specification language (Alloy). Borba et al. [Borba et al. 2004,
Borba et al. 2003, Cornélio 2004] propose a set of program refactorings for the Refine-
ment Object-Oriented Language (ROOL), which is a sequential Java-like language but
with copy semantics. A set of primitive laws (bidirectional program refactorings) is de-
fined, and proved that they are behavior preserving based on a weakest preconditions
semantics for ROOL [Borba et al. 2004]. By composing their laws, they formalize sev-
eral refactorings, such as Pull Up Field and Push Down Field refactorings [Fowler 1999].
A closely related approach is developed by Tip et al. [Tip et al. 2003]. They realized
that some enabling conditions and modifications to source code for refactorings involv-
ing generalization, for automation in Eclipse, depend on relationships between types of
variables. These type constraints enable the tool to selectively perform transformations
on source code, avoiding type errors that would otherwise prohibit the overall application
of the refactoring. They proved that these refactorings preserve typing. However the pre-
vious approaches focus on a restricted set of Java and do not consider dynamic semantics,
respectively. Proving that a refactoring for Java is sound considering full Java is a bit more
difficult. So in this paper, we propose a more practical approach for identifying semantic
errors.

Murphy-Hill and Black [Murphy-Hill and Black 2008b,
Murphy-Hill and Black 2008a] characterize a number of problems with current
refactoring tools. They report on a user study that compares their new tools proposed
against existing tools. The results of the study show that speed, accuracy, and user
satisfaction can be increased. They extend the set of usability recommendations proposed
by Roberts [Roberts 1999] and propose new ones. Our work is complementary. As
mentioned before, since the conditions of each refactoring are not formally defined, it
is very simple to compromise the refactoring tools correctness. In our work, we help
developers catching semantic errors that are not captured by refactoring tools.

6. Conclusions

In this paper, we propose a technique for generating tests for sequential object-
oriented program refactorings. Since it is well known that refactoring tools contain de-
fects [Ekman et al. 2008], our goal is to increase the chances to identify semantic errors.
We do not focus on compilation errors since they are cheap to detect. As tools present
defects, we generate a test suite that can be run on the source and target versions. If
the test suite runs successfully, developers improve confidence that the transformation
preserves behavior. We also developed an Eclipse plug-in ! in order to automate the
steps of our technique. We applied our technique to 16 tricky transformations, divided
in 5 kinds of refactoring, namely: Extract Method, Encapsulate Field, Pull Up Method,
Push Down Method, Rename (Class, Field, Method and Local Variable). Three out of
five kinds of refactorings are in the top four mostly used refactorings by Eclipse devel-
opers [Murphy et al. 2006, Murphy-Hill and Black 2008a]. In 93% of the cases, our ap-
proach identified the semantic errors. We consider subjects containing methods returning
any primitive or Object types. It is important to mention that our approach is complemen-
tary to the traditional refactoring steps. The developer can continue to use the traditional
approach [Fowler 1999], using ours to increase the confidence that the transformation pre-

'The tool is available at: http://www.dsc.ufcg.edu.br/~spg


http://www.dsc.ufcg.edu.br/~spg

serves behavior. If a transformation introduces a behavioral change, our technique shows
a test case for developers indicating a method call sequence that introduces the change.

As a future work, we aim at using our technique in a real case study. Additionally,
we aim at proposing some specific RANDOOP contracts for each refactoring. This may
be useful to increase the chances to find more semantic errors. Modifying RANDOOP to
consider non public methods may be another direction.

In the static analysis step, we only consider the classes and methods that are in
common in the source and target versions. Sometimes our approach does not perform
well if we consider the Rename method and class refactorings. The technique does not
generate tests for them. We need a common base code that exercises the changes in order
to detect a problem. Notice that we considered subjects that apply Rename Method, Field
and Local Variable refactorings and our approach detected the behavioral changes. As a
future work, we intend to evaluate our approach in more refactorings and propose some
specific strategies. Additionally, we intend to generate some test patterns that are useful
for detecting differences in the messages presented in the standard output. Our current
implementation does not detect differences in those messages.

We can improve our current static analysis step by taking into account the hierar-
chy or other object-oriented property. For example, if the method m is push down from
class A to B, m is not included in the resulting set using the static analysis since m has a
different signature in the source an target versions. It would be useful if we include the
method m called from class B, hence satisfying both versions. Another approach can re-
fine the set of methods by taking into account the refactoring characteristic. For example,
it would be interesting only to consider methods that exercise the changes. In this case we
can have a small test suite, hence taking less time to run all tests. Even with our current
static analysis, we found good results, as presented in Section 4.
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