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Abstract—Currently analysis of refactoring in software reposi-
tories is either manual or only syntactic, which is time-consuming,
error-prone, and non-scalable. Such analysis is useful to un-
derstand the dynamics of refactoring throughout development,
especially in multi-developer environments, such as open source
projects. In this work, we propose a fully automatic technique to
analyze refactoring frequency, granularity and scope in software
repositories. It is based on SAFEREFACTOR, a tool that analyzes
transformations by generating tests to detect behavioral changes
– it has found a number of bugs in refactoring implementations
within some IDEs, such as Eclipse and Netbeans. We use our
technique to analyze five open source Java projects (JHotDraw,
ArgoUML, SweetHome 3D, HSQLDB and jEdit). From more
than 40,723 software versions, 39 years of software development,
80 developers and 1.5 TLOC, we have found that: 27% of
changes are refactorings. Regarding the refactorings, 63,83%
are Low level, and 71% have local scope. Our results indicate
that refactorings are frequently applied before likely functionality
changes, in order to better prepare design for accommodating
additions.

I. INTRODUCTION

Refactoring is the process of changing a software for
evolving its design while preserving its behavior [1]. In
practice, developers perform refactorings either manually –
which is error-prone and time consuming – or with the help of
IDEs with refactoring support, such as Eclipse and Netbeans.
Empirical analysis of refactoring tasks in software projects is
important, as conclusions and assumptions about evolution and
refactoring still present insufficient supporting data. Research
on these subjects certainly benefits from evidence on how
developers refactor their code. Understanding the dynamics
of software evolution surely helps the conception of specific
methods and tools. A number of studies have performed such
investigations in the context of refactoring [2], [3], [4], [5].

Open source projects are an appropriate and manageable
source of information about software development and evo-
lution. However, manually inspecting these sources is error-
prone, time-consuming and not scalable. It is almost infeasible
to analyze the complete development history. As an example,
Murphy-Hill et al. [2] was able to manually analyze 20 pairs
of versions with up to 15 KLOC from one open source
repository, in order to identify refactoring activities. Likewise,
static analysis of program versions is not able to evaluate
behavior preservation between pairs of repository versions,
which identifies a refactoring application. As a consequence,
the gathered information can be inaccurate, leading to incon-
clusive results. Dig et al. [5] propose such a detector, which

identifies only seven kinds of refactorings, and their static
analysis do not avoid false positives.

In this paper, we present a fully automatic technique for
analyzing refactoring activities with respect to frequency,
granularity, and scope, over entire repositories history. The
technique takes available repository source code and configu-
ration files as input. Then, every pair of consecutive versions
is analyzed, and non-refactoring transformations are identified.
In this step, we use SAFEREFACTOR (Section II), a tool
for detecting behavioral changes. SAFEREFACTOR analyzes
a transformation and generates tests for checking whether the
behavior was preserved between two versions of the repository.
It has been useful in the past for finding behavioral changes
in refactorings performed in real case studies [6].

If no behavioral change is detected, the confidence on
behavior preservation is higher, then we classify the trans-
formation as a refactoring. We categorize each refactoring
in terms of granularity (Low or High-level refactorings and
the size of the transformation) and scope (Global and Local
refactorings). We describe the technique and this classification
in Section III.

We use our technique to analyze1 the refactorings in five
open-source Java projects (JHotDraw, ArgoUML, Sweet Home
3D, jEdit and HSQLDB). From more than 40,723 software
versions, 39 years of software development, 80 developers and
1.5 TLOC, we have found that 73% of the transformations are
not refactorings. Regarding the likely refactorings, 63,83% of
them are Low level (changes inside methods body), and 71%
are Local, which means changes that affect only one package.

Our findings corroborate with some previously published
hypotheses about refactoring frequency. We have found that
refactorings correspond to 27% of software maintenance in
the analyzed subjects. This is a similar result from Murphy-
Hill et al. [2]. However, they state that most of refactorings are
High level, that is, change class, methods, or field signatures
(e.g. add parameter), different from our work. While they
evaluated the developers’ intention of applying refactorings,
we evaluated whether the transformations preserve behavior.
We believe that, despite developers’ intention of applying
High-level refactorings, successfully applied refactorings are
mostly Low-level.

In summary, the main contributions of this paper are the
following:

1All experiment data is available at: http://dsc.ufcg.edu.br/˜spg/papers.html



• A technique that allows analysis of refactoring activities
with respect to frequency, granularity, and scope, over
entire repositories history (Section III);

• We use our technique to analyze five open source Java
projects repositories (JHotDraw, ArgoUML, SweetHome
3D, jEdit and HSQLDB) (Section IV);

• Based on our evaluation, we are able to draw the follow-
ing conclusions on refactorings: they correspond to about
27% of the changes during the software evolution; they
are most commonly used to reach an specific evolution
task, such as add a feature; about 63,83% and 71% of
them are low level and Local, respectively.

II. SAFEREFACTOR

In this section, we show an overview of SAFEREFAC-
TOR [6], whose objective is to detect behavioral changes
during refactoring activities. It receives source code and a
refactoring to be applied as input, analyzes the transformation,
generates tests, and then reports whether it is safe to apply
the transformation. First we present a non-behavior-preserving
transformation example. Next we use this example to explain
how SAFEREFACTOR detects behavioral changes.

In general, each refactoring may contain a number of
preconditions to preserve the observable behavior. For in-
stance, to rename an attribute, name conflicts must not be
present. However, mostly refactoring tools do not implement
all preconditions, because it is far from trivial to completely
specify those conditions [7]. Therefore, often refactoring tools
allow wrong transformations to be applied with no warnings
whatsoever. For instance, Figure 1 shows a transformation [8]
applied by the Eclipse 3.4.2 IDE as a refactoring, but actually
changing the program’s behavior. Listing 1 shows a program
containing the class A and its subclass B. The method test
yields 10. When we apply the pull up refactoring to the method
k(int) using Eclipse, the resulting code is presented in
Listing 2. The method test in the target program yields 20,
instead of 10. Therefore, the transformation does not preserve
behavior using the Eclipse 3.4.2 IDE.

Suppose that we use SAFEREFACTOR in the transformation
described in Figure 1. The process is composed of five sequen-
tial steps for each refactoring application under test (Figure 2).
It receives as input two versions of the program, and outputs
whether the transformation changes behavior. First, a static
analysis automatically identifies methods in common in both
source and target programs (Step 1). Step 2 aims at generating
unit tests for methods identified in Step 1. It uses Randoop [9]
to automatically produce tests. Randoop randomly generates
unit tests for classes within a time limit; a unit test typically
consists of a sequence of method and constructor invocations
that creates and mutates objects with random values, plus
an assertion. In Step 3, SAFEREFACTOR runs the generated
test suite on the source program. Next, it runs the same test
suite on the target program (Step 4). If a test passes in one
of the programs and fails in the other one, SAFEREFACTOR
detects a behavioral change and reports to the user (Step 5).

Otherwise, the programmer can have more confidence that the
transformation does not introduce behavioral changes.

In his seminal work on refactoring, Opdyke [10] compares
the observable behavior of two programs with respect to the
main method (a method in common). If it is called upon both
source and target programs, with the same set of inputs, the
resulting set of output values must be the same. SAFEREFAC-
TOR checks the observable behavior with respect to randomly
generated sequences of methods and constructor invocations;
these invocations apply only to methods in common. If the
source and target programs have different results for the
same input, they do not have the same behavior. Consider
a renaming method refactoring from A.m(..) to A.n(..).
The set of methods identified in Step 1 includes none of them.
A similar thing occurs when renaming a class. We cannot
compare the renamed method’s behavior directly. However,
SAFEREFACTOR compares them indirectly if another method
in common (x) calls them. Step 2 thus generates tests that
call x in the generated tests. It is similar to Opdyke’s notion.
If main calls them, then SAFEREFACTOR compares those
methods indirectly. Moreover, a simple rename method may
enable or disable overloading [11]. This feature is a potential
source of problems.

SAFEREFACTOR has been used to evaluate seven real case
study refactorings (from 3 to 100 KLOC) [6]. For instance,
it analyzed JHotDraw (23 KLOC) and its refactored version,
and automatically detected a behavioral change. This problem
was not identified by developers using refactoring tools and
JHotDraw’s test suite. Moreover, SAFEREFACTOR has de-
tected more than 50 bugs [12] in refactorings implemented by
IDEs, such as Eclipse and Netbeans, showing it applicability
in detecting behavior changes.

III. TECHNIQUE

In this section, we present our technique that analyzes
refactorings in open source software repositories relative to
three properties:
• Frequency. Measures how often refactorings were applied

over the project’s lifetime;
• Granularity. Evaluates refactorings on its impact over the

program structure – whether it affects only the internals
of a method, for instance, or spans over several methods
and classes;

• Scope. Defines whether a refactoring spans over a single
package or affects multiple packages.

Our technique uses, as input, repository source code and their
configuration files – for instance, build.xml. As result, it
reports the total number of refactorings, the granularity and
the scope of these refactorings. The technique process consists
of three major steps. The first step analyzes each pair of
consecutive versions and classifies it as non-refactoring or
refactoring. Then, we analyze the identified refactorings with
respect to granularity (Step 2) and scope (Step 3).

The first step evaluates whether a transformation is a refac-
toring. In this work, we use a strict notion of refactoring; a
transformation is considered a refactoring if SAFEREFACTOR



Listing 1. Source Program
p u b l i c c l a s s A {

p u b l i c i n t k ( long i ) {
re turn 1 0 ;

}
}
p u b l i c c l a s s B ex tends A {

p u b l i c i n t k ( i n t i ) {
re turn 2 0 ;

}
p u b l i c i n t t e s t ( ) {

re turn new A ( ) . k ( 2 ) ;
}

}

Listing 2. Target Program
p u b l i c c l a s s A {

p u b l i c i n t k ( long i ) {
re turn 1 0 ;

}
p u b l i c i n t k ( i n t i ) {

re turn 2 0 ;
}

}
p u b l i c c l a s s B ex tends A {

p u b l i c i n t t e s t ( ) {
re turn new A ( ) . k ( 2 ) ;

}
}

Fig. 1. Pull up method refactoring enables overloading

Fig. 2. The SAFEREFACTOR major steps. 1. It identifies common methods in the source and target programs; 2. The tool generates unit tests using our
modified Randoop; 3. It runs the test suite on the source program; 4. The tool runs the test suite on the target program; 5. The tool shows whether the
transformation changes behavior.

does not detect a behavioral difference between source and
target programs. Otherwise, it is discarded as refactoring,
despite the developer’s intention of applying a refactoring.
As a consequence, our study considers exclusively effectively
applied refactorings. Although SAFEREFACTOR does not ex-
haustively guarantee that transformations are indeed refactor-
ing, confidence on correctness is considerably higher [6].

We consider only transformations between two consecutive
pairs of versions. For each pair, if we do not detect a
behavioral change, the transformation is a refactoring. Even
though refactorings must also improve the internal structure
of the code, in this work we focus on behavior preservation.

Next we formalize the process of detecting behavioral
changes with SAFEREFACTOR. The function Evaluation
receives a version vi, where i corresponds to the ith

repository version, and yields whether vi and vi+1 have the

same behavior. If SAFEREFACTOR does not find a behavioral
change, the function evaluates to true (considered to be a
refactoring).

V ersion : TY PE
Evaluation(vi : V ersion) : boolean =

SafeRefactor(vi, vi+1)

SAFEREFACTOR generates a test suite for each pair of
versions and reports whether behavioral changes are detected,
as formalized next. This test suite covers all methods in
common between the two versions. If all tests yield the same
results for both versions, SAFEREFACTOR considers that the
transformation preserves behavior. randoop produces the
generated test suite, while exec represents either success
or failure of these tests, based on the oracle generated by



SAFEREFACTOR, which detects behavioral differences.

Test : TY PE
Method : TY PE
SafeRefactor(v, v′ : V ersion) : boolean =
∀t : Test •
t ∈ randoop(v, commonMethods(v, v′))⇒
exec(v, t) = exec(v′, t)

commonMethods(v, v′ : V ersion) : P[Method]
exec(v : V ersion, t : Test) : boolean
randoop(v : V ersion,m : P[Method]) : P[Test]

Before running the tests, our technique compiles the ver-
sions based on the build.xml files received as parameters.
Uncompilable versions are discarded. Data on test coverage is
collected to improve confidence on test results. By detecting
refactorings, we calculate the frequency of refactorings in the
repository.

Step 2 analyzes the refactoring granularity. We use two
approaches to classify the refactorings regarding this aspect:
High/Low level and the size of the transformation. High level
refactorings are transformations that affect classes and method
signatures, including class attributes. For instance, refactor-
ings [1] Extract Method, Rename Method, Add Parameter
are High level. On the other hand, Low level refactorings
change blocks of code within methods, such as: Rename Local
Variable, and Extract Local Variable [1].

In order to measure granularity, we statically analyze the
identified refactorings with respect to classes, fields, and
methods signatures. If both versions contain different set of
signatures, we classify the refactoring as High level, otherwise
as Low level. We use the Unix diff tool with no parameters
to collect the number of lines of code that changed between
each pair of versions.

Finally, Step 3 collects the refactoring scope. For this
purpose we classify refactoring scope as Local or Global.
Global refactorings affect classes on more than one package.
For example, if there is a client using a class X in a different
package, renaming class X is a Global refactoring. Local
refactorings, on the other hand, affect a single package, such
as renaming a local variable or renaming a class that is not
used outside that package. Notice that some refactorings can
be classified as local or global within different situations. We
perform a static analysis to identify whether the changes affect
more than one package. The whole technique is illustrated in
Figure 3.

Empirical analysis of refactoring tasks in open source
projects is important, as conclusions and assumptions about
evolution and refactoring still present insufficient supporting
data. Research on these subjects certainly benefits from evi-
dence on how developers refactor their code. There is a number
of studies that observed a high incidence of refactoring in
open source projects [2], [4], based either on manual analysis
or parsing of commit messages. Our automatic approach, in
contrast, shows different results for the analyzed projects. Con-

cerning software evolution, specific methods can be conceived,
specially in open-source contexts.

IV. EVALUATION

In this section we use our technique to evaluate five software
repositories with respect to refactoring activity. First, we
characterize the analyzed repositories (Section IV-A). Next
we describe the environment configuration (Section IV-B). In
Section IV-C we present our results and then we discuss issues
related to the experiment (Section IV-D).

A. Subject Characterization

We analyzed the following open source Java projects: Ar-
goUML (an open source UML modeling tool), HyperSQL
Database (HSQLDB – a SQL relational database engine),
jEdit (a text editor with support to more than 130 languages),
JHotDraw (a framework for development of graphical editors),
and SweetHome 3D (a software for buildings interior design
with support to 2D editing with 3D visualization).

Table I characterizes the subjects. The column Subject
shows the name of the each subject. The repository (either
CVS or SVN) is specified in the column Repository Type. The
columns Total KLOC and Versions specify the KLOC (non-
blank, non-comment lines of code) sum of all versions and
the number of versions, respectively. The column Buildfiles
presents the number of different build configurations for each
subject. As software evolves, it may modify the original build
file due to changes in the project structure, new used libraries
used or new versions of the language. The columns Started
and Years state when the project started and how many years
we considered in our analysis, respectively. The number of
programmers that have been submitted at least one commit is
indicated in the column Programmers. The last row of Table I
shows total values for each column. For example, we analyzed
40,723 versions.

B. Environment Setup

For Subversion (SVN) repositories, a version is defined as
a single commit transaction. For Concurrent Versions System
(CVS) repositories (which is the case for the subject Sweet-
Home 3D only), we defined a transaction as all files committed
by the same author with the same message within the time
interval of one minute, following the same approach adopted
by Murphy-Hill et al. [2].

We set the time limit of SAFEREFACTOR to 90 seconds.
Since most subjects do not have a build file available, we
created them. In some of them, we create more than one build
file due to the evolution of the software. We performed analysis
using ten Pentium Core 2 Duo computers with 1GB RAM
each, running Ubuntu 9.04 and Java 6.

C. Results

We evaluate transformations with respect to the refactoring
frequency, its granularity, and scope.



Fig. 3. A technique for analyzing refactoring on software repositories. 1. The tool runs SAFEREFACTOR over all consecutive pairs of versions and identifies
the refactorings; 2. It analyzes refactorings with respect to granularity; 3. It analyzes refactorings with respect to scope; 4. The tool reports the analysis results.

TABLE I
SUBJECT CHARACTERIZATION; REPOSITORY TYPE = SVN OUR CVS; VERSIONS = NUMBER OF REPOSITORY VERSIONS; KLOC = SUM OF THE KLOC

(NON-BLANK, NON-COMMENT LINES OF CODE) OF ALL VERSIONS; BUIDFILES = NUMBER OF DIFFERENT BUILD CONFIGURATIONS; STARTED = THE
YEAR THAT THE REPOSITORY STARTED; YEARS = NUMBER OF YEARS CONSIDERED IN OUR ANALYSIS; NUMBER OF PROGRAMMERS THAT SUBMITTED

FILES.

Refactoring Frequency

We analyzed almost 41,000 distinct versions. Table II
summarizes the gathered data: subject’s name, refactoring
incidence (related to the total number of versions), proportion
of Low level and Local refactorings, respectively, and test
coverage rates in SAFEREFACTOR. The last row of Table II
shows the average of refactorings for the five projects. This
value, as well as the total of Low and Local refactorings, was
obtained considering all versions evaluated.

We identified that 72.73% of the transformations change be-
havior. For each of them we have at least one unit test detecting
the behavior change. The rest presented no behavioral change,
thus being classified as refactorings. The column Refactoring
shows the refactoring rate for each subject evaluated.

While JHotDraw project shows the smaller incidence of
refactorings (20.32%), ArgoUML has the highest (33%).
These teams present distinct characteristics: while JHotDraw
is a project maintained mostly by only one developer who
accomplished 66% of the repository commits, ArgoUML is
a project kept up by a professional team of 50 developers.
We believe that a developer working in a more balanced
team submits versions more frequently to synchronize with
rest of the team. In constrast, the JHotDraw developer may

submit more significant changes at a time, which may turn
difficult the refactoring analysis in pairs of versions, since the
transformation may include, besides refactorings, addition of
functionalities or bug fixing.

In fact, open source development provides an interesting
context for studying software evolution. As the environment is
often free of schedule-related demands, teams with a balanced
workload are likely to have members doing commits that
only refactor the code, not adding new functionality. Usually,
developers in those projects are self-managed in their tasks,
which favors a clearer separation of types of commits. How-
ever, from the results we can speculate that the low rate of
transformations that are refactorings probably illustrate how
difficult it is to apply refactorings correctly. Many of the non-
refactoring commits may have been intended refactorings, but
did allow behavioral change.

Furthermore, we analyzed how often refactorings are ap-
plied within the analyzed projects. The longest sequence of
consecutive refactorings found by SAFEREFACTOR was six
in the ArgoUML and HSQLDB projects. In JHotDraw and
SweetHome 3D the longest sequence was four. We found out
that, in average, for the studied subjects, one refactoring occurs
approximately every four days, after on average 3.65 non-



TABLE II
THE AVERAGE OF REFACTORING FREQUENCY, GRANULARITY, AND SCOPE, AND TEST COVERAGE FOR EACH SUBJECT, AND CONSIDERING ALL

ANALYZED VERSIONS.

refactoring transformations. There is, however, a considerable
variance: the minimal interval found between two refactorings
was 1 second (probably performed by different developers),
while the maximum interval was 611 days (time when the
JHotDraw project did not have any activity). The refactoring
interval (minimum, maximum and mean values) for each
subject is shown in column Refactoring Interval (Table III).

Figure 4 shows the distribution of refactoring activities
in average over the time, which is represented in the for-
mat mm.yy, illsutrated by the SweetHome 3D and HSQLBD
projects. Refactoring activity occurs frequently over the time,
presumably in parallel with other changes. This results im-
prove confidence on previous assumption [2] that refactorings
are most commonly applied for a specific reason, such as
adding a feature or fixing a bug, than in exclusively refactoring
sessions to evolve the software design.

Refactorings become more popular due to agile methodolo-
gies that stand on refactoring practices, such as XP and Scrum.
This is apparent in some subjects from our study. For instance,
SweetHome3D is developed using the XP process [13] as
confirmed by one of the developers. In our analysis, it has
the second highest rate of refactoring (29.3%) (see Table II).

According to the standard for software engineering and
maintenance [14], software maintenance can be divided in
four categories: corrective, adaptive, perfective and preventive.
The first one is related to identifying and fixing bugs. The
next one is a change to add new features on the software.
Perfective maintenance is a modification to improve maintain-
ability or performance. We can view refactoring as a kind of
perfective maintenance. Finally, preventive maintenance looks
for latent faults before they become effective faults. Lientz
and Swanson [15] state that 65% of software maintenance are
adaptive. Our results endorse this statement, since 72,2% of
the transformations changed behavior. We can consider them
as adaptive or corrective maintenance.

Refactorings Granularity

The average proportion of Low level refactorings was
68.83% in the five repositories. The column Low level in
Table II shows the average for each subject. While jEdit was

the project with less Low level refactorings (45%), HSQLDB
was the one with more refactorings of this type (71%).

Although High level refactorings form the majority of well-
known refactoring catalogs [1], Low level refactorings tend
to be more frequent, as show in our results. We believe that
High level refactorings, by presenting more preconditions to
preserve behavior, are harder to apply correctly, as their related
changes may propagate over the classes. For instance, when
a method is renamed, the whole class hierarchy must be
checked for unintended overriding and overloading after the
refactoring, to avoid behavioral changes, as show in [6], [8].

Currently, there is no formal theory that identifies and
proves all refactoring preconditions considering the complete
Java language. Therefore, the quality of IDEs to perform these
changes is still low, and many of these transformations intro-
duce compilation errors and other bugs. This forces developers
to manually perform these refactorings [16]. Moreover, many
of the High level refactorings performed by IDEs may change
program behavior [6], [8], [11], [7].

We also analyzed the variance on the size of the refac-
torings. The smallest refactoring size we found was 1 line
of code (maybe just simplifying an expression), while the
maximum refactoring size changed 278 lines. The average
was 45 lines, leading to the recognition that most refactorings
involve a considerable number of changes. Table III shows this
information for each subject.

Refactoring Scope

Most refactorings were categorized as Local (71.05%) with
respect to scope. This result was expected, since low level
were the most common, and they affect only one package.
Additionally, High level refactorings may also be Local. For
instance, a rename of a method with package visibility will
only affect invocations in this package. This may be an
explanation for the rate of Local refactorings being higher than
the rate of Low level refactorings.

Local refactorings tend to be easier to perform than Global
ones, since they may have simpler preconditions to check.
For instance, previous works identified corner cases involving
packages that reveal bugs in IDEs [6], [8].



TABLE III
REFACTORING SIZE AND PERIODICITY. THE COLUMN DIFF(LOC) SHOWS MINIMUM, MAXIMUM AND MEAN VALUES ABOUT THE PORTION OF SOURCE

CODE AFFECTED BY ACTIVITY IN THE ANALYZED REPOSITORIES. SIMILARLY, THE COLUMN REFACTORING INTERVAL SHOWS MINIMUM, MAXIMUM AND
MEAN PERIODICITY OF REFACTORING. THE LAST ROW SHOWS THE AVERAGE OF ALL THESE VALUES.

Fig. 4. Refactoring activity in repositories of SweetHome 3D and HSQLDB.

D. Threats do Validity

1) Construct validity: We do not evaluate programmers
intention in refactoring, but whether a transformation preserves
behavior. Therefore, the identified set of non-refactorings may
include intended refactorings that were incorrect applied due to
manual errors or bugs in refactoring tools [6]. Moreover, this
set may also include transformations containing refactorings
committed together with other behavioral changes, such as bug
fixing. We believe that our technique can show more accurate
results in projects with a high rate of version submissions,
since the probability of changes being committed in isolation
is higher. On the other hand, the fact that SAFEREFACTOR
does not find behavioral changes in a transformation do not
prove that it preserves behavior. However, we can have more
confidence by analyzing test coverage.

2) Internal validity: For each subject, it took us two weeks
to analyze the full repository. We built a system that downloads
all data from repository and analyzes each consecutive pair of
versions with respect to refactoring. We split the processes in
parallel using 10 computers, which reduced the analysis time.
We used computers with the same configuration, in order to

avoid measuring bias.
Moreover, the time limit used in SAFEREFACTOR for gen-

eration tests may have influences in the detection of non
refactorings. To determined its time limit in our experiment,
we compared the test coverage achieve by it using different
time limits. We analyzed SAFEREFACTOR in 10 consecutive
versions of JHotDraw. We use the Cobertura2 tool to evaluate
the test suite coverage. Figure 5 shows in average the evolution
of the number of generated tests and test coverage for different
time limits values. The number of unit tests grows as this time
is increased. However, from a given point in time, the test
coverage does not grow proportionally to the number of tests;
it becomes stable. The average results of these executions are
that with a time limit of 90 seconds, the test coverage was
34% and the number of generated tests was 6631, while with
a time limit of 240 seconds the number of generated tests were
15792 and the test coverage was 37%.

Achieving 100% test coverage in real applications is often
an unreachable goal. There are evidences that this value is
more likely to be 28 to 34 percent [17]. We thus chose

2Cobertura is available at http://cobertura.sourceforge.net/



the time limit of 90 seconds. To improve the confidence
in the SAFEREFACTOR’s tests, we plan to check the test
coverage regarding the entities impacted by the transformation
as proposed by Wloka et al. [17].

Moreover, since SAFEREFACTOR randomly generates the
tests, we can have different results each time we run it. To
improve the confidence, we run SAFEREFACTOR three times
to analyze each transformation. If SAFEREFACTOR does not
find a behavioral change in all runs, we consider that the
transformation is a refactoring. Otherwise, it is classified as
a non-behavior transformation.

With respect to the analysis of granularity, we used the
Unix diff tool with no parameters, therefore, the analysis
considers comments and blank lines. Therefore, the number
of non comment and non blank changed lines may be lower
than what we measured.

3) External validity: SAFEREFACTOR does not take into
account characteristics of some specific domains. For instance,
currently, it does not detect difference in the standard output
(System.out.println) message, neither can be used with concur-
rent programs. Four of our subjects have graphical interfaces.
By manual inspection, we observed that our technique detected
some behavior changes related to graphical user interfaces
(GUI). It has detected, for instance, behavioral changes related
to the GUI evolution, where methods that returned the color
used in some windows had changed its behavior.

V. RELATED WORK

A. Refactoring practice

Murphy-Hill et al. [2] evaluated nine hypotheses about
refactoring activities. They used data automatically retrieved
from users through Mylyn Monitor and Eclipse Usage Col-
lector. This data allowed Murphy-Hill et al. to identify the
frequency of each automated refactoring. The most frequently
applied are: Rename, Extract Local Variable, Move, Extract
Method, and Change Method Signature. They confirmed as-
sumptions such as that refactorings are frequent. Data gathered
from Mylyn showed that 41% of the programming sessions
contain refactorings. This data only contains refactorings
performed using these tools, therefore they do not consider
refactorings manually performed.

In contrast, while they evaluated the intention of apply-
ing refactorings, we evaluated the occurrence of refactorings
by checking whether two consecutive repository versions
were behavior-preserving transformation. We can evaluate a
transformation no matter it was manually or automatically
applied. However, as mentioned in Section IV-D, we may
miss refactorings that are committed with other behavioral
changes and refactorings incorrectly performed by tools or
developers. In our experiments, using tests for preservation of
behavior, we have found that 27.27% of the pairs of versions
are refactorings and that they occur frequently during the
software evolution.

They also analyzed 20 pairs of code versions from Eclipse
CVS repository to identify refactoring activities. They com-
pared each pair of versions and identified the performed

refactorings. By using this data through manual analysis, they
studied the granularity of the changes. Besides Low and High
level refactorings, they defined Medium level for refactorings
that changes the element signature and its block (we consider
this as High level). They confirmed the hypothesis that many
of refactorings are Medium and Low level. However, while
they identified 18-33% of refactorings as Low level, this
number is much higher in our experiment (63.83%). Moreover,
they stated that only 3% of consecutive pairs of versions are
purely refactorings. In our work, we identified 27.27% of the
transformations as behavior-preserving.

B. Detecting refactorings

Ratzinger and Gall [4] analyzed the relation of refactoring
and software defects. They proposed an approach to auto-
matically identify refactorings based on commit messages.
It searches for words like “refactor”, “rename”, and exclude
strings as “needs refactoring”. As a result, they found a
low number of false positive refactorings. Using evolution
algorithms they confirmed hypothesis such as that the number
of software defects in the period decreases if the number of
refactorings increases as overall change type. However, com-
mit messages may be ambiguous, dependent on the language
of the messages (in this case English), software conventions
employed and commitment of the developers to stick with
these conventions. Thus, analysis about them may generate a
number of false positives and false negatives. An evaluation
of its correctness using static analysis is not enough since it
does not check the program with respect to full semantics. We
inspected a number of commit messages of some subjects and
noticed that they do not predict refactorings. This result is also
confirmed by Murphy-Hill et al. [2].

Dig et al. [5] created an automatic refactoring detection tool,
called RefactoringCrawler, targeted on software components,
addressing the maintenance of software that uses components
when these components evolve. His technique generates logs
of the detected changes. Any software that uses the component
should use these logs to replicate the changes occurred with
the component in order to remain compatible with it. This
technique uses an automatic refactoring detector, based on
a two-phase algorithm. First, it performs a syntactic identi-
fication of possible refactorings. Then it performs a semantic
evaluation over the possible refactorings identified on the first
phase. It finds seven kinds of refactorings. On its evaluation,
RefactoringCrawler was executed over two different versions
of four open source programs. Compared to a previous manual
analysis [18], RefactoringCrawler succeeded in finding 90%
of the refactorings. Our technique uses SAFEREFACTOR to
identify refactorings. It analyzes any kind of transformation
and generates tests for identifying behavioral changes. SAFER-
EFACTOR has been useful for identifying behavioral changes
in real case studies [6]. In our approach, we perform a stronger
semantic evaluation than their work.

Murphy-Hill et al. [19] proposed several hypotheses related
to refactoring activity, and outline experiments for testing
those hypotheses. They categorized four approaches to analyze



Fig. 5. Analysis of generated test suite with respect to test coverage using different time limits.

refactoring activity: analysis of source code repository, analy-
sis of repository commit logs, observation of programmers,
and analysis of refactoring tool usage logs. They suggest
which analysis should be used to test the hypotheses. The
their method has the advantage of identifying each specific
refactoring performed. However, while the manual analysis is
error-prone and does not scale, conclusions based on infor-
mation from refactoring tools may not hold for refactorings
manually applied. On the other hand, our technique scales well
allowing full repository analysis but we do not identify which
refactorings were applied (only its scope and granularity).

C. Refactoring implementation

Our findings in some way confirm an important conclusion
from previous work on the subject: defining and implementing
refactoring preconditions is non-trivial. While Opdyke [10]
coined the term “refactoring” and specify conditions that
supposedly guarantee behavior preservation, other research
results formalized and showed conditions for refactorings, but
only for a small subject of Java [20], [21]. Other approaches
try to improve previous definitions with additional constraints,
but still gaps are admitted [8], [22].

The low number of confirmed refactorings (less than 28%
in average) indirectly shows that many transformations may
have had the intention of refactoring the code, but turned out
to change behavior unintentionally. We believe that SAFER-
EFACTOR can also be used to evaluate either manually-applied
or tool-supported application of refactoring [6].

VI. CONCLUSIONS

In this paper, we presented a technique to automatically
perform refactoring analysis with respect to frequency, gran-
ularity, and scope on Java source code repositories. Each
consecutive pair of versions is classified as refactorings or
non-refactorings. To identify refactorings, it uses SAFEREFAC-
TOR [6]. We also perform a static analysis to classify the
refactoring scope and its granularity (Section III). We used our
technique to evaluate five Java open source repositories. We

observed that refactorings occur frequently over all software
life cycle. In 40,723 analyzed software versions, 27.27% of
transformations preserved the behavior. Besides, we observed
that the majority of refactorings are Low level (63.83%),
they occur inside method’s body (not changing the method’s
signature). Most of the refactorings (71.05%) are Local. And
the average size of a refactoring is 45 LOC. Obtained results
confirm the hypothesis that wide and global transformations
are harder to perform while preserving the behavior, even with
the help of tools.

The high refactoring frequency can be related to the increase
of the number of automated refactorings in IDEs over the
past 10 years. For instance, in the first Eclipse IDE release
(2001), three refactorings were included: rename, move, and
extract method [23]. Eight years later, Eclipse 3.5 automated
28 refactorings. It is important to develop better refactoring
tools with respect to reliability and usability. Moreover, it is
important to propose more powerful refactoring tools, as the
one proposed by Knisel and Koch [24], which allows users to
compose refactorings.

In our experiments, some previous assumptions were re-
jected. According to experiments [2], Low level refactorings
correspond only to 18% of all refactorings. Moreover, in the
same work, they state that only 3% of consecutive pairs of
versions are refactorings, different from our work. They draw
these conclusions from some versions of one subject. We
evaluated all versions of five repositories.

As future work we intend to identify the refactoring applied
by developers. Using this data, we can recommend new
refactoring to be implemented in Eclipse. Moreover, we will
evaluate whether each detected behavior-preserving change
improves program’s quality. We aim at using a number of
metrics for classifying each transformation. By correlating our
results with software quality metrics, we can draw additional
conclusions regarding software evolution. We also intend to
evaluate more open source repositories.
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