
Making Software Product Line Evolution Safer
Felype Ferreira∗, Paulo Borba∗, Gustavo Soares†, Rohit Gheyi†

∗Informatics Center, Federal University of Pernambuco
Email: {fsf2, phmb}@cin.ufpe.br

†Department of Computing Systems, Federal University of Campina Grande
Email: {gsoares, rohit}@dsc.ufcg.edu.br

Abstract—Developers evolve software product lines (SPLs)
manually or using typical program refactoring tools. However,
when evolving a product line to introduce new features or
to improve its design, it is important to make sure that the
behavior of existing products is not affected. Typical program
refactorings cannot guarantee that because the SPL context
goes beyond code and other kinds of core assets, and involves
additional artifacts such as feature models and configuration
knowledge. Besides that, in a SPL we typically have to deal
with a set of possibly alternative assets that do not constitute a
well-formed program. As a result, manual changes and existing
program refactoring tools may introduce behavioral changes
or invalidate existing product configurations. To avoid that, we
propose approaches and implement tools for making product line
evolution safer; these tools check whether SPL transformations
are refinements in the sense that they preserve the behavior of the
original SPL products. They implement different and practical
approximations of a formal definition of SPL refinement. We
evaluate the approaches in concrete SPL evolution scenarios
where existing product’s behavior must be preserved. However,
our tools found that some transformations introduced behavioral
changes. Moreover, we evaluate defective refinements, and the
toolset detects the behavioral changes.

Index Terms—software product lines, product line evolution,
checking tools, refactoring, refinement, safe evolution.

I. INTRODUCTION

A software product line (SPL) is a set of related software
products that are generated from reusable assets. Products are
related in the sense that they share common functionality. This
kind of reuse targeted at a specific set of products can bring
significant productivity and time to market improvements [1],
[2]. However, SPL evolution can be quite challenging. First,
changes to a given asset might affect the behavior of a number
of products. Second, we have to deal not only with assets but
also with artifacts, like feature models [3] and configuration
knowledge [4], that enable product generation, and they should
all be changed consistently.

In particular, often during SPL evolution, it might be
important to make sure that the associated changes do not
affect the behavior of the existing SPL products. We need
that when refactoring a SPL, that is, simply improving the
design of its artifacts. We also need that when extending a
SPL by making it able to generate new products, including new
optional features, for example. This notion of safe evolution is
captured by a formal notion of SPL refinement [5], [6], which
guarantees that the observable behavior of products in the orig-
inal SPL is preserved by corresponding products in the new,
evolved, SPL. An associated catalogue of safe SPL evolution

transformations [7] could be used by developers, in the same
way that object-oriented single program refactoring catalogues
are available in current development environments. However,
in many practical contexts, catalogue driven evolution is not
appealing.

So developers often evolve SPLs without tool support for
checking that the associated changes are safe. At most, when
refactoring, they rely on the support provided by typical single
program refactoring tools such as the ones we find in Eclipse
and NetBeans. These tools check a number of preconditions
for behavior preservation of the modified assets. But they
not only may perform incorrect refactorings for single pro-
grams [8], they are unaware that SPLs often have conflicting
assets that implement alternative features, and therefore do not
constitute a valid program. They are also unaware of other
artifacts such as feature model (FM) and configuration knowl-
edge (CK), which should be consistently changed together
with the reusable assets. As a result, supposedly safe evolution
scenarios turn up to be unsafe, inappropriately changing the
behavior of existing products and negatively impacting users
and development productivity. The term safe evolution that we
use here is not related to system safety properties and it refers
only to the behavior preservation in SPL evolution scenarios.

To help to solve this problem, in this work we propose and
evaluate four testing based approaches and their implementa-
tions (a toolset) for checking SPL refinement, and therefore
safe SPL evolution. As a basis for the implementations, we use
the formal definition of SPL refinement [5], [6] we mentioned
before—in summary, we basically try to aproximate checking
that the resulting, evolved, SPL is able to generate products
that behaviorally match the original SPL products. The toolset
compares two versions of a SPL, before (source) and after
(target) the changes, using automatically generated tests to
evaluate if observable behavior of the source products match
observable behavior of associated target products. Moreover,
our tools also check whether all products in the target version
are well-formed. To compare the behavior of products before
and after the evolution scenarios, we use an adapted version of
SAFE REFACTOR [8], a tool for detecting behavioral changes.
Our toolset consists of four tools named after the approaches
they implement: ALL PRODUCT PAIRS, ALL PRODUCTS, IM-
PACTED PRODUCTS, and IMPACTED CLASSES. The suitability
of each tool depends on the kind of change an SPL is subject
to, and on user’s constraints regarding reliability and time.

In practice, checking whether the target SPL generates

Game

StartupMultiplayer

Internet Bluetooth

Connection

public class Game {
public class Connection {
public class Startup {
public class Bluetooth extends Multiplayer{
public class Multiplayer {

public class Internet
extends Multiplayer{

private Connection con;
public int limit(long l) {

return 10;
}
public int test() {

return limit(0);
}

}

public class Game {
public class Connection {
public class Startup {
public class Bluetooth extends Multiplayer{

public class Multiplayer {
private Connection con;

public class Internet
extends Multiplayer{

public int limit(long l) {
return 10;

}
public int test() {

return limit(0);
}

}

Game

StartupMultiplayer

Internet Bluetooth

Connection

Bluetooth Bluetooth.java
Internet Internet.java, Connection.java

Multiplayer.javaMultiplayer
Game ^ Startup Game.java, Startup.java

AssetsFeature Expression

Bluetooth Bluetooth.java
Internet Internet.java, Connection.java

Multiplayer.javaMultiplayer
Game ^ Startup Game.java, Startup.java

AssetsFeature Expression

Fig. 1: SPL evolution yields sets of assets that do not represent well-formed products.

products with compatible behavior of the original ones may
be overly time consuming in SPLs with a large number of
possible combinations. The ALL PRODUCT PAIRS, instead of
checking for each source product if one of the target products
behaviorally matches with it, the tool first checks if each
source product has compatible behavior with the target product
with the same configuration of it. Exceptionally when the
products’ behaviors do not match or when source product’s
configuration does not exist in the target SPL, the ALL
PRODUCT PAIRS tool compares the source product’s behavior
against all the other target products. The ALL PRODUCTS
tool is similar to the ALL PRODUCT PAIRS, however it only
compares source products with target products with the same
configuration, simplifying the checking.

The IMPACTED PRODUCTS and the IMPACTED CLASSES
tools contain further optimizations to reduce even more the
costs of checking SPL refinements. They are based on be-
havioral preservation properties [5] that allow optimizing the
evaluation of certain kinds of evolution scenarios. The former
checks only the products impacted by the change. It poten-
tially analyzes fewer products than the ALL PRODUCT PAIRS
and ALL PRODUCTS tools, reducing the time to check the
refinement. The latter, instead of checking products, focuses on
testing only the changed assets. This way, it avoids generating
and testing all impacted products, which can lead to a major
reduction on time compared to the first two tools.

We evaluate1 our tools in 15 evolution scenarios of two
SPLs ranging up to 32 KLOC. The existing product’s behavior
should have been preserved in 10 evolution scenarios of the
TaRGeT SPL, a tool that automatically generates functional
tests from use case documents written in natural language [9].
However, we found that changes in 2 of them erroneously
introduced behavioral changes. Besides, we evaluate our tools
with a set of 5 defective refinements performed to SPL exam-
ples and the MobileMedia SPL [10], an SPL for applications
that manipulates music, video and photo on mobile devices.
Our tools automatically detected all behavioral changes. The
main contributions of this work are the following:

1All experiment data are available at: http://www.cin.ufpe.br/∼fsf2/sbcars
experiments.html

• Four tools to evaluate whether a SPL evolution scenario
is a refinement (Section III);

• An evaluation of our tools, with respect to their perfor-
mance and effectiveness for checking SPL refinement, in
10 evolution scenarios to refine the TaRGeT SPL, and in
5 defective SPL refinements, 3 in MobileMedia and 2 in
SPL examples (Section IV).

The remaining of this paper is organized as follows. In
Section II, we show problems that may happen while evolving
SPLs. In Section III, we describe our tools and their imple-
mentations. Next, we evaluate them in Section IV. Finally, we
present related work and final remarks in Sections V and VI,
respectively.

II. MOTIVATING EXAMPLES

When evolving an SPL, developers often manually change
the different SPL artifacts like FMs [3] and reusable assets. To
change the code assets, they might also use code refactoring
tools such as the one provided by Eclipse. Unfortunately, this
can lead to problems like the generation of non well-formed
products or undesirable changes to the behavior of the existing
ones. For example, consider the simple SPL evolution scenario
with a toy example of game SPL that simplifies real problems
that we found during the analysis of larger SPLs.

Figure 1 depicts its FM, where Multiplayer,
Internet and Bluetooth are optional, Startup
and Connection are mandatory.

These five features and their relationships allow five product
configurations (valid feature selections). The figure also shows
the code assets [4] and the CK, which is responsible for driving
product generation. It relates feature expressions to sets of as-
set names, linking solution and problem spaces. For example,
the first row relates the joint selection of features Game and
Startup to the Game.java and Startup.java names.
To generate a product, we evaluate the CK against a valid,
accordingly to the FM, product configuration. For example,
evaluating this CK with the product configuration {Game,
Multiplayer, Startup, Bluetooth} yields the follow-
ing set of asset names {Game.java, Multiplayer.java,
Startup.java, Bluetooth.java}.

http://www.cin.ufpe.br/~fsf2/sbcars_experiments.html
http://www.cin.ufpe.br/~fsf2/sbcars_experiments.html

Game

StartupMultiplayer

Bluetooth Internet

Connection

Bluetooth Bluetooth.java
Internet Internet.java, Connection.java

Multiplayer.javaMultiplayer
Game Game.java, Startup.java

AssetsFeature Expression

public class Game {
public class Multiplayer {
public class Startup {
public class Bluetooth extends Multiplayer{

Game

StartupMultiplayer

Bluetooth Internet

Connection

public class Connection {

public class Internet
extends Multiplayer{

private Connection con;
public int limit() {

return 0;
}
public int test() {

return limit();
}

}

public class Game {
public class Multiplayer {
public class Startup {
public class Bluetooth extends Multiplayer{
public class Connection {

Bluetooth Bluetooth.java
Internet Internet.java, Connection.java

Multiplayer.javaMultiplayer

Game Game.java, Startup.java,
GameCenter.aj

AssetsFeature Expression

public class Internet extends Multiplayer{
private Connection con;
public int limit() {

return 0;
}
public int test() {

return limit();
}

}Game Center public aspect GameCenter {
 pointcut limitConnections() :
 execution(public int Internet.limit());

 int around() : limitConnections() {
 return 10;
 }
}

Fig. 2: Add feature evolution introduces behavioral changes in existing products.

Besides FM and CK, an SPL also has code assets, as shown
in Figure 1. Notice that some assets depend on other ones. For
instance, the Bluetooth class extends the Multiplayer
class. The CK must be correctly specified to avoid sets of
asset names that do not represent well-formed products due,
for example, to missing dependences.

A. Dependences

To illustrate, suppose we apply the Pull up field refactoring
to move the field Internet.con to the Multiplayer
class. Eclipse performs the change without any warning. It is
not aware of the other artifacts, FM and CK, nor to the fact that
some of the assets might conflict. For example, they might be
alternative implementations of the same concept; so the set of
assets of a SPL might not even constitute a valid program. As
Eclipse is oblivious to that, the evolution scenario is carried out
only changing the mentioned classes, as illustrated in Figure 1,
with the resulting Multiplayer and Internet classes,
which still compile after this evolution.

However, this evolution step is not safe; it is not a SPL
refinement because the resulting SPL will generate invalid
products, sets of assets that do not compile. For instance,
CK evaluation against the product configuration {Game,
Multiplayer, Startup, Bluetooth} does not yield the
Connection class, which the Multiplayer class needs
to compile. In fact, a SPL aware refactoring tool would not
only move the field to the superclass but also update the CK
by moving Connection.java to the assets provided by the
feature expression Multiplayer.

The same kind of problem might also occur when manually
applying refactorings to code assets, or even when trying
to improve the CK and FM. In summary, presumably safe
modifications to SPL artifacts might turn up to be unsafe
modifications for the SPL as a whole.

B. Behavioral Changes

Besides resulting in invalid products, that do not compile,
changes to assets can also introduce behavioral changes to
existing products. To illustrate that, suppose we manually add
a new feature Game Center to the FM. To implement the
new functionality we also create an aspect that changes the

behavior of the method Connection.limit() only in
the products that contain the new feature Game Center.
However, when evolving the CK, developers might make an
incorrect association. Instead of associating the new asset
GameCenter.aj with the new feature Game Center, they
might associate it to the root feature Game. Figure 2 shows
the manually applied changes.

In this case, all products of the resulting SPL are well-
formed. However, the evolution does not preserve the be-
havior of the existing products and is not safe. Consider
the Internet class and the GameCenter aspect (see Fig-
ure 2) and the product configuration {Game, Multiplayer,
Startup, Internet, Connection}. Whereas before the
evolution, the method Internet.test() calls its method
limit(), and yields 0, after that, the call to is affected by
the around implemented in the new aspect, and yields 10.
Therefore, after the evolution scenario, all products contain
an asset of the optional feature Game Center and present
different behavior when executing the test method.

A similar problem happened during the development of the
TaRGeT SPL, a tool that automatically generates functional
tests from use case documents written in natural language
[9]. At that time, the tool was able to generate tests in four
different output formats. The development team performed an
evolution to add a new output option and manually changed
SPL artifacts to add the assets for the new TestLink feature.
However, they specified an incorrect association in the CK.
Instead of associating the new assets with the new feature, they
associated them with the existing XML feature. So, the behavior
of the new assets was added to all products that contain
the XML feature. Therefore, products without the new feature
experienced an unexpected behavior because the TestLink
feature functionality was accidentally added to them.

Similar issues can also appear when changing only assets
or FMs, or the three kinds of artifcats at the same time.
For instance, we might forget to include an entry in the CK,
include incompatible entries in it, or make wrong associations
between features and assets likewise in our toy example. The
previous examples are small and developers could maybe
detect, without tool support, the issues we have discussed.
However, efficiently checking the introduction of compilation

Fig. 3: The ALL PRODUCT PAIRS tool.

errors and behavioral changes in industrial SPLs that contain a
number of products may be more difficult. This can decrease
SPL development productivity. Therefore, we need better tool
support for evolving SPLs. In this paper, we propose a toolset
for making SPL evolution safer. We focus on evolutions that
intend to preserve observable behavior.

III. TOOL SUPPORT FOR CHECKING SPL REFINEMENTS

In this section, we describe our toolset for checking SPL
safe evolution. We propose four tools, named after the ap-
proaches they implement and based on the SPL refinement
definition. In the following sections, we describe each tool
and further details about their implementation.

A. ALL PRODUCT PAIRS

Following the basic idea of SPL refinement [5] to ensure
the safe evolution of a SPL, we basically have to check
that the resulting SPL must be able to generate products
that behaviorally match the original SPL products, presenting
compatible observable bahavior. This is enough to guarantee
that design changes or the introduction of new features and
products do not impact the users of the original SPL.

ALL PRODUCT PAIRS is our baseline tool for checking SPL
refinements. It tries to directly check the condition expressed
by the SPL refinement definition, looking for corresponding
products with compatible observable behavior, which are
products that behaviorally match when we compare them, as
illustrated in Figure 3.

The tool first checks if the target SPL is well-formed
(Step 1), which means that it still generates well-formed
products, that correspond to valid products in the underlying
languages used to describe assets [5]. If it finds a problem, it
stops the process, reports all the invalid product configurations
found and indicates that the SPL is not refined and the
evolution is not safe. If it does not find a problem, for each
product in the source SPL, it analyzes if there is a product with
the same configuration in the target SPL and maps it as the
likely corresponding target product (Step 2). After mapping
products, it checks whether each product in the source SPL

and its likely corresponding, when it exists, have compatible
observable behavior using randomly generated unit test cases
(Step 3). Exceptionally, when their observable behavior is
not compatible or the source configuration does not exist in
the target SPL, the tool compares the behavior of the source
product against all the other target products until finding its
corresponding or exhausting the possibilities. (Step 4). If it
does not find any corresponding product in the target SPL,
it assumes that the SPL is not refined, reporting the first
occurrence of product configuration without corresponding
refined product, and the set of tests that reveal the behavioral
changes in this product. Otherwise, when it finds correspond-
ing products for all source products, we can increase our
confidence that the evolution is a SPL refinement and is a safe
evolution. This is an approximation of behavioral preservation
as defined in the SPL refinement definition since tests cannot
prove the absence of behavioral changes. A full guarantee
cannot often be given since, in general, the equivalence and
refinement of observational behavior are undecidable, and the
notion of SPL refinement relies on such a notion of behavioral
preservation.

To illustrate it, consider the motivating examples in Sec-
tion II. For the first example (Section II-A), in Step 1 the
ALL PRODUCT PAIRS tool reports that 2 out of 5 prod-
uct configurations ({Game, Multiplayer, Startup} and
{Game, Multiplayer, Startup, Bluetooth}) yield
sets of products that do not compile after the evolution.
For the second example (Section II-B), it does not detect
problems in Step 1. Then, for each of the five products in the
source SPL it analyzes whether corresponding products exist
in the target SPL in Step 2. In this case, as we incorrectly
modified the CK, the target SPL does not generate exactly the
same product (set of assets) for each of the configurations
allowed by the FM of the source SPL. For example, our
tool detects that the source product generated by the con-
figuration {Game, Multiplayer, Startup, Internet,
Connection} does not have a corresponding product in the
target SPL with the same assets. Then, in Step 3, it uses
unit test cases to compare this product against all other target
products but does not find any behaviorally compatible with
it. Therefore, the ALL PRODUCT PAIRS tool reports that the
evolution scenario is not safe.

To use SAFE REFACTOR to compare SPL products behavior,
we changed its analysis. Its original version identifies the
common methods between source and target programs and
compares their behavior with respect to these methods. Since
we compare products with different configurations, they may
have different features. By comparing them with respect to the
common methods, we would not be considering the methods
that implement the features only presented in one of the
versions, which may lead to false positives: the tool reports a
refinement but source and target products have different behav-
ior. Therefore, during the analysis, when the tool detects that
the source and target products have different public methods,
it considers that they do not have compatible behavior, as
in the case that the features present in one product actually

provide behavior that is not implemented by the other product.
Otherwise, the tool proceeds the evaluation of the products.

Although this change avoids false positives, it can generate
false negatives, that is, the tool reports that the source and
target products do not have compatible behavior, but they do
have, when public methods are removed or added. We address
this issue in the next tool.

B. ALL PRODUCTS

As the ALL PRODUCT PAIRS does not compare the products
behavior when they have a different set of public methods, it
may lead to false negatives. To evaluate how often these cases
may happen, we have the ALL PRODUCTS tool.

It is very similar to ALL PRODUCT PAIRS, however it has
a difference in Step 4. When some source product and its
likely corresponding target product do not have compatible
observable behavior, this tool immediately assumes a non
refinement and does not compare the source product with
the other target products. As this tool does not compare
products with different configurations, it does not need to
worry about different public methods, and compare source and
target products even when they have different public methods,
avoiding false negatives when, during the evolution, developers
add or remove public methods. However it does not look for
another product in the target SPL that may have compatible
observable behavior of the source product and, because of this,
may lead to false negatives too. They may occur, for example,
when some source product has a corresponding product in the
target SPL but source and target product has different sets of
assets. We discuss more about this in Section IV-D.

As the ALL PRODUCTS can only compare source and target
products with the same sets of assets, if some source product
does not have a likelly corresponding product in the target
SPL, ALL PRODUCTS is not able to be applied.

C. Optimized Approaches

This section presents tools with further optimizations to
reduce the cost for checking SPL refinement of the previous
tools. We analyze the source and target SPLs and use refine-
ment properties [5] that simplify checking.

First, both tools introduced in this section check if the target
SPL is well-formed (Step 1). Then, they suppose that source
and target SPLs differ only with respect to the FMs and
CKs and bypass asset and product refinement checking and
just evaluate the CK for every possible configuration present
in FM, checking if all existing evaluations of CK with the
configurations of FM are still present in the evaluations of the
resulting CK and FM. In this case, the target FM and CK
jointly refine the source FM and CK (Step 2) [11].

If this condition is not satisfied, we can only apply ALL
PRODUCT PAIRS (APP) to check the evolution scenario. Oth-
erwise, the optimized tools can be applied. To do so, after this
checking, both tools analyze if there are changes in the code
assets (Step 3). If they do not find changes, they assume that
the SPL is refined; otherwise they check the SPL refinement
as described in the next sections (Step 4).

public class Connection {…}
public class Internet

extends Multiplayer{
private Connection con;
public int limit(long l) {

return 10;
}
public int test() {

return limit(0);
}

}

public class Connection {
 public int limit(long l) {
 return 10;
 }
}
public class Internet
 extends Multiplayer{
 private Connection con;
 public int test() {
 return con.limit(0);
 }
}

Fig. 4: Move method refactoring.

For instance, consider the FM of our motivating example
(see Figure 1). The Startup feature is mandatory. Suppose
we change it to optional. Since it just changes the FM, we
can perform Steps 1 and 2 only. They detect that the resulting
sets of assets contain the original ones. Thus, as code did not
change, the tools assume that the evolution scenario is safe.

1) IMPACTED PRODUCTS: Besides using FM and CK
optimizations, the IMPACTED PRODUCTS tool optimizes ALL
PRODUCTS. It does so by only evaluating products that contain
the changed assets, since the remaining products continue
unchanged. First, it identifies the code assets modified by the
evolution. By checking which product configurations contain
these asset names, it identifies the products impacted by the
change. Then, it only generates and evaluates source products
containing at least one changed asset.

For instance, imagine that instead of applying the Pull
up field refactoring to our first motivating example (see
Section II), we applied a Move method refactoring to
Internet.limit(long), moving it to the Connection
class. Figure 4 shows the Move Method evolution scenario
applied to our motivating example (see Section II). By com-
paring the source and target versions of the assets, our
tool identifies that classes Internet and Connection
are modified. The limit(long) method is moved from
Internet to Connection. The tool then analyzes the
possible product configurations using the CK and FM.
From Figure 4, we see modified classes are related to the
products {Game, Multiplayer, Startup, Internet,
Connection} and {Game, Multiplayer, Startup,
Internet, Connection, Bluetooth}. So, these are the
impacted products for this evolution scenario. The IMPACTED
PRODUCTS tool then, differently from ALL PRODUCT PAIRS,
only generates products that contain at least one changed
asset. In this example, the optimization reduces the number
of evaluated source products from 5 to 2.

The IMPACTED PRODUCTS tool, in the worst case, checks
as many products as ALL PRODUCTS. This can happen when
changed assets are related to the root feature, for example.

2) IMPACTED CLASSES: Besides using FM and CK op-
timizations, the IMPACTED CLASSES tool optimizes the code
assets checking. In some evolution scenarios, when developers
change the assets, we only need to ensure that the transformed
assets refine the original ones to check the SPL refinement [5],
and therefore are trivially refined by their counterparts in
the target SPL. Since we do not evaluate whole products,

like IMPACTED PRODUCTS, ALL PRODUCT PAIRS and ALL
PRODUCTS do, but only the changed classes, the evaluation
using IMPACTED CLASSES tends to be faster.

First, the IMPACTED CLASSES tool identifies modified as-
sets. For each one, the tool computes its dependences, that is,
the set of other assets needed to compile the modified asset.
We call this set of modified assets with their dependences as
sub products. Our tool compiles the source and target versions
of each sub product. It then checks, for each sub product,
whether they have compatible observable behavior, generating
test only for changed classed.

For instance, consider the same Move Method refactoring
used to illustrate the previous tool (see Section III-C1). This
refactoring changes the assets without modifying the CK and
the FM. The tool computes dependences for Internet and
Connection classes. For instance, the Internet class
extends the Multiplayer class, and has a field of type
Connection. Using this reasoning, the tool computes de-
pendences for each identified dependence. For this class, the
tool generates the sub product consisting on the following set
of classes: {Internet.java, Multiplayer.java, Connection.java}.

As we can see, this tool only checks the modified classes
and does not generate all products impacted by the change,
optimizing the evaluation. However, it is important to stress
that although costly, we can use ALL PRODUCT PAIRS to check
any kind of evolution scenarios, while optimized tools are
suitable only when FM and CK are refined [11]. Moreover,
with IMPACTED CLASSES we may lose precision, since local
changes in OO classes may indirectly impact other ones, and
this tool just focuses on changed classes without taking into
account all the contexts where it is used in the SPL.

D. Implementation

In this section, we describe technical details of our imple-
mentation. First, we explain the ALL PRODUCT PAIRS and
ALL PRODUCTS tools, and then the optimized ones.

To perform Step 1 of our first tool, we use Alloy, a
formal specification language, with a specific theory for
FMs [12]. The tool support of Alloy (Alloy Analyzer) enables
us to perform automatic analysis on Alloy models. Our tools
translate the FM and CK into propositional Alloy formulae
following the encoding proposed in previous work [12], using
an extension of the existing CK model expressing dependences
between assets [13]. We could use SAT solvers directly to
improve our results, however we use Alloy because it easily
work with any different SAT solver, independently of a specific
implementation.

Step 2 generates product configurations and maps source
products to their likely corresponding products when they
exist. We use the Alloy Analyzer for generating the product
configurations from the source FM. Then, we construct source
and target sets of assets using the source and target FM and
CK. To check behavioral changes (Steps 3 and 4), we use
SAFE REFACTOR [8].

When optimized tools are applicable, they identify the set
of changed assets. We implemented an Abstract Syntax Tree

(AST) comparator to compare each version of the code assets.
Differently from IMPACTED PRODUCTS and ALL PRODUCT

PAIRS, the IMPACTED CLASSES tool does not check whole
products. Instead, after identifying the changed assets using the
AST Comparator, it uses the Soot framework2 for computing
their dependences. The union of the changed asset and its
dependences generates a sub product, that is a minimal set
of classes that can be compiled to perform tests that SAFE
REFACTOR uses to evaluate them. We reuse the compiled
classes that belong to more than one sub product. This way, we
save time needed to compile those classes and further optimize
the checking.

Additionally, for the IMPACTED CLASSES tool, we give
special attention to SPLs implemented with conditional com-
pilation, which need pre-processing to obtain valid classes. To
deal with conditional compilation, we look for pre-processor
directives in the modified classes and their dependences. Using
the FM and CK, we get all possible combinations for these
directives. Finally, we pre-process source and target grouped
classes for each combination, and use SAFE REFACTOR for
checking behavioral changes. We deal with Aspects in the
same way we deal with conditional compilation blocks. Based
on FM and CK, we get all possible combinations that can
affect the sub product and use SAFE REFACTOR for checking
behavioral changes with each of them.

IV. EVALUATION

In this section, we present the evaluation of the approaches
implemented by our toolset for checking SPL refinement. We
evaluated them in 15 evolution scenarios applied to SPLs
ranging up to 32 KLOC and more than a thousand possible
product configurations. First, we characterize the subjects in
Section IV-A. In Section IV-B, we describe the experimental
setup. Finally, in Sections IV-C, IV-D and IV-E, we show the
results, discuss related issues and threats to validity.

A. Subject characterization

We evaluate two categories of subjects. All of them consist-
ing of SPL evolution scenarios. The first category consists of
unsafe evolution scenarios we performed to introduce behav-
ioral changes in an SPL. We apply our tools to these scenarios
to make sure they are able to identify the unsafe modificiations
to a SPL. The second category consists of supposedly safe
evolution scenarios; the SPL developers believe these are safe
evolution scenarios, and we use our tools to compare the four
tools with respect to their performance and effectiveness for
checking SPL refinement. In particular, we want to evaluate if
they are able to correctly identify unsafe evolution scenarios.

Table I shows the subjects (pairs of source and target
SPLs) used in the experiment in the previously explained
categories: Catalog of defective refinements and Real evolution
scenarios applied to TaRGeT SPL. Each of them is uniquely
identified (Column Subject). Columns KLOC and Features
show the size in lines of code and number of features of

2Soot is a Java optimization framework that allows analyzing Java bytecode.
http://www.sable.mcgill.ca/soot/

http://www.sable.mcgill.ca/soot/

TABLE I: Summary of subjects evaluated in the experiment; → illustrates values before and after the evolution scenarios;
KLOC = thousands lines of code; Features = number of features; Products = number of product configurations.

each SPL, respectively. Column Products indicates the total
of possible product configurations. Columns Changed Artifacts
and Description describe the kind of change made to the SPL.

In the first category, we analyze MobileMedia [10], an SPL
for applications that manipulates music, video and photo on
mobile devices, and our toy examples. For Subjects 1 to 5, we
introduce behavioral changes in MobileMedia OO releases and
toy examples. In the second category, we analyze the TaRGeT
SPL [9], a tool that automatically generates functional tests
from use case documents written in natural language. It has
more than 32 KLOC on its last release and it is an Eclipse
Rich Client Platform (RCP) application. Based on comments
in its SVN revisions, TaRGeT’s developers selected evolutions
scenarios that intended to be safe. Subject 6 consists of a FM
evolution that turned an alternative relation into an or, increas-
ing possible configurations. Subject 7 is a code transformation
that intended to remove compiler warnings. Subjects 8-15
consist of transformations for extracting and adding features.
In these subjects, developers jointly transformed FM, CK, and
code.

B. Experimental setup

We ran our experiment on a quad-processor 2.66-GHz
Server with 8 GB of RAM running Ubuntu 10.04. We defined
a maximum number of tests to generate based on the number
of methods to test for each pair of products, generating 2
tests per method. Since each SPL can generate a number of
products, it would be difficult to set a time limit to evaluate
each subject. We generated the number of tests proportional
to the number of methods based on previous experiences with
SAFE REFACTOR [14].

To generate TaRGeT products, we use the FM and CK
available from its SVN history. We use the MobileMedia
FM from its documentation, and we systematically translated
its CK implementation from the build files. In OO releases,
conditional compilation directives represent the CK.

C. Results

The four tools associated to our four approaches detected
all behavioral changes in the first category. Moreover, in the
second category of subjects, although the SPL developers
believed the transformations were refinements, our tools detect
that two out of the ten analyzed transformations introduced
behavioral changes. This shows some evidence that our tools
can help SPL developers early detect unsafe evolution steps.

Table II shows the summary of our experimental results.
Each line corresponds to a subject. Columns show the evalu-
ated subject, the total execution time in minutes, the number of
evaluated products, and the results of each tool. As we discuss
in Section III-C2, we can only use IMPACTED CLASSES
(IC), IMPACTED PRODUCTS (IP) and ALL PRODUCTS (AP) in
transformations that preserve sets of assets. Therefore, some
cells of the table have ”-”.

In the first category of subjects, our tools quickly detected
the compilation error introduced in some products in Subject 1
by checking safe composition of the target SPL (Step 1). In
this subject, the target SPL produces invalid products because
changes applied to the assets were not updated in the CK.
Subjects 3-5 show transformations where all tools detected
the behavioral changes. While the IMPACTED CLASSES tool
was the fastest one, the IMPACTED PRODUCTS tool was slower
as ALL PRODUCT PAIRS. This happens because the changes
were made in classes associated to all the procuts, leading
IMPACTED PRODUCTS to evaluate as many products as ALL
PRODUCT PAIRS. Since IMPACTED PRODUCTS also spends
time identifying which classes have changed, it took more
time to perform it than ALL PRODUCT PAIRS.

In the second category, the ALL PRODUCT PAIRS and ALL
PRODUCTS tools failed to analyze Subject 6. To check this
subject, it is necessary to generate and evaluate more than
two thousand products. This resulted in an out of memory
error, confirming the need for optimized tools. The IMPACTED

TABLE II: Summary of experimental results; Time = total
execution time in minutes; Generated Products = number of
products generated and evaluated; sub = sub product; ¬WF
= Not well-formed sets; BC = behavior change; FAIL = Fail
during the execution of the tool.

PRODUCTS (IP) and IMPACTED CLASSES (IC) tools success-
fully performed the evaluation in less than a minute. Since the
evolution scenario only involve changes to the FM, these tools
only perform Steps 1 and 2 to check if it is an SPL refinement.

In Subjects 8 and 15, ALL PRODUCT PAIRS states that
the evolutions are not refinements. However, by manually
analyzing them, we notice developers introduced new public
methods related to optional features in mandatory assets but
these methods are only called in the programs when these
optional features are present. Therefore, although our tool
detects that the source and the target products have different
common methods, these transformations do not introduced
behavioral changes. As we mentioned in Section III-A, the
adapted version of SAFE REFACTOR does not consider refine-
ment when the source and the target SPLs have different public
methods, that is why the tool produces a false negative.

Confirming the developers expectations, our tools did not
find behavioral changes in Subjects 9, 10, 13 and 14. These
evolution scenarios modified FM, CK, and code, adding an op-
tional feature. The optimized tools identified that the changes
did not affect the original features. Therefore, they optimized
the checking by only performing Steps 1 and 2.

Subjects 11 and 12 present behavioral changes illustrated
in Section II, where incorrect associations between assets
and expressions in the CK resulted in behavioral changes in
products of the SPL. The first tool identified these behavioral
changes. TaRGeT developers confirmed that these behavioral
changes were reported a few days after delivering the releases
to the clients. This illustrates the challenges for SPL evolution
due to the effort of synchronizing all artifacts and checking
all product configurations. The behavioral changes could be
revealed earlier using our tools. The IMPACTED CLASSES
tool achieved significant reduction in the time for evaluating
Subject 7. While ALL PRODUCT PAIRS and IMPACTED PROD-

UCTS spent 29 and 13 minutes to finish, IMPACTED CLASSES
took just about 9 minutes.

D. Discussion

In our experiment, the optimized tools were the most
efficient tools for evaluating transformations that only change
the FM, due to their optimization for reasoning about FM
and CK changes. Therefore, developers should use them in
this scenario. Meanwhile, IMPACTED CLASSES was the best
tool on transformations that only change code, leading to
reductions of up to 70% in time (Subject 7). However, as
we presented in Section III-C2, the other tools are safer,
since IMPACTED CLASSES needs to make some assumptions
to be performed. Besides, we observed that the cost to run
IMPACTED CLASSES increases as the number of changed
classes grows, getting closer to the cost of running ALL
PRODUCT PAIRS. So, developers should analyze this trade-off
between precision and time in each situation.

Besides, for evolutions that change the set of public methods
of existing products, ALL PRODUCT PAIRS always presents
false negatives and it is not indicated for these sittuations. In
these cases, ALL PRODUCTS is more suitable to evaluate the
transformation, though less faithful to the refinement theory.

For transfomations that only affect GUI elements, we ob-
served in our experiments that none of the tools is able to
detect non refinements, since SAFE REFACTOR is not able to
identify behavioral changes in these scenarios.

Opdyke [15] compares the observable behavior of two
programs with respect to the main method (a method in
common). It checks for source and target programs that, for
the same inputs, the resulting output values must be the same.
SAFE REFACTOR checks, but does not prove, the observable
behavior with respect to randomly generated sequences of
methods invocations. They only contain calls to methods
common to both. If the source and target programs have same
results for the same input, they have equivalent behavior. We
changed its implementation to only check refinements between
products with the same public methods, considering additions
and reductions in the set of public methods a non-refinement.
This implementation may be too strong in some SPLs as we
saw in Subjects 8 and 15. It may be better to evaluate the
SPL with respect to its Facade considering only its public
methods. We plan to adapt SAFE REFACTOR to evaluate the
SPL using this equivalence notion and Randoop to generate
method inputs more adequate to exercise as many as possible
execution flows from the facade.

In spite of that, considering the refinements we analyzed
so far, developers often add optional methods in mandatory
classes using mechanisms like pre-processing and aspects
to avoid including code that will only be used by optional
features in all the products. Therefore, it is not common to
include methods related to optional features in mandatory
classes as we saw in Subjects 8 and 15, which leaded to false
negative results of our tool.

E. Threats to Validity

Threats to internal validity are influences that can affect the
measured execution time or the results of our tools. We use
the same machine to test the subjects using the four tools to
avoid influences in the measures.

Threats to external validity are conditions that limit our
ability to generalize the results of our experiment to industrial
practice. The pairs of source and target versions we got in
TaRGeT’s SVN were indicated by TaRGeT’s development
team as transformations where they only have the intention of
making a safe evolution between two commits, and behavioral
changes in transformations in Mobile Media were introduced
by us. We cannot guarantee that those pairs are representative
enough for transformations applied in other SPLs.

V. RELATED WORK

Opdyke proposed refactorings as behavior-preserving pro-
gram transformations [15]. Initially, the definition supported
the iterative design of object-oriented application frameworks.
In practice, they evaluate behavior preservation by successive
compilation and tests. Although Opdyke’s work and later
refactoring definitions apply to frameworks, which current SPL
development uses, in a SPL, we have a number of products
instead of a single program.

Alves et al. [16] informally present a SPL refactoring
definition, based on FM changes that maintain or increase con-
figurability. They propose FM transformations that conform to
this definition. Borba [11] initially propose the formalization
of the SPL refinement notion. They also illustrate different
kinds of refinement transformation templates that can be useful
for deriving and evolving SPLs. According to their definition,
in a SPL refinement, the resulting SPL must be able to
generate products that behaviorally match the original SPL
products (not necessarily the same configurations). Since it is
not needed to have the same set of product configurations in
the resulting SPL, this definition allows feature renaming. We
use this SPL refinement definition as basis for this work.

Moreover, Borba et al. [5] propose an extended version of
this previous formalization, where they explore properties that
justify stepwise and compositional evolution of SPL artifacts.
The formalization and its properties are also proven sound
with a theorem prover. We base the optimizations used in our
tools for checking refinements on their work.

Thüm et al. [17] classify evolution of a FM in four cat-
egories: refactorings for changes that do not add or remove
products; generalizations for changes that add new products
without remove the existing ones; specializations for changes
that remove products without add new products; finally, arbi-
trary edits for other cases. The notion of refinement we use is
equivalent to their definitions for refactorings, generalizations
and some cases of specializations, and is more comprehensive
since it is based on the behavior preservation of the existing
products taking into account not only changes in FM but also
changes in CK and assets.

Czarnecki et al. [18] introduce cardinality-based feature
modeling. They specify a formal semantics for FMs and trans-

late cardinality-based FMs into context-free grammars. They
also propose FM specializations, a transformation that reduces
configurability. Our approaches deal with FM specialization,
but handle only the cases where all the source products have
target products that behaviorally match with them [5].

Thaker et al. present techniques for verifying type safety
properties of AHEAD [19] SPLs using FMs and SAT
solvers [20]. They extract properties from feature modules and
verify that they hold for all SPL members. These properties
are based on the AHEAD theory of program synthesis, and
some of them do not reveal actual errors, but rather designs
that smell bad. Similarly to this work, our well-formedness
verification (Step 1) also extracts properties from the code
assets, in terms of provided and required interfaces, and checks
that they hold for all products from the FM. Also, our Alloy
encoding provides sound and complete analysis, due to our
scope being well delimited.

Early work [21] on SPL refactoring focuses on Product
Line Architectures (PLAs) described in terms of high-level
components and connectors. This work presents metrics for
diagnosing structural problems in a PLA, and introduces a set
of architectural refactorings that we can use to resolve these
problems. Besides being specific to architectural assets, this
work does not deal with other SPL artifacts such as FMs and
CK. There is also no notion of behavior preservation for SPLs,
as captured here by the notion of SPL refinement that we used.

A number of approaches [22], [23], [24], [25] focus on
refactoring a product into a SPL, not exploring SPL evo-
lution in general, as we do here. Kolb et al. [22] discuss
a case study in refactoring legacy code components into an
SPL implementation. They define a systematic process for
refactoring products with the aim of obtaining SPLs assets.
There is no discussion about FMs and CK. However, like
we do in this work, they check behavior preservation and
configurability of the resulting SPLs by testing. Similarly,
Kastner et al. [25] focus only on transforming code assets,
implicitly relying on refinement notions for aspect-oriented
programs. As discussed here and elsewhere [11], [5] these are
not adequate for justifying SPL refinement and refactoring.
Trujillo et al. [23] go beyond code assets, but do not explicitly
consider transformations to FM and CK. They also do not
consider behavior preservation; they indeed use the term
“refinement”, but in the different sense of overriding or adding
extra behavior to assets.

Liu et al. [24] also focus on the process of decomposing
a legacy application into features, but go further than the
previously cited approaches by proposing a refactoring theory
that explains how a feature can be automatically associated to a
base asset (a code module, for instance) and related derivative
assets, which contain feature declarations appropriate for dif-
ferent product configurations. Contrasting with our work, this
theory does not consider FM transformations and assumes an
implicit notion of CK based on the idea of derivatives. Also,
our focus was on SPL transformations, instead of refactoring
single programs into SPLs.

Kim et al. [26] explore the concept of irrelevant features to

reduce SPL testing. These features do not have impact on the
tests. They aim at pruning the space of such features to reduce
the number of SPL programs to examine for that test without
reducing its ability to find bugs. Their work does not focus
on proposing a tool for checking SPL refinement. Our tools
evaluate a transformation using SAFE REFACTOR. They ana-
lyze a transformation considering FM and CK optimizations
and generate tests. We can use their results and improve it
by avoiding generating insignificant tests in order to optimize
our tools. Similarly, our IMPACTED PRODUCTS tool avoids the
combinatorial number of products by not evaluating products
that are not affected by a change.

Soares et al. [27] propose a SPL variability refactoring
tool (FLiP) based on the Eclipse plugin platform to perform
source code refactorings to extract product variations. This
tool focuses on refactoring templates using AspectJ that can
change the CK and code. However, it has a limited set of
refactoring templates, does not automatically transform FM
and it allows users to choose transformations without checking
any refactoring rules. Moreover, it does not check behavior
preservation after changes. Previous works demonstrate that
automatic refactorings are susceptible to bugs [8]. We believe
this tool is complementary to our approaches, since we could
check if FLiP transformations are SPL refinements indeed,
according to the definition we use [11], [5], [6].

VI. CONCLUSIONS

In this paper, we propose four tools for checking whether
SPL evolution scenarios are refinements. We implemented
them based on a formal SPL refinement notion proposed by
Borba et al. [5]. The suitability of each tool depends on the
kind of change and on user’s constraints regarding time and
reliability. We evaluate them in evolution scenarios applied by
developers to real SPLs ranging up to 32 KLOC and 1512
products. We found that two out of the ten real evolution
scenarios introduced behavioral changes. This illustrates the
challenges for SPL evolution due to the effort of synchronizing
all artifacts and checking all product configurations. We aim
at making SPL evolution safer.

As future work, we plan to evaluate our tools in more
real case studies. Besides, we can improve performance of
our tools by using incremental compilation, and parallelism to
reduce the needed time for evaluation. We also plan to develop
an Eclipse plugin version of them.

ACKNOWLEDGMENT

We would like to thank CNPq and CAPES/PROCAD,
Brazilian research funding agencies, and National Institute of
Science and Technology for Software Engineering (INES),
funded by CNPq and FACEPE, grants 573964/2008-4 and
APQ-1037-1.03/08, for partially supporting this work. In ad-
dition, we thank SPG3 members for feedback and fruitful
discussions about this paper.

3http://twiki.cin.ufpe.br/twiki/bin/view/SPG/WebHome

REFERENCES

[1] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[2] F. van der Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: the Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and A. S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” SEI CMU, Tech.
Rep. CMU/SEI-90-TR-21, 1990.

[4] K. Czarnecki and U. Eisenecker, Generative programming: methods,
tools, and applications. Addison-Wesley, 2000.

[5] P. Borba, L. Teixeira, and R. Gheyi, “A theory of software product line
refinement,” in ICTAC, 2010, pp. 15–43.

[6] ——, “A theory of software product line refinement,” Theoretical
Computer Science, 2012.

[7] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa, and P. Borba,
“Investigating the safe evolution of software product lines,” in GPCE,
2011, pp. 33–42.

[8] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program
refactoring safer,” IEEE Software, vol. 27, pp. 52–57, 2010.

[9] F. Ferreira, L. Neves, M. Silva, and P. Borba, “Target: a model based
product line testing tool,” in Tools Session at CBSoft, 2010.

[10] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Filho, and F. Dantas,
“Evolving software product lines with aspects: an empirical study on
design stability,” in ICSE, 2008, pp. 261–270.

[11] P. Borba, “An introduction to software product line refactoring,” in
GTTSE III, ser. LNCS, vol. 6491, 2011, pp. 1–26.

[12] R. Gheyi, T. Massoni, and P. Borba, “A theory for feature models in
alloy,” in 1st Alloy Workshop, 2006, pp. 71–80.

[13] L. Teixeira, P. Borba, and R. Gheyi, “Safe composition of configuration
knowledge-based software product lines,” in SBES, 2011, pp. 263–272.

[14] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral testing
of refactoring engines,” IEEE Transactions on Software Engineering,
vol. 99, no. PrePrints, 2012.

[15] W. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disserta-
tion, UIUC, 1992.

[16] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena,
“Refactoring product lines,” in GPCE, 2006, pp. 201–210.

[17] T. Thum, D. Batory, and C. Kastner, “Reasoning about edits to feature
models,” in ICSE, 2009, pp. 254–264.

[18] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-
based feature models and their specialization,” Software Process: Im-
provement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[19] D. S. Batory, “Feature-oriented programming and the AHEAD tool
suite,” in ICSE. IEEE Computer Society, 2004, pp. 702–703.

[20] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe composition of
product lines,” in GPCE, 2007, pp. 95–104.

[21] M. Critchlow, K. Dodd, J. Chou, and A. van der Hoek, “Refactoring
product line architectures,” in 1st International Workshop on Refactor-
ing: Achievements, Challenges, and Effects, 2003, pp. 23–26.

[22] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, “A case study in
refactoring a legacy component for reuse in a product line,” in ICSM,
2005, pp. 369–378.

[23] S. Trujillo, D. Batory, and O. Diaz, “Feature refactoring a multi-
representation program into a product line,” in GPCE, 2006, pp. 191–
200.

[24] J. Liu, D. Batory, and C. Lengauer, “Feature oriented refactoring of
legacy applications,” in ICSE, 2006, pp. 112–121.

[25] C. Kastner, S. Apel, and D. Batory, “A case study implementing features
using AspectJ,” in SPLC, 2007, pp. 223–232.

[26] C. H. P. Kim, D. S. Batory, and S. Khurshid, “Reducing combinatorics
in testing product lines,” in AOSD, 2011, pp. 57–68.

[27] S. Soares, F. Calheiros, V. Nepomuceno, A. Menezes, P. Borba, and
V. Alves, “Supporting software product lines development: Flip - product
line derivation tool,” in In OOPSLA Companion, 2008, pp. 737–738.

	Introduction
	Motivating Examples
	Dependences
	Behavioral Changes

	Tool Support for Checking SPL Refinements
	All product pairs
	All products
	Optimized Approaches
	Impacted Products
	Impacted Classes

	Implementation

	Evaluation
	Subject characterization
	Experimental setup
	Results
	Discussion
	Threats to Validity

	Related Work
	Conclusions
	References

