
Making Refactoring Safer through Impact Analysis

Melina Mongiovia,∗, Rohit Gheyia, Gustavo Soaresa, Leopoldo Teixeirab,
Paulo Borbab

aDepartment of Computing and Systems, Federal University of Campina Grande,
Campina Grande, PB, 58429-900, Brazil.

bInformatics Center, Federal University of Pernambuco, Recife, PE, 50740-540, Brazil.

Abstract

Currently most developers have to apply manual steps and use test suites
to improve confidence that transformations applied to object-oriented (OO)
and aspect-oriented (AO) programs are correct. However, it is not simple
to do manual reasoning, due to the nontrivial semantics of OO and AO
languages. Moreover, most refactoring implementations contain a number
of bugs since it is difficult to establish all conditions required for a trans-
formation to be behavior preserving. In this article, we propose a tool
(SafeRefactorImpact) that analyzes the transformation and generates
tests only for the methods impacted by a transformation identified by our
change impact analyzer (Safira). We compare SafeRefactorImpact
with our previous tool (SafeRefactor) with respect to correctness, per-
formance, number of methods passed to the automatic test suite generator,
change coverage, and number of relevant tests generated in 45 transforma-
tions. SafeRefactorImpact identifies behavioral changes undetected by
SafeRefactor. Moreover, it reduces the number of methods passed to the
test suite generator. Finally, SafeRefactorImpact has a better change
coverage in larger subjects, and generates more relevant tests than SafeR-
efactor.

Keywords: refactoring, change impact analysis

∗Corresponding author
Email addresses: melina@copin.ufcg.edu.br (Melina Mongiovi),

rohit@dsc.ufcg.edu.br (Rohit Gheyi), gsoares@dsc.ufcg.edu.br (Gustavo Soares),
lmt@cin.ufpe.br (Leopoldo Teixeira), phmb@cin.ufpe.br (Paulo Borba)

Preprint submitted to Science of Computer Programming November 16, 2013

1. Introduction

Refactoring is the process of changing a program to improve its internal
structure without changing its external behavior [1, 2, 3]. During software
evolution, developers may apply refactorings to evolve the object-oriented
(OO) or aspect-oriented (AO) code, or to extract part of the OO code into
aspects to improve modularity and reduce complexity of existing software
systems. AO programming aims at increasing modularity by allowing the
separation of crosscutting concerns [4], such as persistence and exception
handling. AspectJ [5] is a general purpose AO extension to the Java language.
Existing Integrated Development Environments (IDEs), such as Eclipse and
NetBeans, offer some support to refactor OO programs, but limited or no
support to refactor AO programs.

Schäfer et al. [6] presented a number of Java refactoring implementations
in a tool called JastAdd Refactoring Tools (JRRT). They translated a Java
program to an enriched language that is easier to specify and check condi-
tions, and apply the transformation. Monteiro and Fernandes [7] proposed 27
refactorings that we can use to introduce aspects and improve the design of
AO programs. Cole and Borba [8] formally specified AO behavior-preserving
transformations, and use them for deriving AO refactorings. Wloka et al. [9]
proposed tool support for extending currently OO refactoring implementa-
tions for considering aspects. However, they may contain bugs since spec-
ifying and implementing refactorings is difficult. For instance, most of the
current Java refactoring implementations do not check all preconditions, al-
lowing non-behavior-preserving transformations [10, 11]. In fact, for complex
languages such as Java, proving refactorings with respect to a formal seman-
tics constitutes a challenge [12]. This problem is even worse with the presence
of aspects (see Section 2). Moreover, a number of useful refactorings [13] im-
plemented by Eclipse, such as Extract Method, do not consider aspects. In
practice, developers have to apply manual steps and use test suites to guaran-
tee behavior-preservation. However, Rachatasumrit and Kim [14] found that
refactorings are not well tested. Their investigation identified that existing
regression test cases cover only 22% of impacted entities. Moreover, they
found that 38% of affected test cases are relevant for testing the refactor-
ings. So, we need a more practical way to help developers during refactoring
activities.

In this article, we propose a tool (SafeRefactorImpact) that analyzes
a transformation applied to a Java or AspectJ program, and generates test

2

cases for the methods impacted by it. Our change impact analysis identifies
the methods impacted by a transformation by comparing two versions of a
program, before and after the transformation. We decompose the coarse-
grained transformation into smaller transformations, and analyze the impact
of each of them separately. We formalize the impact of a number of small-
grained transformations. We implemented this approach in a change impact
analyzer called Safira. The goal of the change impact analysis [15] step
is to avoid the problems identified by Rachatasumrit and Kim [14]. We
extend our previous work [16] by including the change impact analysis step
in SafeRefactor, and comparing both versions of the tool.

We evaluated SafeRefactor and SafeRefactorImpact in 45 trans-
formations. We compared the tools with respect to correctness (whether
the tools identify the behavioral changes), time to analyze a transformation,
number of methods considered for test generation, change coverage (the per-
centage of methods impacted that the test suite exercises), and relevant tests
(the percentage of tests that exercises at least one impacted method). We
also analyzed the influence of the time limit passed to the automatic test
suite generator. First, we evaluated eight defective refactorings that change
program’s behavior in the presence of aspects, performed by Eclipse 4.2 with
AJDT 2.2.3. We also evaluated 23 design patterns implemented in Java and
AspectJ [17]. Then, we tested two JML compilers implemented using As-
pectJ [18, 19]. In this case, our tools compare the behavior of two JML
programs as test inputs. Moreover, we evaluate four transformations that
modularize exception handling in aspects, applied to two programs [20] (20
and 23 KLOC). Finally, we also evaluate eight transformations applied to
different versions of JHotDraw (ranging from 28 to 79 KLOC) from its SVN
repository. Some of these transformations introduce behavioral changes un-
detected by SafeRefactor [21].

We found that SafeRefactorImpact detects behavioral changes that
SafeRefactor could not detect [21]. Moreover, SafeRefactorImpact is
less dependent on the time limit passed to the automatic test suite generator
than SafeRefactor. Due to the change impact analysis, SafeRefac-
torImpact reduces the number of methods passed to the automatic test
suite generator compared to SafeRefactor. So, it has better results when
analyzing transformations applied to larger programs. Furthermore, SafeR-
efactorImpact is faster than SafeRefactor when analyzing transfor-
mations applied to small programs. For transformations applied to larger
programs, the tools have similar performance. Finally, SafeRefactorIm-

3

pact has a better change coverage than SafeRefactor in larger subjects,
and most of the generated test cases in all transformations are relevant. In
summary, the main contributions of this article are the following:

• extend SafeRefactor to generate test cases only for the methods
impacted by the transformation (Section 3);

• compare SafeRefactor and SafeRefactorImpact with respect
to correctness, time, number of methods considered for test generation,
change coverage and relevant tests in 45 transformations (Section 4).

We organized this article as follows. Section 2 presents a motivating
example. Section 3 proposes a technique for checking OO and AO programs
based on change impact analysis. We evaluate this approach, comparing
with SafeRefactor in 45 transformations (Section 4). Finally, we relate
our work to others (Section 5), and present concluding remarks (Section 6).

2. Motivating Example

In this section, we present a defective refactoring performed by Eclipse
4.2 with AJDT 2.2.3 that introduces a behavioral change.

Consider the class A, its subclass B, and the aspect AspectA presented
in Listing 1. The class C extends B, which declares the method test. More-
over, AspectA declares the method n in B through an intertype declaration.
By using Eclipse to apply the (aspect-aware) Rename Intertype Declaration
refactoring to B.n, changing its name to B.k, we have as a result the program
presented in Listing 2. Eclipse changed the intertype’s name and updated
its references. However, this transformation introduces a behavioral change:
the test method in the target program now yields 20 (Listing 2) instead of
10 (Listing 1). After the transformation, test calls B.k, instead of the A.k
method.

Suppose that the developer has a test suite consisting of the test cases
presented in Listing 3. It contains three test cases test1, test2, and test3
that call methods A.k, B.test, and C.x, respectively. As explained before,
the transformation changed the behavior of method B.test. Then, test2
exposes the behavioral change in the modified program. However, the other
tests (test1 and test3) are not relevant to test the transformation because
the methods A.k and C.x are not impacted by the change.

4

Listing 1: Original program

class A {
public int k () {

return 10 ;
}

}
class B extends A {

public int t e s t () {
return k () ;

}
}
class C extends B {

public int x () {
return 30 ;

}
}
aspect AspectA {

public int B. n () {
return 20 ;

}
}

Listing 2: Modified program

class A {
public int k () {

return 10 ;
}

}
class B extends A {

public int t e s t () {
return k () ;

}
}
class C extends B {

public int x () {
return 30 ;

}
}
aspect AspectA {

public int B. k () {
return 20 ;

}
}

Figure 1: Applying the Rename Intertype Declaration refactoring of Eclipse 4.2 with
AJDT 2.2.3 leads to a behavioral change.

Running all test cases may be time consuming, since only some test cases
may be relevant to test the transformation. Rachatasumrit and Kim [14]
found that existing regression tests exercise only 22% of refactored methods
and fields and only 38% of tests are relevant to refactorings. In the previous
example, the test suite only contains 33% of relevant tests. Furthermore,
the tests may not exercise all entities impacted by the change. Therefore,
to evaluate whether a transformation preserves the program behavior, it is
important to test only the methods impacted by the transformation.

Listing 3: Test suite of the program presented in Listing 1.

public void t e s t 1 () {
A a = new A() ;
long k = a . k () ;

5

asse r tTrue (k == 1 0) ;
}
public void t e s t 2 () {

B b = new B() ;
long i = b . t e s t () ;
a s se r tTrue (i == 1 0) ;

}
public void t e s t 3 () {

C c = new C() ;
long x = c . x () ;
a s se r tTrue (x == 3 0) ;

}

3. SafeRefactorImpact

In this section, we present an overview of SafeRefactorImpact, whose
objective is to detect behavioral changes during refactoring activities consid-
ering OO and AO constructs.

SafeRefactorImpact uses change impact analysis to generate tests
only for the entities impacted by a transformation. By comparing two ver-
sions of a program, it identifies the methods impacted by the change (Step
1.1). We implemented a tool, called Safira, to perform the change im-
pact analysis, which identifies the public and common impacted methods
in both program versions from the impacted set (Step 1.2). Next, SafeR-
efactorImpact generates a test suite for the previously methods identified
using an automatic test suite generator (Step 2). Since the tool focuses on
identifying methods in common, it executes the same test suite before (Step
3.1) and after the transformation (Step 3.2). Finally, the tool evaluates the
results after executing the test cases: if the results are different, the tool re-
ports a behavioral change, and yields the test cases that reveal it. Otherwise,
we improve confidence that the transformation is behavior preserving (Step
4). Figure 2 illustrates the described process.

In what follows, we describe the change impact analysis (Section 3.1) and
test generation steps (Section 3.2) of SafeRefactorImpact. Then, we
explain the approach using an example in Section 3.3. Finally, we describe a
test data adequacy criteria [22] useful in the refactoring context, and define
when a test case is relevant in Section 3.4.

6

Figure 2: SafeRefactorImpact’s technique.

3.1. Change Impact Analysis

In this section, we explain the change impact analysis performed by
SafeRefactorImpact. The goal is to analyze the original and modified
programs, and yield the set of methods impacted by the change. First,
we decompose a coarse-grained transformation into smaller transformations
(Step 1). For each small-grained transformation, we identify the set of im-
pacted methods. We formalized the impact of small-grained transformations
in laws (Step 2). Then, we collect the union of the impacted methods set of
each small-grained transformation (Step 3). Moreover, we also identify the
methods that exercise an impacted method directly or indirectly (Step 4).
Finally, we yield the set of impacted methods by the transformation, which
is the union of directly and indirectly impacted methods (Step 5).

3.1.1. Identifying Small-Grained Transformations

We decompose the transformation into a set of small-grained transfor-
mations to analyze the impact of each one separately in the resulting pro-
gram. We do so since it is simpler to analyze the impact of a small-grained
transformation. Other change impact analyzers, such as Chianti [23] and
FaultTracer [24], follow a similar approach.

7

As an example, if a transformation adds a method to a program, we con-
sider it as the AM small-grained transformation. Another example is the
CMB small-grained transformation, which modifies any part of a method
body (adding, removing or changing a statement in a method body). More-
over, the CMM and CFM small-grained transformations add, remove or
change a method and field modifier, respectively. Finally, the CFI and CSFI
small-grained transformations add or remove field initializers or change the
initialization value of instance and static fields, respectively. Table 1 de-
scribes all small-grained transformations considered by our approach.

Table 1: Small-grained transformations considered by Safira.

3.1.2. Identifying Impacted Methods

After decomposing the coarse-grained transformation into smaller ones,
we identify the impacted methods. We formalized the impact of each small-
grained transformation described in Table 1. We grouped them into laws.
Each law defines two small-grained transformations (from left to right and
vice-versa) and declares two templates of programs. The meta-variables cds,
fds and mds define a set of class, field and method declarations, respectively.
Each law specifies how we obtain the set of impacted methods when applying
it in a particular direction.

Next, we specify the impact of adding or removing a method. Law 1 adds
the method m in the class C when applying it from left to right, and removes
the method when applying it from right to left. The set of impacted methods
is the same in both directions, hence we use ↔ to specify the impacted set
for both directions. If the class B is Object, and C does not have a subclass,

8

the set of impacted methods is C.m. Otherwise, other methods may be
impacted due to overloading and overriding. For example, suppose that C
has a superclass different than Object implementing m, and has a subclass
D that does not implement m. Before the transformation, D.m calls B.m.
However, it calls C.m after the transformation. So, D.m may change its
behavior. We consider as impacted all methods that inherit m from C. We
denote the subclass relation by <.

Law 1. 〈Add/Remove Method〉

cds
class C extends B {

fds;
mds;

}

⇔

cds′

class C extends B {

fds′;
mds′;
m(. . .) {. . .}

}

(↔) {n:Method | ∃ E:Class | (F < E ∧ E ≤ C) ∧ (n ∈ methods(cds′)
∪ mds′) ∧ n = E.m}, where F is the closest subclass of C such that it
redeclares m.

Law 2 adds the field f in the class C when applying it from left to right,
and removes the field when applying it from right to left. If the class B
is Object, and C does not have a subclass, the set of impacted methods is
defined by all methods that call C.f . Otherwise, if there is a field in the
hierarchy that inherits f from C, the methods that use it are also impacted.

We specified other laws for the small-grained transformations presented
in Table 1 similarly. After decomposing the coarse-grained transformation
into smaller ones, we identify the impacted methods of each of them using
our laws. The set of directly impacted methods is the union of the impacted
set of each small-grained transformation. After that, we also identify the set
of indirectly impacted methods that exercise an impacted method directly
or indirectly. Finally, the union of directly and indirectly impacted methods
defines the resulting set of impacted methods.

We implemented the change impact analyzer in a tool called Safira. It
takes as input two Java or AspectJ programs (the original program and the
program modified by a transformation) and reports the set of methods that

9

Law 2. 〈Add/Remove Field〉

cds
class C extends B {

fds;
mds;

}

⇔

cds′

class C extends B {

fds′;
mds′;
T f ;

}

(↔) {n:Method | ∃ E:Class | (F < E ∧ E ≤ C) ∧ (n ∈ methods(cds′) ∪
mds′) ∧ E.f ∈ commands(n)}, where F is the closest subclass of C such
that it redeclares f .

can change behavior after the transformation. It uses ASM,1 a framework
to analyze and manipulate Java bytecode, to identify small-grained transfor-
mations and methods impacted. Since the tool analyzes the Java bytecode
and the AspectJ compiler translates an AspectJ program to Java bytecode,
we do not specify laws for AspectJ constructs.

3.2. Test Generation

From the impacted methods set identified by Safira, we identify the
public and common methods in both program versions. We pass them to
an automatic test suite generator. Finally, we execute the same generated
test suite before and after the transformation. If the results are different,
we show a test case exposing the behavioral change. Otherwise, we improve
confidence that the transformation is behavior preserving.

SafeRefactorImpact uses Randoop [25, 26] to automatically gener-
ate a test suite for Java programs. Randoop randomly generates unit tests
for classes and methods within a time limit. A unit test typically consists
of a sequence of method and constructor invocations that creates and mu-
tates objects with random values, plus an assertion. Randoop executes the
program to receive feedback gathered from executing test inputs as they are
created, to avoid generating redundant and illegal inputs. It creates method
sequences incrementally, by randomly selecting a method call to apply and

1http://asm.ow2.org/

10

http://asm.ow2.org/

selecting arguments from previously constructed sequences. Then, it executes
and checks each sequence against a set of contracts. For instance, a non-null
object must be equal to itself. Our tool uses Randoop default contracts.

3.3. Example

Consider the transformation presented in Figure 1. SafeRefactorIm-
pact receives as input the programs shown in Listings 1 and 2. First, it
decomposes the transformation into two small-grained transformations: AM
(add method k in class B) and RM (remove method n from class B). Next,
it identifies the methods impacted by each small-grained transformation. In
AM, the impacted methods are the added method B.k and the inherited
method C.k. In RM, the impact methods are the removed method B.n and
the inherited method C.n. So, the set of impacted methods is B.k, C.k, B.n
and C.n. Moreover, we must also consider the indirectly impacted methods
that exercise at least one impacted method. The method B.test exercises
B.k, introduced by the aspect after the transformation. As C.test inherits
of B.test, it is also impacted. So, the set of impacted methods identified by
Safira is B.k, C.k, B.n, C.n, B.test and C.test.

Next, SafeRefactorImpact identifies the public and common im-
pacted methods. Notice that B.n and C.n are not declared in the resulting
program. So, our tool only generates tests for B.k, C.k, B.test and C.test.
Using a time limit of one second, it generates 155 unit tests for these meth-
ods. Finally, it runs the test suite on both program versions, and evaluates
the results. All tests pass in the original program but some of them do not
pass in the resulting program. Listing 4 shows one of the generated test
cases that reveal the behavioral change. The test case passes in the original
program, since the value returned by B.test is 10, but fails in the modified
program since the value returned by B.test is 20 in this version. Therefore,
SafeRefactorImpact reports a behavioral change.

Listing 4: An unit test revealing a behavioral change in the transformation presented in
Figure 1.

public void t e s t () {
B b = new B() ;
long x = b . t e s t () ;
a s se r tTrue (x == 1 0) ;

}

11

The main difference between SafeRefactor [16] and SafeRefac-
torImpact is the change impact analysis step. SafeRefactor only con-
siders the common methods between both versions of the program. Some of
them may not be impacted by the transformation. In the previous example,
besides considering the same methods identified by SafeRefactorImpact
to generate tests, SafeRefactor also generates test cases for the common
methods C.x and A.k, which are not impacted by the transformation. It gen-
erates test cases considering those methods (see Listing 5). However, such
test cases are not relevant for analyzing the transformation since they only
exercise methods that are not impacted. Executing SafeRefactor using
a time limit of one second, we observe that only 66% of the test cases gener-
ated by SafeRefactor are relevant. The other test cases do not exercise
an impacted method. On the other hand, due to the change impact anal-
ysis, SafeRefactorImpact does not generate such kind of non-relevant
test cases.

Listing 5: A non-relevant unit test generated by SafeRefactor used to evaluate the
transformation presented in Figure 1.

public void t e s t () {
C c = new C() ;
long x = c . x () ;
a s se r tTrue (x == 3 0) ;

}

For transformations applied to small programs, this may not be a prob-
lem. However, for transformations applied to larger programs, SafeRefac-
tor may need to increase the time limit to detect behavioral changes, since
it can generate test cases that do not exercise the entities impacted by a
transformation. Moreover, it might also face limitations of automatic test
suite generators, if it passes a large number of methods to them.

SafeRefactor and SafeRefactorImpact check the observable be-
havior with respect to randomly generated sequences of method and con-
structor invocations. They only contain calls to methods in common. If
the original and modified programs have different results for the same input,
they do not have the same behavior. There are other equivalence notions.
For instance, Opdyke [1] compares the observable behavior of two programs
with respect to the main method (a method in common). If it is called twice
(original and modified programs) with the same set of inputs, the resulting
set of output values must be the same.

12

3.4. Change Coverage and Relevant Tests

Based on Rachatasumrit and Kim [14] findings, refactorings are not well
tested. They found that existing regression test suites may not cover the
impacted entities, and a number of test cases may not be relevant for testing
the refactorings. Based on this work, we define two metrics for evaluating
the test suites generated by SafeRefactorImpact and SafeRefactor:
Change Coverage and Relevant Tests.

The change coverage represents the percentage of impacted methods ex-
ercised by the test suite. We consider as impacted a method identified in the
Safira’s analysis. We define change coverage (C) as C = #E

#I
, where I is

the set of impacted methods, and E is the set of impacted methods exercised
by the test suite.

We define a test case as relevant if and only if it successfully executes an
impacted method identified by Safira. It is important to mention that if
a test case throws an exception before or during the method execution, it is
not considered relevant. We define the percentage of relevant test cases (R)
as R = T

S
, where S is the number of test cases, and T is the number of test

cases that successfully execute at least an impacted method.
Considering the transformation presented in Figure 1, suppose that the

test suite consists of the test cases presented in Listings 4 and 5. The first
test case calls the method B.test, that calls A.k in the original program and
B.k in the modified one. The second test case calls the method C.x. The set
of impacted methods by this transformation is: B.k, C.k, B.n, C.n, B.test
and C.test. The test suite exercises two out of six impacted methods. So,
the change coverage is: C = 2

6
= 33%. Since the second test case does

not exercise any impacted method, it is not relevant. So, the percentage of
relevant tests in this example is: R = 1

2
= 50%. Notice that some impacted

methods do not belong to both programs, such as B.n and C.n, and they
are not called by other methods. Sometimes it is not possible to generate
tests for them since SafeRefactorImpact generates a test suite that must
execute in both versions of the program.

4. Evaluation

In this section, we present our experiment [27] to compare two approaches
for identifying behavior-preserving transformations. First, we present the
experiment definition (Section 4.1) and planning (Section 4.2). Then, Sec-
tions 4.3-4.6 describe the subjects and results. We describe some threats to

13

validity in Section 4.7. Finally, Section 4.8 summarizes the main findings.
All experimental data are available online.2

4.1. Definition

We have structured the experiment definition using the goal, question,
metric (GQM) approach in order to collect and analyze meaningful metrics
to measure the proposed process. The goal of this experiment is to ana-
lyze two approaches (SafeRefactor and SafeRefactorImpact) for the
purpose of evaluation with respect to identifying behavior preserving trans-
formations from the point of view of researchers in the context of Java and
AspectJ transformations. In particular, our experiment addresses the follow-
ing research questions:

• Q1. Do SafeRefactorImpact and SafeRefactor detect the same
behavioral changes?

For each approach, we measure the number of behavioral changes de-
tected in a given time limit.

• Q2. Is SafeRefactorImpact faster than SafeRefactor to evalu-
ate a transformation?

For each approach, we measure the total time to evaluate a transfor-
mation.

• Q3. Does SafeRefactorImpact consider less methods in common
to generate tests than SafeRefactor?

For each approach, we measure the number of methods in common
passed to the automatic test suite generator to evaluate a transforma-
tion.

• Q4. Does SafeRefactorImpact generate a test suite with better
change coverage than SafeRefactor?

For each approach, we measure the change coverage of the test suite,
that is, the percentage of methods impacted by the transformation
identified by Safira that the test suite executes to evaluate the trans-
formation.

2http://www.dsc.ufcg.edu.br/˜spg/scp experiments.html

14

http://www.dsc.ufcg.edu.br/~spg/scp_experiments.html

• Q5. Does SafeRefactorImpact use a test suite to evaluate a trans-
formation with more relevant test cases than SafeRefactor?

For each approach, we measure the percentage of relevant test cases
in a test suite to evaluate a transformation. A test case is relevant if
and only if it successfully executes at least one method impacted by a
transformation identified by Safira.

4.2. Planning

In this section, we describe the hypothesis formulation, subjects used in
the experiment, the experiment design, and its instrumentation.

4.2.1. Hypothesis formulation

In order to answer the research questions Q2, Q3, Q4, and Q5 we for-
mulate, respectively, the following statistical hypotheses:

• To answer Q2, concerning the time to evaluate a transformation:

H0 : TimeSRI ≥ TimeSR (1)

H1 : TimeSRI < TimeSR (2)

• To answer Q3, concerning the number of methods identified to generate
tests:

H0 : NumberOfMethodsSRI ≥ NumberOfMethodsSR (3)

H1 : NumberOfMethodsSRI < NumberOfMethodsSR (4)

• To answer Q4, concerning the change coverage of the generated tests:

H0 : ChangeCoverageSRI ≤ ChangeCoverageSR (5)

H1 : ChangeCoverageSRI > ChangeCoverageSR (6)

• To answer Q5, concerning the percentage of relevant tests:

H0 : RelevantTestsSRI ≤ RelevantTestsSR (7)

H1 : RelevantTestsSRI > RelevantTestsSR (8)

15

We perform statistical analysis for each group of subjects that contains
at least eight transformations. We use Shapiro-test [28] to analyze data
normality because it is more adequate for small samples. Then, if the data
are normal, we use T-test [29], otherwise we use Wilcoxon-test [30]. We use
the level of significance 0.5.

4.2.2. Selection of subjects

We evaluated SafeRefactor and SafeRefactorImpact in eight de-
fective refactorings applied by Eclipse, 23 design patterns implemented in
Java and AspectJ, in the bytecode generated by two Java Modeling Lan-
guage (JML) [31] compilers for two programs, and 12 transformations ap-
plied to real OO and AO programs. In Sections 4.3-4.6, we give more details
about them. Experienced developers and researchers in the OO and AO field
applied the transformations, which have different granularities, to programs
with different sizes (ranging from 10 LOC to 79 KLOC).

The transformations change OO (classes, methods, fields, inheritance,
overloading, overriding, packages, accessibility) and AO (aspects, intertype
declarations, pointcuts, advices) constructs. We analyzed local and global
transformations. Some of them affect classes, aspects and method signatures,
while others change blocks of code only within methods.

4.2.3. Experiment design

In our experiment, we evaluate one factor (approaches for detecting
behavior-preserving transformations) with two levels (SafeRefactor and
SafeRefactorImpact). We choose a paired comparison design for the
experiment, that is, we apply both treatments to all subjects. We evaluate
the approaches on 45 transformations. The results can be “Yes” (behavior-
preserving transformation) and “No” (non-behavior-preserving transforma-
tion).

4.2.4. Instrumentation

We ran the experiment on a 2.7 GHz core i5 with 8 GB RAM and running
Mac OS 10.8. We used the command line interfaces of SafeRefactor 1.1.4
and SafeRefactorImpact 1.0 using Java 1.6. They receive as parameters
the original and the target program paths, and the time limit to generate
tests. We used Safira 1.0, which uses ASM 3.0. We used a time limit of 0.2s,
0.5s and 0.2s to generate tests for subjects described in Sections 4.3, 4.4 and
4.5, respectively. These limits are enough to test transformations applied

16

to small programs. We used a time limit of 20s for subjects described in
Section 4.6. Both tools use Randoop 1.3.3, configured to avoid generating
non-deterministic test cases.

Since we do not know beforehand which versions contain behavior-
preserving transformations, the first and third authors of this article com-
pared the results of all approaches in all transformations to establish a Base-
line to check the results of each approach. For instance, if SafeRefac-
tor yielded “Yes” and SafeRefactorImpact “No”, the authors checked
whether the test case showing the behavioral change reported by SafeR-
efactorImpact was correct. If so, the correct result was “No”.

4.3. Defective Refactorings

Next we evaluate SafeRefactor and SafeRefactorImpact in a
number of non-behavior-preserving transformations applied by Eclipse refac-
torings to small toy examples created by us.

Selection of subjects

Eclipse JDT is a popular Java IDE with a number of automated OO refac-
torings. It also offers refactoring support for AspectJ through the AspectJ
Development Tools module (AJDT). For instance, since AJDT 2.1.0 delivery
in 2010, the Rename refactorings of Eclipse are aspect-aware. Each subject
contains a small set of classes, pointcuts, advices, and intertype declarations.
Each subject contains one aspect and at most four classes. For instance, the
example shown in Section 2 is similar to Subject 5 of our evaluation. We
evaluate eight transformations applied by Eclipse 4.2 using AJDT 2.2.3 that
introduce behavioral changes in AO programs. We found them based on our
experience in finding bugs in OO refactoring tools [10]. Table 2 describes the
transformations applied.

In Subjects 1-5, we apply Eclipse refactoring implementations that are
aspect-aware. In some aspect-aware refactorings (Subjects 2 and 3), Eclipse
does not update pointcuts, leading to behavioral changes. Pointcuts can use
wildcards, which might impose additional challenges when checking precon-
ditions. The behavioral changes in Subjects 4 and 5 are due to OO features,
such as overloading and overriding. On the other hand, in Subjects 6-8, we
apply different kinds of useful OO refactorings (Push Down Method, Pull
Up Method, and Inline Method) performed by Eclipse that are unaware of
aspects. In practice, refactoring tools have limited support for AO refactor-
ings. So, developers may have to manually perform a transformation or use

17

Table 2: A catalog of transformations performed by Eclipse that introduce behavioral
changes in the presence of aspects.

an OO refactoring implementation to automate part of the transformation,
and manually check whether it preserves behavior.

Operation

We compared SafeRefactor and SafeRefactorImpact using a time
limit of 0.2s passed to Randoop. SafeRefactor and SafeRefactorIm-
pact correctly identified all behavioral changes but one, Subject 2, that only
SafeRefactor identified. SafeRefactorImpact evaluated the subjects
faster than SafeRefactor. The change impact analysis is also useful to re-
duce the set of common methods passed to Randoop in all subjects by an av-
erage of 60%. Furthermore, both tools have almost the same change coverage
in all subjects but Subject 4. Finally, all test cases generated by SafeRefac-
torImpact are relevant to test the change different from SafeRefactor.
Table 3 summarizes the results.

Discussion

SafeRefactorImpact does not detect the behavioral change in Subject
2, since Safira does not perform data flow analysis. So, SafeRefactorIm-
pact may not generate test cases containing some getter methods that may
be useful to expose the behavioral change. SafeRefactorImpact has a pa-
rameter that, when enabled, allows us to consider all getter methods during
the test suite generation. By enabling this parameter, SafeRefactorIm-
pact correctly identifies the behavioral change in Subject 2. However, when
using such option, the number of methods passed to the test suite generator
may increase in some transformations.

18

Table 3: Results using a time limit of 0.2s. Methods = number of methods passed to
Randoop to generate tests; Time = the total time of the analysis in seconds; Change
Coverage = the percentage of impacted methods covered; Relevant Tests = the percentage
of relevant tests; Result = it states whether the transformation is behavior-preserving.

SafeRefactorImpact is faster than SafeRefactor, since it gener-
ates test cases considering less methods. SafeRefactorImpact uses ASM
to perform analysis on the programs instead of reflection. Both tools achieved
100% change coverage in Subject 3. By inspecting the test cases, we ob-
served that for some impacted methods, Randoop generated test cases that
throw IllegalArgumentException when invoking them. Since the impacted
methods are not executed in those test cases, SafeRefactorImpact can-
not yield 100% of change coverage in some subjects. Finally, notice that
SafeRefactor generates less relevant test cases than SafeRefactorIm-
pact even for transformations applied to small programs. For example, in
Subject 1, only 20% of the generated tests are relevant.

Table 4 describes the statistical analysis results. Column Shapiro Test
indicates the Shapiro–Wilk test results. When we ran Shapiro-test in rel-
evant tests data of SafeRefactorImpact an error occurred, because all
data are equal (100% of relevant tests). Then, we consider it as non-normal.
Notice that only the change coverage data of SafeRefactor and SafeR-
efactorImpact are normal. Columns T-test and Wilcoxon-test present the
results of the tests to evaluate the hypothesis presented in Section 4.2.1.

Due to non-normality of data, we use Wilcoxon-test for number of meth-
ods, time, and percentage of relevant tests data. It reached small p-values to
all of them: 4.5×10−4, 2.3×10−4 and 2.0×10−4, respectively. The results give
us evidence that SafeRefactorImpact reduces time, identifies less meth-
ods, and generates more relevant tests than SafeRefactor. To evaluate
change coverage we use T-test due to normality of data. It reached a p-value

19

of 0.25 which indicates that the change coverage of SafeRefactorImpact
is less than or similar to the change coverage of SafeRefactor. Then,
we execute another test (T-test) assuming a null hypothesis that the change
coverage is equal for both tools. It reached a p-value of 0.51, which indi-
cates that there is no statistical difference between the change coverage of
SafeRefactor and SafeRefactorImpact.

Table 4: Statistical analysis for defective refactoring data. Shapiro Test = analyze data
normality; T-test = evaluate hypothesis test when data are normal; Wilcoxon-test =
evaluate hypothesis test when data are non-normal; Result = final results of the statistical
analysis; SR = SafeRefactor; SRI = SafeRefactorImpact.

4.4. Design Patterns

In this section, we evaluate SafeRefactor and SafeRefactorIm-
pact to check the equivalence between OO implementations of design pat-
terns and their correspondent AO versions.

Selection of subjects

Hannemann and Kiczales [17] implemented 23 design patterns [32]
in Java. The same patterns are also implemented in AspectJ. They
compared them with respect to locality, reusability, composability, and
(un)pluggability. For Hannemann and Kiczales [17], the OO and AO imple-
mentations are equivalent. Table 5 describes the design patterns evaluated.

Operation

We compared SafeRefactor and SafeRefactorImpact using a time
limit of 0.5s passed to Randoop. SafeRefactorImpact correctly identified
behavioral changes in 5 out of 23 the design patterns implementations [17].
SafeRefactor identified all of these behavioral changes but one (the Me-
diator design pattern), which can only be detected using a time limit of
three seconds. Hannemann and Kiczales [17] did not expect to introduce

20

Table 5: Design patterns implemented in Java and AspectJ.

behavioral changes in the Mediator, Prototype, State, Template and Visi-
tor design patterns. SafeRefactorImpact evaluated the subjects faster
than SafeRefactor. The change impact analysis reduces the set of com-
mon methods passed to Randoop in Subjects 13, 14 and 22. Both tools
have almost the same change coverage except for Subjects 9, 18 and 30, but
SafeRefactorImpact generated more relevant tests than SafeRefac-
tor. Table 6 summarizes the results.

Discussion

Hannemann and Kiczales [17] implemented OO and AO versions of the
Queue data structure to illustrate the State pattern (Subject 28). This pat-
tern allows an object to behave differently according to its internal state.
They implemented the Queue class to represent a queue and the abstract
class State representing the queue states (Empty, Normal, and Full), as
depicted by Figure 4.4. Each queue must contain at most three elements.

In the OO version, the state transitions are performed in each class rep-
resenting a possible state. For instance, the following code snippet shows
the insert method from the Empty class, which changes the queue’s state to
normal, and adds an element.

public boolean i n s e r t (Queue queue , Object arg) {
Normal nextState = new Normal () ;
queue . s e t S t a t e (nextState) ;
return nextState . i n s e r t (context , arg) ;

21

Table 6: Results using a time limit of 0.5s. Impacted Methods = number of methods
identified by Safira; Methods = number of methods passed to Randoop to generate tests;
Time = the total time of the analysis in seconds; Change Coverage = the percentage of
impacted methods covered; Relevant Tests = the percentage of relevant tests; Result = it
states whether the transformation is behavior preserving.

Figure 3: The class diagram of a Queue using the State design pattern.

22

}

On the other hand, they implemented the state transitions in an aspect
in the AO version. The aspect declares the state objects (empty, normal,
full), and an advice makes the state transition after the invocation of the
insert method.

public aspect QueueStateAspect {
protected Empty empty = new Empty () ;
protected Normal normal = new Normal () ;
protected Ful l f u l l = new Ful l () ; . . .
after (Queue queue , State qs , Object arg) :

ca l l (boolean State +. i n s e r t (Object)) && . . . {
i f (qs == empty) {

normal . i n s e r t (arg) ;
queue . s e t S t a t e (normal) ;

} . . .
}

}

Both tools detected a behavioral change. Listing 6 shows a test case gen-
erated by SafeRefactor that reveals a behavioral change. It instantiates
the q1 queue and adds one element to it. Next, it instantiates another queue
q2 and add three elements. The OO version correctly inserts all elements.
However, the last element cannot be inserted into the queue in the AO ver-
sion. The r4 variable yields false. It states that the queue is full (it contains
three elements).

Listing 6: A unit test revealing a behavioral change in the State pattern.

public void t e s t () {
Queue q1 = new Queue () ;
boolean r1 = q1 . i n s e r t (‘ ‘ e lement1 ’ ’) ;
Queue q2 = new Queue () ;
boolean r2 = q2 . i n s e r t (‘ ‘ e lement1 ’ ’) ;
boolean r3 = q2 . i n s e r t (‘ ‘ e lement2 ’ ’) ;
boolean r4 = q2 . i n s e r t (‘ ‘ e lement3 ’ ’) ;
a s se r tTrue (r1 == true) ;
a s se r tTrue (r2 == true) ;
a s se r tTrue (r3 == true) ;
a s se r tTrue (r4 == true) ;

23

}
Aspects are singleton by default in AspectJ [5]. Notice that the fields

of the QueueStateAspect aspect are only instantiated when the aspect is
created. Therefore, all queues share the same state. Normal contains an
array for storing three elements. When we insert an element in q1, it is
inserted in this array. However, when we create q2, this array is not cleared.
Therefore, we can only include two elements in q2. To avoid this problem,
they could have instantiated an aspect for every new queue instance. AspectJ
allows per-object aspects by using the perthis and pertarget keywords [5].

We also found a behavioral change in the Mediator pattern implemen-
tations. Developers implemented a GUI application and used the mediator
pattern to deal with changes to GUI components that require updates. In
the OO version, they implemented this pattern as a field of the component,
which must be set by using a setter method.

Both tools generated test cases that instantiate the Button object, which
contains a mediator field, and apply changes to the object, as shown in
Listing 7.

Listing 7: A unit test revealing a behavioral change in the Mediator pattern.

public void t e s t () {
Button var1 = new Button (‘ ‘ ’ ’) ;
var1 . c l i c k e d () ;

}
The mediator field should handle the change performed by method

clicked. However, the test case does not set a mediator to the Button

object (it should be set by using the setMediator method). Therefore, it
throws the exception NullPointerException. On the other hand, Hanne-
mann and Kiczales [17] implemented the mediator as an aspect in the AO
version, which has already been instantiated when the change is performed.
Therefore, the tools successfully executed this test in the AO version.

Notice that SafeRefactor cannot detect this behavioral change. The
time limit of 0.5s passed to Randoop is not enough to generate tests consid-
ering 714 methods. So, it does not generate relevant test cases and cover the
change different from SafeRefactorImpact.

Finally, we found simple behavioral changes in three design patterns (Sub-
jects 25, 30 and 31). Some methods yield different String messages.

Both tools have a low change coverage. The number of impacted methods
(see Column Impacted Methods in Table 6) identified by Safira is larger

24

(90%) than the number of methods passed to Randoop by SafeRefac-
torImpact. The transformation adds or removes most impacted methods.
Then, SafeRefactorImpact cannot pass them to Randoop because they
do not belong to both versions of the program. As mentioned before, our goal
is to generate a test suite to be executed before and after the transformation.
Furthermore, some methods contain parameter types declared in external
libraries, such as Java AWT, in some subjects. Randoop does not generate
test inputs for them unless we pass them as parameters, or some method be-
ing tested yields an object of the library’s type. In Subject 13, all test cases
generated by SafeRefactorImpact throw exceptions before executing the
impacted method. We may increase the time limit, or this may indicate a
limitation of the test suite generator that cannot handle some kinds of Java
constructions, such as GUI elements. So, the tool does not generate relevant
tests to exercise the change in this subject. In Subjects 13 and 22, a similar
scenario happens in SafeRefactor.

Notice that SafeRefactor identifies a number of common methods to
generate tests. In Subjects 9, 13, 14 and 22, there are some classes that
extend Java Swing and Java AWT classes. SafeRefactor generates tests
for the inherited methods since they belong to both versions of the pro-
gram. SafeRefactorImpact only generates tests for the methods im-
pacted by the transformation. In some subjects, SafeRefactorImpact
passed more methods in common to Randoop than SafeRefactor. Differ-
ent from SafeRefactor, SafeRefactorImpact takes into consideration
methods that are moved from a class to an aspect, that introduces it in the
same class using an intertype declaration.

Table 7 describes the statistical analysis results. Column Shapiro Test
consists of Shapiro-Wilk test results. The results indicate that all data are
non-normal. Then, we use Wilcoxon-test for all of them. Column Wilcoxon-
test presents the results of the test to evaluate the hypothesis presented in
Section 4.2.1.

The tests reached small p-values to time and relevant tests data (1.4×10−9

and 1.0×10−3, respectively). The results give us evidence that SafeRefac-
torImpact reduces time and generates more relevant tests than SafeR-
efactor. For number of methods and change coverage, the tests reached
p-values of 0.13 and 0.19, respectively. The result indicates that SafeR-
efactorImpact identifies a number of methods greater than or similar to
SafeRefactor and the change coverage of SafeRefactorImpact is less
than or similar to the change coverage of SafeRefactor. Then, we exe-

25

cute another test (Wilcoxon-test) assuming a null hypothesis that the sam-
ples are equal to each metric. It reached a p-value of 0.27 for number of
methods and 0.38 for change coverage. Then, we conclude that there is no
statistical difference between the number of methods and change coverage of
SafeRefactor and SafeRefactorImpact.

Table 7: Statistical analysis for design patterns data. Shapiro Test = analyze data normal-
ity; Wilcoxon-test = evaluate hypothesis test when data are non-normal; Result = final
results of the statistical analysis; SR = SafeRefactor; SRI = SafeRefactorImpact.

4.5. JML Compiler

In this section, we evaluate SafeRefactor and SafeRefactorIm-
pact by using them to test compilers. We check whether program compiled
by two different compilers has the same behavior.

Selection of subjects

JML is a behavioral interface specification language used to specify con-
tracts, such as pre and post conditions and invariants with annotations. The
standard JML compiler (jmlc) reads a Java program annotated with JML
and produces instrumented bytecode with additional code to check the pro-
gram correctness against restrictions imposed by the JML specification.

Rêbelo et al. [18] propose a JML compiler (ajmlc) implemented using As-
pectJ to avoid using reflection, which was used in jmlc. In this way, they could
use JML with Java ME applications, which do not support reflection. Later,
they proposed an optimized version of this compiler (ajmlc optimized) [19].
They optimized the bytecode size and running time. Moreover, they used
refactorings based on AspectJ programming laws [8] to reason about the
compilation process.

We evaluated the JML compilers implemented in AspectJ (ajmlc 0.5 and
ajmlc optimized 1.1) using SafeRefactor and SafeRefactorImpact.
We use two Java programs annotated with JML (JAccounting and JSpi-
der) as test inputs for the compilers. For each input, SafeRefactor and

26

SafeRefactorImpact compare the behavior of the programs yielded by
these compilers. Rêbelo et al. [18] state that the ajmlc and ajmlc optimized
are equivalent. Table 8 describes the subjects.

Table 8: Evaluation of two JML compilers. KLOC = non-blank, non-comment thousands
of lines of code.

Operation

We compared SafeRefactor and SafeRefactorImpact using a time
limit of 0.2s passed to Randoop. SafeRefactor and SafeRefactorIm-
pact correctly identified behavioral changes in both transformations (Sub-
jects 32 and 33). Both tools take almost the same time to evaluate the
Subject 32. However, SafeRefactorImpact takes more time to evalu-
ate Subject 33 since the change impact analysis is more expensive. Table 9
summarizes the results. Notice that the change impact analysis is useful to
reduce at least 27% the set of methods passed to Randoop in SafeRefac-
torImpact. Moreover, both tools have similar low change coverage. Finally,
SafeRefactorImpact generates more relevant test cases than SafeR-
efactor.

Discussion

Different from what Rêbelo et al. [18] expected, the programs compiled
using the standard JML compiler (jmlc) and ajmlc are not equivalent. They
must check invariants after creating an object, and before and after a method

Table 9: Results using a time limit of 0.2s. Impacted Methods = number of methods
identified by Safira; Methods = number of methods passed to Randoop to generate tests;
Time = the total time of the analysis in seconds; Change Coverage = the percentage of
impacted methods covered; Relevant Tests = the percentage of relevant tests; Result = it
states whether the transformation is behavior preserving.

27

call. By analyzing the tests reported by our tools, we detected that ajmlc
checks invariants before each constructor. This led to false invariant violation
warnings. For example, consider the following class specifying a person.

public class Person {
private /∗@ s p e c p u b l i c @∗/ int he ight ;
// @invariant h e i g h t > 0 ;
//@pre i > 0 ;
public Person (int i) {

this . he ight = i ;
} . . .

}
The class Person contains the field height, and a constructor that sets

the height of each person. An invariant states that each person must have a
height greater than 0. Moreover, the constructor of Person has an precondi-
tion specifying that the i parameter must be greater than 0. Now, suppose
we would like to instantiate this class.

Person x = new Person (1 7 8) ;

The previous code compiled by ajmlc optimized is normally executed.
However, it throws a warning due to postcondition violation when compiled
by ajmlc. By analyzing the code generated by the compilers to check the
constructor precondition, we notice that ajmlc implements this check in an
intertype declaration.

before (Person p , int i) : execution (Person .new()) {
boolean b = p . checkPrePerson (i) ; . . .

}
boolean Person . checkPrePerson (int i) {

return (i > 0) ;
}
An advice invokes the method checkPrePerson before the execution of

the constructor. Notice that this method belongs to Person. Therefore, by
calling it, the invariants of this class will also be checked. However, since the
constructor was not initialized so far, the height attribute is still 0, leading
to an invariant warning.

On the other hand, the ajmlc optimized changes the previous checking
code by applying the Inline method intertype within before-execution refac-
toring [19]. Next we show part of the resulting code.

28

before (Person p , int i) : execution (Person .new()) {
boolean b = (i > 0) ; . . .

}

Notice that they removed the intertype declaration. Therefore, ajmlc con-
tains a bug.

Our tools also detected a behavioral change during a postcondition evalu-
ation of a method declared in JAccount. In a test case generated by our tools,
the code compiled with ajmlc optimized throws the JMLEvaluationError

exception, as expected. However, the code compiled with ajmlc throws
JMLInternalExceptionalPostconditionError. These exceptions have dif-
ferent meaning. The former occurs when it throws an exception, such as
NullPointerException, during the postcondition evaluation. The latter
notifies an internal exceptional postcondition violation.

Both tools have a low change coverage. Although we found behavioral
changes in Subjects 32 and 33, we may exercise more impacted methods by
increasing the time limit. However, it is also important to mention that the
test suite cannot exercise most impacted methods detected by Safira since
they do not belong to both versions of the program. Finally, SafeRefac-
torImpact generates more relevant test cases than SafeRefactor.

4.6. Larger Case Studies

In this section, we evaluate SafeRefactor and SafeRefactorIm-
pact to check the correctness of refactorings applied to larger OO and AO
programs than previous sections.

Selection of subjects

Taveira et al. [20] present two approaches to modularize exception han-
dling mechanisms. They change an OO version into two equivalent ones:
OO’ (a class modularizes the exception handling code) and AO (an aspect
modularizes it), as depicted by Figure 4.

Eight programmers working in pairs performed the changes. They relied
on refactoring tools, pair review, and unit tests to assure behavior preser-
vation. They refactored JHotDraw and CheckStylePlugin 4.2 using the pro-
posed approach. Taveira et al. [20] establish that the OO, OO’ and AO
versions are equivalent. Subjects 34-37 are the OO to AO versions, and
the OO’ to AO versions (see Figure 4) of JHotDraw and CheckStylePlugin,
respectively.

29

Figure 4: Two alternative refactorings to modularize exception handling code.

Soares et al. [21] used SafeRefactor to evaluate a number of trans-
formations applied to JHotDraw from its repository. We randomly selected
them. We evaluate some of them in Subjects 38-45. It is important to
mention that we consider some transformations where SafeRefactor did
not detect some behavioral changes identified by the manual inspection [33].
Table 10 describes the transformations evaluated.

Table 10: Evaluation of transformations applied to case studies. KLOC = non-blank,
non-comment thousands of lines of code of the program before the transformation.

Operation

We compared SafeRefactor and SafeRefactorImpact using a time
limit of 20s passed to Randoop. SafeRefactorImpact correctly evaluated
all transformations but two (Subjects 38 and 39), while SafeRefactor cor-
rectly evaluated seven transformations. The change impact analysis is useful
to reduce the set of methods passed to Randoop in SafeRefactorImpact.

30

The reduction ranges from 75% to 99% of the methods considered by SafeR-
efactor in our evaluation. Both tools took almost the same time to evaluate
the subjects. As expected, SafeRefactorImpact has higher percentage of
change coverage in nine subjects, since it focuses on testing the methods im-
pacted by the change. In the other three subjects, they have almost the same
change coverage. SafeRefactorImpact generates at least 95% of relevant
tests. In Subjects 39, 43 and 44, SafeRefactor generates less than 10% of
relevant tests since it passes more than 30,000 methods to Randoop generate
tests. Table 11 summarizes the results.

Table 11: Results using a time limit of 20s. Impacted Methods = number of methods
identified by Safira; Methods = number of methods passed to Randoop to generate tests;
Time = the total time of the analysis in seconds; Change Coverage = the percentage of
impacted methods covered; Relevant Tests = the percentage of relevant tests; Result = it
states whether the transformation is behavior preserving.

Discussion

In Subject 35, we evaluated the OO’ and AO versions, and both tools also
detected this behavioral change. In our previous work [11], we also found a
behavioral change in the OO and OO’ versions of JHotDraw. To perform
the OO refactoring, developers extracted the code inside the try, catch, and
finally blocks to methods in specific classes that handle exceptions. They
refactored some classes that implement Serializable.

class A implements S e r i a l i z a b l e {
Object c l one () {

try { . . . }

31

catch (IOException e) { . . . }
}

}
Developers changed the clone method and introduced the handler at-

tribute to handle exceptions. However, they forgot to serialize this new
attribute.

class A implements S e r i a l i z a b l e {
ExceptionHander handler ; . . .
Object c l one () {

try { . . . }
catch (IOException e) {

handler . handle (e) ;
}

}
}
class ExceptionHandler { . . . }
Thus, the program throws an exception when the method clone tries to

serialize the object. Therefore, they introduced a bug in the code. On the
other hand, developers extracted the exception handling code to aspects in
the AO version. Since in this version there was no need to introduce new
fields in the classes to handle exceptions, this problem did not happen. They
used tools and a test suite to guarantee behavior preservation. However, as
we previously mention, there is no good tool support for refactoring AO code,
so we can introduce behavioral changes even when applying small changes.
Hence, this may be the cause of the unintentional behavioral change intro-
duced in the OO’ version.

SafeRefactor and SafeRefactorImpact detect behavioral changes
between the OO and AO versions of CheckStylePlugin (Subjects 36 and 37)
using a time limit of 20s. Next, we describe the two behavioral changes
found. In the class FileMatchPattern, the method setMatchPattern con-
tains a try-catch block that catches a PatternSyntaxException and throw
an CheckStylePluginException. Developers removed this try-catch block
and added an aspect to transform this exception into a SoftException,
a kind of RuntimeException. SoftException is then re-thrown as
CheckStylePluginException. However, PatternSyntaxException is al-
ready a subclass of RuntimeException, and thus it is not softened by the
aspects. In this way, after the transformation, PatternSyntaxException

32

is not caught and re-thrown as CheckStylePluginException, changing the
behavior of the program.

We found a second behavioral change in the class ConfigurationType.
Developers removed try-catch blocks that catch IOException and re-throw
CheckStylePluginException, and added an aspect to transform this ex-
ception into a SoftException. An aspect should catch this exception and
re-throw as CheckStylePluginException. However, after the transforma-
tion, SoftException is not caught, changing the behavior of the program.
It seems that developers forgot to implement the last part of the transforma-
tion (catch the SoftException). These results corroborate with the results
found in a previous study [34], suggesting that exception handling code in
AO systems without good tool support may be error-prone.

In Subjects 38 and 39, both tools do not identify behavioral changes
using a time limit of 20s. Randoop does not generate tests that exercise the
impacted methods that change behavior using this time limit. Different from
SafeRefactor, SafeRefactorImpact identifies the behavioral changes
in both subjects using a time limit of 120s, since it reduces by more than
90% the number of methods passed to Randoop to generate tests.

In our previous work [21], we evaluate Subjects 40-45 using SafeRefac-
tor and a manual inspection performed by experts [33]. SafeRefactor
does not identify the behavioral changes using a time limit of 20s in Sub-
jects 40, 42, 43, 44 and 45 different from SafeRefactorImpact. However,
it detects three of them (Subjects 40, 43 and 45) using a time limit of 120s.
Both manual inspection [33] and SafeRefactor classified Subject 42 as
behavior preserving. However, SafeRefactorImpact identified a previ-
ously undetected behavioral change in Subject 42. Next we illustrate part of
the original program of Subject 42. It specifies a class declaring the method
getAttribute, which returns an object. Notice that if the required object
does not exist in attributes, the method yields null.

class A {
HashMap<AttributeKey , Object> a t t r i b u t e s =

new HashMap<AttributeKey , Object >() ;
public Object ge tAt t r ibute (AttributeKey name) {

return a t t r i b u t e s . get (name) ;
}

}

33

In the modified program presented next, the method getAttribute calls
a method get of the class AttributeKey<T> passing as a parameter the field
attributes. Notice that the method checks if the required object exists in
the Map. If it does not exist, the method yields a default value instead of
null in the original program.

class A {
HashMap<AttributeKey , Object> a t t r i b u t e s =

new HashMap<AttributeKey , Object >() ;
public <T> T getAt t r ibute (AttributeKey<T> key) {

return key . get (a t t r i b u t e s) ;
}

}

class AttributeKey<T> {
public T get (Map<AttributeKey , Object> a) {

T value = (T) a . get (this) ;
return (va lue == null && ! isNul lValueAl lowed) ?

de fau l tVa lue : va lue ;
}

}

SafeRefactor does not identify this behavioral change because Ran-
doop does not generate tests to expose them using the time limit of 120s, since
the number of methods to test is much greater (90%) than in SafeRefac-
torImpact. It is also important to notice that finding behavioral changes
is not an easy task, even when using a well defined manual inspection con-
ducted by experts [33, 35]. It is a time consuming and error prone activity to
manually evaluate whether a transformation is behavior preserving in larger
programs.

Both tools have a low change coverage. Randoop does not generate test
cases to many methods because they depend on classes from libraries that
are not passed as parameter. Moreover, some methods have parameters, such
as arrays, that Randoop does not handle well when generating tests. Finally,
there are some added and removed methods that are not common to both
versions of the program. In some subjects, SafeRefactorImpact does not
yield 100% of relevant tests since it may throw an exception before or while
executing the impacted method in a test case. Finally, SafeRefactorIm-
pact is slower than or similar to SafeRefactor to evaluate these subjects,

34

because the change impact analysis performed by SafeRefactorImpact
is more expensive in larger programs than the analysis of SafeRefactor.
However, it detects some behavioral changes undetected by SafeRefactor.

Table 12 describes the statistical analysis results. Column Shapiro Test
indicates the Shapiro–Wilk test results. Notice that only the change coverage
data of SafeRefactor and SafeRefactorImpact are normal. Columns
T-test and Wilcoxon-test present the results of the tests to evaluate the
hypothesis presented in Section 4.2.1.

Due to non-normality of data, we use Wilcoxon-test for number of meth-
ods, time, and percentage of relevant tests. We use T-test for change coverage
due to data normality. The tests reached small p-values to number of meth-
ods, change coverage and relevant tests (1.6×10−4, 4.7×10−3, and 1.3×10−5,
respectively) The results give us evidence that SafeRefactorImpact iden-
tifies less methods to generate tests, has a better change coverage, and gen-
erates more relevant tests than SafeRefactor. The test reached a p-value
of 0.44 indicating that SafeRefactorImpact is slower than or similar to
SafeRefactor. Then, we execute another test (Wilcoxon-test) assuming
a null hypothesis that the time of both tools are equal. It reached a p-value
of 0.88, which indicates that there is no statistical difference between the
time to evaluate a transformation between SafeRefactor and SafeR-
efactorImpact.

Table 12: Statistical analysis for larger subjects data. Shapiro Test = analyze data nor-
mality; T-test = evaluate hypothesis test when data are normal; Wilcoxon-test = evaluate
hypothesis test when data are non-normal; Result = final result of the statistical analysis;
SR = SafeRefactor; SRI = SafeRefactorImpact.

4.7. Threats to Validity

There are some limitations to this study. Next we describe some threats
to the validity of our evaluation.

35

4.7.1. Construct validity

We created the baseline by comparing the approaches’ results, since we
did not know beforehand which versions contain behavior-preserving trans-
formations to evaluate the correctness of the results of each approach.

With respect to SafeRefactor and SafeRefactorImpact, they do
not evaluate the developer’s intention to refactor, but whether a transforma-
tion changes behavior. Moreover, in the closed world assumption, we have to
use the test suite provided by the program that is being refactored. SafeR-
efactorImpact follows an open world assumption, in which every public
method can be a potential target for the test suite generated by Randoop.
Randoop may generate a test case that exposes a behavioral change. How-
ever, the test case may show an invalid scenario according to the software
domain.

Our change coverage and the percentage of relevant test metrics are based
on the impacted methods identified by Safira. However, Safira may fail to
identify some impacted methods, or include a method that does not change
behavior. For example, it may not include a method since it does not perform
data flow analysis.

Safira does not analyze anonymous classes. It does not identify all im-
pacted methods related to them. Moreover, Safira does not perform data
flow analysis. Due to this limitation, it does not identify the behavioral
change in Subject 2. Although it does not implement data flow analysis,
SafeRefactorImpact has a parameter that allows us to include all com-
mon getter methods in the test generation. However, this may decrease its
performance, and require to increase the time limit.

4.7.2. Internal validity

Another threat is related to the time limit to generate the tests. The
time limits used in SafeRefactor and SafeRefactorImpact may have
influence on the detection of behavioral changes. We used the default val-
ues for most of Randoop parameters. By changing them, we may improve
SafeRefactor and SafeRefactorImpact results. Moreover, since Ran-
doop randomly generates a test suite, there might be different results each
time we run the tool. We ran the experiment only once. Due to the ran-
domness nature of the tests, different executions may have different results.
As future work, we plan to execute the tools multiple times to improve the
confidence on the results.

Finally, compilers may have introduced behavioral changes during the

36

optimization process [36]. Since SafeRefactorImpact analyzes the Java
bytecode, this may have an influence on the results if the compilers have
bugs.

4.7.3. External validity

To mitigate threats to external validity, we evaluated different kinds
of software, such as a GUI application (JHotDraw) and an Eclipse Plugin
(CheckStylePlugin), ranging from few lines of codes to thousands of lines of
code. We also evaluate a number of different refactorings targeting different
OO and AO constructs.

Randoop does not deal with concurrency. In those situations, SafeR-
efactor and SafeRefactorImpact may yield non-deterministic results.
Also, they do not take into account characteristics of some specific domains.
For instance, currently, they do not detect the difference in the standard out-
put (System.out.println) message. Neither could the tool generate tests that
exercise some changes related to the graphical interface (GUI) of JHotDraw.

4.8. Answer to the research questions

From the evaluation results, we make the following observations:

• Q1. Do SafeRefactorImpact and SafeRefactor detect the same
behavioral changes?

No. SafeRefactorImpact does not identify the behavioral change
in Subject 2 due to a limitation in Safira. If we pass all getter methods
as parameter in the test generation, SafeRefactorImpact detects
it. Moreover, it does not detect behavioral changes in Subjects 38 and
39 using a time limit of 20s. If we increase the time limit to 120s,
it detects the behavioral change different from SafeRefactor. On
the other hand, SafeRefactorImpact detects behavioral changes
in Subjects 22, 40, 42, 43, 44 and 45 that SafeRefactor does not
identify them using a time limit of 20s. SafeRefactor detects the
behavioral changes in Subjects 40, 43 and 45 using a time limit of
120s. SafeRefactorImpact finds a behavioral change in Subject 42
undetected by SafeRefactor and a well defined manual inspection
conducted by experts.

• Q2. Is SafeRefactorImpact faster than SafeRefactor to evalu-
ate a transformation?

37

In the transformations applied to small programs, SafeRefactorIm-
pact is faster than SafeRefactor. However, both tools take al-
most the same time to evaluate transformations applied to larger pro-
grams. Figure 5 illustrates the distribution of the total time to evalu-
ate transformations by SafeRefactor and SafeRefactorImpact
in the subjects of defective refactorings, designs patterns, and larger
case studies.

Figure 5: Distribution of the total time to evaluate transformations by SafeRefactor
and SafeRefactorImpact.

SR SRI

2

4

6

8

Technique

T
im

e
(s

)

(a) Defective Refactorings

SR SRI

5

10

15

Technique

T
im

e
(s

)

(b) Design Patterns

SR SRI

40

60

80

100

120

140

160

Technique

T
im

e
(s

)
(c) Real Subjects

• Q3. Does SafeRefactorImpact consider less methods in common
to generate tests than SafeRefactor?

Yes. SafeRefactorImpact considers less methods in common to
generate tests in all subjects except in some subjects of design patterns,
because in these subjects SafeRefactor does not consider some im-
pacted methods. In larger subjects, SafeRefactorImpact reduces
at least 75% of the methods to test. Figure 6 illustrates the distri-
bution of the number of methods identified by SafeRefactor and
SafeRefactorImpact to generate tests, in the subjects of defective
refactorings, designs patterns, and larger case studies.

• Q4. Does SafeRefactorImpact generate a test suite with better
change coverage than SafeRefactor?

The test cases generated by SafeRefactorImpact increase the
change coverage in larger subjects. For small ones, there is no signifi-
cant difference, but in most of the subjects, it is similar or better than

38

Figure 6: Distribution of the number of methods identified by SafeRefactor and
SafeRefactorImpact to generate tests.

SR SRI
0

5

10

15

20

Technique

N
u

m
b

er
of

M
et

h
o
d

s

(a) Defective Refactorings

SR SRI

0

200

400

600

800

1,000

Technique
N

u
m

b
er

of
M

et
h

o
d

s

(b) Design Patterns

SR SRI

0

10

20

30

Technique

N
u
m

b
er

of
M

et
h
o
d
s

(1
03

)

(c) Real Subjects

SafeRefactor. Figure 7 illustrates the distribution of the change
coverage of the tests generated by SafeRefactor and SafeRefac-
torImpact in the subjects of defective refactorings, designs patterns,
and larger case studies.

Figure 7: Distribution of the change coverage of the tests generated by SafeRefactor
and SafeRefactorImpact.

SR SRI
20

40

60

80

100

Technique

C
h
an

ge
C

ov
er

ag
e

(%
)

(a) Defective Refactorings

SR SRI

0

5

10

15

20

Technique

C
h

an
ge

C
ov

er
ag

e
(%

)

(b) Design Patterns

SR SRI

0

10

20

30

Technique

C
h

an
ge

C
ov

er
ag

e
(%

)

(c) Real Subjects

• Q5. Does SafeRefactorImpact use a test suite to evaluate a trans-
formation with more relevant test cases than SafeRefactor?

Yes. SafeRefactorImpact generates more relevant tests in all sub-
jects. Almost 90% of test cases generated by SafeRefactorImpact
are relevant to evaluate the change. It only generates test cases that
exercise an impacted method. Some test cases are not relevant be-

39

cause they throw an exception before or while executing an impacted
method. Figure 8 illustrates the distribution of the percentage of rele-
vant tests generated by SafeRefactor and SafeRefactorImpact
in the subjects of defective refactorings, designs patterns, and larger
case studies.

Figure 8: Distribution of the percentage of relevant tests generated by SafeRefactor
and SafeRefactorImpact.

SR SRI

20

40

60

80

100

Technique

R
el

ev
an

t
T

es
ts

(%
)

(a) Defective Refactorings

SR SRI

0

20

40

60

80

100

Technique

R
el

ev
an

t
T

es
ts

(%
)

(b) Design Patterns

SR SRI

0

20

40

60

80

100

Technique

R
el

ev
an

t
T

es
ts

(%
)

(c) Real Subjects

5. Related Work

In this section, we relate our work to a number of approaches proposed for
refactoring OO (Section 5.1) and AO programs (Section 5.2), change impact
analysis (Section 5.3) and detecting behavioral changes (Section 5.4).

5.1. Refactoring Object-Oriented Programs

Preconditions are a key concept of research studies on the correctness of
refactorings. Opdyke [1] proposed a number of refactoring preconditions to
guarantee behavior preservation. However, there was no formal proof of the
correctness and completeness of these preconditions. In fact, later, Tokuda
and Batory [37] showed that Opdyke’s preconditions were not sufficient to
ensure behavior preservation. Roberts [38] automated the basic refactorings
proposed by Opdyke.

Kim et al. [39] conducted surveys, interviews, and quantitative analy-
sis to evaluate refactoring challenges and benefits at Microsoft. Although
participants of the survey mentioned that refactorings help on improving
maintainability, 77% of them mentioned regression bugs as risks for applying
refactorings. Also, except for the rename refactoring, most of the participants

40

mentioned that they manually perform refactorings, despite the awareness
of automated tools. This study indicates that tool support for refactoring
should go beyond automated transformations. For example, they need to use
a better tool support for checking behavior preservation correctness, as we
propose in this article.

Rachatasumrit and Kim [14] studied the impact of a transformation on
regression tests by using the version history of Java open source projects.
Among the evaluated research questions, they investigate whether the re-
gression tests are adequate for refactorings in practice. They found that
refactoring changes are not well tested: regression test cases cover only 22%
of impacted entities. Moreover, they found that 38% of affected test cases are
relevant for testing the refactorings. We proposed SafeRefactorImpact,
that uses change impact analyses to guide the test suite generation for only
testing the methods impacted by a transformation. Most of the tests gener-
ated by our tool are relevant for evaluating the transformations considered
in our work. Although our tool has a low change coverage in larger subjects,
it focuses only on generating tests to run on both versions of the program.
There are a number of added or removed methods that are not exercised
indirectly. So, it cannot generate tests for them.

Steimann and Thies [40] showed that by changing access modifiers
(public, protected, package, private) in Java one can introduce com-
pilation errors and behavioral changes. They propose a constraint-based
approach to specify Java accessibility, which favors checking refactoring pre-
conditions and computing the changes of access modifiers needed to preserve
the program behavior. Such specialized approach is useful for detecting bugs
regarding accessibility-related properties. On the other hand, our approach
is general enough for detecting bugs with respect to other OO and AO con-
structs.

Tip et al. [41] proposed an approach that uses type constraints to verify
preconditions of those refactorings, determining which part of the code they
may modify. Using type constraints, they also proposed the refactoring Infer
Generic Type Arguments [42], which adapts a program to use the Generics
feature of Java 5, and a refactoring to migration of legacy library classes [43].
Eclipse implemented these refactorings. Their technique allows sound refac-
torings with respect to type constraints. However, a refactoring may have
preconditions related to other constructs. Our tool may be helpful in those
situations.

Borba et al. [44] proposed a set of refactorings for a subset of Java with

41

copy semantics (ROOL). They prove the refactoring correctness based on
a formal semantics. Silva et al. [45] proposed a set of behavior preserving
transformation laws for a sequential object-oriented language with reference
semantics (rCOS). They prove the correctness of each of the laws with respect
to rCOS semantics. Some of these laws can be used in the Java context. Yet,
they have not considered all Java constructs, such as overloading and field
hiding. SafeRefactorImpact may be useful when their work may not be
applied.

Schäfer et al. [46] proposed refactorings for concurrent programs. They
have proved the correctness based on the Java memory model. Currently, we
do not deal with concurrency, since SafeRefactorImpact can only eval-
uate sequential Java programs. However, they have demonstrated that some
useful refactorings are not influenced by concurrency. In those situations, we
can use SafeRefactorImpact.

Overbey and Johnson [47] proposed a technique to check for behavior
preservation. They implement it in a library containing preconditions for
the most common refactorings. Refactoring engines for different languages
can use their library to check refactoring preconditions. The preservation-
checking algorithm is based on exploiting an isomorphism between graph
nodes and textual intervals. They evaluate their technique for 18 refactor-
ings in refactoring engines for Fortran 95, PHP 5 and BC. In our approach,
we use SafeRefactorImpact to evaluate whether any transformation is
behavior-preserving. Proving refactorings with respect to a formal semantics
constitutes a challenge [12].

Soares et al. [48] proposed a technique to identify overly strong conditions
based on differential testing [49]. If a tool correctly applies a refactoring ac-
cording to SafeRefactor and another tool rejects the same transformation,
the latter has an overly strong condition. In a sample of 42,774 programs
generated by JDolly, they evaluated 27 refactorings of Eclipse, NetBeans and
JastAdd Refactoring Tools (JRRT) [6], and found 17 and 7 types of overly
strong conditions in Eclipse and JRRT, respectively. This approach is useful
for detecting whether the set of refactoring preconditions is minimal. Later,
Soares et al. [10] introduced a technique to test refactoring tools and found
more than 100 bugs in the best academic (JRRT) and commercial Java refac-
toring implementations (Eclipse and NetBeans). This approach is based on
a program generator (JDolly) and SafeRefactor. In this work, we extend
SafeRefactor to consider AO constructs, and use change impact analysis
to generate tests only for the methods impacted by a transformation. As a

42

future work, we intend to use SafeRefactorImpact in this approach.

5.2. Refactoring Aspect-Oriented Programs

Monteiro and Fernandes [7] proposed a catalog of 27 AO refactorings [2].
They can be useful for implementing aspect-aware refactoring tools. How-
ever, they do not prove their soundness. We can apply their refactorings and
use SafeRefactorImpact to improve confidence that the transformation
is correct.

Wloka et al. [9] proposed a tool support for extending currently OO refac-
toring implementations for considering aspects. They employ change impact
analysis to identify pointcuts impacted by a transformation that can change
the program behavior. The tool can change pointcuts to preserve program
behavior in some cases. SafeRefactorImpact does not apply a transfor-
mation to a program. It only evaluates whether a transformation preserves
behavior. Safira also considers aspects during the analysis. Moreover,
SafeRefactorImpact evaluates any kind of transformation, while their
tool evaluates only some Java refactorings, such as rename, move, extract
and inline.

Binkley et al. [50, 51] presented a human guided automated approach to
refactor OO to AO program. They implement six kinds of refactorings. Each
refactoring defines a set of preconditions to guarantee behavior preservation.
They refactored four OO real systems to modularize it in aspects (JHot-
Draw, PetStore, JSpider and JAccouting). Hannemann et al. [52] introduced
a role-based refactoring approach to help programmers modularize crosscut-
ting concerns into aspects. Malta and Valente [53] presented a collection of
transformations used to enable the extraction of crosscutting statements to
aspects. Each refactoring defines a set of preconditions. Their work may
contribute for improving tool support for applying refactorings to AO pro-
grams. However, they do not prove them sound with respect to a formal
semantics. Developers can use our tool together with their approaches to
improve confidence that the transformation preserves behavior. Moreover,
SafeRefactorImpact can evaluate any kind of transformation.

Yokomori et al. [54] analyzed two software applications that have been
refactored into aspects (JHotDraw and Berkeley DB) to determine circum-
stances when such activities are effective at reducing component relation-
ships and when they are not. They found that AO refactoring is successful
in improving the modularity and complexity of the base code. In our work,
we propose a tool based on change impact analysis to improve confidence

43

that a transformation preserves behavior. SafeRefactorImpact does not
evaluate whether the resulting program improves the quality of the original
program.

Hannemann and Kiczales [17] implemented 23 design patterns [32] in Java
and AspectJ. The study concludes that some patterns are better implemented
using OO constructs and others using AO constructs. Taveira et al. [20]
modularized exception handling in OO and AO code by using test suite and
pair programming. The study indicates that the AO version promotes reuse
of exception handling code. We used SafeRefactorImpact to analyze
some transformations they evaluated, and found some behavioral changes
that developers were unaware. SafeRefactorImpact does not evaluate
whether the resulting program improves the quality of the original program.

Van Deursen et al. [55] used an existing well-designed open-source system
(JHotDraw) and modified it to an equivalent AO version (AJHotDraw). In
this article, we analyzed some transformations applied to JHotDraw collected
from its SVN repository history and from studies that aimed to modularize
the exception handling mechanism.

Cole and Borba [8] formally specified AO programming laws (each law
defines a bidirectional semantics-preserving transformation) for AspectJ. By
composing them, they derived AspectJ refactorings. Each law formally states
preconditions. They proved one of them sound with respect to a formal
semantics for a subset of Java and AspectJ [56]. They can be useful for
implementing aspect-aware refactoring tools. However, they did not consider
all AspectJ constructs and their catalog is incomplete. In those situations,
we can use our tool.

5.3. Change Impact Analysis

Law and Rothermel [57] proposed an approach based on static and dy-
namic partitioning and recursive algorithms of calls graphs to identify meth-
ods impacted by a change. Different from Safira, the analysis estimates the
change impact before applying the transformation. Our change impact ana-
lyzer performs static analysis in any kind of transformation applied to Java
or AspectJ programs. In addition, it does not need additional information
to evaluate a transformation.

Chianti [23] is a change impact analyzer tool for Java. Based on a test
suite and the changes applied to a program, it decomposes the change into
atomic changes and generates a dependency graph. The tool indicates the
test cases that are impacted by the change. Only these test cases need to

44

be executed again. Zhang et al. [24] proposed a change impact analyzer tool
(FaultTracer) that improves Chianti by refining the dependencies between the
atomic changes, and adding more rules to calculate the change impact. Both
tools receive two program versions as parameters, and decompose the change
into small-grained transformations, similar to Safira. However, different
from Safira, Chianti and FaultTracer depend on a test suite to assess the
change impact. They execute the test cases, and identify the impacted test
cases that must be executed again based on the call graphs. SafeRefac-
torImpact automatically generates test cases for the methods impacted by
a transformation.

Kung et al. [58] presented an approach to identify impacted classes due to
structural changes in library classes of OO languages. It is based on a reverse
engineering approach that extracts information from the library classes and
their relationships. This information is represented in dependency graphs
used to automatically identify changes and their effects. Li and Offut [59]
conducted a study to evaluate how changes applied to OO programs can
affect program classes. They proposed an algorithm that computes the tran-
sitive closure of the program dependency graph. They analyze changes in
a program to identify impacted classes. Safira also identifies the methods
impacted by a change.

Wloka et al. [60] proposed a tool called JUnitMX. It uses a change im-
pact analysis tool to yield all entities impacted by a transformation. After
executing a test suite, it indicates whether the test suite exercises all entities
impacted by a transformation. If all test cases pass but they do not cover all
entities impacted by a transformation, the tool yields a yellow bar. The tool
yields a green bar if and only if the test cases pass and exercise all entities
impacted by a transformation. Otherwise, it yields a red bar. As a future
work, we intend to include this functionality in SafeRefactorImpact.

5.4. Detecting Behavioral Changes

Some tools statically check whether a transformation preserves behavior.
For instance, Eclipse JDT and NetBeans implement a number of refactorings.
Each refactoring may contain a number of preconditions to ensure behavioral
preservation [1]. Later, JastAdd Refactoring Tools (JRRT) [61, 62, 6] imple-
mented a number of refactorings by using formal techniques. We evaluated
29 refactoring implementations of Eclipse JDT, NetBeans and JRRT us-
ing SafeRefactor and found 63 bugs related to behavioral changes [10].
Defining refactoring preconditions is a nontrivial task, which the literature

45

has treated in different ways [44, 63, 41, 45, 61, 62, 6, 40]. These include
analyses of some of the various aspects of a language, such as: accessibility,
types, name binding, data flow, and control flow. However, proving refac-
toring correctness for the entire language constitutes a challenge [12]. In
our approach, instead of static analysis, we use dynamic analysis to evalu-
ate whether a transformation preserves behavior. Moreover, we evaluate any
kind of transformation different from previous approaches.

Daniel et al. [64] proposed an approach for automated testing refactoring
engines using an automatic program generator (ASTGen). To evaluate the
refactoring correctness, they implemented six oracles that evaluate the out-
put of each transformation. For instance, the oracles check for compilation
errors and warning messages. There is one oracle that evaluates behavior
preservation. It checks whether applying a refactoring to a program, and
the its inverse refactoring to the target program yields the same initial pro-
gram. If they are syntactically different, the refactoring engine developer
has to manually check whether they have the same behavior. For example,
consider the classes A, B (subclass of A) and C (subclass of B) presented
in Listing 8. The class A declares the field k, which is initialized with 10.
The class C has the field k hiding A.k, which is initialized with 20, and the
method test calling super.k. This method yields 10. By using Eclipse JDT
4.3 to apply the Pull Up Field refactoring to C.k moving it to class B, it
yields the program presented in Listing 9. This transformation introduces a
behavioral change: the method test now calls B.k yielding 20 instead of 10
in the initial program. Applying the Push Down Field refactoring to B.k in
the modified program presented in Listing 9, the resulted program is equals
to the initial program presented in Listing 8. So, their oracle does not detect
this behavioral change, different from SafeRefactorImpact.

They evaluated the technique by testing 21 refactorings, and identified
21 bugs in Eclipse JDT and 24 in NetBeans [64]. In Eclipse JDT, 17 bugs
were related to compilation errors, 3 bugs were related to incomplete trans-
formations (e.g. the Encapsulate field refactoring did not encapsulate all
field accesses), and 1 bug was related to behavioral change. Moreover, Glig-
oric et al. [65] evolved ASTGen and proposed UDITA. They found four new
compilation error bugs in six refactorings (two in Eclipse JDT and two in
NetBeans). Later, Gligoric et al. [66] evolved the technique and found a num-
ber of bugs in Java and C refactorings of Eclipse JDT and CDT, NetBeans
and IntelliJ. However, they did not find bugs related to behavioral preser-
vation. We proposed a similar approach to test refactoring engines using

46

Figure 9: Pulling up a field introduces a behavioral change in Eclipse.

Listing 8: Original Program

public class A {
public int k = 10 ;

}
public class B extends A {
}
public class C extends B {

public int k = 20 ;
public int t e s t () {

return super . k ;
}

}

Listing 9: Modified Program

public class A {
public int k = 10 ;

}
public class B extends A {

public int k = 20 ;
}
public class C extends B {

public int t e s t () {
return super . k ;

}
}

SafeRefactor as an oracle to detect behavioral changes [10]. While the
oracles of previous approaches can only syntactically compare the programs
to detect behavioral changes, SafeRefactor generates tests that compare
program behavior. We automatically found 63 bugs related to behavioral
changes in Eclipse JDT, NetBeans and JRRT.

Lahiri et al. [67] proposed a tool (SymDiff) for identifying behavioral
changes. The tool translates the program to an intermediate language (Boo-
gie). For each pair of procedures (before and after the change), it statically
checks partial equivalence by using a program verifier for Boogie that exploits
Satisfiability Modulo Theories solver Z3. They use the Z3 theorem prover to
verify loop-free and call-free fragments. The precision of the tools relies on
the soundness of the translator that translates the target language to Boogie.
They have a front-end for C programs. In our work, we automatically gener-
ate a test suite to compare the behavior of two Java and AspectJ programs.
We only generate tests for the entities impacted by a transformation. When
SymDiff cannot prove two procedures as equivalent, it generates a counterex-
ample describing the program trace. In our tool, we yield a test case to the
user exposing the behavioral change.

Raghavan et al. [68] presented an automated tool called Dex for analyz-
ing syntactic and semantic changes in C programs. It creates an abstract
semantic graph (ASG) representation of each program version, and then ap-
plies a graph differencing algorithm to the resulting pair of ASGs. It consists

47

of describing how to convert the ASG for the original version into the ASG
for the modified version by matching, inserting, deleting, updating, or mov-
ing nodes. Safira decomposes a coarse-grained transformation into smaller
ones, and calculates the impacted methods. Then, SafeRefactorImpact
generates tests only for the entities impacted by the transformation.

Person et al. [69] presented a symbolic execution technique to characterize
the impact of program changes in terms of behavioral changes. They defined
two equivalence notions for programs: functional equivalence (the versions
have the same black-box behavior), and partition-effects equivalence (the
versions have corresponding sets of paths through their implementations).
SafeRefactorImpact identifies a behavioral change when at least one
test case passes in a program version but it fails in the other one.

Lahiri et al. [70] proposed an approach to statically compare different
versions of a program with respect to a set of assertions. They use previous
versions of a program to reduce the cost of program analysis. They include
this approach in SymDiff and evaluate it. SafeRefactorImpact automat-
ically generates a test suite for the entities impacted by the transformation
to compare behavior of two Java and AspectJ programs. It does not use
previous versions of the program to perform analysis.

6. Conclusions

In this article, we propose a tool (SafeRefactorImpact) for checking
whether an OO or AO transformation is behavior preserving (Section 3).
Moreover, it generates a test suite only for the methods impacted by the
transformation. It performs a change impact analysis using Safira to iden-
tify the impacted methods. We compared SafeRefactor and SafeRefac-
torImpact in 45 transformations applied to programs with different sizes
(10 LOC to 79 KLOC). The transformations change a number of OO and
AO constructs (classes, methods, fields, inheritance, overloading, overriding,
aspects, intertype declarations, pointcuts, advices). We found that SafeR-
efactorImpact detects behavioral changes undetected by SafeRefac-
tor. It has a better performance when analyzing transformations applied
to small programs. Moreover, it significantly reduces the number of meth-
ods passed to Randoop. So, it is less dependent to the time limit passed to
Randoop to generate tests. Finally, it has a better change coverage in larger
subjects and generates more relevant tests.

48

The goal of SafeRefactorImpact is to exercise only the entities im-
pacted by the transformation to avoid the problems found by Rachatasumrit
and Kim [14], which state that refactorings are not well tested. SafeR-
efactorImpact generates more relevant tests in all subjects. Although the
change coverage is low in some subjects, it is important to remember that
SafeRefactorImpact only generates tests for the impacted methods in
common for both versions. Our goal is to compare two program versions with
respect to the same test suite, differently from Rachatasumrit and Kim [14].
A number of impacted methods do not belong to both program versions and
are not indirectly exercised in the subjects evaluated by our work.

SafeRefactorImpact detects some non-behavior-preserving transfor-
mations that SafeRefactor does not detect. In some cases, even devel-
opers were not aware of the behavioral changes. Developers used refactoring
tools and test suite to improve confidence that the transformations were
correct. However, the Java/AspectJ semantics is nontrivial, which imposes
challenges in checking and performing refactorings. For instance, pointcuts
may use wildcards making difficult to check preconditions. A small transfor-
mation can have an impact on a number of different parts of the program.
Therefore, it is not simple to apply them without a good tool support.

The change impact analysis is useful because it reduced the number of
methods passed for Randoop in most of the subjects. In some cases, some
methods dealing with user interface and file manipulation are not passed to
Randoop. The current version of Randoop does not work well with them [21].
By handling less methods and focusing on the impacted ones, Randoop gen-
erates some tests that showed behavioral changes previously undetected by
SafeRefactor.

As future work, we plan to evaluate our tool with more case studies.
Moreover, we intend to improve the analysis performance and include a data
flow analysis in Safira. Additionally, we aim at defining other small-grained
transformations to reduce the set of impacted methods identified by Safira.
We are also interested in evaluating other automatic test suite generators in
SafeRefactorImpact, such as EvoSuite [71] and Testful [72]. Finally, we
intend to create an Eclipse plugin for SafeRefactorImpact.

Acknowledgment

We gratefully thank Tiago Massoni, Sérgio Soares, Márcio Ribeiro, Hen-
rique Rêbelo, Fernando Castor, Roberta Coelho, Christiano Braga, José Fi-

49

adeiro, and the anonymous referees from the Brazilian Symposium on Pro-
gramming Languages and Science of Computer Programming for their useful
suggestions. This work was partially supported by the National Institute of
Science and Technology for Software Engineering (INES), funded by CNPq
grants 573964/2008-4, 304470/2010-4, 480160/2011-2, 484860/2011-9, and
477943/2013-6.

References

[1] W. Opdyke, Refactoring Object-Oriented frameworks, Ph.D. thesis,
University of Illinois at Urbana-Champaign (1992).

[2] M. Fowler, Refactoring: improving the design of existing code, Addison-
Wesley Longman Publishing Company, Inc., Boston, MA, USA, 1999.

[3] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Transac-
tions on Software Engineering 30 (2004) 126–139.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, J. Irwin, Aspect-Oriented Programming, in: Proceedings of
the 11th European Conference on Object-Oriented Programming, Vol.
1241 of ECOOP ’97, Springer-Verlag, 1997, pp. 220–242.

[5] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Program-
ming, Manning Publications Company, 2003.

[6] M. Schäfer, O. de Moor, Specifying and implementing refactorings,
in: Proceedings of the 25th ACM International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA ’10, ACM, New York, USA, 2010, pp. 286–301.

[7] M. Monteiro, J. Fernandes, Towards a catalog of Aspect-Oriented refac-
torings, in: Proceedings of the 4th Aspect-Oriented Software Develop-
ment, AOSD ’05, ACM, New York, NY, USA, 2005, pp. 111–122.

[8] L. Cole, P. Borba, Deriving refactorings for AspectJ, in: Proceedings of
the 4th Aspect-Oriented Software Development, AOSD ’05, ACM, New
York, NY, USA, 2005, pp. 123–134.

50

[9] J. Wloka, R. Hirschfeld, J. Hänsel, Tool-supported refactoring of Aspect-
Oriented programs, in: Proceedings of the 7th Aspect-Oriented Software
Development, AOSD ’08, ACM, New York, NY, USA, 2008, pp. 132–
143.

[10] G. Soares, R. Gheyi, T. Massoni, Automated behavioral testing of refac-
toring engines, IEEE Transactions on Software Engineering 39 (2) (2013)
147–162.

[11] G. Soares, R. Gheyi, D. Serey, T. Massoni, Making program refactoring
safer, IEEE Software 27 (2010) 52–57.

[12] M. Schäfer, T. Ekman, O. de Moor, Challenge proposal: verification
of refactorings, in: Proceedings of the 3rd Workshop on Programming
Languages Meets Program Verification, PLPV ’09, ACM, New York,
USA, 2008, pp. 67–72.

[13] G. Murphy, M. Kersten, L. Findlater, How are Java software developers
using the Eclipse IDE?, IEEE Software 23 (2006) 76–83.

[14] N. Rachatasumrit, M. Kim, An empirical investigation into the impact
of refactoring on regression testing, in: Proceedings of the 28th IEEE
International Conference on Software Maintenance, ICSM ’12, IEEE
Computer Society, Washington, USA, 2012, pp. 357–366.

[15] B. Li, X. Sun, H. Leung, S. Zhang, A survey of code-based change impact
analysis techniques, Software Testing, Verification and Reliability, 2012.

[16] G. Soares, D. Cavalcanti, R. Gheyi, Making Aspect-Oriented refactoring
safer, in: Proceedings of the 15th Brazilian Symposium on Programming
Languages, SBLP ’11, 2011, pp. 91–105.

[17] J. Hannemann, G. Kiczales, Design Pattern implementation in Java and
Aspectj, in: Proceedings of the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’02, ACM, New York, NY, USA, 2002, pp. 161–173.

[18] H. Rebêlo, S. Soares, R. Lima, L. Ferreira, M. Cornélio, Implementing
Java modeling language contracts with AspectJ, in: Proceedings of the
23rd Annual ACM Symposium on Applied Computing, SAC ’08, ACM,
New York, NY, USA, 2008, pp. 228–233.

51

[19] H. Rebêlo, R. Lima, M. Cornélio, G. T. Leavens, A. C. Mota, C. Oliveira,
Optimizing JML features compilation in Ajmlc using Aspect-Oriented
refactorings, in: Proceedings of the 13rd Brazilian Symposium on Pro-
gramming Languages, SBLP ’09, Brazilian Computer Society, 2009, pp.
117–130.

[20] J. Taveira, C. Queiroz, R. Lima, J. Saraiva, S. Soares, H. Oliveira,
N. Temudo, A. Araújo, J. Amorim, F. Castor, E. Barreiros, Assessing
intra-application exception handling reuse with Aspects, in: Proceed-
ings of the 23rd Brazilian Symposium on Software Engineering, SBES
’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 22–31.

[21] G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, Comparing ap-
proaches to analyze refactoring activity on software repositories, Journal
of Systems and Software 86 (4) (2013) 1006–1022.

[22] J. Goodenough, S. Gerhart, Toward a theory of test data selection,
SIGPLAN Notes 10 (1975) 493–510.

[23] X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, Chianti: a tool
for change impact analysis of Java programs, in: Proceedings of the
19th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’04, ACM, New York,
USA, 2004, pp. 432–448.

[24] L. Zhang, M. Kim, S. Khurshid, FaultTracer: a change impact and
regression fault analysis tool for evolving Java programs, in: Proceedings
of the 20th ACM SIGSOFT Foundations of Software Engineering, FSE
’12, ACM, New York, USA, 2012, pp. 40:1–40:4.

[25] B. Robinson, M. Ernst, J. Perkins, V. Augustine, N. Li, Scaling up
automated test generation: Automatically generating maintainable re-
gression unit tests for programs, in: Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’11,
IEEE Computer Society, Washington, USA, 2011, pp. 23–32.

[26] C. Pacheco, S. K. Lahiri, M. Ernst, T. Ball, Feedback-directed random
test generation, in: Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, IEEE Computer Society, Washington,
DC, USA, 2007, pp. 75–84.

52

[27] V. Basili, R. Selby, D. Hutchens, Experimentation in software engineer-
ing, IEEE Transactions on Software Engineering 12 (7) (1986) 733–743.

[28] S. Shapiro, M. Wilk, An analysis of variance test for normality (complete
samples), Biometrika 52 (3/4) (1965) 591–611.

[29] J. Box, Guinness, gosset, fisher, and small samples, Statistical Science
2 (1) (1987) 45–52.

[30] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics
Bulletin 1 (6) (1945) 80–83.

[31] G. Leavens, A. Baker, C. Ruby, Preliminary design of JML: a behavioral
interface specification language for Java, SIGSOFT Software Engineer-
ing Notes 31 (2006) 1–38.

[32] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 2005.

[33] E. Murphy-Hill, C. Parnin, A. Black, How we refactor, and how we know
it, IEEE Transactions on Software Engineering 38 (1) (2012) 5–18.

[34] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza,
A. Staa, C. Lucena, Assessing the impact of aspects on exception flows:
An exploratory study, in: Proceedings of the 22nd European Conference
on Object-Oriented Programming, ECOOP ’08, Springer-Verlag, Berlin,
Heidelberg, 2008, pp. 207–234.

[35] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how
we know it, in: Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, IEEE Computer Society, Washington,
DC, USA, 2009, pp. 287–296.

[36] X. Yang, Y. Chen, E. Eide, J. Regehr, Finding and understanding bugs
in C compilers, in: Proceedings of the 32nd ACM SIGPLAN Program-
ming Language Design and Implementation, PLDI ’11, ACM, New York,
USA, 2011, pp. 283–294.

[37] L. Tokuda, D. Batory, Evolving Object-Oriented designs with refactor-
ings, Automated Software Engineering 8 (2001) 89–120.

53

[38] D. Roberts, Practical Analysis for Refactoring, Ph.D. thesis, University
of Illinois at Urbana-Champaign (1999).

[39] M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring
challenges and benefits, in: Proceedings of the ACM SIGSOFT 20th
Foundations of Software Engineering, FSE ’12, ACM, New York, USA,
2012, pp. 50:1–50:11.

[40] F. Steimann, A. Thies, From public to private to absent: Refactoring
Java programs under constrained accessibility, in: Proceedings of the
23rd European Conference on Object-Oriented Programming, ECOOP
’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 419–443.

[41] F. Tip, A. Kieżun, D. Bäumer, Refactoring for generalization using type
constraints, in: Proceedings of the 18th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’03, ACM, New York, NY, USA, 2003, pp. 13–26.

[42] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, M. Keller, Efficiently refactoring
Java applications to use generic libraries, in: Proceedings of the 19th
European Conference on Object-Oriented Programming, ECOOP ’05,
Springer-Verlag, Berlin, Heidelberg, 2005, pp. 71–96.

[43] I. Balaban, F. Tip, R. Fuhrer, Refactoring support for class library mi-
gration, in: Proceedings of the 20th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’05, ACM, New York, NY, USA, 2005, pp. 265–279.

[44] P. Borba, A. Sampaio, A. Cavalcanti, M. Cornélio, Algebraic reasoning
for Object-Oriented programming, Science of Computer Programming
52 (2004) 53–100.

[45] L. Silva, A. Sampaio, Z. Liu, Laws of Object-Orientation with reference
semantics, in: Proceedings of the 6th IEEE International Conference on
Software Engineering and Formal Methods, SEFM ’08, IEEE Computer
Society, Washington, DC, USA, 2008, pp. 217–226.

[46] M. Schäfer, J. Dolby, M. Sridharan, E. Torlak, F. Tip, Correct refac-
toring of concurrent Java code, in: Proceedings of the 24th European
Conference on Object-Oriented Programming, ECOOP ’10, Springer-
Verlag, Berlin, Heidelberg, 2010, pp. 225–249.

54

[47] J. Overbey, R. Johnson, Differential precondition checking: A
lightweight, reusable analysis for refactoring tools, in: Proceedings of
the 26th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’11, ACM, New York, NY, USA, 2011, pp. 303–312.

[48] G. Soares, M. Mongiovi, R. Gheyi, Identifying overly strong conditions
in refactoring implementations, in: Proceedings of the 27th IEEE Inter-
national Conference on Software Maintenance, ICSM ’11, Washington,
USA, 2011, pp. 173–182.

[49] W. Mckeeman, Differential testing for software, Digital Technical Jour-
nal 10 (1) (1998) 100–107.

[50] D. Binkley, M. Ceccato, M. Harman, F. Ricca, P. Tonella, Automated
refactoring of Object-Oriented code into Aspects, in: Proceedings of the
21st IEEE International Conference on Software Maintenance, ICSM
’05, IEEE Computer Society, 2005, pp. 27–36.

[51] D. Binkley, M. Ceccato, M. Harman, F. Ricca, P. Tonella, Tool-
supported refactoring of existing Object-Oriented code into Aspects,
IEEE Transactions on Software Engineering 32 (9) (2006) 698–717.

[52] J. Hannemann, G. Murphy, G. Kiczales, Role-based refactoring of cross-
cutting concerns, in: Proceedings of the 4th Aspect-Oriented Software
Development, AOSD ’05, ACM, New York, NY, USA, 2005, pp. 135–
146.

[53] M. Malta, M. Valente, Object-Oriented transformations for extracting
Aspects, Information and Software Technology 51 (1) (2009) 138–149.

[54] R. Yokomori, H. Siy, N. Yoshida, M. Noro, K. Inoue, Measuring the
effects of Aspect-Oriented refactoring on component relationships: two
case studies, in: Proceedings of the 10th Aspect-Oriented Software De-
velopment, AOSD ’11, ACM, New York, USA, 2011, pp. 215–226.

[55] A. van Deursen, M. Marin, L. Moonen, AJHotDraw: A showcase for
refactoring to aspects, in: Proceedings of the Workshop on Linking As-
pect Technology and Evolution, LATE ’05, 2005.

[56] L. Cole, P. Borba, A. Mota, Proving Aspect-Oriented programming laws,
in: Proceedings of the 4th Foundations of Aspect-Oriented Languages,

55

FOAL ’05, Technical Report, Department of Computer Science, Iowa
State University, 2005, pp. 1–10.

[57] J. Law, G. Rothermel, Whole program path-based dynamic impact anal-
ysis, in: Proceedings of the 19th International Conference on Software
Maintenance, ICSM ’03, IEEE Computer Society, Washington, USA,
2003, pp. 308–318.

[58] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, C. Chen, Change
impact identification in Object-Oriented software maintenance, in: Pro-
ceedings of the International Conference on Software Maintenance,
ICSM ’94, IEEE Computer Society, British Columbia, Canada, 1994,
pp. 202–211.

[59] L. Li, A. J. Offutt, Algorithmic analysis of the impact of changes to
Object-Oriented software, in: Proceedings of the International Con-
ference on Software Maintenance, ICSM ’96, IEEE Computer Society,
Washington, USA, 1996, pp. 171–184.

[60] J. Wloka, E. W. Host, B. G. Ryder, Tool support for change-centric test
development, IEEE Software (2010) 66–71.

[61] M. Schäfer, T. Ekman, O. de Moor, Sound and extensible renaming
for Java, in: Proceedings of the 23rd ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’08, ACM, New York, NY, USA, 2008, pp. 277–294.

[62] M. Schäfer, M. Verbaere, T. Ekman, O. Moor, Stepping stones over the
refactoring rubicon, in: Proceedings of the 23rd European Conference
on Object-Oriented Programming, ECOOP ’09, Springer-Verlag, Berlin,
Heidelberg, 2009, pp. 369–393.

[63] M. Cornélio, Refactorings as Formal Refinements, Ph.D. thesis, Federal
University of Pernambuco (2004).

[64] B. Daniel, D. Dig, K. Garcia, D. Marinov, Automated testing of refac-
toring engines, in: Proceedings of the 15th Foundations of Software
Engineering, ESEC-FSE ’07, ACM, New York, NY, USA, 2007, pp.
185–194.

56

[65] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, D. Mari-
nov, Test generation through programming in UDITA, in: Proceedings
of the 32nd International Conference on Software Engineering - Volume
1, ICSE ’10, ACM, New York, NY, USA, 2010, pp. 225–234.

[66] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, D. Marinov,
Systematic testing of refactoring engines on real software projects, in:
Proceedings of the 27th European Conference on Object-Oriented Pro-
gramming, ECOOP ’13, Springer-Verlag, Berlin, Heidelberg, 2013, pp.
629–653.

[67] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, H. Rebêlo, SYMDIFF: a
language-agnostic semantic diff tool for imperative programs, in: Pro-
ceedings of the 24th Computer Aided Verification, CAV ’12, Springer-
Verlag, Berlin, Heidelberg, 2012, pp. 712–717.

[68] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, V. Augustine, Dex:
A semantic-graph differencing tool for studying changes in large code
bases, in: Proceedings of the 20th International Conference on Software
Maintenance, ICSM ’04, IEEE Computer Society, Washington, USA,
2004, pp. 188–197.

[69] S. Person, M. Dwyer, S. Elbaum, C. Pǎsǎreanu, Differential symbolic
execution, in: Proceedings of the 16th Foundations of Software Engi-
neering, FSE ’2008, ACM, New York, NY, USA, 2008, pp. 226–237.

[70] S. Lahiri, K. McMillan, R. Sharma, C. Hawblitzel, Differential assertion
checking, in: Proceedings of the 21th Foundations of Software Engineer-
ing, FSE ’13, ACM, New York, USA, 2013.

[71] G. Fraser, A. Arcuri, Evosuite: automatic test suite generation for
Object-Oriented software, in: Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European Conference on Foundations of Soft-
ware Engineering, ESEC/FSE ’11, ACM, New York, NY, USA, 2011,
pp. 416–419.

[72] L. Baresi, M. Miraz, Testful: automatic unit-test generation for Java
classes, in: Proceedings of the 32nd International Conference on Soft-
ware Engineering - Volume 2, ICSE ’10, ACM, New York, USA, 2010,
pp. 281–284.

57

	Introduction
	Motivating Example
	SafeRefactorImpact
	Change Impact Analysis
	Identifying Small-Grained Transformations
	Identifying Impacted Methods

	Test Generation
	Example
	Change Coverage and Relevant Tests

	Evaluation
	Definition
	Planning
	Hypothesis formulation
	Selection of subjects
	Experiment design
	Instrumentation

	Defective Refactorings
	Design Patterns
	JML Compiler
	Larger Case Studies
	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Answer to the research questions

	Related Work
	Refactoring Object-Oriented Programs
	Refactoring Aspect-Oriented Programs
	Change Impact Analysis
	Detecting Behavioral Changes

	Conclusions

