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Abstract: Developers use the C Preprocessor (CPP) to handle portability and vari-
ability in program families of different sizes and domains. However, despite the widely
use of the CPP in practice, it is often criticised due to its negative impact on code
quality and maintainability, tool development, and its error-prone characteristics. In
particular, developers aggravate these problems when using incomplete annotations,
i.e., directives encompassing only parts of syntactical units. In a previous work, we
performed an empirical study on 41 C program family releases and found that almost
90% of syntax errors occur in incomplete annotations. There are some refactorings to
remove incomplete annotations proposed in the literature. However, they clone code
and increase Lines of Code (LOC). To avoid incomplete annotations and their intrinsic
problems, in this article we propose a catalogue of refactorings that converts incomplete
annotations into complete ones without cloning code. We implement an Eclipse plug-in
to help developers applying our refactorings automatically. To evaluate our catalogue,
we performed a study to analyse questions related to code cloning, LOC, and number
of directives. To answer our research questions, we analyse releases of 12 C program
families of different domains ranging from 4.9 thousand to 1.5 million LOC. The results
show that our catalogue can remove all incomplete annotations without cloning code,
and increasing only in 0.04% the LOC and in 2.10% the number of directives.
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1 Introduction

The CPP is widely used in practice to handle portability and variability in C

program families [Spencer, 1992]. A program family is a set of programs whose

commonality is so extensive that it is advantageous to study their common prop-

erties before analysing individual members [Parnas, 1976]. In this context, the



C preprocessor is used to implement these individual members in several do-

mains and open-source C program families of different sizes, such as the Linux

operating system, Apache web server, and Dia drawing software.

Despite the widespread use of the CPP, existing studies criticise it due to

its negative impact on code quality and maintainability, tool development, and

its error-prone characteristics [Kästner et al., 2011, Garrido and Johnson, 2005,

Ernst et al., 2002, Liebig et al., 2010, Liebig et al., 2011]. In particular, we ag-

gravate these problems when we use incomplete annotations, i.e., preprocessor di-

rectives encompassing only parts of syntactical units [Garrido and Johnson, 2005],

leading to problems like annotating an opening bracket without the closing

one [Ernst et al., 2002, Baxter and Mehlich, 2001, Liebig et al., 2011]. To better

understand incomplete annotations, in a previous study we performed an empir-

ical study on 41 C program families and found that almost 90% of syntax errors

occur in incomplete annotations [Medeiros et al., 2013].

In this sense, we consider incomplete annotations as a kind of bad smell

in C code [Fowler, 1999]. Previous studies measure that incomplete annotations

represent more than 15% of all CPP directives of open-source program fam-

ilies [Liebig et al., 2011]. This way, we can apply refactorings to improve the

quality of the code. By removing incomplete annotations, directives appear only

in specific places of the code, i.e., only between complete C syntactical units.

Further, there are only a few C parsers, e.g., TypeChef [Kästner et al., 2011]

and SuperC [Gazzillo and Grimm, 2012], that deal with incomplete annotations

in the literature. Thus, without incomplete annotations, developers can use more

tools to analyze the code and find bugs.

There are studies proposing refactorings to remove incomplete annotations

in the literature, but these refactorings clone code [Garrido and Johnson, 2005].

Moreover, these studies provide hypotheses that when turning incomplete an-

notations into complete ones (i.e., preprocessor directives encompassing com-

plete syntactical units), we might increase code cloning, LOC and the num-

ber of directives (see Section 2) [Liebig et al., 2011, Garrido and Johnson, 2005,

Schulze et al., 2011].

To avoid incomplete annotations, in this article we propose a catalogue

of refactorings to remove them without cloning code, i.e., we focus on im-

proving code quality (maintainability) [Arthur, 1988]. Our catalogue defines five

categories of refactorings: wrappers, conditions, commands, arrays and enums,

and function definitions. Further, we develop an Eclipse plug-in—named Colli-

gens1—that performs our refactorings automatically. We evaluate our catalogue

by answering the following research questions:

– Does our catalogue of refactorings increase code cloning?

1 https://sites.google.com/a/ic.ufal.br/colligens/

https://sites.google.com/a/ic.ufal.br/colligens/


– Does our catalogue of refactorings increase LOC?

– Does our catalogue of refactorings increase the number of directives?

To answer our questions, we analyse releases of 12 program families of differ-

ent domains ranging from 4.9 thousand to 1.5 million LOC. We select not only

well-known program families that are widely used (e.g., apache and ghostscript),

but also families that are not popular and narrowly used in practice (e.g., fvwm

and mptris). The results reveal that our catalogue can remove all incomplete

annotations increasing only in 0.04% the LOC and in 2.10% the number of di-

rectives. Further, despite existing studies correlate complete annotations and

cloning [Schulze et al., 2011, Liebig et al., 2011], the use of our catalogue does

not clone code. In summary, the main contributions of this work are:

– We present a catalogue of refactorings to remove incomplete #ifdef2 anno-

tations without cloning code (Section 3);

– We develop a tool (Colligens) that applies our refactorings automatically

(Section 4);

– We evaluate our catalogue of refactorings in 12 program families regarding

code cloning, LOC and number of directives (Sections 5 and 6).

We organise the remainder of this article as follows. Section 2 shows an in-

complete annotation that motivates our study. Then, Section 3 describes our

catalogue to remove incomplete annotations, and Section 4 explains our tool

support. Afterwards, we present the study settings in Section 5, and discuss

the results in Section 6. Last, we present the related work in Section 7 and the

concluding remarks in Section 8.

2 Motivating Example

Developers often use preprocessors to handle portability and variability in C pro-

gram families. For instance, libpng3 is a family implementing the official PNG

reference library. Figure 1 (a) presents part of the libpng family related to pro-

gressive display style, which is useful to read images from the network. Figure 1

(a) contains a preprocessor macro that implements a progressive display style,

i.e., PNG READ INTERLACING SUPPORTED. The macro uses the interlacing method,

which is responsible for encoding a bitmap image. During the download process,

we can already see a copy of the whole image despite the incompleteness. It is

useful for transmitting images over slow communication links.

2 We use #ifdef as a placeholder for all conditional directives, i.e., #ifdef, #elif,
#else, and #endif.

3 http://www.libpng.org

http://www.libpng.org


1. static void progressive_row(png_structp ppIn){
2.    // Code Here..
3.    if (new_row != NULL){
4.       // Code Here..
5.       if (y >= dp->h)
6.          png_error(pp, "invalid progressive");
7.       row = store_image_row(dp->ps, pp, 0, y);
8.       // Code Here..
9.    } 
10.#ifdef PNG_READ_INTERLACING_SUPPORTED
11.   else if (dp->interlace_type)
12.      png_error(pp, "missing row");
13.#endif
14.}

1. static void progressive_row(png_structp ppIn){
2.    // Code Here..
3. #ifdef PNG_READ_INTERLACING_SUPPORTED
4.    if (new_row != NULL){
5.       // Code Here..
6.       if (y >= dp->h)
7.          png_error(pp, "invalid progressive");
8.       row = store_image_row(dp->ps, pp, 0, y);
9.       // Code Here..
10.   } else if (dp->interlace_type)
11.      png_error(pp, "missing row");
12.#else
13.   if (new_row != NULL){
14.      // Code Here..
15.      if (y >= dp->h)
16.         png_error(pp, "invalid progressive");
17.      row = store_image_row(dp->ps, pp, 0, y);
18.      // Code Here..
19.   }
20.#endif
21.}(a) (b)

Figure 1: A refactoring to convert an incomplete annotation into complete ones.

The code snippet in Figure 1 (a) contains an incomplete annotation, i.e.,

the #ifdef directive that starts at line 10 surrounds only part of the if state-

ment beginning at line 3. Previous studies [Ernst et al., 2002, Liebig et al., 2010,

Liebig et al., 2011, Kästner et al., 2011] criticise the use of incomplete annota-

tions due to its negative impact on code quality, making the tasks of reading

and understanding the code difficult.

Garrido and Johnson [Garrido and Johnson, 2005] propose an alternative to

remove incomplete annotations as can be seen in Figure 1 (b), i.e., it clones

the entire if statement code block to transform the incomplete annotation into

complete ones. This way, this refactoring introduces clone, increase LOC and

add directives. Notice that it may be unfeasible depending on the number of

statements in the if block. In addition, existing work correlates complete an-

notations to code cloning [Schulze et al., 2011]. This way, we may face problems

by either keeping incomplete annotations or removing them by cloning code.

In this article, we present a catalogue of refactorings to remove incomplete

annotations in C program families without cloning code (Section 3). Then, we

evaluate our catalogue answering questions related to code cloning, LOC and

preprocessor directives (Sections 5 and 6).

3 Catalogue of Refactorings

In this section, we present our catalogue of refactorings to remove incomplete

annotations. To define this catalogue, we analyse annotations in different C pro-

gram families, and identify recurrent incomplete annotations that follow specific

syntax structures and occur frequently in real families.

We propose refactorings as transformation templates to remove incomplete

#ifdefs. Each transformation is an unidirectional refactoring, and consists of



two templates of C code snippets, on the left-hand (LHS) and right-hand (RHS)

sides. Thus, the LHS template defines a template of C code, which contains

preprocessor directives encompassing only part of C syntactical units, i.e., in-

complete annotations. Conversely, the RHS template defines a template of the

refactored code, i.e., it removes all incomplete annotations. This way, we have

only complete C syntactical units inside directives [Garrido and Johnson, 2005,

Liebig et al., 2011]. We can apply a refactoring whenever the LHS template is

matched by a C code snippet, but satisfying the preconditions (→). A matching

is an assignment of all meta-variables occurring in LHS/RHS models to concrete

values. Any element not mentioned in both C code snippets remains unchanged,

so the refactoring templates only show the differences between the source codes.

The following refactoring templates relate program families with the same

configurations. Moreover, both program families generate products with the

same observable behaviour. This notion is a simplified version of the notion

proposed by Borba et al. [Borba et al., 2012]. The two program families must

have the same feature models, configuration knowledges and asset mappings.

Additionally, for each configuration of the source program family, the products

of both program families must have the same observable behaviour.

Next, we explain each refactoring of our catalogue. We classify our refactor-

ings into five categories: wrappers, conditions, commands, arrays and enums, and

function definitions.

3.1 Wrappers

In LHS of Refactoring 1 we show a directive encompassing an else if state-

ment. The LHS template contains an incomplete annotation and two valid con-

figurations, i.e., with and without macro expression 1. The same configurations

are valid and syntactically correct in the RHS template. To remove this incom-

plete annotation, we replace the else if by an if statement that is complete

and does not depend on any other part of the code. Here, we use an extra vari-

able to keep the conditional expression. To easy comprehension, we define this

variable (test) with the bool type, but it is simply an integer. In this sense,

we define a precondition that the source code is not using the specific identifier

(test). We cannot define variables with the same identifier in the same scope.

Otherwise, we introduce a compilation error.

Refactoring 1 defines a fine-grained transformation and both templates are

equivalent, i.e., they behave in the same way for each configuration. Notice that

using variable test we avoid the second evaluation of condition 1 at line 6

(RHS template), eliminating the chances of introducing behavioural changes in

conditions with side effects. Moreover, this refactoring does not increase LOC,

introduce code cloning, or add extra preprocessor directives.



Refactoring 1 〈else if wrappers〉

1. if (condition_1){
2.    // Lines of code 1..
3. }
4. #ifdef expression_1
5.    else if (condition_2) {
6.      // Lines of code 2..
7.    }
8. #endif

1. bool test = condition_1;
2. if (test) {
3.     // Lines of code 1..
4. }
5. #ifdef expression_1
6.    if (!(test) && condition_2) {
7.       // Lines of code 2..
8.    }
9. #endif

(→) test is not used in the code.

The example presented in Figure 1 (a) matches the LHS template, i.e., the

meta-variables assume values condition 1 = (new row != null), condition 2 =

(dp->interlace type) and expression 1 = PNG READ INTERLACING SUPPORTED.

Thus, we can use this refactoring to remove the incomplete annotation of libpng.

We also detect preprocessor directives surrounding only part of if, else,

while, and case statements. We remove else wrappers using a refactoring

similar to the one presented in Refactoring 1. In Refactoring 2, we present a

refactoring to remove if wrappers. Here, we use an extra variable to keep the

conditional expression and define a precondition as well. Using this refactoring

we maintain the code behaviour and remove the incomplete annotation without

duplicating code, or introducing directives. However, we introduce one extra line

of code, independently of the size of the statement block. We apply a similar

refactoring to remove while wrappers.

Refactoring 2 〈if wrappers〉

1. #ifdef expression_1
2.    if (condition_1)
3. #endif
4. {
5.     // Lines of code..
6. }

1. bool test = 1;
2. #ifdef expression_1
3.     test = condition_1;
4. #endif
5. if (test) {
6.     // Lines of code..
7. }

(→) test is not used in the code.

In Refactoring 3, we show a refactoring to remove case wrappers, which are

part of switch statements. Here, we use an additional macro to define the case



statement. Despite we can define the same macro several times, we set a pre-

condition that the code does not define macro CASE1. If we change a macro

definition that the original source code is already using, we may introduce be-

havioural changes. Using this strategy, we modify the source code locally without

global impact, i.e., without impacting other parts of the code.

Refactoring 3 〈case wrappers〉

1. switch (var) {
2. #ifdef expression_1
3.    case VALUE: // Commands
4. #endif
5.    // Other cases..
6. }

1. #ifdef expression_1
2.    #define CASE1 case VALUE: // Commands
3. #else
4.    #define CASE1 ""
5. #endif
6. switch (var) {
7.    CASE1
8.    // Other cases..
9. }

(→) CASE1 is not used in the code.

Notice that we introduce three additional lines of code using this refactoring,

but it does not depend on the size of the case blocks. However, if we have more

optional cases we need more lines to remove the incomplete annotations, i.e., if

n is the number of optional cases, we need 3 ∗ n LOC. Next, we present two

particular types of wrappers.

3.1.1 Alternative Statements

Developers also use incomplete annotations to select alternative statements. For

example, Refactoring 4 shows an incomplete annotation encompassing alterna-

tive if statements. In this refactoring, we also use an additional variable to

keep the statement condition. This way, we define a precondition (code is not

using variable test) to avoid compilation errors. The LHS and RHS templates

behave in the same way independently if we define expression 1 or not. In this

refactoring, we introduce an extra line of code, no preprocessor directives and

we do not clone code to remove the incomplete annotation. We have similar

refactorings for alternative control-flow statements (while and switch).

3.1.2 If Statements ending with an Else Statement

To remove if statements ending with else, we propose Refactoring 5. We re-

place the else statement by another if statement. Here, we use variable test to



Refactoring 4 〈alternative if statements〉

1. #ifdef expression_1
2.    if (condition_1){
3. #else
4.    if (condition_2){
5. #endif
6.     // Lines of code..
7. }

1. #ifdef expression_1
2.    bool test = condition_1;
3. #else
4.    bool test = condition_2;
5. #endif
6. if (test) {
7.     // Lines of code..
8. }

(→) test is not used in the code.

control when we execute the commands of the else block. To avoid compilation

errors, we define a precondition. When using this refactoring we introduce four

lines of code, add an extra directive, but we do not clone code.

Refactoring 5 〈if statements ending with an else statement〉

1. #ifdef expression_1
2.    if (condition_1){
3.       // Lines of code 1..
4.    } else
5. #endif
6.    {
7.       // Lines of code 2..
8.    }

1. bool test = condition_1;
2. #ifdef expression_1
3.    if (test) {
4.       // Lines of code 1..
5.    } 
6.    test = !(test);
7. #else
8.    test = 1;
9. #endif
10.if (test) {
11.    // Lines of code 2..
12.}

(→) test is not used in the code.

3.2 Incomplete Conditions

To remove incomplete boolean expressions, which are used in conditional state-

ments (if) and control-flow statements (while), we propose Refactoring 6. In

this refactoring, we also use an additional variable to keep the statement con-

ditions and define a precondition to avoid compilation errors. Here, we do not

introduce clone, directives or extra lines of code. Both codes behave equiva-

lently since we evaluate the statement conditions only once. We refactor while

conditions with a similar refactoring.



Refactoring 6 〈incomplete if conditions〉

1. if ( condition_1
2. #ifdef expression_1
3.      && condition_2
4. #endif
5. ){
6.     // Lines of code..
7. }

1. bool test = condition_1;
2. #ifdef expression_1
3.     test = test && condition_2;
4. #endif
5. if (test) {
6.     // Lines of code..
7. }

(→) test is not used in the code.

3.3 Incomplete Commands

Here, we consider command as a simple statement with no compound statement

blocks. This way, Refactoring 7 presents our refactoring to complete commands

such as returns, attributions, and function calls. We use a return statement as

an example, but we refactor similar commands in the same way. This refactoring

does not introduce code cloning, does not add extra preprocessor directives, and

needs less LOC than the original code.

Refactoring 7 〈returns〉

1. return id_1
2. #ifdef expression_1
3.    && id_2
4. #else
5.    && id_3
6. #endif
7. ;

1. #ifdef expression_1
2.   return id_1 && id_2;
3. #else
4.   return id_1 && id_3;
5. #endif

3.4 Incomplete Array and Enum Definitions

To remove incomplete annotations surrounding array and enum elements, we use

Refactoring 8. Again, we use an additional macro (ELEMS) to maintain the array

or enum elements. This way, we define a precondition to remove the incomplete

annotation with local impact.

Notice that we introduce three additional lines of code when using this refac-

toring. However, if we have more optional array elements we need more lines,

i.e., being n the number of optional elements, we need 3 ∗ n LOC. We also add

an extra preprocessor directive, but we do not clone the source code.



Refactoring 8 〈incomplete array definitions〉

1. type id[] = {
2.    element_1,
3.    element_2
4. #ifdef expression_1
5.    , element_3
6. #endif
7. };

1. #ifdef expression_1
2.    #define ELEMS , element_3
3. #else
4.    #define ELEMS ""
5. #endif
6. type id[] = {
7.    element_1,
8.    element_2
9.    ELEMS
10.};

(→) ELEMS is not used in the code.

3.5 Incomplete Function Definitions

We present our refactoring to complete function definitions in Refactoring 9.

Here, we use an additional macro (PARAM) to keep the optional function param-

eters. To avoid behavioural changes, we also use a precondition that the original

code does not define macro PARAM. We add LOC and preprocessor directives in

this refactoring, but we do not clone code.

Refactoring 9 〈incomplete function definitions〉

1. type function_name (
2. #ifdef expression_1
3.    type param_id
4. #endif
5. ){
6.    // Lines of code..
7. }

1. #ifdef expression_1
2.    #define PARAM type param_id
3. #else
4.    #define PARAM ""
5. #endif
6. type function_name (PARAM){
7.    // Lines of code..
8. }

(→) PARAMS is not used in the code.

4 Tool Support

To perform these refactorings automatically, we implement Colligens. Our tool is

a plug-in for the Eclipse platform written in Java, it removes incomplete annota-

tions using the refactorings we present in the previous sections. Colligens uses ex-



isting tools, such as a variability-aware parser (TypeChef )4 [Kästner et al., 2011]

and the Uncrustify5 pretty printer as we explain next.

4.1 TypeChef

TypeChef is a variability-aware parser that can check the presence of syntax

and types errors in all possible configurations of the source code. We present

an example of C code in Figure 2. As can be seen, this code contains a prepro-

cessor macro (A) and two possible configurations, i.e., the first without macro

A (Program Variant 1), and the second with it (Program Variant 2). Running

TypeChef to analyze this code, it detects a syntax error when we define macro

A in Program Variant 2.

After running TypeChef in a code without syntax errors, it generates an

Abstract Syntax Tree (AST) with variability information (see Figure 3). In this

example, we correct the syntax error presented before and present the AST

that TypeChef generates. The expression node contains two alternative branches

depending on the macro A. Colligens modifies the AST that TypeChef creates

to refactor the source code, i.e., we change the nodes of the AST to refactor

the code. Then, we develop a component that prints the TypeChef AST back to

source code.

void foo(void){
   int x = 0;
   if (x != 1
#ifdef A
      x != 10
#endif
   ){
      // Code
   }
}

void foo(void){
   int x = 0;
   if (x != 1){
      // Code
   }
}

void foo(void){
   int x = 0;
   if (x != 1 x != 10){
      // Code
   }
}

A is not defined! A is defined!

Succeed! Syntax error! 
Missing logical operator.

Program Variant 1 Program Variant 2

Figure 2: Using TypeChef to check the presence of syntax errors.

4.2 Uncrustify

Uncrustify is a source code beautifier for several languages, including C. We use

this tool to align code, parentheses, assignments, variable definitions, structure

initializers, preprocessor directives, and so on. We present an example in Fig-

ure 4. After translating the TypeChef AST back to code, we use Uncrustify to

organise the source code. Section 4.3 presents our strategy to remove incomplete

annotations that uses TypeChef and Uncrustify.

4 http://ckaestne.github.io/TypeChef/
5 http://uncrustify.sourceforge.net/

http://ckaestne.github.io/TypeChef/
http://uncrustify.sourceforge.net/


...
   if (x != 1
#ifdef A
      && x != 10
#endif
   ){
      // Code
   }
...

with Variability Information

IfStmt

Abstract Syntax Tree (AST)

Expression

A !A

x != 1 && x != 10 x != 1 

CompoundStmt

...

Figure 3: TypeChef abstract syntax tree.

void foo(void){
int  i;
char *name;
#ifdef A
i = 5;
name = "bob";
#endif
}

void foo(void){
    int  i;
    char *name;
#ifdef A
    i = 5;
    name = "bob";
#endif
}

Uncrustify

Figure 4: Using Uncrustify to pretty print the source code.

4.3 Removing Incomplete Annotations

To remove incomplete annotations, we use the strategy presented in Figure 5 as

we explain next:

1. We use TypeChef to check the presence of syntax errors and to generate an

AST of the original source code;

2. Our refactoring engine uses the AST to refactor the code and remove the

incomplete annotations;

3. Then, we use our pretty printer component to pretty print the source code

back using the AST. In this step, we use Uncrustify to pretty print the source

code;

4. Last, we use TypeChef again to ensure that our refactorings do not introduce

syntax errors in any configuration.

We present a refactoring example using Colligens in Figure 6. In this exam-

ple, we select a file with an incomplete statement and the tool proposes a refac-

toring to remove the incomplete annotation. Developers can check the refactored

code proposed and accept the changes or not.

5 Study Settings

This section presents the settings of the study we perform to evaluate our refac-

torings. We use the Goal, Question, Metrics (GQM) approach [Basili et al., 1994].



#include <stdio.h>

void function ( ) {
  printf("Value
  #ifdef ENGLISH
      :
  #endif
  %d." , x);
}

Program Family

TypeChef

1
Refactoring

Engine

4

2Original Code
AST

3

Input

Output

AST

Output

Refactored Code

TypeChefPrettyPrinter

#include <stdio.h>

void function ( ) {
  #ifdef ENGLISH
       printf("Value: %d." , x);
  #else
      printf("Value %d." , x);
  #endif
  
}

Program Family

Output

Code with incomplete 
Annotations

Code without incomplete 
Annotations

ComponentInput Output

Legend:
Output

Syntax Errors

Figure 5: Strategy that Colligens uses to remove incomplete annotations.

Figure 6: Colligens view to refactor incomplete annotations.

5.1 Planning

The goal of this study is to evaluate our catalogue of refactorings for the purpose

of evaluation with respect to verifying the introduction of code cloning, addi-

tional LOC, and preprocessor directives after removing incomplete annotations

in the context of C program families. In particular, this study addresses the

following research questions:

– Question 1. Does our catalogue of refactorings increase code cloning?

– Question 2. Does our catalogue of refactorings increase LOC?

– Question 3. Does our catalogue of refactorings increase the number of pre-

processor directives?

To answer Question 1, we use a similarity analyser to detect clones in the

parts modified by the refactorings and compare the original and the refactored



Table 1: Subject characterisation

Project Project Application Number of Number of Number of

Name Version Domain LOC Files #ifdefs

apache 2.4.3 web server 144,768 362 2,173

bc 1.0.3 calculator 5,177 27 91

dia 0.97.2 drawing software 19,106 551 320

expat 2.1.0 XML library 17,103 54 362

flex 2.5.37 lexical analyzer 17,954 45 216

fvwm 2.4.15 windows manager 102,301 270 1,375

ghostscript 9.05 postscript interpreter 1,536,979 3,230 3,168

gnuchess 5.06 chess player 9,293 37 67

gzip 1.2.4 file compressor 5,809 36 298

lighttpd 1.4.30 web server 38,847 132 933

lua 5.2.1 programming language 14,503 59 193

mptris 1.9 game 4,988 29 361

Total 1,916,828 4,832 9,557

source files. In Question 2, we count the LOC of the original source files and the

LOC of the source files after applying our refactorings. Regarding Question 3,

we count the number of preprocessor directives before and after performing our

refactorings as well. To answer our questions we consider only the source files

changed by our refactorings. Next, we describe the subjects and the instrumen-

tation of our study.

5.1.1 Subjects Selection

We analyse 12 program families written in C ranging from 4,988 to 1,536,979

LOC. These program families are from different domains, such as web servers,

diagramming programs, and lexical analysers. Table 1 presents the details of

each program family, i.e., program family name, version, application domain,

total LOC, total number of files, and the total number of annotations.

We select program families analysed by previous studies [Ernst et al., 2002,

Garrido and Johnson, 2005, Liebig et al., 2011]. These studies analysed the use

of the C Preprocessor in program families of different domains and detected

that the majority of the families use the preprocessor in unstructured ways,

i.e., they use incomplete annotations. This way, we select program families with

incomplete annotations randomly based on these studies.



5.1.2 Instrumentation

We use TypeChef version 0.3.3 to parse all possible configurations of the program

families to detect syntax errors. Further, we use Eclipse6 4.2.2 to implement and

run Colligens to refactor C program families. We use the Simian7 similarity

analyser version 2.3.34 to detect clones. We develop a Java tool that counts the

number of #ifdef, #elif and #else directives. We use Uncrustify version 0.60

to pretty print the source code. Finally, we count the number of lines of code

and the number of files of each program family using the Count Lines of Code

(CLOC)8 tool version 1.56, which ignores blank lines and comments.

5.2 Operation

As a first step of our analysis, we run TypeChef to find syntax errors. Next,

we use our tool to identify recurrent types of incomplete annotations that occur

frequently. We define refactorings to remove these types of incomplete annota-

tions. Then, we use Colligens to remove the incomplete annotations of the 12 C

program families we consider in this study. Last, we run TypeChef again in all

families to ensure that our refactorings do not introduce syntax errors.

In the second step of our analysis, we use the original and refactored source

files to measure cloning, LOC, and the number of directives. To detect small

blocks of code cloning, we configure the Simian similarity analyser with threshold

= 2, i.e., detecting any block of cloning with at least two LOC. In addition, we

configure the analyser to ignore character cases, curly brackets, and modifiers.

Table 2 presents the number of incomplete annotations, and the total number

of clones, lines of code, and preprocessor directives that we introduce using our

catalogue of refactorings. As can be seen, the use of our catalogue does not

introduce code cloning. In flex, we need only 16 extra LOC and no directives to

remove all incomplete annotations. On the other hand, we add 39 LOC to remove

all incomplete annotations in mptris, and 13 directives in dia, which represents

an increase of 0.78% of LOC, and 4.06% of directives.

We measure the LOC and the number of preprocessor directives that we in-

troduce to remove each incomplete annotation. Table 3 presents the number of

incomplete annotations we remove for each category, and the median of extra

LOC and directives. For example, to remove an array incomplete annotation we

introduce in median 3.06 LOC. On the other hand, the incomplete commands

category of incomplete annotation needs only 0.42 lines of code. Regarding extra

preprocessor directives, an array incomplete annotation needs in median 0.83 ex-

tra preprocessor directives, while the extern category of incomplete annotations

6 http://www.eclipse.org/
7 http://www.harukizaemon.com/simian/
8 http://cloc.sourceforge.net/

http://www.eclipse.org/
http://www.harukizaemon.com/simian/
http://cloc.sourceforge.net/


Table 2: Results of our refactorings to remove incomplete annotations

Project Number of Code Extra Extra

Name Incomplete #ifdefs Cloning LOC Directives

apache 178 0 257 (0.18%) 48 (2.21%)

bc 6 0 6 (0.12%) 0

dia 31 0 59 (0.31%) 13 (4.06%)

expat 31 0 76 (0.44%) 14 (3.87%)

flex 16 0 16 (0.09%) 0

fvwm 61 0 115 (0.11%) 46 (3.35%)

ghostscript 87 0 143 (0.01%) 30 (0.95%)

gnuchess 2 0 2 (0.02%) 0

gzip 19 0 37 (0.64%) 12 (4.03%)

lighttpd 23 0 33 (0.08%) 11 (1.18%)

lua 6 0 18 (0.12%) 6 (3.11%)

mptris 17 0 39 (0.78%) 11 (3.05%)

Total 477 0 795 (0.04%) 201 (2.10%)

Table 3: LOC and number of directives after applying our refactorings

Category Incomplete LOC Directives

#ifdefs Median Median

Array 52 3.06 0.83

Commands 53 0.42 0.38

Conditions 39 2.08 0.77

Extern 146 1 0

Function Definition 19 1 0.05

Wrappers 168 2.19 0.64

Total 477 - -

needs no extra directives. Next, we interpret and discuss the results of this study

to evaluate our catalogue.

6 Discussion

In this section, we answer the research questions in Section 6.1, present the

benefits of complete annotations in Section 6.2, discuss behavioural changes in

Section 6.3 and generalisation of our refactorings in Section 6.4, and present the

threats to validity in Section 6.5. All experimental data are available online.9

9 http://www.dsc.ufcg.edu.br/~spg/jucs2014/

http://www.dsc.ufcg.edu.br/~spg/jucs2014/


6.1 Research Questions

Next we answer and discuss the research questions.

6.1.1 Does our catalogue of refactorings increase code cloning?

Our catalogue can remove all incomplete annotations without cloning code (see

Table 2). The number of code pairs we measure is zero, i.e., we do not find any

block of code cloning with at least two lines of code introduced by our refactorings

(we use the Simian similarity analyser). Notice that we only analysed the parts

of the source code that we modify with our refactorings.

We detect incomplete annotations in statements with thousand lines of code,

which would cause a considerable negative impact on the code quality if we

remove them using the strategy of Figure 1 [Garrido and Johnson, 2005]. This

way, we can apply our refactorings to remove these incomplete annotations with-

out introducing code cloning.

6.1.2 Does our catalogue of refactorings increase LOC?

Our catalogue introduces a few LOC (see Tables 2 and 3). The extra LOC rep-

resents 0.04% of the total LOC of all families. The array category of incomplete

annotations is the one that requires the highest number of extra LOC. In par-

ticular, we need three extra LOC for each optional element of the array.

Regarding the median results, the array and wrappers categories of incom-

plete annotations are the ones that requires the highest number of extra LOC.

As we can see, the medians of extra lines of code for these categories are 3.06 and

2.19 lines respectively. We detect 168 wrappers, out of which 38 (22.62%) require

no extra lines of code or less LOC than the original code. On the other hand, we

also identify a category, i.e., incomplete commands, which our catalogue removes

adding only 0.42 extra LOC in median.

6.1.3 Does our catalogue of refactorings increase the number of pre-

processor directives?

Our catalogue introduces a few extra preprocessor directives. The extra number

of directives represents 2.10% of the total number of directives of all program

families. The majority of the incomplete annotations 284 (59.54%) require no

extra preprocessor directives, and we need more than one directive to remove 3

(0.63%) of the incomplete annotations.

We remove 477 incomplete annotations, out of which 193 (40.46%) require

additional preprocessor directives. The category of incomplete annotations that

requires more extra preprocessor directives is the array category, we need extra

directives to remove 36 (69.23%) of them. On the other hand, we can remove all

extern incomplete annotation with no extra directive.



6.2 Benefits of Complete Annotations

Using our catalogue we transform all incomplete annotations into complete ones.

This way, we find preprocessor directives only in specific places of the source

code, i.e., they appear only between complete C syntactical units. In this context,

we make tool development easier [Liebig et al., 2011], since tools do not need to

consider that preprocessor directives can appear anywhere on the source code.

Besides, in a previous work we identify that almost 90% of the syntax errors

occur in incomplete annotations [Medeiros et al., 2013]. Thus, when using only

complete annotations we may minimise the chances of introducing subtle syntax

errors. Further, incomplete annotations can also cause semantic errors and mem-

ory leaks. For example, Figure 7 presents a real code snippet of the fvwm project

where the use of incomplete annotations can cause a memory leak. In this exam-

ple, if we define macro RE ENABLE I18N, we allocate memory to variable mbcset

at line 4. However, depending on the condition at line 7, we can finalize the

function execution at line 13 keeping the memory allocated to variable mbcset.

Since others functions of the source code use function parse bracket exp, we

can waste a considerable amount of memory.

1. static bin_tree_t * parse_bracket_exp (){
2.   // code here..
3. #ifdef RE_ENABLE_I18N
4.   mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1);
5. #endif
6. #ifdef RE_ENABLE_I18N
7.   if (sbcset == NULL || mbcset == NULL)
8. #else
9.   if (sbcset == NULL)
10.#endif
11.    {
12.      *err = REG_ESPACE;
13.      return NULL;
14.    }
15.  // code here..
16.#ifdef RE_ENABLE_I18N
17.  re_free (mbcset);
18.#endif
19.  return NULL;
20.}

Figure 7: Memory leak example of the fvwm program family.

In addition, previous studies criticise the problems of using incomplete an-

notations, such as its negative impact on code understanding and maintainabil-

ity [Ernst et al., 2002, Liebig et al., 2011]. In this context, our catalogue may be

helpful to remove incomplete annotations that are difficult to deal when reading,

modifying, and understanding the source code. However, some refactorings of our

catalogue may introduce additional complexities, such as the use of macros. This

way, we are still getting the benefits of complete annotations, i.e., development

of tool support and syntax errors, but we may not improve code understanding.



6.3 Behavioural Changes

A refactoring is a code transformation that changes the internal structure of

the software without modifying its external behaviour [Fowler, 1999]. Thus, to

minimize the chances of introducing behavioural changes with our catalogue of

refactorings, we check the preprocessed code before and after applying our cat-

alogue. If the original and refactored codes generate the same program variants

for all possible configurations of the source code, we improve confidence that

there is no behavioural changes (see Figure 8). First, we preprocess the original

source code for all possible configurations (step 1 ). Then, we do the same for

all possible configurations of the refactored source code (step 2 ). Last, we check

if the original and refactored source codes generate the same program variants

syntactically (step 3 ). Notice that we can check it locally, i.e., only the part of

the code we modify with our refactorings.

int test (
#ifdef expression_1
   int param_id
#endif
){
 // Lines of code..
}

#ifdef expression_1
   #define PARAM int param_id
#else
   #define PARAM ""
#endif

int test (PARAM){
   // Lines of code..
}

int test ( ){
   // Lines of code..
}

int test (int param_id){
   // Lines of code..
}

!expression_1

expression_1

Original0Code Refactored0Code

Preprocess the source codeLegend:

int test ( ){
   // Lines of code..
}

int test (int param_id){
   // Lines of code..
}

!expression_1

expression_1

=

=
= Equals

1 23

Figure 8: Preprocessing the original and refactored source codes.

However, some refactorings introduce local variables. This way, we cannot

check the preprocessed code using the original and refactored codes. To minimize

the chances of introducing behavioural changes in these refactorings, we avoid

evaluating the statement conditions in a different number of times. For example,

on the RHS of Refactoring 1, we use the variable test to keep the if statement

condition (condition 1) and avoid another evaluation at line 6. This way, we

avoid behavioural changes in conditions with side effects such as (++i < 0).

Further, we do not change the order of condition evaluations in our refactorings

to avoid behavioural changes as well.

The increase of the number of variables is minimum and may not impact

performance. In the families we analyze in our study, it ranges from 0% to

2.75%. For example, mptris is the project that we add the highest percentage of

variables. We add 3 new variables, but the source code contains only 109 variable



declarations, which represents an increasing of 2.75%. On the other hand, we do

not add any variables in some projects, such as bc, flex, gnuchess and lua.

6.4 Generalisation and Code Cloning

Our catalogue does not clone code to remove incomplete annotations. This way,

we define specific refactorings for each type of directive. The refactorings in the

literature are more generic, but they clone source code when completing the an-

notations [Schulze et al., 2013, Garrido and Johnson, 2005, Liebig et al., 2011].

For example, Figure 9 presents a generic refactoring for incomplete conditions.

As we can see, this refactoring clones the complete if statement to remove the

incomplete annotation. Depending on the LOC of the statement block, this refac-

toring clones several LOC. Using this strategy, we can generalise this refactoring

for all kinds of statements, function definitions, and so on. However, to avoid

clone, we define specific refactorings as presented in Section 3.

if (condition_1
#ifdef expression_1
     && condition_2
#endif
){
    // Lines of code..
}

#ifdef expression_1
  if (condition_1 && condition_2){
      // Lines of code..
  }
#else
  if (condition_1){
      // Lines of code..
  }
#endif

Figure 9: A generic refactoring for if statements.

6.5 Threats to Validity

In this section we discuss some threats to validity that are important for the

evaluation of our catalogue of refactorings. The next sections present the threats

related to construct validity (Section 6.5.1), internal validity (Section 6.5.2) and

external validity (Section 6.5.3).

6.5.1 Construct Validity

Construct validity refers to whether our refactorings really remove incomplete

annotations without introducing cloning, syntax errors and behavioural changes.

We minimise this threat by using Simian to measure that our catalogue does

not clone code, and a variability-aware parser, TypeChef, to check syntax errors

before and after performing our refactorings. In addition, our refactorings consist

of fine-grained and simple code transformations to avoid behavioural changes.



6.5.2 Internal Validity

The catalogue of refactorings deals with incomplete annotations. Moreover, Type-

Chef changes some incomplete annotations by cloning code to represent them

in the AST that it creates, i.e., it uses the strategy of Garrido and Johnson

presented in Figure 1 [Garrido and Johnson, 2005]. For example, consider the

example presented in Figure 10 (a), it is an incomplete function definition. Type-

Chef transforms the source code into Figure 10 (b). To minimise this threat, we

identify the transformations that TypeChef clones code and remove the cloning

that it introduces as can be seen in Figure 10 (c).

1. #ifdef expression_1
2.    type func_name (type id){
3. #else
4.    type func_name (){
5. #endif
6.    // Lines of code..
7. }

1. #ifdef expression_1
2.    #define PARAM type id
3. #else
4.    #define PARAM ""
5. #endif
6.
7. type func_name (PARAM){
8.    // Lines of code..
9. }

(a)

1. #ifdef expression_1
2.   type func_name (type id){
3.     // Lines of code..
4.   }
5. #else
6.   type func_name (){
7.     // Lines of code..
8.   }
9. #endif

(b) (c)

Figure 10: Code transformation that TypeChef performs [Kästner et al., 2011],

followed by our refactoring to remove code cloning.

6.5.3 External Validity

We refactor 12 C program family releases of different domains and sizes, they

range from 4.9 thousand to 1.5 million LOC. We select web servers, diagramming

software, lexical analysers and file compressors. Moreover, we select well-known

C program families, but also families that are not widely used in practice. In this

way, we alleviate this threat but we cannot generalise the results to C program

families with more than 5 million lines of code such as Linux and FreeBSD.

7 Related Work

In this section we present the related work. In Section 7.1 we discuss studies

that refactor C program families. Then, we relate our work to studies that pro-

pose variability-aware parsers in Section 7.2, and strategies to avoid behavioural

changes and check well-formedness in Section 7.3.



7.1 Refactoring C Program Families

Opdyke [Opdyke, 1992] defines refactoring as a behaviour-preserving program

transformation. To evaluate behaviour-preserving, he uses successive compilation

and tests. However, his work focuses only on refactorings of a single program.

The refactoring of C code is different from refactoring in other languages

due to the presence of the C preprocessor. In this context, we have a num-

ber of program variants and not a single program. This way, refactoring tools

have to consider all possible program variants. Early work on software fam-

ily refactorings focuses on the software architecture to identify problems and

refactor high-level components and connectors [Critchlow et al., 2003]. Alves et

al. [Alves et al., 2006] extend the notion of refactorings to software families with

refactorings based on feature models.

There are some approaches to refactor C code with preprocessor directives.

Garrido and Johnson [Garrido and Johnson, 2003] developed the CRefactory,

a refactoring tool for C program families that considers all possible configu-

rations. Garrido and Johnson also propose a strategy to remove incomplete

annotations [Garrido and Johnson, 2005], but it introduces code cloning (see

Section 2). Moreover, CRefactory focuses on C refactorings such as renaming

functions and extracting macros [Garrido and Johnson, 2013]. Our work has a

different focus. We propose C refactorings to the directives themselves to remove

incomplete annotations without cloning code. Thus, we minimise the problems

related to incomplete annotations, such as syntax errors and code understanding.

Baxter and Mehlich propose DMS, a source-code transformation tool for

C/C++ [Baxter, 1992]. In a more recent work, they used DMS and emphasised

the problems of using unstructured annotations, similar to incomplete annota-

tions [Baxter and Mehlich, 2001]. The DMS tool focuses on reverse engineering

to gather design information and easy maintenance tasks, but not in refactorings.

Vittek presents the Xrefactory, a refactoring browser for the C language and

discusses certain complications introduced by the C preprocessor [Vittek, 2003].

She uses a strategy that preprocesses the code keeping information about the

conditional directives and refactoring the code directly. In our work, we perform

our refactorings on the AST. In addition, the AST we use contains variability,

i.e., we do not preprocess the code. Thus, we keep all the variability information

on the AST.

Tokuda and Batory also propose a refactoring tool to class diagrams of

C++ programs [Tokuda and Batory, 2001]. Their work focuses on refactorings

of object-oriented systems. Moreover, their work does not deal with preproces-

sor directives. This way, a simple refactoring such as a function renaming may

introduce behavioural changes, since the tool does not change the function name

in all possible configurations. Basically, this work refactors only a single C++

program. Our work focuses on refactorings to remove incomplete annotations.



In addition, we refactor a C program family, and not a single program.

Other studies investigate the refactorings of conditional directives into as-

pects. Adams et al. [Adams et al., 2009] propose an abstract model and analyse

the feasibility of refactoring #ifdef to aspects, but it does not implement any

tool to perform the refactorings automatically. According to their work, it is

possible to refactor 99% of the conditional compilation into aspects. Lohmann

et al. [Lohmann et al., 2006] refactor the eCos operating system kernel using

AspectC++, an Aspect-Oriented Programming (AOP) extension to the C++

language, and analyse the runtime and memory costs of aspects. Our work also

focuses on refactorings of preprocessor directives, but we refactor the directives

without introducing another variability implementation mechanism like aspects.

7.2 Variability-Aware Parsers

In refactorings of C program families, we have to take into consideration all

program variants. So, it is important to check if we do not introduce syntax

errors and behavioural changes in any possible configuration (program vari-

ant). There are some strategies to parse C code with directives. Some ap-

proaches [Padioleau, 2009, Somé and Lethbridge, 1998] applied the strategy of

preprocessing or modifying the source code before parsing it. However, their

strategy is not interesting to refactor incomplete annotations since we lose in-

formation about variability.

Kästner et al. [Kästner et al., 2011] propose a variability-aware parser, i.e.,

a parser that analyse all possible configurations of a C code. In addition, it per-

forms type checking analysis [Kästner et al., 2012]. In our work, we use TypeChef

to identify syntax errors before and after applying our refactorings.

Gazzillo and Grimm [Gazzillo and Grimm, 2012] propose a variability-aware

parser (SuperC ). It is faster than TypeChef, but it does not perform type checking

analysis. SuperC does not recognise some C constructions of different standards.

This way, it does not parse some families we use in this study completely.

7.3 Verifying Behavioural Changes and Well-Formedness

Borba et al. [Borba et al., 2010] define a theory to refactor software families. In

their work, they use specific artefacts, such as feature models and configura-

tion knowledges, and propose a theory to detect when a product line refactors

another. Further, it defines a theory using a formal specification language and

proves some compositionality properties of this theory.

In another study, Ferreira et at. [Ferreira et al., 2012] present an implemen-

tation of this software family theory. It proposes tools to evaluate if an SPL

transformation preserves behaviour. These tools use test cases to minimise the

chances of introducing behavioural changes with refactorings. They are based



on SafeRefactor, which creates test cases automatically to increase confidence

that a transformation preserves behaviour [Soares et al., 2010]. In this study,

they define four strategies to identify behavioural changes. In our work we per-

form only simple and fine-grained refactorings to avoid behavioural changes.

Other studies propose strategies to verify if all program variants are well-

formed. They use strategies to verify type errors and missing dependencies, e.g.,

feature models, configuration knowledges and SAT solvers [Apel et al., 2010,

Batory and Thaker, 2007, Delaware et al., 2009], i.e., the safe composition prob-

lem. However, existing C program families, such as Apache, Dia and Gzip, do

not have some artefacts that these studies uses, e.g., feature models and config-

uration knowledge. This way, we use fine-grained code transformation to avoid

the introduction of syntax errors and behavioural changes.

8 Concluding Remarks

In this article, we presented a catalogue of refactorings to remove incomplete

annotations in C program families. Using our catalogue, we complete all the

preprocessor directives of 12 families without cloning code differently from pre-

vious work [Garrido and Johnson, 2005]. Moreover, we refactor the incomplete

annotations introducing 2.10% of new directives and 0.04% of extra LOC.

Our refactorings consist of small, simple, localised, and fine-grained code

transformations. This way, it is simpler to reason about their soundness to avoid

problems related to bugs in refactoring implementations [Soares et al., 2013].

However, we can compose them to derive coarse-grained transformations, as

we did to remove incomplete annotations in 12 program families. This way, we

find some evidences that our catalogue is representative. Therefore, we need to

consider more program families to get more evidence.

As a future work, we intend to adapt SafeRefactor [Soares et al., 2010] to

evaluate C program family refactorings by using test suite generators, such as Pex

and Randoop [Pacheco et al., 2008]. Then, we intend to evaluate our refactoring

using a similar approach of Ferreira et al. [Ferreira et al., 2012]. In addition, we

also intend to remove incomplete annotations in more C program families.

Acknowledgments

This work was partially supported by the National Institute of Science and Tech-

nology for Software Engineering (INES), funded by CNPq grants 573964/2008-4,

304470/2010-4, 480160/2011-2, 306610/2013-2, and 477943/2013-6.

References

[Adams et al., 2009] Adams, B., De Meuter, W., Tromp, H., and Hassan, A. E. (2009).
Can we refactor conditional compilation into aspects? In ACM International Con-



ference on Aspect-Oriented Software Development (AOSD), pages 243–254. ACM.
[Alves et al., 2006] Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., and Lu-

cena, C. (2006). Refactoring product lines. In Proceedings of the 5th International
Conference on Generative Programming and Component Engineering, GPCE ’06,
pages 201–210, New York, NY, USA. ACM.
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