
Formal Specification and Verification of
Well-formedness in Business Process Product Lines

Giselle Machado
Computer Science Department

University of Brasília
Brasília, Brazil

Email: gisellegiba@gmail.com

Vander Alves
Computer Science Department

University of Brasília
Brasília, Brazil

Email: valves@cic.unb.br

Rohit Gheyi
Department of Computing and Systems
Federal University of Campina Grande

Campina Grande, Brazil
Email: rohit@dsc.ufcg.edu.br

Abstract—Quality assurance is a key challenge in product
lines (PLs). Given the exponential growth of product variants
as a function of the number of features, ensuring that all
products meet given properties is a non-trivial issue. In particular,
this holds for well-formedness in PLs. Although this has been
explored at some levels of abstraction (e.g., implementation),
this remains unexplored for business process PLs developed
using a compositional approach. Accordingly, in this paperwe
report on-going work in formalizing Business Process Product
Lines, including the definition of well-formedness rules, formal
specification of transformations, and the proof that transforma-
tions preserve well-formedness without having to instantiate all
variants. Formalization and proofs are provided in the Prototype
Verification System, which has a formal specification language
and a proof assistant.

Index Terms—Business Process Product Lines, Verification,
PVS, Formalization, Well-formedness, Compositional Approach

I. I NTRODUCTION

Business processes are a way for an organizational entity to
organize work and resources (people, equipment, information,
and so forth) to accomplish its aims [1]. These processes
specify key activities, roles, and artifacts produced in a specific
manner by an organization. Some activities are performed
manually and others can be automated by the development of
one or more systems. Such processes are essential for achiev-
ing business goals and compliance to them is an important
measure of organizational maturity [2].

It is often the case that replication of activities or even whole
processes occur and failure in identifying such replication
results in unnecessary organizational costs regardless ofthe
quality of the underlying software supporting the existing
processes [3]. In order to minimize this risk and optimize
allocation of organizational resources, it is important first to be
aware of this replication and then to handle such commonality
and variability. Accordingly, Business Process Product Lines
(BPPL) [4], [3] have emerged to leverage Software Product
Line concepts and techniques to business processes: a BPPL
is a product line (PL) whose products are sets of business
process for a particular organization.

Quality assurance is a key challenge in PLs. Given the
exponential growth of product variants as a function of the
number of features, ensuring that all products meet given
properties is a non-trivial issue. In particular, this holds for

well-formedness in PLs. Although this has been explored at
some levels of abstraction (e.g., implementation), this remains
mostly unexplored for BPPL. Although recent work investi-
gates this issue formally for business processes [3], it has only
been done for an annotative approach [5] and the proof is
not machine-checkable, which may increase the likelihood of
error. Annotative approaches have well-known modularity and
legibility issues, whereas compositional approaches mitigate
these issues and have also been largely used for managing
variability in PLs. Further, from the formalization side, a
machine-checked proof is sufficiently detailed for replication
and certification purposes.

Accordingly, this paper reports on-going work using the
Prototype Verification System (PVS) [6] to formally spec-
ify and verify well-formedness in BPPL developed using a
compositional approach1. In particular, the contributions are
threefold:

• Formal Specification (Section II): the formalization
in PVS precisely specifies a language of BPPL, well-
formedness properties, and compositional transforma-
tions. It focuses on how these transformations contribute
to well-formedness.

• Scalable and General Verification (Section III): the
verification is formal and ensures well-formedness of
all products without checking each one individually.
It consists of proofs that representative transformations
preserve well-formedness in any BPPL.

• Experience(SectionIV): the paper reports experience in
using this proof assistant, which can be useful for similar
purposes.

II. FORMALIZATION OF BPPL

This section presents our formal specification of BPPL. The
formalization is based on an existing Haskell implementa-
tion [7]. Since Haskell is a functional programming language
with limited formalization support, we decided to perform
the formalization in PVS, because it contains a sufficiently
expressive specification language, e.g., first-order logic, for the
purpose of this work. Further, this was also practical because
PVS has a functional subset to which Haskell constructs can

1The PVS specification and proofs can be foundonline

http://www.gisellemachado.com/mestrado/pvs/arquivos/specification.zip

be mapped, e.g., Haskell’s functions and algebraic data types
map into PVS’s functions and datatype, respectively.

For readability purposes in this paper, we render some
of PVS symbols with their usual mathematical representa-
tion. The overall structure of the specification is shown in
Figure 1. The arrows indicate the dependency relationships
between modules, each of which is a PVS theory (group of
related definitions, e.g., functions, data types, theorems). The
specification is divided into four PVS theories: 1)Example
has concrete examples of BPPL (SectionII-A); 2) Language
defines the syntax and well-formedness rules of the BPPL
(SectionII-A); 3) Transformations define transformations over
BPPL (SectionII-B); 4) Properties are theorems on well-
formedness of BPPLs when these are manipulated by such
transformations (SectionIII-A).

Fig. 1. Overall structure of formal specification of BPPL.

A. Business Process Product Line Language

We now define BPPL’s language in PVS, by first specifying
its abstract syntax (SectionII-A1) and then its well-formedness
rules (SectionII-A2). We note that BPPL’s semantics in this
paper is limited to well-formedness properties.

1) Abstract Syntax: it consists of hierarchically related
algebraic data types defining key concepts in the BPPL domain
such as business process model and business process. Trans-
lating it into a PVS specification from the initial Haskell im-
plementation mapped corresponding constructs between these
two languages: Haskell’s algebraic data types map into PVS’s
datatype; further, list was mapped to set, since the order of
elements was not relevant for specifying the transformations
and the properties.

Below is the PVS specification ofBPModel, the root type
in the abstract syntax; it consists of a set of processes of
type BP (business process).BPM is a type constructor and
BPModel? a type recognizer.

BPModel: DATATYPE
BEGIN
BPM(processes:PBP): BPModel?

END BPModel

A BP is a type which has four fields (an identifier, a type, a
set of objects and a set of transitions), each of each is further
modeled as a PVS datatype. The following is an example of a
BPPL, namelyM, comprising a single process (Figure2). Since

scope of names in PVS is valid from the point of definition
to the end of the specification, the definition has a bottom-up
style.

Fig. 2. Example ofAdvice

The process flow objects areStart, "Analyze the legal
requirements to the process" (namely C) and End. Start
and End are unique objects.C is of the type have the
FlowObject and has four fields: an identifier (id4), a
type (Activity), a set of annotations (a1) and a set of
parameters (p1):
id1: idFO
a1: Annotation
p1: Parameter
C: FlowObject = CFO(id1,Activity,a1,p1)

The arrows are called transitions. A transition connects
two flow objects. The first transition is represented byt1,
connectingStart to C. This transition has a conditionc1.
The second transition (second arrow) ist2, which connects
C to End and has conditionc2:

c1,c2: Condition
t1: Transition = MkTransition(Start,C,c1)
t2: Transition = MkTransition(C,End,c2)

The business process "Retirement" (bp1) comprises a han-
dle (id), a type (Advice), a set of objects (objs) and a set
of transitions (ts).

id: idBP
objs = {Start, C, End}
ts = {t1, t2}
bp1: BP = BP(id,Advice,objs,ts)

Finally, this simple BPPL comprises a value of the
BPModel type, in this case a set of processes.

M: BPModel = BPM({bp1,bp2})

Currently, the language does not address other business
process constructs such as gateways, swim lanes, and events.
Nevertheless, a similar mapping approach employed could be
used to address these and is regarded as future work.

2) Well-formed Rules: In the original Haskell specifica-
tion [7], well-formedness rules were built into the typechecker.
These rules and their mapping to PVS are explained in
the following. First, a well-formed BPPL, described by the
wfModel predicate, comprises a set of well-formed business
processes:

wfModel(p: BPModel): bool =
∀ bp: processes(p) | wf(bp)

A well-formed product is defined by thewf predicate and
satisfies the following rules:

wf(p: BP): bool =
WF1(p) ∧ WF2(p) ∧ WF3(p) ∧ WF4(p) ∧

WF5(p) ∧ WF6(p) ∧ WF7(p) ∧ WF8(p) ∧

WF9(p)

In the following, we illustrate some of these rules. For
example, every process must have a beginning and an end,
i.e., theStart andEnd objects should belong to the set of
objects of theBP (WF1).

WF1(p: BP): bool =
Start ∈ objects(p) ∧ End ∈ objects(p)

Any FlowObject of bp must be reachable fromStart
(WF5). To formalize this rule, we first define theextends
predicate, which relates two identical flow objects or those
comprising a transition in the business process:

extends(bp: BP, origin: FlowObject)
(last: FlowObject): bool =

origin=last ∨

∃ t:Transition | t ∈ transitions(bp) ∧

startObject(t) = origin ∧

endObject(t) = last

Next, we consider the reflexive transitive closure of
the extends relation. In PVS, the inductive definition
extendsClosure specifies that there is either a direct
extends relationship between two flow objects or there
is a middle object between them. This middle object being
reachable from the origin and from which the last object is
directly related withextends:

extendsClosure(bp:BP, origin:FlowObject)
(last:FlowObject): INDUCTIVE bool =

origin ∈ objects(bp) ∧

last ∈ objects(bp) ∧

(extends(bp,origin)(last) ∨

∃ middle: FlowObject |
middle ∈ objects(bp) ∧

extendsClosure(bp,origin)(middle) ∧

extends(bp,middle)(last))

To formalize WF5, we rely on extendsClosure as
follows:

WF5(p: BP): bool =
∀ fo: objects(p) |

extendsClosure(p,Start)(fo)

Other well-formed rules refer to properties ofStart and
End objects such asStart cannot end a transition,End
cannot start a transition, andEnd is reachable from any object,
and to properties of transitions such as transitions of a business
process comprise objects within the process and there is only
one transition starting at any given object. Some properties
such as the latter are used for simplification purposes and are
planned to removed in future work.

B. Transformations

We propose a set of transformations to manage variability in
BPPL: by selecting and composing business processes (some
of which are advices), specific business processes are built. In
the compositional approach investigated, we have formalized
two transformations, described in the following sections.These
are representative of the remaining transformations and thus
formalization of these would follow a similar approach.

1) Select Business Process: SelectBP simply selects a
given BP, identified by an id, from the business processes
within a BPPL. The transformation then has two param-
eters (bpId and pl) and returns aBPModel with only
one business process. Further, the transformation requires the
following: 1) the returnedBP must have the sameId than
bpId; 2) the BPPL that is an input parameter (pl) must be
well-formed, as described next.

SelectBP(pl:{p:BPModel | wfModel(p)},
bpId: {id:Id | ∃ p: processes(pl) |

pid(p) = id}): BPModel =

The transformationSelectBP returns aBPModel com-
prising a process frompl and having the same identifier as
bpId.

pl WITH [processes := {bp:BP |
bp ∈ processes(pl) ∧ pid(bp) = bpId}]

2) Evaluate After Advice: TheevaluateAfterAdvice
transformation composes aBP with another one of type
Advice resulting in a BP. For example, a simple com-
monality and variability analysis of Figures3 and 4 yields
that the only variableFlowObject is "Analyze the legal
requirements of the process" that is outlined in red in the
process "Retirement"; the otherFlowObjects are common
to both processes.

To manage such commonality and variability in a composi-
tional approach, in Figure2, a process of typeAdvice was
created. Accordingly, process "Retirement" is now generated
by means of the transformationevaluateAfterAdvice,
which composes the process of the typeAdvice with the
process "Resignation". Three transitions are removed
and two newtransitions are created connecting process
to the other, as shown in Figure5.

In PVS transformation,evaluateAfterAdvice is spec-
ified taking as parameters a business processbp and an advice

Fig. 3. Process Resignation

Fig. 4. Process Retirement

Fig. 5. Example transformationevaluateAfterAdvice

adv, both of which are well-formed and have disjoints objects.
The resulting business process has the union of the objects
of bp andadv and the transitions provided by thebuildT
function, which behaves as shown in Figure5.

evaluateAfterAdvice(adv: {a:BP | wf(a)},
bp: {b:BP | wf(b) ∧

objects(b) ∩ objects(adv) = ∅}): BP =
bp WITH
[pid := pid(bp), ptype := ptype(bp),
objects := objects(bp) ∪ FO_adv?(adv),
transitions := buildT(adv,bp)]

In the current specification, we do not address quantifica-
tion, which is regarded as future work.

III. V ERIFICATION OF WELL-FORMEDNESSPROPERTIES

Given the exponential growth of product variants in BPPL,
ensuring that every product meets certain properties is a non-
trivial problem. Seeking to ensure the quality of products
BPPL, this study conducted a formal verification of these
properties by proving them in the proof assistant PVS. The
investment is worthwhile, since these are general proper-
ties and thus quantify over infinitely many BPPLs. In this
section, we specify a theorem that all transformations must
satisfy (SectionIII-A), and then we showSelectBP and
evaluateAfterAdvice are sound (SectionIII-B).

A. Theorems

In the product derivation process of compositional BPPL,
transformations play a central role by composing business
process, some of which are advices, to build a product for any
given configuration. A sufficient condition for well-formedness
of the resulting product is ensuring that each transformation
preserves well-formedness. In this work, we are interestedin
such transformations regardless of the configuration or BPPL
in question.

For example, theWFM_SBP theorem states that the
SelectBP(i,pl) always generate a well-formed BPPL
given thatpl is a well-formed BPPL andi refers to a business
process in pl, i.e.,SelectBP preserves well-formedness:

WFM_SBP: THEOREM
∀ pl: {sp:BPModel | wfModel(sp)},
bpId: {id:Id | ∃ p: processes(pl) |

pid(p) = id} |
wfModel(SelectBP(pl,bpId))

As another example, the following theorem states
that evaluateAfterAdvice(adv,bp) generates well-
formed product given that business processbp is well-
formed and adv refers to an existing advice, i.e.,
evaluateAfterAdvice(adv,bp) also preserves well-
formedness:

WFM_EVAL: THEOREM
∀ adv: {a:BP | Advice?(ptype(a)) ∧

wf(a) ∧ CPC?(pc(ptype(a)))},
bp: {b:BP | wf(b) ∧

objects(b) ∩ objects(adv) = ∅},
f: FOAnotado?(adv,bp) |

wf(evaluateAfterAdvice(adv,bp))

Theorems for other transformations can be specified simi-
larly.

B. Proofs

In this section, we show that both theorems stated before
are sound.

1) Select Business Process: The strategy is to first
perform skolemization on the universal quantifier and
then expand the sequent according to the definitions of
SelectBusinessProcess and wfModel. Next, instan-
tiate with a variable created in skolemization and obtain two
subgoals. The subgoals rely on conditions that are already in
the antecedent and consequent, which proves the two subgoals.

2) Evaluate After Advice: The strategy is to break the proof
into smaller problems, by creating and relying on auxiliary
lemmas during the proof. In particular, this decompositionis
accomplished by expanding thewf predicate and replicating
the context, leading to lemmas (LEMMA_WF1-WF9) corre-
sponding to each of the nine rules as seen in SectionII-A2. The
lemmas are the same in terms of the context, the variant part
being the specification of the well-formed rule. For example,
in the following lemma:

WFM_WF1: LEMMA
adv: {a:BP | Advice?(ptype(a)) ∧

wf(a) ∧ CPC?(pc(ptype(a)))},
bp: {b:BP | wf(b) ∧

objects(b) ∩ objects(adv) = ∅},
f: FOAnotado?(adv,bp) |

WF1(evaluateAfterAdvice(adv,bp))

the last line refers toWF1. Other lemmas are defined likewise.
We present proof sketches of some of such lemmas. In partic-
ular WF1 establishes thatFlowObjects (Start andEnd)
should be in the set of objectsbp. Given the transformation
evaluateAfterAdvice (SectionII-B), the set of objects
of the result ofevaluateAfterAdvice is composed by
the union of objectsbp with objects of adv without the
Start andEnd. Sincebp is well-formed, it meetsWF1 and
so does theBP resulting fromevaluateAfterAdvice.
This provesLEMMA_WF1.

As explained in SectionII-A2, WF5 refers to reachability
from the Start object, i.e., all object are reachable from
Start. It is known that this rule is valid forbp e adv,
as they are well-formed. To proveLEMMA_WF5, we rely
on further finer-grained lemmas corresponding to the three
groups of objects arising from the partition incurred by the
annotated object (joinpoint) matched by the pointcut of the

advice as shown in Figure6. The partition is as follows.
The first part is composed of objects in the base process
bp up to and including the annotated object and is related
to lemma Lema_WF5_01. The second part comprises all
objects in the advice exceptStart andEnd and is related
to lemmaLema_WF5_02. Finally, the third part is made of
objects frombp after the annotated object and corresponds
to lemmaLema_WF5_03. Each such lemma refers to reach-
ability from Start (of bp) up to the corresponding object
partition.Lemma_WF5_01 follows from well-formedness of
bp. Lemma_WF5_02 follows from this, from the definition
of the transformation, and from well-formedness ofadv.
Lastly,Lemma_WF5_03 follows from this, from the definition
of the transformation, and from well-formedness ofbp. In
PVS, all such proofs rely on induction, since the definition of
reachability is inductive (c.f. SectionII-A2). This concludes
the proof ofLema_WF5.

Fig. 6. Partition of objects to prove reachability propertyunder
evaluateAdvice.

IV. D ISCUSSION ANDLESSONSLEARNED

Since documentation in PVS is limited, there are many
details in the specification and proof that are only learned
from experience. Indeed, a first lesson was learned about the
impact of the order of specification on proofs. For instance,
the inductive specification of the functionextendsClosure
(SectionII-A2) is better done by placing the base case first
instead of the recursive one, the reason being to simplify the
corresponding proof by induction.

Further, we experienced that a slight syntactic change in
the specification can have an impact in the proofs, in many
cases discharging the whole proof. Therefore, it is recom-
mended a proof style relying on different lemmas, minimizing
syntactic dependency (e.g., avoiding referencing numbersin
the sequent) in the proof commands (e.g., skolemize, instan-
tiate). For example, this strategy was following in proving
WFM_EVAL in the specification ofwf. WF9 as the rule was
the last to be specified and the proofs of some theorems had
already been made, then the ruleWF9 was placed in the early

specification ofwf to this rule appears last in the hour of trial,
not to lose the proof already made.

Additionally, during the proof strategy, we normally start
by using the smallest granularity commands until a point
where the proof can proceed at higher granularity with built-
in tactics. In particular, we often aimed at simplifying the
formulas embedded with quantification and connectives so as
to avoid expanding the definitions, seeking a cleaner sequent
structure, which facilitates the understanding and progress of
the proof.

One widely used strategy was to first try to prove theorems
manually before using the proof assistant. This was instrumen-
tal in identifying suitable decomposition strategies to break a
theorem into auxiliary lemmas, seeking to guarantee that the
theorem can be proved based on the lemma and that each of
these is also proved with reduced effort. For example, this
strategy was following in provingWFM_EVAL. An addition
benefit of this decomposition is to identify reusable lemmas,
which otherwise might clutter and slow down the proof process
also in terms of performance.

Indeed, the specification and proof efforts are not trivial.
Nevertheless, by building up and reusing experience may
speed up the process. Moreover, the return-on-investment is
desirable because the proofs certify that the properties and
general, i.e., they quantify over infinitely many BPPLs. This
is different from model checking, whereby the proof effort is
smaller (automatic), but it may also take some time and is also
not complete.

V. RELATED WORK

Machado et al. [7] characterize variability in business pro-
cess and then present an approach to manage such a variability.
Like our work, the approach employed is compositional, rely-
ing on aspects. Unlike our approach, they have not addressed
quality assurance in a formal way.

The naive approach of checking well-formedness of all indi-
vidual programs of a product line is not feasible because of the
combinatorial explosion of program variants. To address this
problem, Apel et al. [8] devised a type system for a simplified
feature-oriented Java-like language. The type system is sound,
i.e., it ensures that all programs are type safe. Similar to
our work, their solution is general with respect to syntactic
property of PL instances; additionally, the target language is
a simplified language. Differently, they are concerned with
program artifacts, whereas our work addresses a high level
artifact (business process) and their proof was carried outman-
ually, whereas ours was carried out semi-automatically with
PVS. A similar work [9] proposes an automated approach for
verifying safe composition for SPLs with explicit configuration
knowledge models.

Schaefer et al. [10] provided a foundation for composi-
tional type checking for delta-oriented product lines (PLs)
of Java programs. By combining the analysis results of the
delta modules with the PL declaration, they showed that is
possible to establish that all the products of the PL are well-
typed according to the Java type system. Their approach is

transformational and works with PL with object-oriented type
checking in Java. Differently, our approach is compositional
and focuses on a different level of abstraction (business
processes).

Rosa et al. [3] propose a method and tool suite for develop-
ing processes based on configurable process model. First they
defined the notion of C-iEPC (an extension of the Configurable
Event-driven Process Chains, C-EPC) and syntactically correct
C-iEPC. Next they provided the definition of C-iEPC and
configuration and show an algorithm to individualize C-iEPCs.
Finally they proved that the algorithm is able to generate the
model of given a configuration correct syntactically. Unlike our
compositional approach, this proposal employs an annotative
approach with runtime binding mode. This clutter the specifi-
cation with unnecessary details, hampering understandability.
Although formal, their approach employ only manual proof,
whereas ours employs the PVS prover.

VI. CONCLUSIONS

This paper reports on-going work in formalizing Business
Process Product Lines in PVS, including the definition of
well-formedness rules. We also encode two transformations
and prove them sound (preserve well-formedness rules) with
respect to a formal semantics in PVS.

As a future work, we intend to formalize all the remaining
transformations of BPPL [7]. Investigating the minimally
necessary conditions to preserve the properties of the well-
formedness and how these interfere with the transformations is
regarded as future work. We further plan to specify semantics
of other BPPL constructs, such as gateways, swim lanes, and
events, and quantification in the aspect subset to augment the
expressivity of the BPPLs considered.

ACKNOWLEDGMENT

We gratefully thank the anonymous referees for useful
suggestions.

REFERENCES

[1] M. Dumas, W. Aalst, and A. Hofstede,Process-aware information
systems: bridging people and software through process technology.
Wiley, 2005.

[2] J. Jeston and J. Nelis,Business process management: practical guide-
lines to successful implementations. Butterworth-Heinemann, 2006.

[3] M. Rosa, M. Dumas, A. Hofstede, and J. Mendling, “Configurable multi-
perspective business process models,”Information Systems, vol. 36,
no. 2, pp. 313–340, 2011.

[4] H. Rombach, “Integrated software process and product lines,” in ISPW,
2005, pp. 83–90.

[5] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software
product lines,” inICSE, 2008, pp. 311–320.

[6] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert,PVS Language
Reference, 2001.

[7] I. Machado, R. Bonifácio, V. Alves, L. Turnes, and G. Machado, “Man-
aging variability in business processes: an aspect-oriented approach,” in
EA at AOSD, 2011, pp. 25–30.

[8] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Type safety for
feature-oriented product lines,”ASE, vol. 17, pp. 251–300, 2010.

[9] L. Teixeira, P. Borba, and R. Gheyi, “Safe composition ofconfiguration
knowledge-based software product lines,” inSBES’11: XXV Brazilian
Symposium on Software Engineering, 2011.

[10] I. Schaefer, L. Bettini, and F. Damiani, “Compositional type-checking
for delta-oriented programming,” inAOSD, 2011, pp. 43–56.

	Introduction
	Formalization of BPPL
	Business Process Product Line Language
	Abstract Syntax
	Well-formed Rules

	Transformations
	Select Business Process
	Evaluate After Advice

	Verification of well-formedness Properties
	Theorems
	Proofs
	Select Business Process
	Evaluate After Advice

	Discussion and Lessons Learned
	Related Work
	Conclusions
	References

