Formal Specification and Verification of
Well-formedness in Business Process Product Lines

Giselle Machado Vander Alves Rohit Gheyi
Computer Science Department Computer Science Department Department of Computing and Systems
University of Brasilia University of Brasilia Federal University of Campina Grande
Brasilia, Brazil Brasilia, Brazil Campina Grande, Brazil
Email: gisellegiba@gmail.com Email: valves@cic.unb.br Email: rohit@dsc.ufcg.edu.br

Abstract—Quality assurance is a key challenge in product well-formedness in PLs. Although this has been explored at
lines (PLs). Given the exponential growth of product variars some levels of abstraction (e.g., implementation), thisai@s
as a function of the number of features, ensuring that all o5ty unexplored for BPPL. Although recent work investi-

products meet given properties is a non-trivial issue. In péicular, L . .
this holds for well-formedness in PLs. Although this has bee gates this issue formally for business proces8gst[has only

explored at some levels of abstraction (e.g., implementain), DP€en done for an annotative approash &nd the proof is
this remains unexplored for business process PLs developednot machine-checkable, which may increase the likelihdod o
using a compositional approach. Accordingly, in this paperwe error. Annotative approaches have well-known modularity a
report on-going work in formalizing Business Process Prodat legibility issues, whereas compositional approachesgaiti
Lines, including the definition of well-formedness rules, érmal ; ! .
specification of transformations, and the proof that transbrma- the;e ,'_SSU?S and have also been largely u_sed. for managlng
tions preserve well-formedness without having to instantite all ~ variability in PLs. Further, from the formalization side, a
variants. Formalization and proofs are provided in the Prototype machine-checked proof is sufficiently detailed for repgima
Verification System, which has a formal specification languge and certification purposes.
and a proof assistant. ; ; AN ;

Index Terms—Business Process Product Lines, Verification, Accordlngly,_ .thls. paper reports on-going work using the
PVS, Formalization, Well-formedness, Compositional Appoach F’rototype yerlflcatlon System (_PVSB][tO formally Spe_c-

ify and verify well-formedness in BPPL developed using a

| INTRODUCTION compositional approaéhIn particular, the contributions are

threefold:
Business processes are a way for an organizational entity tQ Formal Specification (Section I1): the formalization
organize work and resources (people, equipment, infoomati in PVS precisely specifies a language of BPPL, well-

and so forth) to accomplish its aimd4]] These processes
specify key activities, roles, and artifacts produced ipecsic
manner by an organization. Some activities are performed 5 \vell-formedness.

manually and others can be automated by the development of gcajaple and General Verification (Section I11): the
one or more systems. Such processes are essential for-achiev grification is formal and ensures well-formedness of
ing business goals and compliance to them is an important g, products without checking each one individually.

measure of organizational matri@[It consists of proofs that representative transformations
Itis often the case that rephcguo_n of activities or everqieh. preserve well-formedness in any BPPL.
processes occur and failure in identifying such replicatio Experience (SectionlV): the paper reports experience in

results in unnecessary organizational costs regardlesseof using this proof assistant, which can be useful for similar
quality of the underlying software supporting the existing puUrposes.

processesd. In order to minimize this risk and optimize

allocation of organizational resources, it is importargtfio be Il. FORMALIZATION OF BPPL
aware of this replication and then to handle such commagnalit
and variability. Accordingly, Business Process Producteki fo
(BPPL) [, [3] have emgrged to Ieve_rage Software Produ n [7]. Since Haskell is a functional programming language
Line concepts and techniques to business processes: a B

) duct I L) wh duct s of busi ith limited formalization support, we decided to perform
IS a product fine .() w 0Se products are Sets of DUSINGRE formalization in PVS, because it contains a sufficiently
process for a particular organization.

. :) _ expressive specification language, e.g., first-order Jdgiche
Quality assurance is a key challenge in PLs. Given t

il h of d _ ; _ ¢ rpose of this work. Further, this was also practical beeau
exponential growth of product variants as a function of they/g nas a functional subset to which Haskell constructs can
number of features, ensuring that all products meet given

properties is a non-trivial issue. In particular, this roldr 1The PVS specification and proofs can be fourmdine

formedness properties, and compositional transforma-
tions. It focuses on how these transformations contribute

This section presents our formal specification of BPPL. The
rmalization is based on an existing Haskell implementa-

http://www.gisellemachado.com/mestrado/pvs/arquivos/specification.zip

be mapped, e.g., Haskell's functions and algebraic datastyscope of names in PVS is valid from the point of definition
map into PVS’s functions and datatype, respectively. to the end of the specification, the definition has a bottom-up
For readability purposes in this paper, we render sorsgle.
of PVS symbols with their usual mathematical representa-
tion. The overall structure of the specification is shown i
Figure 1. The arrows indicate the dependency relationshij
between modules, each of which is a PVS theory (group
related definitions, e.g., functions, data types, theoyefrtse
specification is divided into four PVS theories: Example
has concrete examples of BPPL (Sectler\); 2) Language
defines the syntax and well-formedness rules of the BPPL _ _
(Sectionll-A); 3) Transformations define transformations over Fig. 2. Example ofdvice
BPPL (Sectionll-B); 4) Properties are theorems on well-
formedness of BPPLs when these are manipulated by s
transformations (Sectiohl-A).

Analyze the legal
requirements of
the process

Retirement
Advice
SRH

START EMD

The process flow objects argt art, "Analyze the legal
l1‘8Huirements to the process' (namely C) and End. St art
and End are unique objectsC is of the type have the
Fl owCbj ect and has four fields: an identifiei §4), a
-) i type (Activity), a set of annotationsal) and a set of
| Examples }—~ Language ‘ p?:ja]’:r_‘etie;ség)3
al: Annotation
; I pl: Paraneter
' Transformations | C. FlowObj ect = CFQ(id1, Activity,al, pl)

Properties

The arrows are called transitions. A transition connects
two flow objects. The first transition is represented thy,
Fig. 1. Overall structure of formal specification of BPPL. connectingSt art to C. This transition has a conditiool.
The second transition (second arrow)ti®, which connects
C to End and has conditior 2:

A. Business Process Product Line Language

We now define BPPL's language in PVS, by first specifyin?lj c2: Conditi on o
its abstract syntax (SectishAl) and then its well-formednesst 11 Transition = MTransition(Start, C cl)

rules (Sectionl-A2). We note that BPPL's semantics in thid 2° Transition = MTransition(C, End, c2)

paper is limited to well-formedness properties. The business proces&étirement” (bp1l) comprises a han-

1) Abstract Syntax: it consists of hierarchically relateddle (d), a type Advi ce), a set of objectsabj s) and a set
algebraic data types defining key concepts in the BPPL dom@ifitransitions { s).

such as business process model and business process. Trans-
lating it into a PVS specification from the initial Haskellim j d: i dBP
plementation mapped corresponding constructs betwese theobj s = {Start, C, End}
two languages: Haskell's algebraic data types map into ®VSts = {t1, t2}
datatype; further, list was mapped to set, since the order ddp1: BP = BP(i d, Advi ce, obj s, ts)
elements was not relevant for specifying the transformatio
and the properties. Finally, this simple BPPL comprises a value of the
Below is the PVS specification @PModel , the root type BPMbdel type, in this case a set of processes.
in the abstract syntax; it consists of a set of processes of
type BP (business processBPMis a type constructor and M BPModel = BPM {bp1, bp2})
BPMbdel ? a type recognizer.
Currently, the language does not address other business

BPMbdel : DATATYPE process constructs such as gateways, swim lanes, and .events

BEG N Nevertheless, a similar mapping approach employed could be
BPM processes: PBP): BPMbdel ? used to address these and is regarded as future work.

END BPModel 2) Well-formed Rules: In the original Haskell specifica-

tion [7], well-formedness rules were built into the typechecker.
A BP is a type which has four fields (an identifier, a type, @&hese rules and their mapping to PVS are explained in
set of objects and a set of transitions), each of each isdurtlthe following. First, a well-formed BPPL, described by the
modeled as a PVS datatype. The following is an example ofad Model predicate, comprises a set of well-formed business
BPPL, namelyM comprising a single process (Figuke Since processes:

wf Model (p: BPModel): bool = Other well-formed rules refer to properties 8f art and

V bp: processes(p) | w(bp) End objects such astart cannot end a transitiorgnd
cannot start a transition, afthd is reachable from any object,

A well-formed product is defined by thef predicate and and to properties of transitions such as transitions of abas

satisfies the following rules: process comprise objects within the process and there ys onl
one transition starting at any given object. Some propertie
wf (p: BP): bool = such as the latter are used for simplification purposes amd ar
WFL(p) A WR2(p) A WF3(p) A WF4(p) A planned to removed in future work.
WF5(p) A W6(p) A VWF7(p) A WB(p) A _
WF9(p) B. Transformations

We propose a set of transformations to manage variability in
In the following, we illustrate some of these rules. FoBPPL: by selecting and composing business processes (some
example, every process must have a beginning and an edfdwhich are advices), specific business processes are louilt
i.e., theSt art andEnd objects should belong to the set othe compositional approach investigated, we have formaliz

objects of theBP (WF1). two transformations, described in the following sectiortsese
are representative of the remaining transformations and th
WF1l(p: BP): bool = formalization of these would follow a similar approach.
Start € objects(p) A End € objects(p) 1) Select Business Process. Sel ect BP simply selects a

given BP, identified by an id, from the business processes

Any Fl owObj ect of bp must be reachable froigt art within a BPPL. The transformation then has two param-
(WF5). To formalize this rule, we first define thext ends eters ppl d and pl) and returns aBPMbdel with only
predicate, which relates two identical flow objects or thosgne business process. Further, the transformation reqthiee

comprising a transition in the business process: following: 1) the returnedBP must have the samkd than
bpl d; 2) the BPPL that is an input paramet@l {§ must be
ext ends(bp: BP, origin: Fl owject) well-formed, as described next.
(last: FlowObject): bool =
origin=last v Sel ect BP(pl : { p: BPMbdel | wf Model (p)},
Jt:Transition | t € transitions(bp) A bpld: {id:l1d | 3 p: processes(pl) |
startCbject(t) = origin A pid(p) = id}): BPMddel =
endCbj ect(t) = | ast

The transformatiorBel ect BP returns aBPModel com-

Next, we consider the reflexive transitive closure aqfrising a process frompl and having the same identifier as
the ext ends relation. In PVS, the inductive definitionbpl d.
ext endsCl osur e specifies that there is either a direct
ext ends relationship between two flow objects or therepl W TH [processes : = {bp: BP |
is a middle object between them. This middle object being bp € processes(pl) A pid(bp) = bpld}]
reachable from the origin and from which the last object is
directly related withext ends: 2) Evaluate After Advice: Theeval uat eAf t er Advi ce

transformation composes BP with another one of type

ext endsCl osure(bp: BP, origin: Fl owhj ect) Advi ce resulting in aBP. For example, a simple com-

(1 ast: Fl onbj ect): | NDUCTI VE bool = monality and variability analysis of Figure3 and 4 yields
origin € objects(bp) A that the only variableFl owChj ect is "Analyze the legal
| ast € objects(bp) A requirements of the process' that is outlined in red in the
(extends(bp, origin)(last) Vv process Retirement”; the otherFl owCbj ect s are common
3 mddle: Fl owObject | to both processes.
m ddl e € objects(bp) A To manage such commonality and variability in a composi-
ext endsCl osure(bp,origin)(mddle) A tional approach, in Figurg, a process of typddvi ce was
extends(bp, m ddl e) (I ast)) created. Accordingly, proces&étirement” is now generated

by means of the transformaticeval uat eAf t er Advi ce,
To formalize WF5, we rely on ext endsCl osure as which composes the process of the typavi ce with the

follows: process Resignation”. Threetransiti ons are removed
and two newt r ansi ti ons are created connecting process
WF5(p: BP): bool = to the other, as shown in Figuke
vV fo: objects(p) | In PVS transformatiorgval uat eAf t er Advi ce is spec-

ext endsCl osure(p, Start) (fo) ified taking as parameters a business prob@gsand an advice

Make financial
arrangsments

Signal SISAC

S
=

Publication Cadastre

SRH

AFD
Arquive

Resignation

Fig. 3. Process Resignation

E

a Analyze the lagal

E E e Receive Progess requirements of Make ﬁnanc‘_ Signal SISAC

= " the process —

E START Publication Cadastre AFD
Arquive

Fig. 4. Process Retirement

.E

3) () a 0

iz @ () | Mine tmaciy @

5 Publization Cadastre AFD EMD

Arquive

Analyze the legal Lo
requirements of "rh e
the process

> <

Retirement
Advice
SRH

Fig. 5. Example transformatioeval uateAfter Advice

adv, both of which are well-formed and have disjoints object#\. Theorems

The resulting business process has the union of the Object§, the product derivation process of compositional BPPL,
of bp andadv and the transitions provided by thei | dT 5 sformations play a central role by composing business

function, which behaves as shown in Figire process, some of which are advices, to build a product for any
) given configuration. A sufficient condition for well-formeess
eval uat eAf ter Advi ce(adv: {a:BP | wf(a)}, of the resulting product is ensuring that each transforonati
bp: {b:BP | wf(b) A preserves well-formedness. In this work, we are interested
objects(b) N objects(adv) = 0}): BP = gch transformations regardless of the configuration orLBPP
bp WTH in question.
[pid := pid(bp), ptype := ptype(bp), For example, theWFM SBP theorem states that the
objects : = objects(bp) U FO_adv?(adv), Sel ect BP(i, pl) always generate a well-formed BPPL
transitions := buildT(adv, bp)] given thatpl is a well-formed BPPL anil refers to a business

o __process in pl, i.e.Sel ect BP preserves well-formedness:
In the current specification, we do not address quantifica-

tion, which is regarded as future work. WEM SBP: THEOREM
vV pl: {sp: BPMbdel | wfModel (sp)},

[1l. V ERIFICATION OF WELL-FORMEDNESSPROPERTIES bpld: {id:1d | 3 p: processes(pl) |
Given the exponential growth of product variants in BPPL, pid(p) =id} |
ensuring that every product meets certain properties isna no wf Model (Sel ect BP(pl, bpl d))

trivial problem. Seeking to ensure the quality of products

BPPL, this study conducted a formal verification of these As another example, the following theorem states
properties by proving them in the proof assistant PVS. Thikat eval uat eAf t er Advi ce(adv, bp) generates well-
investment is worthwhile, since these are general propérmed product given that business procdss is well-
ties and thus quantify over infinitely many BPPLs. In thiformed and adv refers to an existing advice, i.e.,
section, we specify a theorem that all transformations mustal uat eAf t er Advi ce(adv, bp) also preserves well-
satisfy (Sectionlll-A), and then we showBel ect BP and formedness:

eval uat eAft er Advi ce are sound (SectioHl-B).

WFM_EVAL: THECREM advice as shown in Figuré. The partition is as follows.

vV adv: {a:BP | Advice?(ptype(a)) A The first part is composed of objects in the base process
wf(a) A CPC?(pc(ptype(a)))}, bp up to and including the annotated object and is related
bp: {b:BP | wf(b) A to lemmalLema_WF5_ 01. The second part comprises all
obj ects(b) N objects(adv) = 0}, objects in the advice exce@@ art and End and is related
f: FOAnot ado?(adv, bp) | to lemmalLema_WF5_02. Finally, the third part is made of
wf (eval uat eAf t er Advi ce(adv, bp)) objects frombp after the annotated object and corresponds

to lemmalLema_WF5_03. Each such lemma refers to reach-

Theorems for other transformations can be specified sinaibility from St art (of bp) up to the corresponding object

larly. partition. Lemma_WF5_01 follows from well-formedness of
bp. Lemma_WF5_02 follows from this, from the definition

B. Proofs of the transformation, and from well-formedness adv.

In this section, we show that both theorems stated befdrastly,Lenma_WF5_03 follows from this, from the definition
are sound. of the transformation, and from well-formednesslgd. In

1) Select Business Process: The strategy is to first PVS, all such proofs rely on induction, since the definitién o
perform skolemization on the universal quantifier antkachability is inductive (c.f. Sectioh-A2). This concludes
then expand the sequent according to the definitions thie proof ofLena_WF5.
Sel ect Busi nessProcess and wf Model . Next, instan-
tiate with a variable created in skolemization and obtaio tw
subgoals. The subgoals rely on conditions that are already ObiectAnn()mte(l
the antecedent and consequent, which proves the two sighgc ’

2) Evaluate After Advice: The strategy is to break the proof
into smaller problems, by creating and relying on auxiliar
lemmas during the proof. In particular, this decomposii®n
accomplished by expanding thd predicate and replicating
the context, leading to lemmas (LEMMA_WF1-WF9) corre
sponding to each of the nine rules as seen in Sedtida . The

lemmas are the same in terms of the context, the variant p :
being the specification of the well-formed rule. For exampli T’lll‘(lp(ll‘t
in the following lemma: . . Lema_WF3_03
First part Second part
WM WF1: LEMVA Lema WF3 01 Lema WF5 02
adv: {a:BP | Advice?(ptype(a)) A
wf(a) A CPC?(pc(ptype(a)))}, Fig. 6. Partition of objects to prove reachability propergnder
bp: {b:BP | wf(b) A eval uat eAdvi ce.

obj ects(b) N objects(adv) = 0},

f: FOAnot ado?(adv, bp) |
WEL(eval uat eAf t er Advi ce(adv, bp)) IV. DISCUSSION ANDLESSONSLEARNED
Since documentation in PVS is limited, there are many

the last line refers tt\F1. Other lemmas are defined likewisedetails in the specification and proof that are only learned
We present proof sketches of some of such lemmas. In parfiem experience. Indeed, a first lesson was learned about the
ular WF1 establishes thafl owhj ects (St art andEnd) impact of the order of specification on proofs. For instance,
should be in the set of objecty. Given the transformation the inductive specification of the functiext endsCl osur e
eval uat eAf t er Advi ce (Sectionll-B), the set of objects (Sectionll-A2) is better done by placing the base case first
of the result ofeval uat eAf t er Advi ce is composed by instead of the recursive one, the reason being to simpliy th
the union of objectsbp with objects ofadv without the corresponding proof by induction.
St art andEnd. Sincebp is well-formed, it meetd\F1 and Further, we experienced that a slight syntactic change in
so does theBP resulting fromeval uat eAft er Advi ce. the specification can have an impact in the proofs, in many
This provesLEMVA_WF1. cases discharging the whole proof. Therefore, it is recom-

As explained in Sectiol-A2, WF5 refers to reachability mended a proof style relying on different lemmas, mininggzin
from the St art object, i.e., all object are reachable fromsyntactic dependency (e.g., avoiding referencing numlmers
Start. It is known that this rule is valid fobp e adv, the sequent) in the proof commands (e.g., skolemize, instan
as they are well-formed. To proveEMVA WF5, we rely tiate). For example, this strategy was following in proving
on further finer-grained lemmas corresponding to the thr®&M EVAL in the specification ofM . WF9 as the rule was
groups of objects arising from the partition incurred by ththe last to be specified and the proofs of some theorems had
annotated object (joinpoint) matched by the pointcut of thedready been made, then the rMlE9 was placed in the early

specification ofaf to this rule appears last in the hour of trialfransformational and works with PL with object-orientegey
not to lose the proof already made. checking in Java. Differently, our approach is composaion
Additionally, during the proof strategy, we normally starand focuses on a different level of abstraction (business
by using the smallest granularity commands until a poiprocesses).
where the proof can proceed at higher granularity with built Rosa et al. 3] propose a method and tool suite for develop-
in tactics. In particular, we often aimed at simplifying theng processes based on configurable process model. Fiyst the
formulas embedded with quantification and connectives so dafined the notion of C-iIEPC (an extension of the Configurable
to avoid expanding the definitions, seeking a cleaner sequéwent-driven Process Chains, C-EPC) and syntacticallyecor
structure, which facilitates the understanding and pregf C-IEPC. Next they provided the definition of C-iIEPC and
the proof. configuration and show an algorithm to individualize C-iEsPC
One widely used strategy was to first try to prove theorenfénally they proved that the algorithm is able to generate th
manually before using the proof assistant. This was ingtnim model of given a configuration correct syntactically. Ueliur
tal in identifying suitable decomposition strategies tedk a compositional approach, this proposal employs an anwretati
theorem into auxiliary lemmas, seeking to guarantee that tapproach with runtime binding mode. This clutter the specifi
theorem can be proved based on the lemma and that eacleaifon with unnecessary details, hampering understatityabi
these is also proved with reduced effort. For example, thddthough formal, their approach employ only manual proof,
strategy was following in proving\FM EVAL. An addition whereas ours employs the PVS prover.
benefit of this decomposition is to identify reusable lemmas
which otherwise might clutter and slow down the proof preces
also in terms of performance. This paper reports on-going work in formalizing Business
Indeed, the specification and proof efforts are not triviaProcess Product Lines in PVS, including the definition of
Nevertheless, by building up and reusing experience mwll-formedness rules. We also encode two transformations
speed up the process. Moreover, the return-on-investrsenftd prove them sound (preserve well-formedness rules) with
desirable because the proofs certify that the properties difSPect to a formal semantics in PVS.
general, i.e., they quantify over infinitely many BPPLs. Thi As @ future work, we intend to formalize all the remaining
is different from model checking, whereby the proof effart itransformations of BPPL7]. Investigating the minimally

smaller (automatic), but it may also take some time and is al8ecessary conditions to preserve the properties of the well
not complete. formedness and how these interfere with the transformsi®n

regarded as future work. We further plan to specify semantic
V. RELATED WORK of other BPPL constructs, such as gateways, swim lanes, and

Machado et al. 7] characterize variability in business pro-events, and quantification in the aspect subset to augment th
cess and then present an approach to manage such a variab@ipressivity of the BPPLs considered.
Like our work, the approach employed is compositional,rely
ing on aspects. Unlike our approach, they have not addressed
quality assurance in a formal way. We gratefully thank the anonymous referees for useful

The naive approach of checking well-formedness of all ingPuggestions.
vidual_ programs of a product line is not fgasible because.e)ft REFERENCES
combinatorial explosion o_f program variants. To ad.drea?s_, th [1] M. Dumas, W. Aalst, and A. HofstedePr aware information
problem, Apel etal.g <_jeV|sed a type system for a sm_phﬁed systems. bridging people and software through process technology.
feature-oriented Java-like language. The type systemuisdso Wiley, 2005. - _ _
i.e., it ensures that all programs are type safe. Similar tB! J- Jeston and J. Nelifusiness process management: practical guide-

. . h . . lines to successful implementations. Butterworth-Heinemann, 2006.
our work, their .SO|U“0“ IS ger.‘?ral with respect to SYN®AC 3] M. Rosa, M. Dumas, A. Hofstede, and J. Mendling, “Confale multi-
property of PL instances; additionally, the target languagy perspective business process modelsformation Systems, vol. 36,
; i ; ; no. 2, pp. 313-340, 2011.
a smphﬂed_language. Differently, they are Concem?d Wlt\?éli H. Rombach, “Integrated software process and produes|’ in|SPW,
program artifacts, whereas our work addresses a high level o5 pp. 83-90.
artifact (business process) and their proof was carriednaut- [5] C. Kastner, S. Apel, and M. Kuhlemann, “Granularity inftere
; i ; ; product lines,” inICSE, 2008, pp. 311-320.

ually, Whgrgas ours was carried out semi-automatically Wltllﬁ] S. Owre, N, Shankar, J. Rushby, and D. Stringer-CahRYS Language
PVS. A similar work P] proposes an automated approach for * greference, 2001.

verifying safe composition for SPLs with explicit configticm [7] 1. Machado, R. Bonifacio, V. Alves, L. Turnes, and G. Mado, “Man-
aging variability in business processes: an aspect-edeapproach,” in

knowledge models. . . . EA at AOSD, 2011, pp. 25-30.
Schaefer et al. 1[0 provided a foundation for composi- [g] s. Apel, C. Kastner, A. GroRlinger, and C. Lengauer, ‘@ygafety for

tional type checking for delta-oriented product lines (PLs feature-oriented product lines&SE, vol. 17, pp. 251-300, 2010.

i ;] L. Teixeira, P. Borba, and R. Gheyi, “Safe compositioncoffiguration
of Java program_s. By combining th_e analysis results of th@ knowledge-based software product lines,”SBES 11: XXV Brazlian
delta. modules Wltlh the PL declaration, they showed that is gumposium on Software Engineering, 2011.
possible to establish that all the products of the PL are-well0] I. Schaefer, L. Bettini, and F. Damiani, “Compositidrigpe-checking

typed according to the Java type system. Their approach is for delta-oriented programming,” iAOSD, 2011, pp. 43-56.

VI. CONCLUSIONS

ACKNOWLEDGMENT

	Introduction
	Formalization of BPPL
	Business Process Product Line Language
	Abstract Syntax
	Well-formed Rules

	Transformations
	Select Business Process
	Evaluate After Advice

	Verification of well-formedness Properties
	Theorems
	Proofs
	Select Business Process
	Evaluate After Advice

	Discussion and Lessons Learned
	Related Work
	Conclusions
	References

