
SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTION IN A CHANGING WORLD 1

Making Program Refactoring Safer
Gustavo Soares,Member, IEEE, Rohit Gheyi, Dalton Serey, and Tiago Massoni

Abstract—Developers rely on compilation, test suite and tools
to preserve observable behavior during refactoring. However,
most of the refactoring tools do not implement all preconditions
that guarantee the refactoring correctness, since formally identi-
fying them is cost-prohibitive. Therefore, these tools mayperform
non-behavior preserving transformations. We present a tool for
improving safety during refactoring. It automatically generates
a test suite that is suited for detecting behavioral changes. We
used our tool to evaluate seven real case study refactorings(from
3 to 100 KLOC). We reason about a JHotDraw (23 KLOC) and
its refactored version, and automatically detected a behavioral
change. This problem was not identified by developers. Finally,
we also evaluated our tool against17 defective refactorings that
are not detected by refactoring tools.

Keywords—Refactoring, Behavior-preservation, Unit-testing.

I. I NTRODUCTION

Refactoring is defined as the process of changing a software
system in such a way that it does not alter the external behavior
of the code and improves its internal structure [1], [2]. In
practice, developers perform refactorings either manually –
error-prone and time consuming – or with the help of IDEs,
which can support refactoring, such as Eclipse, Netbeans,
JBuilder and IntelliJ.

In general, each refactoring may contain a number of
preconditions to preserve the observable behavior. For in-
stance, to rename an attribute, name conflicts cannot be
present. However, mostly refactoring tools do not implement
all preconditions, because formally establishing all of them
is not trivial. Therefore, often refactoring tools allow wrong
transformations to be applied with no warnings whatsoever.
For instance, Figure I shows a transformation [3] presenting
subtle errors in maintaining program behavior when applying
it using the Eclipse 3.4.2 IDE. Listing 1 shows a program
containing the classA and its subclassB. The methodtest
yields 10. When we apply the pull up refactoring to the method
k(int) using Eclipse, the resulting code is presented in
Listing 2. The methodtest in the target program yields20,
instead of10. Therefore, the transformation does not preserve
behavior using the Eclipse 3.4.2 IDE.

The current practice to avoid behavioral changes in refac-
torings relies on solid tests [1]. However, often test suites
do not catch behavioral changes during transformations. They
may also be refactored (for instance, rename method) by the
tools since they may rely on the program structure that is
modified by the refactoring [2]. In this case, the tool changes
the method invocations on the test suite, and the original and
refactored programs are checked against different test suites.

G. Soares, R. Gheyi, D. Serey and T. Massoni are affiliated
to the Department of Computing and Systems, Federal University
of Campina Grande, Campina Grande, PB, 58429-900 Brazil e-
mail:{gsoares,rohit,dalton,massoni}@dsc.ufcg.edu.br.

This scenario is undesirable since the refactoring tool may
change the test suite meaning [4].

In this article, we describe and evaluate the SAFEREFAC-
TOR, a tool for checking refactoring safety in sequential
Java programs using Eclipse IDE. For each transformation, it
generates a test suite useful for detecting behavioral changes.

II. SAFEREFACTOR

SAFEREFACTOR is an Eclipse 3.4.2 plugin1 that receives a
source code and a refactoring to be applied (input). It reports
whether it is safe to apply the transformation (output).

Suppose that we use SAFEREFACTOR in Listing 1 program.
Next we explain the whole process, which has seven sequential
steps for each refactoring application (Figure 2). First the
developer selects the refactoring to be applied on the source
program (Step 1.1) and uses SAFEREFACTOR (Step 1.2). The
plugin starts checking the refactoring safety (Steps 2-7).

It generates a target program based on the desired transfor-
mation using Eclipse refactoring API (Step 2). In Step 3, a
static analysis automatically identifies methods in commonin
both source and target programs. Step 4 aims at generating unit
tests for methods identified in Step 3. In Step 5, the plugin runs
the generated test suite on the source program. Next, it runsthe
same test suite on the target program (Step 6). If a test passes
in one of the programs and fails in the other one, the plugin
detects a behavioral change and reports to the user (Step 7).
Otherwise, the programmer can have more confidence that the
transformation does not introduce behavioral changes.

The goal of thestatic analysis (Step 3) is to identifymethods
in common: they have exactly the same modifier, return type,
qualified name, parameters types and exceptions thrown in
source and target programs. For example, Listings 1 and 2
containA.k(long) andB.test() in common.

After identifying a set of useful methods, the plugin uses
Randoop [5] to generate unit tests (Step 4). Randoop generates
tests for classes within a time limit. A unit test typically
consists of a sequence of method and constructor invocations
that creates and mutates objects with random values, plus
a JUnit assertion. Randoop executes the program to receive
a feedback gathered from executing test inputs as they are
created, to avoid generating redundant and illegal inputs [5].
It creates method sequences incrementally, by randomly se-
lecting a method call to apply and selecting arguments from
previously constructed sequences. Each sequence is executed
and checked against a set of contracts. For instance, an object
must be equal to itself. Our tool uses the Randoop default
contracts. We modified Randoop to remove some defects, and
to pass a set of methods as parameter. All tests generated only
contain calls to the methods identified in Step 3. The default

1Available at http://www.dsc.ufcg.edu.br/∼spg/saferefactor/

SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTION IN A CHANGING WORLD 2

Listing 1. Source Program
pub l i c c l a s s A {

pub l i c i n t k (long i) {
re tu rn 10 ;

}
}
pub l i c c l a s s B extends A {

pub l i c i n t k (i n t i) {
re tu rn 20 ;

}
pub l i c i n t t e s t () {

re tu rn new A() . k (2) ;
}

}

Listing 2. Target Program
pub l i c c l a s s A {

pub l i c i n t k (long i) {
re tu rn 10 ;

}
pub l i c i n t k (i n t i) {

re tu rn 20 ;
}

}
pub l i c c l a s s B extends A {

pub l i c i n t t e s t () {
re tu rn new A() . k (2) ;

}
}

Fig. 1. Pull Up Method Refactoring Enables Overloading

Fig. 2. SAFEREFACTOR. 1. The user selects a refactoring in the menu to apply (1.1) and click on the SAFEREFACTORbutton (1.2), 2. The tool generates
the target program using the Eclipse refactoring API, 3. It identifies common methods in the source and target programs, 4. The tool generates unit tests using
our modified Randoop, 5. It runs the test suite on the source program, 6. The tool runs the test suite on the target program, 7. The tool shows the report to
developer. If it finds a behavior change, the user can see someunit tests that fail.

time limit is 2s. Steps 3 and 4 ensure that the same tests can
be run on the source and target programs.

The whole process to finish Figure I example takes less than
8 seconds on a dual-processor 2.2 GHz Dell Vostro 1400 lap-
top with 2 GB RAM, and generates 154 unit tests (151 of them

failed in the target program). SAFEREFACTOR reports the
user that the refactoring should not be applied. Users can see
some tests that expose the behavior change (Step 7). In other
situations, SAFEREFACTOR can report compilation errors that
may be introduced by refactoring tools. If SAFEREFACTOR

SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTION IN A CHANGING WORLD 3

does not find a behavior change or compilation error, it reports
that users can improve confidence that the transformation is
sound.

Opdyke compares the observable behavior of two programs
with respect to themain method (a method in common). If
it is called twice (source and target programs) with the same
set of inputs, the resulting set of output values must be the
same [6]. SAFEREFACTOR checks the observable behavior
with respect to randomly generated sequences of methods and
constructor invocations. They only contain calls to methods
in common. If the source and target programs have different
results for the same input, they do not have the same behavior.

III. E VALUATION

We evaluated SAFEREFACTOR in some transformations.

A. Subject Characterization

Tables I and II show the subjects (pairs of source and
target programs) used in the experiment. Each of them is
uniquely identified (Subject column). The subjects are divided
in two categories: refactoring real applications, and a catalog
of defective refactorings2.

The first category (Subjects 1-7) consists on refactorings
performed by developers applied to real Java applications
ranging from 3-100 KLOC (non-blank, non-comment lines of
code) using tools or manual steps. All of them are considered
behavior preserving by developers. We use SAFEREFACTOR to
evaluate whether the transformation preserves the observable
behavior.

Third-party developers performed a refactoring on JHot-
Draw and CheckStylePlugin (Subjects 1-2) to modularize
exception handling code [7]. Fuhrer et al. [8] proposed and
implemented an Eclipse refactoring to apply the infer generic
type argument refactoring, enabling applications to use Java
generics. They evaluated their refactoring in four real Java
applications: JUnit, Vpoker, ANTLR, and Xtc (Subjects 3-6).
Murphy-Hill et al. [9] performed some experiments to analyze
how developers refactor. They used a set of twenty Eclipse
components versions from Eclipse CVS, and manually de-
tected the refactorings applied. We evaluate one transformation
in Eclipse TextEditor module (Subject 7).

The second category (Subjects 8-24) includes non-behavior
transformations applied by refactoring tools. These bugs were
identified in the literature [3], [4], [10]. We use SAFEREFAC-
TOR to evaluate whether it detects the behavior changes.

B. Experimental Setup

We run the experiment on a dual-processor 2.2 GHz Dell
Vostro 1400 laptop with 2 GB RAM and running Ubuntu 9.04.
In both categories, we used a command line interface provided
by our SAFEREFACTOR. It receives three parameters: source
and target program paths, and timeout to generate tests. We
used the default timeout of 90s and 2s to generate the tests in
the first and second categories, respectively. We did not use
the SAFEREFACTOR Eclipse graphical interface in order to
automate the experiment.

2All subjects are available at: http://www.dsc.ufcg.edu.br/∼spg/saferefactor/
experiments.htm

C. Experimental Results

SAFEREFACTOR detected a behavioral change in one refac-
toring and two compilation errors in less than 4 minutes
in the first category. Table I shows the program name, its
size in KLOC and the total time in seconds required by
SAFEREFACTOR to yield a result in the Program, KLOC and
Total Time (s) columns, respectively.

Each line of Tables I and II contains the number of gen-
erated tests (Tests column) and the number of tests detecting
the behavioral change (Error column) for each subject. The
Result column indicates whether SAFEREFACTOR identified
a behavior change or a compilation error. The symbol-
indicates that no behavior change is detected.

In the second category, it detected all but one behav-
ior change in less than 8s. Table II indicates the defective
refactoring applied and a description of the behavior change
introduced in the Refactoring and Bug Description columns,
respectively.

Developers refactored JHotDraw in order to avoid code du-
plication with identical exception handlers in different parts of
a system [11]. Eight programmers working in pairs performed
the change: they extracted the code inside thetry, catch,
andfinally blocks to methods in specific classes that han-
dle exceptions. They relied on refactoring tools, pair review,
and unit tests to assure that the behavior was preserved. Some
classes that implementSerializable were refactored.
Developers changed theclone method and introduced the
handler attribute to handle exceptions. However, they forgot
to serialize this new attribute. Thus, when the methodclone
try to serialize the object, an exception is thrown. Therefore,
the refactored methodclone has a different behavior.

Moreover, Eclipse wrongly applied a refactoring to ANTLR
and Xtc, introducing a compilation error that was not re-
ported [8]. Finally, SAFEREFACTOR did not detect behav-
ior change in Subjects 2-4 and 7. In the second category,
SAFEREFACTOR identified all but one behavior change that
uses standard output. Tables I and II summarize the results.

D. Discussion

Our tool cannot detect behavioral changes in the standard
output (System.out.println) messages and exception
messages (Subject 8). Thus, we modify some subjects to
includereturn statements with the values of the messages.
We intend to generate some test patterns that are useful for
detecting changes in the standard output. Additionally, our
technique can detect behavior changes invoid methods only
when they change some fields that contain agetter method
for it. We aim at improving our technique by automatically
generatinggetter methods for all attributes. Finally, the current
implementation of our technique cannot deal with inner and
non-public classes directly. However, if there is a method in
common using them, we can exercise them indirectly.

Consider a rename method fromA.m(..) to A.n(..).
The set of methods identified by Step 3 does not include them.
A similar thing occurs when renaming a class. We cannot
compare the renamed method’s behavior directly. However,
SAFEREFACTOR compares them indirectly if a method in

SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTION IN A CHANGING WORLD 4

TABLE I
SUMMARY OF SAFEREFACTOREVALUATION IN REFACTORINGREAL CASE STUDIES

TABLE II
SUMMARY OF SAFEREFACTOREVALUATION IN THE CATALOG OF DEFECTIVEREFACTORINGS

common (x) calls them. Step 4 generates tests includingx in
the randomly generated sequence of method calls. It is similar
to Opdyke’s notion. Ifmain calls them, we compare them
indirectly. Moreover, a simple rename method may enable or
disable overloading [10]. This feature is a potential source of
problems. Step 4 generates specific tests for exercising every
method (not affected by the transformation) namedm or n
in the superclasses or subclasses ofA. Table II shows three
defective renaming refactorings that our tool detected.

E. Related Work

Daniel et al. [12] proposed a technique for automated
testing refactoring tools. They found some compilation errors
introduced by Eclipse and Netbeans. Steimann and Thies [3]
and Ekman et al. [4] manually catalogued behavioral changes
problems (for some kinds of refactorings) in refactoring tools.
Moreover, Schäfer et al. [10] explained an approach to solve
problems on the rename refactoring. We propose a more

practical approach for detecting behavioral changes usinga
tool support, regardless the kind of refactoring.

IV. F INAL REMARKS

We presented a tool for improving safety during refactoring
activities. Our earlier works present our technique [13], and
a tool [14]. Here we evaluate our technique with empirical
studies. We intend to create a plugin for other IDEs, such
as Netbeans. Additionally, besides using it in more real case
studies, we aim at testing refactoring tools in order to automat-
ically find non-behavior transformations following a similar
approach of Daniel et al. [12].

ACKNOWLEDGMENT

We gratefully thank the guest editors and the anonymous
referees for useful suggestions. This work was partially sup-
ported by the National Institute of Science and Technology

SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTION IN A CHANGING WORLD 5

for Software Engineering (INES), funded by CNPq grants
573964/2008-4 and 477336/2009-4.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE TSE,
vol. 30, no. 2, pp. 126–139, 2004.

[3] F. Steimann and A. Thies, “From public to private to absent: Refactoring
java programs under constrained accessibility,” inECOOP, 2009, pp.
419–443.

[4] T. Ekman, R. Ettinger, M. Schafer, and M. Verbaere, “Refactoring bugs
in eclipse, idea and visual studio,” 2008.

[5] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball, “Feedback-directed random
test generation,” inICSE, 2007, pp. 75–84.

[6] W. Opdyke, “Refactoring object-oriented frameworks,”Ph.D. disserta-
tion, UIUC, 1992.

[7] J. Taveira, C. Queiroz, R. Lima, J. Saraiva, S. Soares, H.Oliveira,
N. Temudo, A. Araújo, J. Amorim, F. Castor, and E. Barreiros, “Assess-
ing intra-application exception handling reuse with aspects,” in SBES,
2009, pp. 22–31.

[8] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller, “Efficiently
refactoring java applications to use generic libraries,” in ECOOP, 2005,
pp. 71–96.

[9] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and how
we know it,” in ICSE, 2009, pp. 287–296.

[10] M. Schäfer, T. Ekman, and O. Moor, “Sound and extensible renaming
for java,” in OOPSLA, 2008, pp. 277–294.

[11] B. Cabral and P. Marques, “Exception handling: A field study in java
and .net,” inECOOP, 2007, pp. 151–175.

[12] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automatedtesting of
refactoring engines,” inFSE, 2007, pp. 185–194.

[13] G. Soares, R. Gheyi, T. Massoni, M. Cornélio, and D. Cavalcanti,
“Generating unit tests for checking refactoring safety,” in SBLP, 2009,
pp. 159–172.

[14] G. Soares, D. Cavalcanti, R. Gheyi, T. Massoni, D. Serey, and
M. Cornélio, “Saferefactor - tool for checking refactoring safety,” in
Tools Session at SBES, 2009, pp. 49–54.

Gustavo Soaresis a PhD student in the Department
of Computer Science at Federal University of Camp-
ina Grande. His research interests include refactor-
ings and formal methods. He holds a MSc in Com-
puter Science from the Federal University of Camp-
ina Grande, and is a member of the IEEE and ACM.
Contact him at DSC/UFCG, 882 Aprı́gio Veloso,
Bodocongó, Campina Grande, Brazil; Phone: +55
83 3310 1122; gsoares@dsc.ufcg.edu.br.

Rohit Gheyi is a professor in the Department of
Computer Science at Federal University of Campina
Grande. His research interests include refactorings,
formal methods and software product lines. He
holds a Doctoral degree in Computer Science from
the Federal University of Pernambuco, and is a
member of the ACM. Contact him at DSC/UFCG,
882 Aprı́gio Veloso, Bodocongó, Campina Grande,
Brazil; Phone: +55 83 3310 1122 (ext. 2202); ro-
hit@dsc.ufcg.edu.br.

Dalton Serey is a professor in the Department of
Computer Science at Federal University of Camp-
ina Grande. His research interests include software
evolution. He holds a Doctoral degree in Computer
Science from the Federal University of Campina
Grande, and is a member of the ACM. Contact him
at DSC/UFCG, 882 Aprı́gio Veloso, Bodocongó,
Campina Grande, Brazil; Phone: +55 83 3310 1122;
dalton@dsc.ufcg.edu.br.

Tiago Massoni is a professor in the Department
of Computer and Systems at the Federal University
of Campina Grande. His research interests include
software design and evolution, and formal meth-
ods. In addition to his academic posts he also
worked as a programmer at IBM in California. He
holds a Doctoral degree in Computer Science from
the Federal University of Pernambuco, and is a
member of the ACM. Contact him at DSC/UFCG,
882 Aprı́gio Veloso, Bodocongó, Campina Grande,
Brazil; Phone: +55 83 3310 1122 (ext. 2202); mas-

soni@dsc.ufcg.edu.br.

