SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTON IN A CHANGING WORLD 1

Making Program Refactoring Safer

Gustavo Soaresdviember, IEEE, Rohit Gheyi, Dalton Serey, and Tiago Massoni

Abstract—Developers rely on compilation, test suite and tools This scenario is undesirable since the refactoring tool may
to preserve observable behavior during refactoring. Howeer, change the test suite meaning [4].

most of the refactoring tools do not implement all preconditons In this article. we describe and evaluate therSREFAC-
that guarantee the refactoring correctness, since formajl identi- ’ - - . .
TOR, a tool for checking refactoring safety in sequential

fying them is cost-prohibitive. Therefore, these tools mayperform . : .
non-behavior preserving transformations. We present a tobfor ~Java programs using Eclipse IDE. For each transformation, i
improving safety during refactoring. It automatically generates generates a test suite useful for detecting behavioralggsan

a test suite that is suited for detecting behavioral changesVe
used our tool to evaluate seven real case study refactoringom
3 to 100 KLOC). We reason about a JHotDraw (23 KLOC) and
its refactored version, and automatically detected a behawral SAFEREFACTORIs an Eclipse 3.4.2 plugihthat receives a

change. This problem was not identified by developers. Finyl, source code and a refactoring to be applied (input). It fspor
we also evaluated our tool againsti7 defective refactorings that |, nather it is safe to apply the transformation (output).
are not detected by refactonng t(_mls' _ _ _ Suppose that we useASEREFACTORIN Listing 1 program.
Keywords—Refactoring, Behavior-preservation, Unit-testing. Next we explain the whole process, which has seven seqlentia
steps for each refactoring application (Figure 2). Firg th
I. INTRODUCTION developer selects the refactoring to be applied on the sourc

o i . program (Step 1.1) and usearEREFACTOR (Step 1.2). The
Refactoring is defined as the process of changing a softW%quin starts checking the refactoring safety (Steps 2-7).

system in such a way that it does not alter the external behavi |; generates a target program based on the desired transfor-
of the code and improves its internal structure [1], [2]. Iation using Eclipse refactoring API (Step 2). In Step 3, a
practice, developers perform refactorings either maguall gaiic analysis automatically identifies methods in comiinon
error-prone and time consuming — or with the help of IDE$oth source and target programs. Step 4 aims at generaiing un
which can support refactoring, such as Eclipse, Netbeagssis for methods identified in Step 3. In Step 5, the plugisru
JBuilder and IntelliJ. _ , the generated test suite on the source program. Next, ithens

In general, each refactoring may contain a number @fne test suite on the target program (Step 6). If a test passe
preconditions to preserve t_he observable behawor. For if-one of the programs and fails in the other one, the plugin
stance, to rename an attribute, _name conflicts _cannot d&ects a behavioral change and reports to the user (Step 7).
present. However, mostly refactoring tools do not implemegyherwise, the programmer can have more confidence that the
all preconditions, because formally establishing all &rth {ransformation does not introduce behavioral changes.
is not trivial. Therefore, often refactoring tools allow amg The goal of thetatic analysis (Step 3) is to identifynethods
transformations to be applied with no warnings whatsoevek -ommon: they have exactly the same modifier, return type,
For instance, Figure | shows a transformation [3] presentigyajified name, parameters types and exceptions thrown in

subtle errors in maintaining program behavior when apglying,rce and target programs. For example, Listings 1 and 2
it using the Eclipse 3.4.2 IDE. Listing 1 shows a programggniainA. k(1 ong) andB. test () in common.

containing the clasé and its subclas8. The method est After identifying a set of useful methods, the plugin uses

yie_lds 10. When we apply the pull up refactoring to the meth‘ﬁandoop [5] to generate unit tests (Step 4). Randoop geserat
k(int) using Eclipse, the resulting code is presented gsis for classes within a time limit. A unit test typically
Listing 2. The method est in the target program yield80, consists of a sequence of method and constructor invosation
|nsteaq ole. Thereforg, the transformation does not preserygat creates and mutates objects with random values, plus
behavior using the Eclipse 3.4.2 IDE. _ a JUnit assertion. Randoop executes the program to receive
The current practice to avoid behavioral changes in refag-feedpack gathered from executing test inputs as they are
torings relies on solid tests [1]. However, often test SUitgeated, to avoid generating redundant and illegal inphits |
do not catch behavioral changes during transformationsy Th creates method sequences incrementally, by randomly se-
may also be refactored (for instance, rename method) by {88ting a method call to apply and selecting arguments from
tools since they may rely on the program structure that i3eviously constructed sequences. Each sequence is edecut
modified by the refactoring [2]. In this case, the tool cha@g@ng checked against a set of contracts. For instance, aatobje
the method invocations on the test suite, and the origindl ag, st pe equal to itself. Our tool uses the Randoop default
refactored programs are checked against different te&ssui contracts. We modified Randoop to remove some defects, and
t0 pass a set of methods as parameter. All tests generatgd onl

G. Soares, R. Gheyi, D. Serey and T. Massoni are affiliate . . o .
to the Department OfyCOmputing yand Systems, Federal Uitiyerscontain calls to the methods identified in Step 3. The default

of Campina Grande, Campina Grande, PB, 58429-900 Brazil e-
mail:{gsoares,rohit,dalton,massp@dsc.ufcg.edu.br. LAvailable at http://www.dsc.ufcg.edu.brépg/saferefactor/

Il. SAFEREFACTOR

SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTON IN A CHANGING WORLD

Listing 1. Source Program Listing 2. Target Program
public class A { public class A {
public int k(long i) { public int k(long i) {
return 10; return 10;
} ¥
public int k(int i) {
public class B extends A { return 20;
public int k(int i) { }
return 20;
public class B extends A {
public int test() { public int test() {
return new A().k(2); return new A().k(2);
} }
} }

Fig. 1. Pull Up Method Refactoring Enables Overloading

2> Run test suite D Program

8 Test suite i i Changes
/ CArE
6 e YAV ™
Q wems |) REFACTOR
5 I
i~ = | |

dfsfdsfdsfds

— %) Y
() . Y ~O \
I Project Run EEEICLEEGGIM Window Help I
1.1 —-718 - P T
L /B.Java - Eclipse
J p: Rename... Progress
e &lv ¥0 O
v ~ P L Analyzing change 2. Generating tests 3. Running tests on source / (0/668) 4. Running tests on target 9@ (16/668)
It's not recommended to apply this change, because it will not preserve behavior
Extract Method... L\ it 2 5
Falled Tests Source Failed Test
test12 } O
test16 public void test6() throws Throwable {
test26
Specify actions for members 29 Bvar0 = new B()
1 2 test intvarl = var0.test(;
% Member Action Select All test68 i " s
: e —— Aasiil // Regression assertion (captures the current behavior of the code)
™M o kiny pull up assertTrue(varl == 10);
- test89
® wsd Deselect All test108 }
—— public void test7() throws Throwable {
test331
test337 Vendedor var0 = new Vendedor()
Set Action, | double varl = var0.getComissao();
b — test362 |
testa33 4| | 1/ Regression assertion (captures the current behavior of the code) .
Add Required test457 +| | assertTrue(varl == 0.0d);

<>

e = Error message
& =) <> Safe Refactor

1 member(s) selected Continue)

Fig. 2. SAFEREFACTOR 1. The user selects a refactoring in the menu to apply (hd)ctick on the 3FEREFACTORbDutton (1.2), 2. The tool generates
the target program using the Eclipse refactoring API, 3dénkifies common methods in the source and target prograni$iedtool generates unit tests using

our modified Randoop, 5. It runs the test suite on the souragram, 6. The tool runs the test suite on the target prograrih@ tool shows the report to
developer. If it finds a behavior change, the user can see soihéests that fail.

time limit is 2s. Steps 3 and 4 ensure that the same tests faited in the target program). AAEREFACTOR reports the
be run on the source and target programs. user that the refactoring should not be applied. Users can se
some tests that expose the behavior change (Step 7). In other
The whole process to finish Figure | example takes less thgfuations, aFEREFACTOR can report compilation errors that

8 seconds on a dual-processor 2.2 GHz Dell Vostro 1400 lafay be introduced by refactoring tools. fASEREFACTOR
top with 2 GB RAM, and generates 154 unit tests (151 of them

SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTON IN A CHANGING WORLD 3

does not find a behavior change or compilation error, it fspoiC. Experimental Results

that users can improve confidence that the transformation isgyreReEacTOR detected a behavioral change in one refac-

sound. _ toring and two compilation errors in less than 4 minutes
Opdyke compares the observable behavior of two prograiSine first category. Table | shows the program name, its

with respect to therai n method (a method in common). Ifgi;e in KLOC and the total time in seconds required by

it is called twice (source and target programs) with the san@ reReeacTORtO yield a result in the Program, KLOC and
set of inputs, the resulting set of output values must be thgia| Time (s) columns, respectively.

same [6]. 3FEREFACTOR checks the observable behavior 5. jine of Tables | and Il contains the number of gen-

with respect to randomly generated sequences of methods gageq tests (Tests column) and the number of tests degectin
constructor invocations. They only contain calls to me$og pehavioral change (Error column) for each subject. The

in common. If the source and target programs have differegbq it column indicates whethemSEREFACTOR identified
results for the same input, they do not have the same behaviprapavior change or a compilation error. The symbol

I1l. EVALUATION indicates that no behavior change is detected.

In the second category, it detected all but one behav-
ior change in less than 8s. Table Il indicates the defective
A. Subject Characterization refactoring applied and a description of the behavior ckang

Tables | and Il show the subjects (pairs of source ar%raltroduc.ed in the Refactoring and Bug Description columns,
target programs) used in the experiment. Each of them r%spectlvely. . .

;) L . o e Developers refactored JHotDraw in order to avoid code du-
uniquely identified (Subject column). The subjects areddidi .~ o
) o . S plication with identical exception handlers in differerarts of
in two categories: refactoring real applications, and alogt : o .

a system [11]. Eight programmers working in pairs performed

of defective refactoring$. : S
The first category (Subjects 1-7) consists on refactorinthse change: they extracted the code insidetthg, cat ch,

performed by developers applied to real Java applicatio ndf i nal | y blocks to methods in specific classes that han-

ranging from 3-100 KLOC (non-blank, non-comment lines oalsé exceptions. They relied on refactoring tools, pair eayi

. . _-and unit tests to assure that the behavior was preservede Som
code) using tools or manual steps. All of them are conmdereﬁ . L
asses that implemen®eri al i zabl e were refactored.

behavior preserving by developers. We us&SREFACTORtO ¢

. Developers changed thel one method and introduced the
evaluate whether the transformation preserves the othierveh . .
behavior. andl er attribute to handle exceptions. However, they forgot

Third-party developers performed a refactoring on JHOEQ sterlal|z.e|_th|stﬂew SFtn?ute. Thus,t\(vhe_r\ ttt;me metb_?:nef
Draw and CheckStylePlugin (Subjects 1-2) to modularif 0 serialize the Oobject, an exception 1S trown. Ther&lo

exception handling code [7]. Fuhrer et al. [8] proposed a T\Arefactorecé rpethodl On? has ? ilfferefnt ?eha\”tor.ANTLR
implemented an Eclipse refactoring to apply the infer giener oreover, EClipse wrongly applied a refactoring to

: : - and Xtc, introducing a compilation error that was not re-
type argument refactoring, enabling applications to use Ja ') .
P 9 9 g app orted [8]. Finally, FEREFACTOR did not detect behav-

generics. They evaluated their refactoring in four reaIaJaIOr change in Subjects 2-4 and 7. In the second category
applications: Junit, Vpoker, ANTLR, and Xtc (Subjects 3-6)SAFEREFACTOR identified all but one behavior change that

Murphy-Hill et al. [9] performed some experiments to analyz tandard outout. Tables | and i1 e th it
how developers refactor. They used a set of twenty EclipggeS standard output. fables 1 an summarize the resutts.

components versions from Eclipse CVS, and manually de-

tected the refactorings applied. We evaluate one transfiom D. Discussion

in Eclipse TextEditor module (Subject 7). ~ Our tool cannot detect behavioral changes in the standard
The seco.nd categgry (Subjects 8_-24) includes non-behavd)(gﬁput Gystem out . pri ntln) messages and exception

Fransfqrmgtlons gpphed by refactoring tools. These bugew messages (Subject 8). Thus, we modify some subjects to

identified in the literature [3], [4], [10]. We USEABEREFAC- includer et ur n statements with the values of the messages.

TOR to evaluate whether it detects the behavior changes. \we intend to generate some test patterns that are useful for

: detecting changes in the standard output. Additionally, ou

B. Experimental Setup technique can detect behavior changesan d methods only

We run the experiment on a dual-processor 2.2 GHz Dglhen they change some fields that contaigetier method
Vostro 1400 laptop with 2 GB RAM and running Ubuntu 9.04¢5r jt. We aim at improving our technique by automatically
In both categories, we used a command line interface prdvidgeneratinggetter methods for all attributes. Finally, the current
by our S\FEREFACTOR It receives three parameters: sourcgnplementation of our technique cannot deal with inner and

and target program paths, and timeout to generate tests. \¥@-puplic classes directly. However, if there is a method i

the first and second categories, respectively. We did not usesgnsider a rename method frofam(..) to A n(..).

the SAFEREFACTOR Eclipse graphical interface in order toTpe set of methods identified by Step 3 does not include them.

automate the experiment. A similar thing occurs when renaming a class. We cannot
2All subjects are available at: http://www.dsc.ufcg.edlrlspg/saferefactor/ compare the renamed method’s behavior direCHY- However,

experiments.htm SAFEREFACTOR compares them indirectly if a method in

We evaluated SFEREFACTOR in some transformations.

SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTON IN A CHANGING WORLD 4

1st Category: Refactoring Real Applications

Subject Program KLOC Refactoring Tests Error Total Time (s) Result
1 JHotDraw 23 Extract Exception Handler 2245 273 148 Behavior Change
2 CheckStylePlugin 20 Extract Exception Handler 5864 0 235 -
3 Junit 3 Infer Generic Type 1127 0 99 -
4 Vpoker 4 Infer Generic Type 466 0 109 -
5 ANTLR 32 Infer Generic Type - - 2 Compilation Error
6 Xtc 100 Infer Generic Type - - 4 Compilation Error
7 TextEditor 15 Replace Deprecated Code 16009 0 107 -
TABLE |

SUMMARY OF SAFEREFACTOREVALUATION IN REFACTORINGREAL CASE STUDIES

2nd Category: Catalog of Defective Refactorings

Subject Refactoring Bug Description Tests Error Result

8 Push Down Method Incorrect handling of super accesses 488 (1] -

9 Rename Class Renaming a class leads to undiagnosed shadowing 102 95 Behavior Change
10 Rename Variable Renaming a local variable leads to shadowing by field 494 492 Behavior Change
11 Rename Method Renaming a method leads to shadowing of statically imported method 93 91 Behavior Change
12 Encapsulate Field No check for overriding problems 474 464 Behavior Change
13 Extract Method Incorrect dataflow analysis 558 554 Behavior Change
14 Push Down Method Incorrect handling of super accesses 486 404 Behavior Change
15 Push Down Method Incorrect handling of field accesses 78 75 Behavior Change
16 Push Down Method Pushing down a method enables overloading 101 99 Behavior Change
17 Move Class Move a class to another package disables overriding 101 99 Behavior Change
18 Move Class Move a class to another package disables overloading 79 i Behavior Change
19 Change Method Signature Increasing method visibility enables overriding 214 40 Behavior Change
20 Change Method Signature Increasing method visibility enables overloading 79 76 Behavior Change
21 Change Method Signature Increase method visibility enables overriding to another package 121 40 Behavior Change
22 Pull Up Method Pulling up a method enables overloading 101 99 Behavior Change
23 Pull Up Method Pulling up a method enables overriding 170 88 Behavior Change
24 Pull Up Method Pulling up a method to a class in another package enables overriding 167 163 Behavior Change

TABLE Il

SUMMARY OF SAFEREFACTOREVALUATION IN THE CATALOG OF DEFECTIVEREFACTORINGS

common k) calls them. Step 4 generates tests includinig practical approach for detecting behavioral changes uaing
the randomly generated sequence of method calls. It isa@imitool support, regardless the kind of refactoring.

to Opdyke’s notion. Ifmai n calls them, we compare them

ir!directly. Moreoyer, a simpl_e rename_method may enable or IV. FINAL REMARKS

disable overloading [10]. This feature is a potential seust _ _ _)
problems. Step 4 generates specific tests for exercisimy eve Y& presented a tool for improving safety during refactoring
method (not affected by the transformation) nammear n activities. Our earlier works present our _technlque [131]c_j_a
in the superclasses or subclasseshofTable Il shows three @ t00l [14]. Here we evaluate our technique with empirical

defective renaming refactorings that our tool detected. ~ Studies. We intend to create a plugin for other IDEs, such
as Netbeans. Additionally, besides using it in more reaécas

studies, we aim at testing refactoring tools in order to mab

E. Related Work) .) . . o
. . ically find non-behavior transformations following a sianil
Daniel et al. [12] proposed a technique for aUtomateébproach of Daniel et al. [12].

testing refactoring tools. They found some compilatioroesr
introduced by Eclipse and Netbeans. Steimann and Thies [3]
and Ekman et al. [4] manually catalogued behavioral changes
problems (for some kinds of refactorings) in refactoringlso We gratefully thank the guest editors and the anonymous
Moreover, Schafer et al. [10] explained an approach toesolweferees for useful suggestions. This work was partially- su
problems on the rename refactoring. We propose a maqerted by the National Institute of Science and Technology

ACKNOWLEDGMENT

SOFTWARE EVOLUTION: MAINTAINING STAKEHOLDERS’ SATISFACTON IN A CHANGING WORLD

for Software Engineering (INES), funded by CNPq grants

573964/2008-4 and 477336/2009-4.

(1]
(2]
(3]

(4]
(5]
(6]
(7]

(8]

El
[10]
[11]
[12]

[13]

[14]

REFERENCES

M. Fowler, Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.

T. Mens and T. Tourwg, “A survey of software refactoringEEE TSE,

vol. 30, no. 2, pp. 126-139, 2004.

F. Steimann and A. Thies, “From public to private to alis&efactoring
java programs under constrained accessibility,’BGOOP, 2009, pp.
419-443.

T. Ekman, R. Ettinger, M. Schafer, and M. Verbaere, “R&fang bugs
in eclipse, idea and visual studio,” 2008.

C. Pacheco, S. Lahiri, M. Ernst, and T. Ball, “Feedbadlected random
test generation,” iInCSE, 2007, pp. 75-84.

W. Opdyke, “Refactoring object-oriented framework&®h.D. disserta-
tion, UIUC, 1992.

J. Taveira, C. Queiroz, R. Lima, J. Saraiva, S. SoaresQOHieira,

N. Temudo, A. Araljo, J. Amorim, F. Castor, and E. Barreirdssess-
ing intra-application exception handling reuse with aspédn SBES

2009, pp. 22-31.

R. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller, ‘fiiently

refactoring java applications to use generic libraries, ECOOP, 2005,

pp. 71-96.

E. Murphy-Hill, C. Parnin, and A. Black, “How we refactoand how
we know it,” in ICSE, 2009, pp. 287-296.

M. Schafer, T. Ekman, and O. Moor, “Sound and extemsit@naming
for java,” in OOPSLA, 2008, pp. 277-294.

B. Cabral and P. Marques, “Exception handling: A fielddst in java
and .net,” inECOOP, 2007, pp. 151-175.

B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automatedsting of
refactoring engines,” ifFSE, 2007, pp. 185-194.

G. Soares, R. Gheyi, T. Massoni, M. Cornélio, and D. &deanti,

“Generating unit tests for checking refactoring safety,"SBLP, 2009,

pp. 159-172.

G. Soares, D. Cavalcanti, R. Gheyi, T. Massoni, D. Serayd

M. Cornélio, “Saferefactor - tool for checking refactagirsafety,” in

Tools Session at SBES, 2009, pp. 49-54.

Gustavo Soaress a PhD student in the Department

of Computer Science at Federal University of Camp-
ina Grande. His research interests include refactor_g
ings and formal methods. He holds a MSc in Com-

puter Science from the Federal University of Camp-soni@dsc.ufcg.edu.br.

ina Grande, and is a member of the IEEE and ACM.
Contact him at DSC/UFCG, 882 Aprigio Veloso,

Bodocong6, Campina Grande, Brazil; Phone: +55
83 3310 1122; gsoares@dsc.ufcg.edu.br.

Rohit Gheyi is a professor in the Department of

Computer Science at Federal University of Campina
Grande. His research interests include refactorings,
formal methods and software product lines. He
holds a Doctoral degree in Computer Science from
the Federal University of Pernambuco, and is a
member of the ACM. Contact him at DSC/UFCG,

882 Aprigio Veloso, Bodocongb, Campina Grande,
Brazil; Phone: +55 83 3310 1122 (ext. 2202); ro-

hit@dsc.ufcg.edu.br.

Dalton Serey is a professor in the Department of

Computer Science at Federal University of Camp-
ina Grande. His research interests include software
evolution. He holds a Doctoral degree in Computer
Science from the Federal University of Campina
Grande, and is a member of the ACM. Contact him
at DSC/UFCG, 882 Aprigio Veloso, Bodocongd,

Campina Grande, Brazil; Phone: +55 83 3310 1122;
dalton@dsc.ufcg.edu.br.

Tiago Massoni is a professor in the Department

of Computer and Systems at the Federal University
of Campina Grande. His research interests include
software design and evolution, and formal meth-
ods. In addition to his academic posts he also
worked as a programmer at IBM in California. He

holds a Doctoral degree in Computer Science from
the Federal University of Pernambuco, and is a
member of the ACM. Contact him at DSC/UFCG,

882 Aprigio Veloso, Bodocongd, Campina Grande,
Brazil; Phone: +55 83 3310 1122 (ext. 2202); mas-

