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Abstract—Each refactoring implementation must check a num-
ber of conditions to guarantee behavior preservation. However,
specifying and checking them are difficult. Sometimes refactoring
tool developers may define overly strong conditions that prevent
useful behavior-preserving transformations to be performed. We
propose an approach for identifying overly strong conditions in
refactoring implementations. We automatically generate a num-
ber of programs as test inputs for refactoring implementations.
Then, we apply the same refactoring to each test input using two
different implementations, and compare both results. We use
Safe Refactor to evaluate whether a transformation preserves
behavior. We evaluated our approach in 10 kinds of refactorings
for Java implemented by three tools: Eclipse and Netbeans, and
the JastAdd Refactoring Tool (JRRT). In a sample of 42,774
transformations, we identified 17 and 7 kinds of overly strong
conditions in Eclipse and JRRT, respectively.

I. INTRODUCTION

Refactoring is the process of changing a software system
to improve its internal quality yet preserving its observable
behavior [1], [2]. Manually applying refactorings is an error-
prone and time-consuming activity. Currently IDEs, such as
Eclipse and NetBeans, automated a number of refactorings for
Java. First, the user specifies the transformation parameters.
Then the refactoring implementation checks a number of
conditions needed for guaranteeing behavioral preservation.
For instance, it is desired for the Rename Method refactoring
implementation to avoid name conflicts. If all conditions are
satisfied, the tool performs the transformation.

Usually refactoring tool developers implement each set of
refactoring conditions based on their experience. However,
they may forget to specify some conditions allowing non-
behavior-preserving transformations to be performed. A num-
ber of bugs have been catalogued in the literature [3], [4],
[5]. In order to test refactoring implementations, developers
write unit tests to check whether an implementation prevents
non-behavior-preserving transformations that they are aware
of. For example, the JastAdd Refactoring Tool (JRRT) test
suite is publicly available1.

In order to avoid this scenario, another approach would be
to formally specify each refactoring (conditions and transfor-
mation). Proving the refactoring correctness with respect to a
formal semantics is useful for avoiding too weak conditions.
However, some conditions may be overly strong, avoiding
some useful behavior-preserving transformations to be applied

1http://code.google.com/p/jrrt/source/checkout

compromising the tool’s applicability (Section II). So, it is
also important to prove that the set of established conditions
is minimal to avoid overly strong conditions. However, both
tasks are nontrivial, specially in complex languages, such as
Java [6]. Moreover, even if we prove the correctness and
minimality properties, we need to check that the implementa-
tion is in conformance with its specification. Some conditions
may require nontrivial static analysis that is not simple to be
implemented.

Some approaches have proved the correctness of some
refactorings for a subset of Java [7], [8], [9]. However,
none of them proved the minimality property of refactoring
conditions. Schäfer and de Moor [10] propose a number
of refactoring implementations for Java in JRRT. For each
transformation, they specify a number of checks to guarantee
behavior preservation. Their tool contains less bugs than the
refactorings implemented by Eclipse. Additionally, they show
some evidence that their implementation is less restrictive than
Eclipse. However, there is no practical approach for identifying
overly strong conditions in refactoring implementations.

In this paper, we propose a practical approach to help
refactoring tool developers on checking whether refactoring
conditions are overly strong. First, we use a program generator
to automatically generate Java programs as test inputs for the
refactoring implementations. For each generated program, we
apply a refactoring using at least two refactoring implemen-
tations. Then, we compare their outputs. We use Safe Refac-
tor [5] (Section III-B) to evaluate whether a transformation
preserves behavior. This tool has been useful in identifying a
number of non-behavior-preserving transformations [5]. If an
implementation rejects a transformation, and the other one ap-
plies it and preserves behavior according to Safe Refactor, our
approach establishes that the former implementation contains
an overly strong condition. The refactoring tool developers can
use this information to make their refactoring implementations
more applicable.

We evaluated our approach on testing 10 kinds of refac-
torings implemented by three Java refactoring tools (Eclipse,
Netbeans, and JRRT) in a sample of 42,757 transformations.
We found that 16% and 7% of transformations rejected by
Eclipse and JRRT, respectively, are behavior-preserving. The
implementations have overly strong conditions avoiding cor-
rect transformations to be applied. Our approach automatically
categorized them in 17 and 7 kinds of overly strong conditions



of Eclipse and JRRT, respectively.
In summary, the main contributions of this paper are the

following:
• A practical approach to help refactoring tool developers

on checking whether the implemented conditions are
overly strong (Section IV);

• An evaluation of the approach on testing 10 kinds of
refactorings implemented by Eclipse, Netbeans and JRRT
(Section V).

II. MOTIVATING EXAMPLE

In this section, we show behavior-preserving transforma-
tions that are not possible to be applied due to overly strong
conditions. First, consider part of a payroll system of a
company, as declared next.

p u b l i c c l a s s Employee { . . . }
p u b l i c c l a s s Salesman ex tends Employee {

p r i v a t e double s a l a r y ;
p u b l i c double g e t S a l a r y ( ) {

re turn s a l a r y ;
}
. . .

}

The Salesman class is a subclass of the Employee class.
A salesman declares the salary field and the getSalary
method. Suppose that we would like to apply the Pull Up Field
refactoring to move salary to Employee. If we use JRRT
to apply this change, the tool will show the following warning
message: cannot access variable Salesman.salary. Since this
field is private, if we moved it to Employee, it would not
be visible to Salesman.getSalary(). Therefore, JRRT
does not apply this change.

However, Eclipse can apply this transformation. It increases
the accessibility of salary from private to protected,
as shown next. The transformation preserves behavior.

p u b l i c c l a s s Employee {
p r o t e c t e d double s a l a r y ; . . .

}
p u b l i c c l a s s Salesman ex tends Employee {

p u b l i c double g e t S a l a r y ( ) {
re turn s a l a r y ;

}
. . .

}

After that, the developer can apply the Pull Up Method
refactoring to move getSalary to Employee. Steimann
and Thies [4] discuss some visibility adjustments to increase
the applicability of a number of refactorings.

On the other hand, JRRT can correctly apply some trans-
formations rejected by Eclipse. Consider the A class and its
subclass B in Listing 1. A declares the k(long) method, and
B declares methods n and test. Suppose we would like to
rename n to k. If we apply this transformation using Eclipse,
it shows the warning message: Method “A.k(long)” will be
shadowed by the renamed declaration “B.k(int)”.

Eclipse has a functionality that allows us to preview the
transformation. In the previous example, Listing 2 presents
the preview of the resulting program. Notice that after the

transformation, the test method yields 20, but in the original
version it yields 10. This transformation does not preserve
behavior. This is the reason why Eclipse showed a warning
message.

However, we can apply this transformation using JRRT.
The resulting program is presented in Listing 3. Notice that
this transformation is different from Eclipse. JRRT performs
an additional change to make the transformation behavior-
preserving. JRRT identifies that the call to k inside test must
refer to A.k instead of B.k after the transformation. So, it
adds a super access to the method invocation k(2) inside
test. Therefore, the resulting program in Listing 3 correctly
refactors the original program in Listing 1.

Although the examples presented in this section are simple,
they can happen in practice in bigger examples. Refactoring
tool developers have not only to specify a number of con-
ditions, but also they must check whether some additional
changes can be done to make the refactoring more applicable.
Steimann and Stolz [11] present that refactoring to Role Object
is rarely applicable in practice due to strong conditions. How-
ever, it is not easy to detect whether an implementation has
overly strong conditions. We need a more practical approach
to identify them to increase the applicability of refactoring
tools.

III. OVERVIEW

In this section, we present an overview of JDolly [12], a
Java program generator, and Safe Refactor [5].

A. JDolly

JDolly exhaustively generates a number of Java programs.
We specify a small subset of the Java metamodel in Alloy,
a formal specification language [13]. We use the Alloy Ana-
lyzer [13], a tool for performing analysis on Alloy models, for
generating solutions for this metamodel. Each Alloy solution is
converted into a Java program. Listing II presents an example
of a program generated by JDolly.

An Alloy model or specification is a sequence of paragraphs
of two kinds: signatures and constraints. Each signature de-
notes a set of objects (similar to a UML class), which are
associated to other objects by relations declared in the signa-
tures. A signature paragraph introduces a type and a collection
of relations, along with their types and other constraints on
their included values.

We specified part of the Java language in Alloy. For exam-
ple, Listing 4 shows part of the Alloy model used by JDolly
to specify the concepts of Java classes, fields and methods.

Listing 4. A subset of the Java metamodel specified in Alloy.
sig Type { ···}
sig Class extends Type {

extend: lone Class,
fields: set Field,
methods: set Method, ···
}
sig Field { ···}
sig Method { ···}



Listing 1. Original version
p u b l i c c l a s s A {

p u b l i c long k ( long a ) {
re turn 1 0 ;

}
}
p u b l i c c l a s s B ex tends A {

p u b l i c long n ( i n t a ) {
re turn 2 0 ;

}
p u b l i c long t e s t ( ) {

re turn k ( 2 ) ;
}

}

Listing 2. Eclipse’s target version after ignoring
the warning message
p u b l i c c l a s s A {

p u b l i c long k ( long a ) {
re turn 1 0 ;

}
}
p u b l i c c l a s s B ex tends A {

p u b l i c long k ( i n t a ) {
re turn 2 0 ;

}
p u b l i c long t e s t ( ) {

re turn k ( 2 ) ;
}

}

Listing 3. JRRT target’s version
p u b l i c c l a s s A {

p u b l i c long k ( long a ) {
re turn 1 0 ;

}
}
p u b l i c c l a s s B ex tends A {

p u b l i c long n ( i n t a ) {
re turn 2 0 ;

}
p u b l i c long t e s t ( ) {

re turn super . k ( 2 ) ;
}

}

Fig. 1. Renaming the n method to k using Eclipse and JRRT.

A Java class may declare a set of fields and methods,
and may extend another class. The set qualifier in relations
fields and methods imposes no constraint on multiplicity.
The lone qualifier denotes a partial function. In Alloy, one
signature can extend another, establishing that the extended
signature (subsignature) is a subset of the parent signature.
For example, Class is a subsignature of Type. Similarly we
specified the other Java constructs.

Additionally, a Java program must satisfy some well-
formedness constraints. We specified a number of them
in Alloy. For instance, a class cannot extend itself. The
fact ClassCannotExtendItself specifies this constraint
(Listing 5). An Alloy fact packages formulas that always hold,
such as invariants.

Listing 5. A well-formedness rule of Java specified in Alloy.
fact ClassCannotExtendItself {

all c: Class | c ! in c.ˆextend
}

The all keyword represents the universal quantifier. The
in keyword denotes the set membership operator. The oper-
ators ˆ and ! represent the transitive closure and negation
operators, respectively. The dot operator (.) is a generalized
definition of the relational join operator. For example, the
expression c.extend yields the superclass of c.

JDolly performs analysis on this specification of the Java
metamodel using Alloy Analyzer to find all solutions for a
given scope. A scope defines the maximum number of objects
allowed for each signature during analysis, assigning a bound
to the number of objects of each type. For instance, Figure 2
shows part of one solution generated by the Alloy Analyzer
for the previous model. It represents a program containing
three classes and two of them do not declare fields. We used
a scope of at most three objects for Class, Method, and
Field signatures. JDolly converts each Alloy solution into a
Java program.

B. Safe Refactor
Safe Refactor is a tool for detecting behavioral changes in

transformations applied to sequential Java programs.
The Safe Refactor command line version receives as input

two programs and analyzes whether they have the same

Fig. 2. Part of a solution found by the Alloy Analyzer.

behavior. The tool analyzes a transformation and generates
a number of tests suited for detecting behavioral changes.
The analysis consists of identifying the common methods,
that is, methods with same signature before and after the
transformation. Next, Safe Refactor generates a test suite
for the methods previously identified. Since the tool focuses
on identifying common methods, it executes the same test
suite before and after the transformation. Safe Refactor uses
Randoop [14], a Java unit test generator, to perform the test
case generation. Randoop randomly generates tests for a set
of classes and methods given a time limit or a maximum
number of tests. Finally, the tool executes the tests before
and after the transformation, and evaluates the results: if they
are different, the tool yields a set of unit tests exposing the
behavioral change. Otherwise, we improve confidence that the
transformation is behavior-preserving. Figure 3 illustrates this
process.

Consider the transformation presented in Figure 1. Safe
Refactor receives as input the programs shown in Listings 1
and 2. First, it identifies the methods with the same signature
on both versions: A.k(long) and B.test(). Next, it gen-
erates 12 unit tests for these methods in 1 second (time limit).
Finally, it runs the test suite on both versions and evaluates the
results. A number of tests (11) passed in the source program



Fig. 3. Safe Refactor’s technique.

but they did not pass in the refactored program. Listing 6
shows one of the generated tests that reveals the behavioral
change. The test passes in the source program since the value
returned by B.test() is 10, but it fails in the target program
since the value returned by B.test() in this version is 20.
Therefore, Safe Refactor reports a behavioral change.

Listing 6. A unit test exposing a behavioral change in the transformation
performed by NetBeans from Listing 1 to Listing 2.
p u b l i c vo id t e s t ( ) {

B b = new B ( ) ;
long x = b . t e s t ( ) ;
a s s e r t T r u e ( x == 1 0 ) ;

}

Previously, we have used Safe Refactor to evaluate trans-
formations applied to programs with up to 100KLOC. It has
been useful for identifying behavioral changes that were not
detected by IDEs [5].

IV. TECHNIQUE

Our goal is to identify behavior-preserving transformations
that are not possible to be applied by refactoring tools due
to overly strong conditions in their implementations. In this
section, we describe a technique for detecting them.

Our technique consists of four major steps. First, we auto-
matically generate programs as test inputs for the refactoring
implementations (Step 1) using a program generator (JDolly)
(Section IV-A). Next we apply the same refactoring to each
test input using two different implementations (Step 2) (Sec-
tion IV-B). We compare the outputs of the implementations. If
one of them cannot apply the transformation, and the other one
performs it maintaining the program’s behavior according to
Safe Refactor, we identify a transformation that has an overly
strong condition (Section IV-C). The first implementation
rejects a valid behavior-preserving transformation (Step 3).
At the end of this step, we may have detected a number of
rejected behavior-preserving transformations. In Step 4, we
classify them (Section IV-D). The whole process is depicted
by Figure 4.

A. Test input generation

The first step is to generate test inputs using our Java pro-
gram generator (Section III-A). The tool developer can specify
the maximum number (scope) of classes, fields, and methods

that generated programs must have. Furthermore, JDolly can
be parameterized with specific additional constraints for the
generated programs. For example, considering the Pull Up
Method refactoring, the generated programs must contain at
least a subclass declaring a method that we would like to pull
up to its superclass. We can specify this constraint and guide
JDolly to generate useful test inputs. The PullUpMethod
fact shows some constraints we used to test this refactoring.

fact PullUpMethod {
some c:Class |

someSuperClass[c] and (some m:Method | m in c·methods)
}

The some keyword represents the existential quantifier. The
someSuperClass predicate states that the c class has a
superclass. We apply the Pull Up Method refactoring to the
value given to m by the Alloy Analyzer in each solution.
We can also add other constraints to reduce the number of
instances generated.

B. Performing the refactoring

The second step of our technique is to apply a refactoring
using two different implementations to each program gener-
ated by JDolly. Each refactoring implementation checks a set
of conditions, and, if all of them are satisfied, it applies the
transformation. Otherwise, the refactoring is rejected, and a
warning message is shown.

For instance, JDolly generated 6,830 programs to test
the Rename Method refactoring. We save them in a folder.
Listing 1 presents one of the programs generated by JDolly.
Then, we applied this refactoring to each generated program
using the Rename Method implementations of Eclipse, JRRT,
and NetBeans. We used their refactoring API to apply the
refactoring. This transformation applied to Listing 1 cannot be
performed by Eclipse. It gives the following warning message:
Method A.k(long) will be shadowed by the renamed declara-
tion B.k(int). However, JRRT can perform the refactoring, and
yields the program in Listing 3. NetBeans can also perform
the transformation. It yields a target program presented in
Listing 2. However, the transformation performed by Netbeans
does not preserve behavior.

At the end of this step, we have the results of each
refactoring implementation for each generated program: the



Fig. 4. A technique for testing refactoring implementations with respect to overly strong conditions.

target program when the transformation is applied or a warning
message when it is rejected.

C. Test oracle

We propose an oracle to detect behavior-preserving trans-
formations rejected by refactoring implementations. For the
same input and refactoring, we compare the results of two
refactoring implementations: if one implementation rejects the
transformation, and the other one applies it, and Safe Refactor
does not find behavioral changes, we establish that the former
implementation rejected a behavior-preserving transformation
due to an overly strong condition. This technique is also known
as differential testing [15]. If both implementations cannot
apply a transformation, we cannot conclude anything.

For example, consider the results of the Rename Method
implementations for a given program illustrated in the previous
section (Section IV-B). We compare the results of Eclipse,
NetBeans, and JRRT. While the former rejected the transfor-
mation, NetBeans and JRRT applied it. Safe Refactor evaluates
the transformations applied by JRRT and NetBeans. It does
not find behavioral changes in the transformation applied by
JRRT. We conclude that Eclipse rejected a behavior-preserving
transformation due to an overly strong condition since JRRT
was able to correctly apply it. Moreover, it detects a bug (too
weak condition) in the transformation applied by NetBeans.
Listing 6 shows a test given by Safe Refactor exposing
behavioral change.

D. Classifying overly strong conditions

The previous step detects a set of behavior-preserving trans-
formations rejected by refactoring implementations. However,
since JDolly generates a number of programs, we can have
some rejected transformations referring to the same overly
strong condition.

Manually analyzing each rejected behavior-preserving trans-
formation to identify whether they show the same kind of
overly strong condition is time consuming and error-prone.
To automate this process, we use an approach proposed by
Jagannath et al. [16] that focuses on splitting the failing tests
based on the oracle messages. The goal is to group the failing

tests related to the same fault together. We categorized the
warning messages thrown by a refactoring implementation
when a condition is not satisfied based on templates.

For example, when we apply the Rename Method refactor-
ing of Eclipse to the program shown in Listing 1, the tool
yields the following warning messages, respectively: Method
“A.k(long)” will be shadowed by the renamed declaration
“B.k(int)”. Our approach ignores the parts inside quotes,
which contain names of packages, classes, methods, and fields.
If there is another message that has the same template, the
rejected transformations are automatically classified in the
same category of overly strong condition.

At the end of this step, our approach reports the behavior-
preserving transformations rejected by the implementation
categorized by overly strong conditions. Since Safe Refactor
does not prove that a transformation is behavior-preserving, it
is important to manually check them to avoid false positives.
After fixing the overly strong conditions, refactoring tool
developers can run our approach again.

V. EVALUATION

In this section, we evaluate our technique in 27 refactoring
implementations. First, we describe these implementations
(Section V-A) and the experimental setup (Section V-B).
Finally, Section V-C presents the results of our evaluation.

A. Refactoring implementations

We tested 27 refactorings implementations for Java of three
tools: Eclipse (10 refactorings), JRRT (10 refactorings), and
NetBeans (7 refactorings). Table I summarizes all evaluated
refactorings.

Eclipse is the most used Java IDE [17], and contains a
number of automated refactorings (currently, more than 25).
NetBeans is also a popular Java IDE. A number of related
approaches [18], [4], [3] have studied the correctness of their
transformations.

JRRT implements a number of refactorings [3], [19], [10].
They aim at outperforming the refactoring implementations of
Eclipse in terms of overly strong and too weak conditions.
Some refactorings may have invariants to be preserved. For



TABLE I
SUMMARY OF EVALUATED REFACTORING IMPLEMENTATIONS.

instance, their Rename Method refactoring implementation
is based on the name binding invariant: each name should
refer to the same entity before and after the transformation.
They proposed other invariants such as control flow and data
flow preservation. To alleviate the problem of overly strong
conditions, their implementations may also perform additional
changes, such as the one presented in the transformation from
Listing 1 to Listing 3.

In our experiment, we evaluate 10 kinds of refactorings
(Table I). Murphy et al. [17] conducted a survey with Eclipse
developers and found that the most used refactorings are:
Rename, Move, Extract Method, Pull Up Method, and Add
Parameter. We evaluated four of them and focused on struc-
tural refactorings, transformations that operate at or above the
level of methods. We did not evaluate the Extract Method
refactoring due to current limitation of JDolly to generate
more elaborated method bodies. We tested only 7 refactorings
in NetBeans. The Move Method refactoring is not supported.
Moreover, the Encapsulate Field and Add Parameter refactor-
ings were not evaluated due to lack of documentation support.

B. Experimental setup

We performed the experiment on a 2,7 GHz dual-core PC
with 4 GB of RAM running Ubuntu 10.04. We evaluated
Eclipse 3.4.2, NetBeans 6.9.1 and JRRT 1.0. For each gen-
erated input, we compare the outputs of these three tools.

We used the Safe Refactor command line version using the
time limit of 1 second to generate tests, which is enough for
testing the small programs generated by JDolly. We also used
the JDolly command line version.

C. Experimental results

Our technique evaluated 27 refactoring implementations
of Eclipse, NetBeans, and JRRT. Based on the scope and
the additional constraints used for each refactoring, JDolly

generated 42,774 programs2. Eclipse and JRRT did not apply
a number of transformations, from which 32% and 16% were
behavior-preserving, respectively. They reject them due to
overly strong conditions. We automatically classified these
transformations in categories. As a result, we identified 17
and 7 kinds of overly strong conditions in Eclipse and JRRT,
respectively. We did not find overly strong conditions in the
refactorings implemented by NetBeans.

Table 3 summarizes the experiment results. For each refac-
toring, we show the results of each implementation (Eclipse,
NetBeans, and JRRT). The number of programs generated
by JDolly is shown in Column Program. Column Rejected
Transformation shows the number of transformations that were
rejected by each implementation for not satisfying refactoring
conditions. The number of behavior-preserving transforma-
tions that were rejected due to an overly strong condition of the
implementation is shown in Column Rejected B. Pres. Trans-
formation. Finally, Column Overly Strong Condition shows the
number of overly strong conditions that were categorized by
our technique.

Most transformations can be applied in NetBeans. It did not
reject transformations except for the Rename Class refactoring.
All transformations rejected by it were also rejected by Eclipse
and JRRT. Therefore, we did not find problems related to
overly strong conditions in NetBeans. However, it performed a
number of non-behavior-preserving transformations that were
rejected by Eclipse and JRRT. NetBeans contains a number of
bugs (too weak conditions), as presented elsewhere [12]. The
focus of this work is not on identifying too weak conditions
but in detecting overly strong conditions. Since Netbeans
specifies too weak conditions, it allows not only non-behavior-
transformations, but also a number of behavior-preserving
transformations that cannot be applied by other tools. Since
the oracle of our technique is based on differential testing
(Section IV-C), performing almost all transformations using
NetBeans was useful for identifying whether transformations
rejected by Eclipse and JRRT could, in fact, be applied.

Eclipse was the tool that rejected more transformations.
It rejected 21,759 transformations, from which 32% are
behavior-preserving. We found overly strong conditions in all
Eclipse’s implementation but the Push Down Field refactoring.
For instance, its Rename Method refactoring implementation
rejected 5,995 out of 6,830 transformations but 4,802 of them
could be applied without changing programs’ behavior.

Renaming a method in the presence of features such as
overloading and overriding may lead to behavioral changes in
some situations due to changes in name bindings [3]. Eclipse
developers may have implemented overly strong conditions for
simplicity in order to avoid non-behavior-preserving transfor-
mations. However, this overly strong condition also rejected
a number of useful behavior-preserving transformations since
overloading and overriding are commonly used by Java devel-
opers.

2All experiment data are available at:
http://dsc.ufcg.edu.br/˜spg/papers.html



TABLE II
SUMMARY OF THE EXPERIMENT; PROGRAM = NUMBER OF PROGRAMS GENERATED BY JDOLLY; REJECTED TRANSFORMATION = NUMBER OF

TRANSFORMATIONS REJECTED BY THE IMPLEMENTATION; REJECTED B. PRES. TRANSFORMATION = NUMBER OF BEHAVIOR-PRESERVING
TRANSFORMATIONS THAT WERE REJECTED; OVERLY STRONG CONDITION = NUMBER OF OVERLY STRONG CONDITIONS CLASSIFIED BY OUR TECHNIQUE.

JRRT rejected 19,153 transformations. In 16% of them,
the program’s behavior could be preserved. We found overly
strong conditions in 6 out of 10 refactorings evaluated: Re-
name Method, Push Down Method, Pull Up Method, Pull Up
Field, Encapsulate Field, and Move Method.

Manually analyzing and classifying overly strong conditions
in thousands of rejected transformations is time-consuming
and error-prone. To avoid that, our technique automatically
classifies them according to the template of the message shown
by the implementation when a transformation is rejected.
We analyze all warning messages in transformations that are
behavior-preserving in at least another refactoring implemen-
tation. Our technique categorized 17 kinds of overly strong
conditions in Eclipse, and 7 ones in JRRT. Table III shows
the overly strong conditions identified in Eclipse and JRRT,
respectively. Each line in the table contains a warning message
template. The brackets abstract the names of packages, classes,
methods, and fields, as described in Section IV-D.

We manually checked the overly strong conditions we found
by randomly selecting a sample of 10 transformations for each
kind of overly strong conditions, and we did not find false
positives (a transformation that does not represent an overly
strong condtion) or false negatives (the same template of warn-
ing message representing different overly strong conditions).

In five refactorings, we found less overly strong conditions
in JRRT than Eclipse: Rename Class, Rename Method, Re-
name Field, Move Method, and Add parameter. Moreover, in
four refactorings (Push Down Method, Pull Up Method, Pull
Up Field, and Encapsulate Field), we found the same number
of overly strong conditions in both tools. Finally, only in the
Push Down Field refactoring, we did not find overly strong

conditions.
Our technique identified 8 kinds of overly strong conditions

in Rename Class, Method, and Field implementations of
Eclipse, and only one in JRRT implementations. JRRT checks
whether name bindings are preserved. Each name should refer
to the same entity before and after the transformation [3].
Moreover, JRRT implementations may also check whether
it is possible to re-qualify a name in order to preserve the
name binding. This approach alleviates the problem of overly
strong conditions. Figure 1 shows an example in which JRRT
re-qualifies a name adding a super access to avoid name
binding changes. Eclipse follows a different approach.

The overly strong condition found in the Rename Method
refactoring of JRRT is related to overriding. This implemen-
tation has the invariant that overriding must be preserved.
We also detected a condition in Eclipse related to that but
NetBeans successfully applied a number of transformations
that change overriding yet preserving program’s behavior. In
other refactorings, such as Move Method and Add Parameter,
JRRT does not check conditions related to overriding.

Furthermore, we identified overly strong conditions related
to accessibility. Both, Eclipse and JRRT, rejected transforma-
tions in the Push Down Method and Pull Up Method refac-
torings due to inaccessible methods. However, these trans-
formations were performed by NetBeans. Changing access
modifiers is not simple. It may change the name binding
leading to behavioral changes [4]. Making these changes in ad-
hoc way may be error-prone. Steimann and Thies [4] propose
a number of conditions for applying refactorings with respect
to Java accessibility. They show that these conditions are less
strong than the ones implemented in Eclipse. While Eclipse



TABLE III
SUMMARY OF OVERLY STRONG CONDITIONS OF ECLIPSE AND JRRT.

implements some heuristics for that, Schäfer and de Moor [10]
intend to integrate these conditions to JRRT.

Eclipse and NetBeans contain test suites for evaluating
their refactoring implementations. For instance, the Eclipse
test suite contains more than 2,600 unit tests. JRRT has a
different test suite. Schäfer and de Moor [10] also evaluated
JRRT over more than 1,000 unit tests of Eclipse’s test suite.
They used them not only for evaluating correctness, but also
for identifying overly strong conditions [10]. Schäfer and de
Moor checked whether all rejected transformations of Eclipse
could be applied by JRRT. They identified some overly strong
conditions in Eclipse. However, they also identified overly
strong conditions in JRRT in the Add Parameter, the Move
Method, and the Push Down refactorings. The overly strong
conditions were related to visibility adjustment. However, they
do not propose an approach to evaluate whether refactoring
implementations have overly strong conditions. We can do it
by using JDolly and Safe Refactor.

In our evaluation, JDolly generated small programs (up
to 15 LOC) with up to two packages, three classes, four
methods, and two fields. These programs contain some com-
mon features of Java such as inheritance, overloading, and
overriding. Although simple, they were useful for identifying
24 kinds of overly strong conditions in Eclipse and JRRT. The
test suite of Eclipse and JRRT also contain small programs.
However, the programs have some Java constructs such as
interface, abstract classes and generics, that are currently not
supported by JDolly. By improving the expressivity of JDolly,
our technique can be useful for identifying other overly strong
conditions.

VI. RELATED WORK

A. Refactoring implementation

The term refactoring was coined by Opdyke [20], [21] as
a behavior-preserving program transformation that improves
some quality (reusability, maintainability) of the resulting



code. Opdyke [21] proposes a number of refactoring for C++
and specifies conditions to guarantee behavior preservation.
Roberts [22] automated the basic refactorings proposed by
Opdyke. However, there was no formal proof of the correct-
ness and minimality of these conditions. Later on, Tokuda and
Batory [23] found some overly weak conditions.

Schäfer et al. [3] propose a Rename Class, Method and Field
refactoring implementations. They state that a renaming must
preserve name bindings, that is, each name should refer to the
same entity before and after the transformation. To alleviate
the problem of overly strong conditions, their implementation
re-qualifies a name to preserve the name binding where
otherwise a conflict would exist. Our evaluation shows that
the implementations are less restrictive than the Eclipse ones.
We detected one overly strong condition related to overriding
in the Rename Method implementation.

Furthermore, Schäfer et al. [19], [10] present a number
of Java refactoring implementations. They translate a Java
program to an enriched language that is easier to specify and
check conditions, and apply the transformation. As correctness
criteria, besides using name binding preservation, they used
other invariants such as control flow and data flow preser-
vation. We evaluated ten refactoring implementations. In our
sample, we identified 7 kinds of overly strong conditions in
JRRT.

Steimann and Thies [4] show that changing access modifiers
in Java can introduce behavioral changes. They formalize
a number of conditions related to accessibility to preserve
behavior. Moreover, they alleviate overly strong conditions of
a number of refactorings implemented by Eclipse by perform-
ing additional changes to access modifiers. They concluded
that the proposed approach increases the applicability of the
refactorings presented in Eclipse. As a future work, we intend
to evaluate their implementation using our approach.

Steimann and Stolz [11] present a refactoring to the Role
Objects pattern. They argue that the previous implementation
was restricted, and it would be rarely applicable in practice
due to its overly strong conditions. They propose a new im-
plementation that increases the applicability of this refactoring.
We intend to use our approach to show that their refactoring
implementation is less restrictive than the initial one.

Borba et al. [8] propose a set of refactorings for a subset
of Java with copy semantics. Silva et al. [9] present a set
of behavior-preserving transformations for a subset of Java
with reference semantics. They formally specify all conditions
and prove that each transformation is sound with respect to
a formal semantics. Tip et al. [7] formally specify sound
refactorings with respect to type constraints. However, they
do not prove that the conditions are minimal. In the absence
of formal proofs, our technique can be useful for improving
the confidence that the established set of conditions does not
contain overly strong conditions.

Reichenbach et al. [24] propose the program metamor-
phosis approach for program refactoring. It breaks a coarse-
grained transformation into smaller transformations. Although
the smaller transformations may not preserve behavior indi-

vidually, they guarantee that the coarse-grained transformation
preserves behavior. We propose an approach to detect overly
strong conditions in refactoring implementations.

B. Automated testing

Daniel et al. [18] present a technique for automated testing
refactoring implementations to detect too weak conditions.
They developed a Java program generator called ASTGen
to generate programs as input to refactoring engines. To
evaluate the refactoring correctness, they implemented oracles
that evaluate the output of each transformation. For instance,
one of them checks whether a transformation introduces a
compilation error. They evaluated the technique by testing 21
refactoring implementations, and identified 21 bugs in Eclipse
and 24 in NetBeans. Most of them are transformations that
introduce compilation errors. Moreover, since their oracle for
detecting behavioral changes is syntactic, it may yield some
false positives and negatives. On the other hand, we use Safe
Refactor as an oracle for checking whether a transformation
preserves behavior.

Jagannath et al. [16] propose an approach called Oracle-
based Test Clustering to reduce the manual inspection to
identify all faults in bounded-exhaustive testing. The idea is
to split the failing test cases based on the template of the error
message. We used their approach for classifying overly strong
conditions based on the warning messages.

McKeeman [15] presents differential testing. It is a tech-
nique where two or more comparable systems are evaluated
against an exhaustive generated test cases. The different results
between the systems are candidates for tests that expose faults.
They used this technique for testing compilers. We propose
a technique that uses differential testing to detect behavior-
preserving transformations that were rejected by refactoring
implementations due to conservative analysis.

C. Program generation

The program generator (ASTGen) proposed by Daniel et
al. [18] exhaustively generates programs for a given scope.
The user implements in Java how the elements of the programs
will be combined together (generating approach). However, for
some Java elements, implementing how they will be combined
requires some effort. In this way, later, Gligoric et at. [25]
propose a technique for generating programs that allows not
only a generating approach but also a filtering approach. In
the latter, the user specifies what should be generated instead
of how as in the former. They present a non-deterministic
Java based language called UDITA. In this way, the user can
create generators that exhaustively generate solutions in a non-
deterministic way. To filter the generation, the user specifies in
Java the characteristics of a valid solution. By using the same
oracles used by ASTGen, they found 4 new bugs related to
compilation errors in 6 refactoring implementations of Eclipse
and NetBeans.

Both program generators specify a subset of Java. While, in
JDolly, the Alloy Analyzer yields all Java programs of a given
scope, UDITA uses the Java Path Finder model checker as a



basis for non-deterministic choices. In ASTGen, we have to
deal with how the programs must be generated. JDolly uses a
filtering approach similar to UDITA but the user specifies the
constraints of the generation in Alloy instead of Java. Some
kinds of constraints are simpler to be specified in Alloy instead
of implemented in Java.

VII. CONCLUSIONS

In this work, we propose a practical approach for detecting
overly strong conditions in refactoring implementations. A
number of test inputs are generated by JDolly. Each program
is applied by at least two refactoring implementations. Then,
we compare the results. If there is a transformation that can
be correctly applied by a tool, but it is rejected by the other
one, we detect a strong condition. We evaluated Eclipse, JRRT
and NetBeans with respect to overly strong conditions, and
identified 24 kinds of overly strong conditions that reduce the
applicability of Eclipse and JRRT refactoring implementations.

It took from 3 to 8 hours to test each kind of refactoring
implemented by Eclipse, Netbeans and JRRT. We can optimize
this process. For example, compiling thousands of programs
takes time. We can optimize this step by performing incremen-
tal compilation since some programs generated are similar.
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