
A Toolset for Checking SPL Refinements

Felype Ferreira
(Federal University of Pernambuco, Brazil

fsf2@cin.ufpe.br)

Rohit Gheyi
(Federal University of Campina Grande, Brazil

rohit@dsc.ufcg.edu.br)

Paulo Borba
(Federal University of Pernambuco, Brazil

phmb@cin.ufpe.br)

Gustavo Soares
(Federal University of Campina Grande, Brazil

gsoares@dsc.ufcg.edu.br)

Abstract: Developers evolve software product lines (SPLs) manually or using typical
program refactoring tools. However, when evolving an SPL to introduce new features
or to improve its design, it is important to make sure that the behavior of existing prod-
ucts is not affected. Typical program refactorings cannot guarantee that because the
SPL context goes beyond code and other kinds of core assets, and involves additional
artifacts such as feature models and configuration knowledge. Besides that, we typi-
cally have to deal with a set of alternative assets that do not constitute a well-formed
program in an SPL. As a result, manual changes and existing program refactoring tools
may introduce behavioral changes or invalidate existing product configurations. To re-
duce such risks, we propose approaches and implement four tools for making product
line evolution safer. These tools check if SPL transformations preserve the behavior
of the original SPL products. They implement different and practical approximations
of refinement notions from a theory for safely evolving SPLs. Besides specifying the
algorithms of each approach, we compare them with respect to soundness, performance
and code coverage in 35 evolution scenarios of an SPL with 32 KLOC.
Key Words: software product lines, safe evolution, refactoring, checking tools.
Category: D.2.4, D.2.5, D.2.7, D.2.13.

1 Introduction

A software product line (SPL) is a set of related software products that are
generated from reusable assets. Products are related in the sense that they
share common functionality. This kind of reuse targeted at a specific set
of products can bring significant productivity and time to market improve-
ments [Pohl et al., 2005, van der Linden et al., 2007]. However, SPL evolution
can be quite challenging. First, changes to a given asset might affect the behav-
ior of a number of products. Second, we have to deal not only with assets but

also with artifacts, such as feature models (FM) [Kang et al., 1990] and config-
uration knowledge (CK) [Czarnecki and Eisenecker, 2000], that enable product
generation, and they should all be changed consistently.

During SPL evolution, it might be important to make sure that the associated
changes do not affect the behavior of the existing SPL products. This may be use-
ful when refactoring an SPL, that is, simply improving the design of its artifacts.
We also need that when extending an SPL by making it able to generate new
products, including new optional features, for example. We use the same notion
of behavior preservation of Opdyke [Opdyke, 1992] when comparing products:
for the same set of input values, the resulting set of output values should be the
same. This notion of evolving an SPL without changing the behavior of existing
products is captured by a formal notion of SPL refinement [Borba et al., 2012],
which guarantees that the observable behavior of products in the original SPL
is preserved by corresponding products in the new, evolved, SPL. However, it is
time consuming and error prone to evaluate whether each SPL evolution is safe1

with respect to the definition [Teixeira et al., 2013]. An associated catalogue of
safe SPL evolution transformations [Neves et al., 2011] was proposed to reduce
this problem. It can be used by developers, in the same way that object-oriented
single program refactoring catalogues are available in current development en-
vironments. However, there are a number of useful transformations that cannot
be justified by this catalogue. Moreover, catalogue driven evolution may not be
appealing in some practical contexts.

Developers often evolve SPLs without tool support for checking that the
associated changes are safe. At most, when refactoring, they rely on the support
provided by typical single program refactoring tools that check a number of
preconditions for behavior preservation of the modified assets. However, they not
only may perform incorrect refactorings for single programs [Soares et al., 2013],
but also they are unaware that SPLs often have conflicting assets that implement
alternative features, and therefore do not constitute a valid program. They are
also unaware of other artifacts such as FM and CK, which should be consistently
changed together with the reusable assets. As a result, some transformations may
change the behavior of existing products and negatively impact users.

To help developers on safely evolving SPLs, we proposed four tools for check-
ing SPL refinement [Ferreira et al., 2012]: All Product Pairs, All Prod-

ucts, Impacted Products, and Impacted Classes. They implement dif-
ferent and practical approximations of a theory for safely evolving SPLs. The
suitability of each tool depends on the kind of change an SPL is subject to, and
on user’s constraints regarding reliability and time.

Our previous work [Ferreira et al., 2012] evaluates the proposed tools in 15

1 The term safe evolution that we use here is not related to system safety properties
and it refers only to the behavior preservation in SPL evolution scenarios.

evolution scenarios. We extend our previous work by specifying the algorithms of
each approach, and evaluating2 our tools in 35 evolution scenarios of an SPL with
32 KLOC. We compare them with respect to soundness, performance and code
coverage. This new analysis reinforces results obtained in our previous analysis
and go beyond that by estimating how often the tool can lead to false positives
and negatives, and better understanding in what situations they may happen.

The remaining of this article is organized as follows. Section 2 presents some
problems that may happen while evolving SPLs. Section 3 describes our tools.
Next, we evaluate them in Section 4. Finally, we present related work and final
remarks in Sections 5 and 6, respectively.

2 Motivating Examples

When evolving an SPL, developers often manually change the different SPL
artifacts like FMs [Kang et al., 1990] and reusable assets. To change the code
assets, they might also use code refactoring tools. Unfortunately, this can lead to
problems like the generation of ill-formed products (Section 2.1) or undesirable
changes to the behavior of the existing ones (Section 2.2).

2.1 Invalid Products

Consider a simple SPL evolution scenario with a toy example of game SPL (see
Figure 1). On the left hand side, an SPL contains a FM, where Multiplayer,
Internet and Bluetooth are optional, Startup and Connection are manda-
tory. These five features and their relationships allow five product configura-
tions (valid feature selections). This SPL also contains a CK, which relates fea-
ture expressions to sets of asset names, linking solution and problem spaces.
For example, the first row relates the joint selection of features Game and
Startup to the Game.java and Startup.java names. To generate a product,
we evaluate the CK against a valid, accordingly to the FM, product configura-
tion. Evaluating this CK with the product configuration {Game, Multiplayer,
Startup, Bluetooth} yields the following set of asset names {Game.java,
Multiplayer.java, Startup.java, Bluetooth.java}. Besides FM and CK,
this SPL declares code assets, as shown in Figure 1. Notice that some assets de-
pend on other ones. For instance, the Bluetooth class extends the Multiplayer

class. The CK must be correctly specified to avoid sets of asset names that do
not represent well-formed products due, for example, to missing dependences.

Suppose we apply the Pull up field refactoring to move the field
Internet.con to the Multiplayer class using the Eclipse refactoring imple-
mentation. It performs the change without any warning. However, this evolution
2 All experiment data are available at: http://www.cin.ufpe.br/~fsf2/jucs_
experiments.html

http://www.cin.ufpe.br/~fsf2/jucs_experiments.html
http://www.cin.ufpe.br/~fsf2/jucs_experiments.html

Game

StartupMultiplayer

Internet Bluetooth

Connection

public class Game {
public class Connection {
public class Startup {
public class Bluetooth extends Multiplayer{
public class Multiplayer {

public class Internet
extends Multiplayer{

private Connection con;
public int limit(long l) {

return 10;
}
public int test() {

return limit(0);
}

}

public class Game {
public class Connection {
public class Startup {
public class Bluetooth extends Multiplayer{

public class Multiplayer {
private Connection con;

public class Internet
extends Multiplayer{

public int limit(long l) {
return 10;

}
public int test() {

return limit(0);
}

}

Game

StartupMultiplayer

Internet Bluetooth

Connection

Bluetooth Bluetooth.java
Internet Internet.java, Connection.java

Multiplayer.javaMultiplayer
Game ^ Startup Game.java, Startup.java

AssetsFeature Expression

Bluetooth Bluetooth.java
Internet Internet.java, Connection.java

Multiplayer.javaMultiplayer
Game ^ Startup Game.java, Startup.java

AssetsFeature Expression

Figure 1: An SPL evolution yields invalid products.

Game

StartupMultiplayer

Bluetooth Internet

Connection

Bluetooth Bluetooth.java
Internet Internet.java, Connection.java

Multiplayer.javaMultiplayer
Game Game.java, Startup.java

AssetsFeature Expression

public class Game {
public class Multiplayer {
public class Startup {
public class Bluetooth extends Multiplayer{

Game

StartupMultiplayer

Bluetooth Internet

Connection

public class Connection {

public class Internet
extends Multiplayer{

private Connection con;
public int limit() {

return 0;
}
public int test() {

return limit();
}

}

public class Game {
public class Multiplayer {
public class Startup {
public class Bluetooth extends Multiplayer{
public class Connection {

Bluetooth Bluetooth.java
Internet Internet.java, Connection.java

Multiplayer.javaMultiplayer

Game Game.java, Startup.java,
GameCenter.aj

AssetsFeature Expression

public class Internet extends Multiplayer{
private Connection con;
public int limit() {

return 0;
}
public int test() {

return limit();
}

}Game Center public aspect GameCenter {
 pointcut limitConnections() :
 execution(public int Internet.limit());

 int around() : limitConnections() {
 return 10;
 }
}

Figure 2: An SPL evolution yields behavioral changes in existing products.

step is unsafe. The resulting SPL generates invalid products, sets of assets that
do not compile. The CK evaluation against the product configuration {Game,
Multiplayer, Startup, Bluetooth} does not yield the Connection class, which
the Multiplayer class needs to compile. In fact, an SPL aware refactoring tool
would not only move the field to the superclass but also update the CK by moving
Connection.java to the assets provided by the feature expression Multiplayer.

2.2 Behavioral Changes

Besides resulting in invalid products, that do not compile, changes to assets can
also introduce behavioral changes to existing products. To illustrate that, con-
sider the left hand side SPL of Figure 1. Suppose we manually add a new feature
Game Center to the FM. To implement the new functionality we also create an
aspect that changes the behavior of the method Connection.limit() only in
the products that contain the new feature Game Center. However, when evolving
the CK, developers might make an incorrect association. Instead of associating
the new asset GameCenter.aj with the new feature Game Center, they might
associate it to the root feature Game. Figure 2 depicts this transformation.

All products of the resulting SPL are well-formed in this transformation.
However, the SPL evolution does not preserve the behavior of the existing

products. Consider the Internet class and the GameCenter aspect (see Fig-
ure 2) and the product configuration {Game, Multiplayer, Startup, Internet,
Connection}. Whereas before the evolution, the method Internet.test() calls
its method limit(), and yields 0, after that, the call to is affected by the around
implemented in the new aspect, and yields 10. Therefore, after the evolution
scenario, all products contain an asset of the optional feature Game Center and
present different behavior when executing the test method.

3 Tool Support for Checking SPL Refinements

In this section, we describe our toolset for checking if a transformation applied
to an SPL is safe. They implement different and practical approximations of the
theory for safely evolving SPLs. The suitability of each tool depends on the kind
of change an SPL is subject to. For instance, if we change only the FM and CK,
we can apply faster tools. Also, although slower, some tools are more reliable
than others. We propose four tools, named after the approaches they implement:

– All Product Pairs checks, for each original product, if after the transfor-
mation there is a product with compatible observable behavior (Section 3.1);

– All Products is similar to the All Product Pairs, however it only
compares original products with resulting products with the same set of
asset names, simplifying the checking (Section 3.2);

– Impacted Products checks only the products impacted by the change. It
potentially analyzes fewer products than the All Product Pairs and All

Products tools, reducing the time to check the refinement (Section 3.3.1);

– Impacted Classes focuses on testing only the changed assets. By doing so,
it avoids generating and testing all impacted products, which can lead to a
major reduction on time compared to the first three tools (Section 3.3.2).

3.1 All Product Pairs (APP)

All Product Pairs is our baseline tool. It directly checks the SPL refine-
ment definition, looking for corresponding products with compatible observable
behavior, which are products that behaviorally match when we compare them.
Next, we explain its process, described in Algorithm 1.

The Step 1 of the tool checks if the SPL after the transformation (target
SPL) is well-formed (Line 2), which means that it still generates well-formed
products, that correspond to valid products in the underlying languages used to
describe assets. If it finds a problem, it stops the process (Line 2), and indicates
that the SPL is not refined and the evolution is unsafe (Line 21). Additionally,

the tool can report all the invalid product configurations found. If it does not
find a problem, in Step 2, it checks whether, for each product in the original
SPL (source SPL), there is a product in the resulting SPL (target SPL) with
equivalent behavior (Lines 3-19). The Step 2.1 analyzes for a product ps in the
source SPL, if there is a product likely with the same set of asset names in the
target SPL and maps it as the likely corresponding target product (Line 4). After
mapping products, in Step 2.2, it checks whether the product in the source SPL
and its likely corresponding, when it exists, have compatible observable behavior
(COB) using randomly generated unit test cases (Line 5). Exceptionally, when
their observable behavior are not compatible or the source configuration does
not exist in the target SPL, the tool performs Step 2.3 : it compares the behav-
ior of the source product against all the other target products (Lines 7-15). If
it does not find any corresponding product, it assumes that the SPL is not re-
fined (Line 16), reporting the first occurrence of product configuration without
corresponding refined product, and the set of tests that reveals the behavioral
changes in this product. Otherwise, when it finds corresponding products for all
source products, we can increase our confidence that the evolution is an SPL
refinement (safe evolution).

Algorithm 1: The All Product Pairs checking process.
Input: source ←− Source SPL, target ←− Target SPL
Output: T rue if target refines source, F alse otherwise
refinement ←− F alse1
if wf(target) then2

foreach product ps in source do3
likely ←− likely corresponding(ps)4
refinement ←− likely ∧ cob(ps, likely)5
if !refinement then6

foreach product pt in target do7
if pt != likely then8

if cob(pt, ps) then9
refinement ←− T rue10
break11

end12
end13

end14
end15
if !refinement then16

break17
end18

end19
end20
return result21

To illustrate it, consider the motivating examples in Section 2. For the first
example (Section 2.1), in Step 1 the All Product Pairs tool reports that
2 out of 5 product configurations ({Game, Multiplayer, Startup} and {Game,
Multiplayer, Startup, Bluetooth}) yield sets of products that do not compile
after the evolution. For the second example (Section 2.2), it does not detect
problems in Step 1. Then, for each of the five products in the source SPL it
analyzes whether there is a product with compatible observable behavior in

the target SPL in Step 2. In this case, as we incorrectly modified the CK, the
target SPL does not generate exactly the same product (set of asset names) for
each of the configurations allowed by the FM of the source SPL. For example,
our tool detects that the source product generated by the configuration {Game,
Multiplayer, Startup, Internet, Connection} does not have a corresponding
product in the target SPL with the same assets (Step 2.1). Therefore, it does not
applies Step 2.2, and in Step 2.3, it uses unit test cases to compare this product
against all other target products but does not find any behaviorally compatible
with it. Therefore, the All Product Pairs tool reports that the evolution
scenario is unsafe. Next we give more details about the implementation.

3.1.1 Implementation

The function wf in Algorithm 1, Line 2, checks whether the SPL is well formed.
We use a theory for FMs [Gheyi et al., 2006] and CKs [Teixeira et al., 2013] en-
coded in Alloy [Jackson, 2006], a formal specification language, to check whether
an SPL is well formed. Our tools translate the FM and CK into this theory, and
we use the Alloy Analyzer tool to perform analysis.

In Line 4, All Product Pairs generates product configurations and maps
source products to their likely corresponding products when they exist. We use
the Alloy Analyzer for generating the product configurations from the source
FM. Then, we construct source and target sets of assets using the source and
target FM and CK.

To check behavioral changes (the function cob in Line 5) we use SafeRefac-

tor [Soares et al., 2010, Mongiovi et al., 2014], a tool for checking behavioral
changes. First, the tool checks for compilation errors in the resulting program,
and reports them; if no errors are found, it analyzes the transformation and
generates a number of tests suited for detecting behavioral changes. SafeR-

efactor identifies the methods with matching signature before and after the
transformation. Next, it applies Randoop [Pacheco et al., 2007], a random unit
test generator for Java, to produce a test suite for those methods. Randoop ran-
domly generates tests for classes within a time limit. A test typically consists
of a sequence of method and constructor invocations that creates and mutates
objects with random values, plus an assertion. Finally, it runs the tests before
and after the transformation, and evaluates the results. If results are divergent,
it reports a behavioral change.

To illustrate SafeRefactor, consider the behavioral change in the product
configuration {Game, Multiplayer, Startup, Internet, Connection}, explained
in Section 2.2. After the transformation, the Internet.limit() method yields
10, instead of 0. SafeRefactor first identifies the methods with matching
signatures on both versions. In this case, it identifies all methods since there was
no change in their signatures. Next, it generates unit tests for these methods

by using Randoop. Finally, it runs the test suite on both versions and evaluates
the results. Next, we show one of the generated tests that revealed behavioral
changes. The test passes in the source program since the value returned by
Internet.limit is 0; however, it fails in the target program since the value
returned by Internet.limit is 10.

Listing 1: Test case generated by Randoop that reveals a behavioral change.
public void t e s t () {

I n t e r n e t var0 = new I n t e r n e t () ;
int x = var0 . l i m i t (0) ;
a s se r tTrue (x == 0) ;

}

We make a small modification in SafeRefactor to compare SPL products
behavior with All Product Pairs. Its original version identifies the public
methods in common between source and target programs and compares their
behavior with respect to these methods [Soares et al., 2010]. Since we compare
products with different configurations, they may have different features. By com-
paring them with respect to the common methods, we would not be considering
the methods that implement features only present in one of the versions, which
would lead to false positives: the All Product Pairs tool would report a refine-
ment when source and target products have different behavior. It is important
to avoid false positives since it may hide bugs introduced to the products.

To avoid this kind of false positive, when the tool detects that the source
and target products have different public methods, it considers that they do not
have compatible observable behavior, as in the case that the features present
in one product actually provide behavior that is not implemented by the other
product. Otherwise, the tool continues the evaluation of the products.

Although this change avoids false positives, it can generate false negatives,
that is, the All Product Pairs tool reports that the source and target prod-
ucts do not have compatible observable behavior, but they do have, when public
methods are removed or added. This situation, may happen, for example, when
we remove dead code of a project, or when we add methods, but we do not
immediately use them in the SPL. False negatives may slow the development
process, since developers would need to manually evaluate the transformation to
be sure that the transformation would preserve products’ behavior.

The All Product Pairs supports feature renaming. For instance, suppose
we rename a feature F to G, and update the CK, changing from F -> C.java

to G -> C.java. By doing so, source and target SPLs will generate products
with exactly the same set of assets. Therefore, All Product Pairs will find
a likely corresponding product for each source product so that it can compare
its behavior, finding no behavioral change. On the other hand, for method and
class renaming, the tool may generate false negatives as explained before.

Notice that All Product Pairs checks an approximation of the SPL re-
finement definition [Borba et al., 2012] since tests cannot prove the absence of
behavioral changes. A full guarantee cannot often be given using tests since,
in general, the equivalence and refinement of observational behavior are unde-
cidable, and the notion of SPL refinement relies on such a notion of behav-
ioral preservation. However, with our tools, developers can improve confidence
whether a transformation is safe.

3.2 All Products (AP)

The All Products tool relies on the intuition that if a product is not refined by
its likely corresponding product, it is probably not refined by any other product.
We describe its process in Algorithm 2. Differently from All Product Pairs,
All Products does not contain Step 2.3: when some source product and its
likely corresponding target product do not have compatible observable behavior,
this tool immediately assumes a non refinement and does not compare the source
product with the other target products (Lines 6-7). Since the All Products

can only behaviorally compare source and target products with the same sets of
assets, if some source product does not have a likely corresponding product in
the target line, All Products is not applied (Line 1).

Algorithm 2: The All Products checking process.
Input: source ←− Source SPL, target ←− Target SPL
Output: T rue if target refines source, F alse otherwise
if For each product in source exists a likely corresponding product, with the same asset names, in target then1

refinement ←− F alse2
if wf(target) then3

foreach product ps in source do4
likely ←− likely corresponding(ps)5
refinement ←− cob(ps, likely)6
if !refinement then7

break8
end9

end10
end11

end12
else13

Interrupt the execution and report an error: It is not possible to apply this tool.14
end15
return result16

Since this tool does not compare products with different configurations, it
does not need to worry about different public methods, and compare source and
target products even when they have different public methods, avoiding false
negatives when, for instance, developers rename a method. Therefore, differently
from All Product Pairs, this tool supports method renaming.

However it does not look for another product in the target SPL that may
have compatible observable behavior of the source product and, because of this,

may lead to false negatives too. They may occur, for example, after renaming a
class: the some source product will have a corresponding product in the target
SPL but source and target products have different sets of asset names due to the
rename class refactoring. Therefore, similar to All Product Pairs, this tool
also supports feature renaming and does not support rename class refactoring.

3.3 Optimized Approaches

For SPLs containing hundreds of products, the previous tools may not be ap-
propriate since they may take a long time to perform the analysis. Impacted

Products and Impacted Classes contain further optimizations to reduce the
cost for checking SPL refinement. They analyze the transformation and use some
refinement properties [Borba et al., 2012] that simplify checking.

First, both tools introduced in this section check if the target SPL is well-
formed (Step 1). Then, they suppose that source and target SPLs differ only with
respect to the FMs and CKs and bypass asset and product refinement checking.
Next, they evaluate the CK for every possible configuration present in FM,
checking if all existing evaluations of CK with the configurations of FM are still
present in the evaluations of the resulting CK and FM. In this case, the target FM
and CK jointly refine the source FM and CK (Step 2) [Borba et al., 2012]. If this
condition is not satisfied, we can only apply All Product Pairs to check the
evolution scenario. Otherwise, the optimized tools can be applied. To do so, after
this checking, both tools analyze if there are changes in the code assets (Step 3).
If they do not find changes, they assume that the SPL is refined; otherwise they
check the SPL refinement as described in the next sections (Step 4).

For instance, consider the FM of our motivating example (see Figure 1). Sup-
pose we change the mandatory feature Startup to optional. Since this transfor-
mation just changes the FM, we can perform Steps 1 and 2 only. The tools
detect that the resulting sets of assets contain the original ones. Since the code
did not change, they assume that the evolution scenario is safe. In the same
way, they support feature rename refactoring. However, if the transformation,
besides containing a feature rename refactoring, also contains a class renaming,
changing the set of assets, it is impossible to check if the FM and CK are refined,
making this scenario not possible to be checked by Impacted Products and
Impacted Classes. Next, we describe both tools in more details.

3.3.1 Impacted Products (IP)

Besides using FM and CK optimizations, the Impacted Products tool opti-
mizes All Products. It does so by only evaluating products that contain the
changed assets, since the remaining products continue unchanged. We describe
this optimized process in Algorithm 3. Notice that Line 1checks if the target FM

and CK jointly refine the source FM and CK. In Line 6, the function isDiff

compares the source product against its likely corresponding product to check
if there is any code change in their assets . Only if it finds such a change, it
will check whether both products have compatible observable behavior (Line
7). Therefore, it only evaluates source products containing at least one changed
asset. We implemented an Abstract Syntax Tree (AST) comparator to compare
each version of the code assets.

Algorithm 3: The Impacted Products checking process.
Input: source ←− Source SPL, target ←− Target SPL
Output: T rue if target refines source, F alse otherwise
if FMCKrefinement then1

refinement ←− F alse2
if wf(target) then3

foreach product ps in source do4
likely ←− likely corresponding(ps)5
if isDiff(ps,likely) then6

refinement ←− cob(ps, likely)7
end8
else9

refinement ←− T rue10
end11
if !refinement then12

break13
end14

end15
end16

end17
else18

Interrupt the execution and report an error: It is not possible to apply this tool.19
end20
return result21

To illustrate this tool, suppose that instead of applying the Pull up field refac-
toring to our first motivating example (see Section 2), we applied a Move method
refactoring to Internet.limit(long), moving it to the Connection class. Only
classes Internet and Connection are modified: the limit(long) method is
moved from Internet to Connection. From Figure 1, we see modified classes are
related to the products {Game, Multiplayer, Startup, Internet, Connection}
and {Game, Multiplayer, Startup, Internet, Connection, Bluetooth}. These
products are the impacted products for this evolution scenario. The Impacted

Products tool then, differently from All Product Pairs, only evaluates
products that contain at least one changed asset, reducing the number of evalu-
ated source products from 5 to 2. In the worst case, the Impacted Products

tool checks as many products as All Products. This can happen, for instance,
when changed assets are related to the root feature.

3.3.2 Impacted Classes (IC)

Besides using FM and CK optimizations, the Impacted Classes tool optimizes
the code assets checking. In some evolution scenarios, when developers change

the assets, we only need to ensure that the transformed assets refine the original
ones to check the SPL refinement [Borba et al., 2012], and therefore are trivially
refined by their counterparts in the target SPL. Since we do not evaluate whole
products, like Impacted Products, All Product Pairs and All Products

do, but only the changed classes, Impacted Classes tends to be faster.
Algorithm 4 formalizes the process of Impacted Classes. First, the Im-

pacted Classes checks if the target FM and CK jointly refine the source FM
and CK (Line 1). If so, the tool identifies modified assets (Line 4). For each one,
the tool computes its dependences, that is, the set of other assets needed to com-
pile the modified asset (Lines 6-7). We call this set of modified assets with their
dependences as a sub product. Our tool compiles the source and target versions
of each sub product. In our implementation, we reuse the compiled classes that
belong to more than one sub product. This way, we save time needed to compile
those classes and further optimize the checking. It then checks, for each source
sub product, whether it has compatible observable behavior with its target sub
product, generating test only for changed classed (Line 10).

Algorithm 4: The Impacted Classes checking process.
Input: source ←− Source SPL, target ←− Target SPL
Output: T rue if target refines source, F alse otherwise
if FMCKRefinement then1

refinement ←− F alse2
if wf(target) then3

classes ←− changed classes(source, target)4
foreach class c in classes do5

sc ←− c in source6
tc ←− c in target7
ssubproduct ←− sc + dependences(sc)8
tsubproduct ←− tc + dependences(tc)9
refinement ←− cob(ssubproduct, tsubproduct)10
if !refinement then11

break12
end13

end14
end15

end16
else17

Interrupt the execution and report an error: It is not possible to apply this tool.18
end19
return result20

For instance, consider the Move Method refactoring used to illustrate the
previous tool (see Section 3.3.1). This refactoring changes the assets with-
out modifying the CK and the FM. The tool computes dependences for
Internet and Connection classes. For instance, the Internet class extends
the Multiplayer class, and has a field of type Connection. Using this ap-
proach, the tool computes dependences for each identified dependence. For this
class, the tool generates a sub product containing the following set of classes:
{Internet.java, Multiplayer.java, Connection.java}.

As we can see, this tool only checks the modified classes and does not gener-

ate all products impacted by the change, optimizing the evaluation. However, it
is important to mention that although costly, we can use All Product Pairs

to check any kind of evolution scenarios, while Impacted Products and Im-

pacted Classes are suitable only when FM and CK are refined [Borba, 2011].
Moreover, with Impacted Classes we may lose precision, since local changes
in OO classes may indirectly impact other ones [Ren et al., 2004], and this tool
just focuses only on changed classes.

Additionally, since Impacted Classes does not generate products, we give
special attention to assets implemented with conditional compilation, which need
pre-processing to generate valid classes. So, we look for pre-processor directives
in the modified classes and their dependences. Using the FM and CK, we get
all possible combinations for these directives. Finally, we pre-process source and
target grouped classes for each combination, and use SafeRefactor for check-
ing behavioral changes. We deal with Aspects in the same way we deal with
conditional compilation blocks. Based on FM and CK, we get all possible com-
binations that can affect the sub product and use SafeRefactor for checking
behavioral changes with each of them.

4 Evaluation

In our previous work [Ferreira et al., 2012], we evaluated our toolset in 15 trans-
formations applied to two SPLs: TaRGeT [Ferreira et al., 2010], a tool that au-
tomatically generates functional tests from use case documents written in natu-
ral language; and MobileMedia [Figueiredo et al., 2008], an SPL for applications
that manipulates music, video and photo on mobile devices.

In this article, to reinforce our previous findings and observe new factors, we
evaluate our toolset in 35 new scenarios applied to the TaRGeT SPL gathered
from its SVN repository. First, we show the experiment definition (Section 4.1)
and planning (Section 4.2). Then, we present the experiment operation and its
results (Section 4.3). We interpret the results and discuss them in Section 4.4,
and answer our research questions in Section 4.5. Finally, we present some threats
to validity of the experiment (Section 4.6).

4.1 Definition

The goal of this experiment is to analyze four approaches (All Product Pairs,
All Products, Impacted Products and Impacted Classes) for the pur-
pose of evaluation with respect to identifying safe evolution scenarios from the
point of view of researchers in the context of the TaRGeT SPL repository. In
this experiment, we address the following research questions:

– Q1. Do the approaches correctly classify the evolution scenarios?

For each approach, we measure the true positive rate (recall) and the false
positive rate (precision). tPos (true positive) and fPos (false positive) repre-
sent the correctly and incorrectly safe evolution scenarios, respectively. tNeg

(true negative) and fNeg (false negative) represent correctly and incorrectly
identified unsafe evolution scenarios, respectively.

Our hypothesis is that All Product Pairs, All Products, and Im-

pacted Products should have the same precision, since these optimiza-
tions should not affect the ability of detecting behavioral changes. We believe,
though, that Impacted Classes may have a lower precision, since it may
miss behavioral changes (see Section 3.3.2). On the other hand, we believe
that All Product Pairs may have lower recall than the other ones, since
it may generate false negatives when there is no target product with the
same set of assets of a source product (see Section 3.1.1).

recall =
#tPos

#tPos + #fNeg
precision =

#tPos

#tPos + #fPos
(1)

– Q2. Do the approaches have the same performance?

For each approach, we measure the time required to analyze each transforma-
tion. We strongly believe that our optimizations will have better performance
than our naive tool (All Product Pairs).

– Q3. Do the approaches have the same code coverage?

For each approach, we measure the statement code coverage in the classes
modified by the transformation. We believe that Impacted Classes may
have better code coverage in the modified classes since it focuses on testing
only these classes.

4.2 Planning

In this section, we describe the subjects used in the experiment, the experiment
design, and its instrumentation.

4.2.1 Selection of Subjects

We analyzed one Java SPL: TaRGeT. We randomly selected from TaRGeT’s
SVN repository 35 evolution scenarios manually applied to the TaRGeT SPL
during its development. Table 1 indicates the version analyzed and the artifacts
changed in the transformation. For each randomly selected version, we take its
previous version to analyze whether they have the same behavior. For instance,
we evaluate Version 77 of TaRGeT and the previous one (76).

Table 1: Evaluation of 35 randomly chosen commits of TaRGeT.

4.2.2 Experiment Design

In our experiment, we evaluate one factor (approaches for detecting safe evolu-
tion scenarios) with four treatments (All Product Pairs, All Products,
Impacted Products and Impacted Classes). We choose a paired compar-
ison design for the experiment, that is, the subjects are applied to all treat-
ments. Therefore, we perform the approaches under evaluation in the 35 pairs
of versions. The results can be “Yes” (safe evolution scenario) and “No” (unsafe
evolution scenario).

4.2.3 Instrumentation

We used a modified SafeRefactor 1.3.3 with default configuration, and setting
Randoop to avoid generating non-deterministic test cases. We used Emma 2.0
to collect the block coverage of the generated tests. SafeRefactor may have
different results each time it is executed due to the randomly generation of the
test suite. So, we execute it up to five times in each version. If none of the
executions finds a behavioral change, we classify the transformation as a safe
evolution scenario. Otherwise, we classify it as unsafe evolution. We defined a
maximum number of tests to generate based on the number of methods to test
for each pair of products, generating two tests per method. Since each SPL can
generate a number of products, it would be difficult to set a time limit to evaluate
each subject. We generated the number of tests proportional to the number of
methods based on previous experiences with SafeRefactor. We use the FM
and CK available from TaRGeT’s SVN history to generate TaRGeT products.

Since we previously do not know which versions contain safe evolution sce-
narios, the first author of this article manually analyzed the transformations
according to the refinement theory [Borba et al., 2012] and also compared the
results of all approaches in all transformations to derive a Baseline. The manual
analysis was based on the commit notes written by the developers and the source
code, FM and CK comparison (diff) between the versions using the Eclipse IDE.

4.3 Operation

We ran our experiment on a quad-processor 2.66-GHz Server with 8 GB of RAM
running Ubuntu 10.04. Table 1 presents the results of our evaluation. The column
Baseline indicates whether the pair is a safe evolution based on all results, as
explained in Section 4.2.3. The following columns represent the results of each
approach. Cells in dark gray show incorrect results according to the baseline.
At the bottom of the table, we show the precision, recall, and accuracy of each
approach with respect to the column Baseline.

All Product Pairs yielded two false negatives because it classified two
safe evolutions as unsafe (see Table 1). All Products, Impacted Products

and Impacted Classes correctly categorized 31 transformations. On the other
hand, in three transformations, they yield false positives. The last pair of TaR-
GeT could not be analyzed by All Products and All Product Pairs. It
yields out of memory.

Moreover, we also analyze the time required by each approach to evaluate the
transformation. Figure 3 shows the measured time (mean of 5 executions with
standard deviation between 0.2704 and 3.3894) for checking all transformations.

Finally, we measure the code statement coverage of the tests randomly gener-
ated by each approach, as depicted by Figure 4. We only collect this information

● ●

● ● ● ● ● ●

●
●

●
●

●

● ● ● ●

●

● ●
●

●
●

● ● ●
●

● ● ● ● ●

●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

0

14

28

42

56

70

84

98

112

126

140

TOTAL TIME (MEAN OF 5 EXECUTIONS)

Random Pairs

T
im

e
(m

in
ut

es
)

●

●

APP
AP
IC
IP

Figure 3: Time required by each tool to evaluate 35 the transformations.

in the classes modified by the transformation. We use the diff tool of Eclipse IDE
to identify them. Transformations that do not change classes are not depicted by
the Figure 4. All tools have almost the same results for all transformations ana-
lyzed. Pairs 13, 33 and 34 presented coverage zero for the All Product Pairs

tool because it does not generate tests for these cases. Some pairs, such as Pairs
8 and 12 presented low coverage results because the changes was performed in
classes that override protected methods of Eclipse RCP, like classes responsible
for GUI components, whose method are called only by the framework.

4.4 Discussion

Soundness. The four tools present false positives because the changes were
performed only in UI components. SafeRefactor is unable to easily detect
changes in UI or output files. For instance, Pair 12 consists of a transformation
performed only in UI components. In this transformation, developers would like
to add more two components in the screen. Though the change is, visually, easily
detected, it is not identified by Randoop because it does not affect the method
outputs of the application. Besides, most of the methods that build the UI com-
ponents are protected and directly called by the framework. As Randoop tests
only public methods and there are no methods in the project that calls these
protected methods, this kind of change cannot be identified.

Moreover, All Product Pairs presents one false negative, missing the
answer just because the transformation adds public methods not called by any
class. For the same transformation, All Products, Impacted Products and
Impacted Classes correctly detect a behavior change. Besides, for evolutions
that change the set of public methods of existing products, All Product Pairs

always presents false negatives and it is not indicated for these situations. In these

P
1

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
20

P
21

P
22

P
23

P
29

P
30

P
32

P
33

P
34

Code Coverage

Percentage of Coverage (%)

P
ai

rs

0 20 40 60 80 100

APP
AP
IC
IP

Figure 4: Code coverage in changed classes of each tool to evaluate 35 transfor-
mations applied to TaRGeT.

cases, All Products is more suitable to evaluate the transformation, though
less faithful to the refinement theory.

Opdyke [Opdyke, 1992] compares the observable behavior of two programs
with respect to the main method (a method in common). It checks for source
and target programs that, for the same inputs, the resulting output values must
be the same. SafeRefactor checks the observable behavior with respect to
randomly generated sequences of methods invocations. They only contain calls
to methods common to both. If the source and target programs have same results
for the same input, we improve the confidence that they have equivalent behavior.
Otherwise, they have different behavior. In All Product Pairs, we changed its

implementation to only check refinements between products with the same public
methods, considering additions and reductions in the set of public methods a
non-refinement. This implementation may be too strong in some SPLs as we
saw in Pair 13. It may be better to evaluate the SPLs with respect to its Facade
considering only its public methods. We could adapt SafeRefactor to evaluate
the SPLs using this equivalence notion and Randoop to generate method inputs
more adequate to exercise as many as possible execution flows from the Facade.

In spite of that, considering the refinements we analyzed so far, develop-
ers often add optional methods in mandatory classes using mechanisms like
pre-processing and aspects to avoid including code that will only be used by op-
tional features in all the products. Therefore, it is uncommon to include methods
related to optional features in mandatory classes.

Performance. Moreover, with respect to the time required by each approach,
Impacted Products and Impacted Classes are faster in analyzing Pairs 2,
19, 24 to 28, 31 and 35 because they only change FM or CK. Their original classes
remain unchanged. When only some classes change, Impacted Classes tends to
be faster then the other tools (Pairs 1, 3-8, 11-12, 14-17, 20-21, 23, 29-30 and 32).
However, when the evolution modifies a number of classes (Pairs 9 and 10), the
dependency analysis of Impacted Classes may have the same performance of
Impacted Products. Additionally, in 34% of the transformations changed root
features (Pairs 1, 6, 8, 9, 14, 15, 16, 18, 20, 21, 23, 34). In these pairs, Impacted

Products and All Products had equivalent performance, since both tools
checked the same number of products. In Pairs 13 and 33, All Product Pairs

assumes a non refinement based only in changes in the set of public methods. It
is faster since it does not generate a test suite.

Although we did not find performance issues of our tools due to the size of
the products, we found problems related to the number of products that an SPL
may generate. All Products and All Product Pairs could not analyze
Pair 35, where the source SPL has more than 2,000 products to be compared.
Our current implementations of these tools have limitations to analyze SPL with
large number of products due to memory leak issues. As a future work, we plan
to fix this issue. However, even if All Product Pairs and All Products

could complete the analysis, it would take a lot of time, making clear the need
for optimizations for checking product line refinements.

When the evolution scenarios are refinements, All Product Pairs and
All Products tends to evaluate the same number of generated products. In
these cases, their measured times are almost the same (Pairs 1-8, 11-12, 14-17
and 19-32). In Pair 33, the number of products after the transformation dou-
bles. However, All Product Pairs took only a few minutes to conclude the
checking. It happens because the transformation changed the number of pub-
lic methods and the All Product Pairs tool wrongly concludes the result

without generating tests.
We analyzed our time results using the One Way Anova Test to compare if

there is significant difference between our approaches on the evaluated scenarios.
Table 2 presents the results for Anova Test.

Analysis of Variance Table
Response: time

Df Sum Sq Mean Sq F value Pr(>F)
Tool 3 82099 27366.3 44.268 < 2.2e-16 ***
Residuals 132 81602 618.2
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1)

Table 2: Summary of One Way Anova Test results.

We used the Tukey-test to compare the means and find which tools have
more significant difference in time. Table 4 presents the result for Tukey-test.
Values near to zero indicate more difference between approaches. The results
confirm our expectations, presenting a significant difference when comparing All

Product Pairs and All Products with the optimized approaches Impacted

Products and Impacted Classes. The comparison between All Product

Pairs and All Products results in a low difference.
To increase the significance of the Anova table, we analyzed the normality

of the residues in the measurements. Table 3 presents a histogram of them. We
can observe that they are approximately normal.

Coverage. Statement coverage is a common metric to evaluate the quality
of a test suite. Since SafeRefactor compares products’ observable behavior
by using testing, we measured the code coverage of the generated tests in each
source product to evaluate their quality. In our experiment, the generated tests
achieved low level of test coverage in Pairs 8, 12, and 33 (see Figure 4), which
does not give much confidence in the tools’ results. In fact, these tests did not
find the behavioral changes introduced by the transformation, leading to false
positives (except All Product Pairs in Pair 33, since it did not generate
tests). In practice, developers can also use test coverage results to increase their
confidence in our tools’ results.

It is difficult, though, to establish what is a good statement coverage
level to evaluate whether a transformation preserves behavior. Change cover-
age [Wloka et al., 2010] is another coverage metric that can be used to improve
the confidence in the tools’ results. This coverage metric evaluates whether the
introduced changes were exercised by the test suite. Therefore, it does not mat-
ter whether the tests covered only 5% of the program, as long as these 5% were
related to the methods impacted by the change. We plan to use this metric in
future evaluations of our tools.

Histogram of Residues

Residues

F
re

qu
en

cy

−50 0 50

0
10

20
30

40
50

Table 3: Histogram of residues in
measured times checking pair of
commits randomly chosen.

Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula ∼ time ∼ tool)

Approaches diff lwr upr p adj
APP-AP -2.931653 -18.622849 12.75954 0.9620571
IC-AP -58.522159 -74.213355 -42.83096 0.0000000
IP-AP -38.376612 -54.067808 -22.68542 0.0000000
IC-APP -55.590506 -71.281702 -39.89931 0.0000000
IP-APP -35.444959 -51.136155 -19.75376 0.0000002
IP-IC 20.145547 4.454351 35.83674 0.0059190

Table 4: Summary of Tukey test re-
sults.

4.5 Answers to the Research Questions

From the evaluation results, we make the following observations:

– Q1. Do the approaches correctly classify the evolution scenarios?

No. All Product Pairs does not identify behavior-preserving transfor-
mations when the sets of public method names are different between the
given versions. In these cases, the other three approaches are more suitable
to compare transformations, since they do not take into account the sets
of public method names. Also, All Products, Impacted Products and
Impacted Classes presented false positives in transformations involving
UI components. We have similar results in other 15 evolution scenarios pre-
viously analyzed [Ferreira et al., 2012].

– Q2. Do the approaches have the same performance?

No. Impacted Products and Impacted Classes are more efficient when
analyzing transformations that only change the FM. Therefore, developers
should use them in this scenario. Impacted Classes is faster when analyz-
ing transformations that only change code, leading to reductions of up to
70% in time (Subject 7). The cost to run Impacted Classes increases as
the number of changed classes grows, getting closer to the cost of running
Impacted Products. So, developers should analyze this trade-off between
precision and time in each situation. We also have similar results in our pre-
vious work [Ferreira et al., 2012], where the optimized approaches were more

efficient in time for changes that affect only FM and CK. All Products

and All Product Pairs are less efficient but they are more precise.

– Q3. Do the approaches have the same code coverage?

No. However, considering the code coverage only in changed classes, the
toolset has almost the same results for all pairs of commits analyzed. We do
not evaluate this factor in our previous work [Ferreira et al., 2012].

Our results suggest that the proposed tools have similar accuracy (91%).
However, All Product Pairs is slightly more precise (93% against 90% of
the other ones), but has lower recall (96% against 100%). On the other hands,
Impacted Products and Impacted Classes can reduce the time to check
an SPL transformation. Therefore, we believe that developers should use All

Product Pairs only if time is not a constraint, since the optimized tools have
similar accuracy but can have much better performance.

4.6 Threats to Validity

With respect to construct validity, we created a baseline (see the column Base-
line of Table 1) by manually analyzing the transformations and comparing the
approaches’ results since we did not previously know which versions contain safe
evolution scenarios. However, manual analysis is an error prone activity.

There are some limitations related to SafeRefactor. For instance, it does
not evaluate developer intention to refactor, but whether a transformation
changes the product behavior. Moreover, in the closed world assumption, we
have to use the test suite provided by the SPL that is being refined. SafeR-

efactor follows an open world assumption, in which every public method can
be a potential target for the test suite generated by Randoop. However, this is
often not the case considering the overall context of an SPL. So more precise
results could be obtained with a tool that takes the context of specific SPLs into
consideration.

With respect to internal validity, we use the same machine to test the subjects
using the four tools to avoid influences in the measures. Besides we repeated five
times the execution of each approach for each pair.

The FMs and CKs found in TaRGeT are implemented in a different format,
incompatible with our tools. Early versions of its FM were implemented using
Pure::Variants3, and our tools are compatible only with FMs designed using
Feature Modeling Plug-In [Czarnecki et al., 2004]. The CK format adopted in
the latest versions of TaRGeT has a different semantics of the simple CK with
just feature expressions mapped to assets that we use. It is compatible with the
tool Hephaestus [Bonifácio et al., 2009] and allows feature expressions mapped
3 Pure::Variants is a tool for variant management of product lines.

http://www.pure-systems.com/pure_variants.49.0.html

to transformations like processing and copy files. However their operations are
mappable to the simple CK semantics that we adopt. We manually converted
those models, and to avoid mistakes we make sure that both models generate
the same products with the same set of assets of the original ones.

Finally, the number of tests generated for each method used in SafeRefac-

tor may have influence on the detection of non-refactorings.
With respect to external validity, we evaluated only one SPL (TaRGeT) due

to the costs of manual analyses. Our results are not representative of all SPLs,
but it corroborates with the results from our previous study where we applied
13 transformations in a different SPL (MobileMedia) [Ferreira et al., 2012].

5 Related Work

Alves et al. [Alves et al., 2006] informally present an SPL refactoring definition,
based on FM changes that maintain or increase configurability. They propose
FM transformations that conform to this definition. Borba [Borba, 2011] ini-
tially proposes the SPL refinement notion. He also illustrates different kinds of
refinement transformation templates that can be useful for deriving and evolving
SPLs. According to his definition, in an SPL refinement, the resulting SPL must
be able to generate products that behaviorally match the original SPL products
(not necessarily the same configurations). Since it is not needed to have the same
set of product configurations in the resulting SPL, this definition allows feature
renaming. We use this SPL refinement definition as basis for this work.

Borba et al. [Borba et al., 2010, Borba et al., 2012] propose an extended ver-
sion of this previous formalization, where they explore a number of properties
that justify stepwise and compositional evolution of product line artifacts. The
properties are proven sound in a theorem prover. We base our optimized ap-
proaches in refinement properties presented in these works.

Thüm et al. [Thum et al., 2009] classify evolution of a FM in four categories:
refactorings for changes that do not add or remove products; generalizations for
changes that add new products without removing the existing ones; specializa-
tions for changes that remove products without add new products; finally, arbi-
trary edits for other cases. The refinement notion used in our work is equivalent
to their definitions for refactorings, generalizations and some cases of specializa-
tions, and is more comprehensive since it is based on the behavior preservation
of the existing products taking into account not only changes in FM but also
changes in CK and assets.

Czarnecki et al. [Czarnecki et al., 2005] introduce cardinality-based feature
modeling. They specify a formal semantics for FMs and translate cardinality-
based FMs into context-free grammars. They also propose FM specializations,
a transformation that reduces configurability. Our approaches deal with FM

specialization, but handle only the cases where all the source products have
target products that behaviorally match with them [Borba et al., 2010].

Thaker et al. [Thaker et al., 2007] present techniques for verifying type safety
properties of AHEAD [Batory, 2004] SPLs using FMs and SAT solvers. They
extract properties from feature modules and verify that they hold for all SPL
members. These properties are based on the AHEAD theory of program synthe-
sis, and some of them do not reveal actual errors, but rather designs that smell
bad. Similarly to this work, our well-formedness verification (Step 1) also extracts
properties from the code assets, in terms of provided and required interfaces, and
checks that they hold for all products from the FM. Also, our Alloy encoding
provides sound and complete analysis, due to our scope being well delimited.

Early work [Critchlow et al., 2003] on SPL refactoring focuses on Product
Line Architectures (PLAs) described in terms of high-level components and con-
nectors. This work presents metrics for diagnosing structural problems in a PLA,
and introduces a set of architectural refactorings that we can use to resolve these
problems. Besides being specific to architectural assets, this work does not deal
with other SPL artifacts such as FMs and CK. There is also no notion of behavior
preservation for SPLs, as captured here by our SPL refinement notion.

A number of approaches [Kolb et al., 2005, Trujillo et al., 2006,
Liu et al., 2006, Kastner et al., 2007] focus on refactoring a product into
an SPL, not exploring SPL evolution in general, as we do here. Kolb et
al. [Kolb et al., 2005] discuss a case study in refactoring legacy code compo-
nents into an SPL. They define a systematic process for refactoring products with
the aim of obtaining SPLs assets. There is no discussion about FMs and CK. As
we do here, they check behavior preservation and configurability of the resulting
SPLs by testing. Kastner et al. [Kastner et al., 2007] focus only on transform-
ing code assets, implicitly relying on refinement notions for aspect-oriented
programs. As discussed here and elsewhere [Borba, 2011, Borba et al., 2010]
these are not adequate for justifying SPL refinement and refactoring. Trujillo et
al. [Trujillo et al., 2006] go beyond code assets, but do not explicitly consider
transformations to FM and CK. They also do not consider behavior preserva-
tion; they use the term “refinement”, but in the different sense of overriding or
adding extra behavior to assets.

Liu et al. [Liu et al., 2006] also focus on the process of decomposing a legacy
application into features, but go further than the previously cited approaches by
proposing a refactoring theory that explains how a feature can be automatically
associated to a base asset (a code module, for instance) and related deriva-
tive assets, which contain feature declarations appropriate for different product
configurations. Contrasting with our work, this theory does not consider FM
transformations and assumes an implicit notion of CK based on the idea of
derivatives. Also, our focus was on SPL transformations, instead of refactoring

single programs into SPLs.
Kim et al. [Kim et al., 2011] explore the concept of irrelevant features to re-

duce SPL testing. These features do not have impact on the tests. They aim at
pruning the space of such features to reduce the number of SPL programs to
examine for that test without reducing its ability to find bugs. Their work does
not focus on proposing a tool for checking SPL refinement. Our tools evaluate
a transformation using SafeRefactor. They analyze a transformation con-
sidering FM and CK optimizations and generate tests. We can use their results
and improve it by avoiding generating insignificant tests in order to optimize our
tools. Similarly, our Impacted Products tool avoids the combinatorial number
of products by not evaluating products that are not affected by a change.

Soares et al. [Soares et al., 2008] propose an SPL variability refactoring tool
(FLiP) based on the Eclipse plugin platform to perform source code refactorings
to extract product variations. This tool focuses on refactoring templates using
AspectJ that can change the CK and code. However, it has a limited set of
refactoring templates, does not automatically transform FM and it allows users
to choose transformations without checking any refactoring rules. Moreover, it
does not check behavior preservation after changes. Previous works demonstrate
that automatic refactorings are susceptible to bugs [Soares et al., 2010]. We be-
lieve this tool is complementary to our approaches, since we could check if FLiP
transformations are SPL refinements indeed.

Neves et al. [Neves et al., 2011] analyze product line evolutions and described
safe evolutions templates that developers can use when evolving product lines.
We propose a more general approach, that can improve the confidence that a
transformation is safe, regardless the template of the transformation. Our tools
could complement the usage of these templates, checking behavior preservation.

Gheyi et al. [Gheyi et al., 2011] propose a set of FM refactorings, and an au-
tomatic approach for checking whether a general or specific FM transformation
is a refactoring. We use their approach encoding FM in Alloy to check refactor-
ings in FMs. However our checkers are more comprehensive since they consider
more product line artifacts as CK and asset mapping.

6 Conclusions

In our previous work [Ferreira et al., 2012], we propose four tools for checking
whether SPL evolution scenarios are refinements. We implemented them based
on a formal SPL refinement notion proposed by Borba et al. [Borba et al., 2012].
The suitability of each tool depends on the kind of change and on user’s con-
straints regarding time and reliability. In this article, we formalized the algo-
rithms of these tools and analyzed them in 35 evolution scenarios applied by
developers to a real SPL (32 KLOC). We compare them with respect to sound-
ness, performance and test coverage.

As future work, we plan to evaluate our tools in other case studies. Moreover,
we aim at proposing new optimizations based on other behavioral preservation
properties [Borba et al., 2012]. Additionally, we can improve performance of our
tools by using incremental compilation and parallelism.

Acknowledgment

We gratefully thank the anonymous referees from SBCARS and J.UCS for their
useful suggestions. This work was partially supported by the National Institute
of Science and Technology for Software Engineering (INES).

References

[Alves et al., 2006] Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., and Lu-
cena, C. (2006). Refactoring product lines. In GPCE, pages 201–210.

[Batory, 2004] Batory, D. (2004). Feature-oriented programming and the AHEAD tool
suite. In ICSE, pages 702–703.

[Bonifácio et al., 2009] Bonifácio, R., Teixeira, L., and Borba, P. (2009). Hephaestus
a tool for managing spl variabilities. In SBCARS, Natal, Brazil.

[Borba, 2011] Borba, P. (2011). An introduction to software product line refactoring.
In GTTSE, volume 6491 of Lecture Notes in Computer Science, pages 1–26. Springer.

[Borba et al., 2010] Borba, P., Teixeira, L., and Gheyi, R. (2010). A theory of software
product line refinement. In ICTAC, volume 6255 of LNCS, pages 15–43. Springer.

[Borba et al., 2012] Borba, P., Teixeira, L., and Gheyi, R. (2012). A theory of software
product line refinement. Theoretical Computer Science, 455:2–30.

[Critchlow et al., 2003] Critchlow, M., Dodd, K., Chou, J., and van der Hoek, A.
(2003). Refactoring product line architectures. In Proceedings of the 1st International
Workshop on Refactoring: Achievements, Challenges, and Effects, pages 23–26.

[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisenecker, U. (2000). Generative
programming: methods, tools, and applications. Addison-Wesley.

[Czarnecki et al., 2005] Czarnecki, K., Helsen, S., and Eisenecker, U. (2005). Formal-
izing cardinality-based feature models and their specialization. Software Process:
Improvement and Practice, 10(1):7–29.

[Czarnecki et al., 2004] Czarnecki, K., Helsen, S., and Ulrich, E. (2004). Staged con-
figuration using feature models. In SPLC, volume 3154 of LNCS, pages 266–283.

[Ferreira et al., 2012] Ferreira, F., Borba, P., Soares, G., and Gheyi, R. (2012). Making
software product line evolution safer. In SBCARS, pages 21–30.

[Ferreira et al., 2010] Ferreira, F., Neves, L., Silva, M., and Borba, P. (2010). TaRGeT:
a model based product line testing tool. In CBSoft – Tools Session, CBSoft ’10.

[Figueiredo et al., 2008] Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M.,
Kulesza, U., Garcia, A., Soares, S., Ferrari, F., Khan, S., Filho, F., and Dantas, F.
(2008). Evolving software product lines with aspects: an empirical study on design
stability. In ICSE, pages 261–270.

[Gheyi et al., 2006] Gheyi, R., Massoni, T., and Borba, P. (2006). A theory for feature
models in Alloy. In Proceedings of the 1st Alloy Workshop, pages 71–80.

[Gheyi et al., 2011] Gheyi, R., Massoni, T., and Borba, P. (2011). Automatically
checking feature model refactorings. J. UCS, 17(5):684–711.

[Jackson, 2006] Jackson, D. (2006). Software Abstractions: Logic, Language and Anal-
ysis. MIT press.

[Kang et al., 1990] Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. S.
(1990). Feature-oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, SEI CMU.

[Kastner et al., 2007] Kastner, C., Apel, S., and Batory, D. (2007). A case study im-
plementing features using AspectJ. In SPLC, pages 223–232.

[Kim et al., 2011] Kim, C. H. P., Batory, D. S., and Khurshid, S. (2011). Reducing
combinatorics in testing product lines. In AOSD, pages 57–68.

[Kolb et al., 2005] Kolb, R., Muthig, D., Patzke, T., and Yamauchi, K. (2005). A case
study in refactoring a legacy component for reuse in a product line. In ICSM, pages
369–378.

[Liu et al., 2006] Liu, J., Batory, D., and Lengauer, C. (2006). Feature oriented refac-
toring of legacy applications. In ICSE, pages 112–121.

[Mongiovi et al., 2014] Mongiovi, M., Gheyi, R., Soares, G., Teixeira, L., and Borba,
P. (2014). Making refactoring safer through impact analysis. Science of Computer
Programming.

[Neves et al., 2011] Neves, L., Teixeira, L., Sena, D., Alves, V., Kulezsa, U., and Borba,
P. (2011). Investigating the safe evolution of software product lines. In GPCE, pages
33–42.

[Opdyke, 1992] Opdyke, W. (1992). Refactoring Object-Oriented Frameworks. PhD
thesis, UIUC.

[Pacheco et al., 2007] Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T. (2007).
Feedback-directed random test generation. In ICSE, pages 75–84.

[Pohl et al., 2005] Pohl, K., Böckle, G., and van der Linden, F. (2005). Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer.

[Ren et al., 2004] Ren, X., Shah, F., Tip, F., Ryder, B. G., and Chesley, O. (2004).
Chianti: a tool for change impact analysis of Java programs. In OOPSLA, pages
432–448.

[Soares et al., 2013] Soares, G., Gheyi, R., and Massoni, T. (2013). Automated behav-
ioral testing of refactoring engines. IEEE TSE, 39(2):147–162.

[Soares et al., 2010] Soares, G., Gheyi, R., Serey, D., and Massoni, T. (2010). Making
program refactoring safer. IEEE Software, 27:52–57.

[Soares et al., 2008] Soares, S., Calheiros, F., Nepomuceno, V., Menezes, A., Borba,
P., and Alves, V. (2008). Supporting software product lines development: FLiP -
product line derivation tool. In SPLASH, pages 737–738.

[Teixeira et al., 2013] Teixeira, L., Borba, P., and Gheyi, R. (2013). Safe composition
of configuration knowledge-based software product lines. JSS, 86(4):1038–1053.

[Thaker et al., 2007] Thaker, S., Batory, D., Kitchin, D., and Cook, W. (2007). Safe
composition of product lines. In GPCE, pages 95–104.

[Thum et al., 2009] Thum, T., Batory, D., and Kastner, C. (2009). Reasoning about
edits to feature models. In ICSE, pages 254–264.

[Trujillo et al., 2006] Trujillo, S., Batory, D., and Diaz, O. (2006). Feature refactoring
a multi-representation program into a product line. In GPCE, pages 191–200.

[van der Linden et al., 2007] van der Linden, F., Schmid, K., and Rommes, E. (2007).
Software Product Lines in Action: the Best Industrial Practice in Product Line En-
gineering. Springer.

[Wloka et al., 2010] Wloka, J., Hoest, E., and Ryder, B. G. (2010). Tool support for
change-centric test development. IEEE Software, 27(3):66–71.

	Introduction
	Motivating Examples
	Invalid Products
	Behavioral Changes

	Tool Support for Checking SPL Refinements
	All Product Pairs (APP)
	Implementation

	All Products (AP)
	Optimized Approaches
	Impacted Products (IP)
	Impacted Classes (IC)

	Evaluation
	Definition
	Planning
	Selection of Subjects
	Experiment Design
	Instrumentation

	Operation
	Discussion
	Answers to the Research Questions
	Threats to Validity

	Related Work
	Conclusions

