
Making Program Refactoring Safer
Gustavo Soares1, Rohit Gheyi1, Dalton Serey1

1Department of Computing and Systems – UFCG
58429-900 – Campina Grande – PB – Brazil

{gsoares,rohit,dalton}@dsc.ufcg.edu.br

Abstract. Developers rely on compilation, test suite and tools to preserve ob-
servable behavior during refactorings. However, most of the refactoring tools
do not implement all preconditions that guarantee behavioral preservation,
since formally identifying them is cost-prohibitive. Therefore, these tools may
change the behavior of the user’s code. We propose two approaches for mak-
ing program refactoring safer. We present an approach and its implementa-
tion (SAFEREFACTOR) useful for improving the developer’s confidence that the
refactoring was correctly applied. It analyzes a transformation and generates
tests specific for detecting behavioral changes. Moreover, we propose an ap-
proach to help refactoring tool developers to test their implementations. This
approach evaluates an implementation by automatically generating programs
(test inputs), and checking the results with SAFEREFACTOR. We evaluated
SAFEREFACTOR in transformations applied to seven real programs ranging
from 3 to 100 KLOC. In one of them (JHotDraw), we identified a behavioral
change that was not revealed so far. On the other hand, we evaluated the sec-
ond approach by testing 22 refactoring implementations in two Java refactoring
tools: the Eclipse Refactoring Module and the JastAdd Refactoring Tool. We
analyzed more than 80K transformations, and identified 67 bugs.

Keywords: Refactoring, Behavior-preservation, Testing, Program generation

1. Introduction
Refactoring is defined as the process of changing a software system in such a way
that it does not alter the external behavior of the code and improves its internal struc-
ture [Fowler 1999, Mens and Tourwé 2004]. In practice, developers perform refactorings
either manually – error-prone and time consuming – or with the help of IDEs that support
refactoring, such as Eclipse, Netbeans, JBuilder and IntelliJ.

In general, each refactoring may contain a number of preconditions to preserve
the observable behavior. For instance, to rename an attribute, name conflicts cannot be
present. However, mostly refactoring tools do not implement all preconditions, because
formally establishing all of them is not trivial. Therefore, often refactoring tools allow
wrong transformations to be applied with no warnings whatsoever. For instance, the
program shown in Listing 1 containing the A class and its subclass B. The mmethod yields
10. When we apply the pull up refactoring to the k(int) method using Eclipse 3.6, the
IDE moves it to class A. After the transformation, the m method yields 20, instead of
10. Therefore, the transformation does not preserve behavior using the Eclipse 3.6 IDE.
Notice that, originally, the expression inside m calls A.k(long). However, after pulling
up k(int), this method is called instead.

Listing 1. Pulling up B.k(int) using Eclipse 3.6 changes program behavior.

p u b l i c c l a s s A {
p u b l i c i n t k (long i) { re turn 1 0 ; }

}
p u b l i c c l a s s B ex tends A {

p u b l i c i n t k (i n t i) { re turn 2 0 ; }
p u b l i c i n t m() { re turn new A () . k (2) ; }

}

The current practice to avoid behavioral changes in refactorings relies on solid
tests [Fowler 1999]. However, often test suites do not catch behavioral changes dur-
ing transformations. They may also be refactored (for instance, rename method) by
the tools since they may rely on the program structure that is modified by the refactor-
ing [Mens and Tourwé 2004]. In this case, the tool changes the method invocations on
the test suite, and the original and the refactored programs are checked against different
test suites. This scenario is undesirable since the refactoring tool may change the test suite
meaning [Schäfer et al. 2008].

Moreover, testing refactoring tools is not simple. It requires complex test inputs
(Java programs). In practice, refactoring tool developers manually write these inputs. As
a result, the test suite may leave hidden bugs that the testers are unaware of. In this work,
we aim at making program refactoring safer by helping not only refactoring practitioners
but also refactoring tool developers.

2. SAFEREFACTOR

We propose an approach (SAFEREFACTOR) [Soares et al. 2010, Soares et al. 2009b,
Soares 2010a, Soares 2010b, Soares et al. 2009a] for checking refactoring safety in se-
quential Java programs. It analyzes a transformation, and generates a test suite useful for
detecting behavioral changes.

We implemented SAFEREFACTOR as an Eclipse plugin. Suppose that we use it to
evaluate the previous transformation (see Listing 1). Next we explain the whole process
(Figure 1). First the developer selects the refactoring to be applied on the source program
(Step 1.1) and uses SAFEREFACTOR (Step 1.2). The plugin starts checking the refactoring
safety (Steps 2-7). It generates a target program based on the desired transformation
using Eclipse refactoring API (Step 2). In Step 3, a static analysis automatically identifies
methods in common in both source and target programs. Step 4 aims at generating unit
tests for methods identified in Step 3. In Step 5, the plugin runs the generated test suite
on the source program. Next, it runs the same test suite on the target program (Step 6).
If a test passes in one of the programs and fails in the other one, the plugin detects a
behavioral change and reports to the user (Step 7). Otherwise, the developer can have
more confidence that the transformation does not introduce behavioral changes.

3. A technique for testing refactoring tools
We also propose an approach to help refactoring tool developers to test their implemen-
tations [Soares 2010a, Soares 2010b]. First, it automatically generates a large number of
small programs as test inputs. This step aims at generating inputs that testers may be
unaware of. Second, it applies the refactoring implementation to each one of them. It

Figure 1. SAFEREFACTOR. 1. The user selects a refactoring in the menu to apply
(1.1) and click on the SAFEREFACTOR button (1.2), 2. The tool generates the target
program using the Eclipse refactoring API, 3. It identifies common methods in
the source and target programs, 4. The tool generates unit tests, 5. It runs the
test suite on the source program, 6. The tool runs the test suite on the target
program, 7. The tool shows the report to developer. If it finds a behavior change,
the developer can see some unit tests that fail.

then uses SAFEREFACTOR to evaluate the correctness of the transformations. To perform
the first step, we developed JDolly, a Java program generator. It contains a subset of the
Java metamodel specified in Alloy, a formal specification language [Jackson 2006], and
uses the Alloy Analyzer, a tool for analysis of Alloy models, for generating solutions for
this metamodel. Each solution is translated to a Java program. JDolly receives as input
the scope of the generation, that is, the maximum number of elements (packages, classes,
fields, and methods) that generated programs must have, and additional constraints for
generating test inputs specific for each implementation.

4. Evaluation
We evaluated SAFEREFACTOR against 24 transformations applied to Java programs1.
They were divided in two categories: Refactorings in real Java applications, and Cat-
alog of Defective Refactorings. The former (Table 1) consists of refactorings applied to
seven real Java applications (3-100 KLOC). Developers used tools or manual steps for
applying these transformations, and the test suites of the programs for guaranteeing be-
havioral preservation. All of the transformations were considered behavior preserving by
them. The latter is a catalog of non-behavior-preserving transformations applied by tools

1All subjects are available at: http://www.dsc.ufcg.edu.br/˜spg/saferefactor/
experiments.htm

http://www.dsc.ufcg.edu.br/~spg/saferefactor/experiments.htm
http://www.dsc.ufcg.edu.br/~spg/saferefactor/experiments.htm

Table 1. Refactorings in real Java applications.

Table 2. Test of refactoring implementations of Eclipse and JRRT; CE = compila-
tion error; BC = behavioral change.

manually catalogued in the literature [Schäfer et al. 2008, Steimann and Thies 2009]. In
the first category, SAFEREFACTOR detected a behavioral change in one transformation
and two compilation errors (Table 1). Regarding the Catalog of Defective Refactorings, it
detected all behavioral changes but one.

Moreover, we evaluated our technique for testing refactoring tools by testing 22
refactoring implementations in two Java refactoring tools: the Eclipse Refactoring Mod-
ule and the JastAdd Refactoring Tool (JRRT) [Schäfer et al. 2010]. Table 2 summarizes
the results. It shows the number of programs generated by JDolly, the testing time, and
the number of failures (compilation errors and behavioral changes) of each implementa-
tion. Many of these failures are related to the same bug. We analyzed them and identified
29 bugs related to compilation errors, and 38 bugs related to behavioral changes (Column
Bugs). JDolly and SAFEREFACTOR were useful for detecting bugs that have not been
revealed so far. Additionally, many of the bugs that we found are also bugs in Netbeans
6.7 (we manually checked them).

5. Related work

Schäfer et al. [Schäfer et al. 2008] propose a Rename refactoring implementation. It
is based on the name binding invariant: each name should refer to the same entity
before and after the transformation. Furthermore, Schäfer et al. [Schäfer et al. 2009b,
Schäfer et al. 2010] propose a number of Java refactoring implementations using an en-
riched language. Despite their technique turns easier to implement the transformation
itself, it is necessary an additional effort to translate the program back. As correctness
criterion, they proposed other invariants such as control flow and data flow preservation.
We evaluated ten of these implementations using our technique. In the sample used in our
evaluation, the JRRT outperformed Eclipse with respect to refactoring correctness: we
found 22 bugs in JRRT and 45 bugs in Eclipse.

Daniel et al. [Daniel et al. 2007] proposed an approach for automated testing
refactoring tools. They propose a program generator called ASTGen. It allows developers
to guide the program generation by extending Java classes. Our generator allows this by
specifying Alloy constraints. To evaluate the refactoring correctness, they implemented
six oracles that evaluate the output of each transformation. While their oracles could only
syntactically compare the programs to detect behavioral changes, SAFEREFACTOR gen-
erates tests that do compare program behavior. They found one bug related to behavioral
change (we found 28 bugs). Moreover, both techniques found the same number of bugs
related to compilation errors (17).

Other approaches have proposed refactoring specifications [Borba et al. 2004,
Tip et al. 2003, Silva et al. 2008, Steimann and Thies 2009]. They analyze various as-
pects of Java, as accessibility, types, name binding, data flow, and control flow. However,
proving refactoring correctness for the whole Java language is considered a grand chal-
lenge [Schäfer et al. 2009a]. We propose a more practical approach for detecting behav-
ioral changes using a tool support, regardless the kind of refactoring.

6. Conclusions

We presented an approach and its implementation (SAFEREFACTOR) for improving safety
of the refactoring activity. By using SAFEREFACTOR, developers can have more confi-
dence that a refactoring was correctly applied. We used it in transformations with up to
100KLOC, and it was useful for reporting behavioral changes that were not detected by
IDEs and existing test suites. We also proposed an approach that helps refactoring tool
developers to test their implementations. This approach evaluates an implementation by
automatically generating programs (test inputs), and checking the results with SAFER-
EFACTOR. It was useful for identifying 67 bugs in 22 refactoring implementations of
state-of-the-art industrial and academic refactoring tools.

Acknowledgment

We would like to thank Tiago Massoni, Paulo Borba, Augusto Sampaio, and David
Naumann. This work was partially supported by the National Institute of Science and
Technology for Software Engineering (INES)2, funded by CNPq grants 573964/2008-4,
477336/2009-4 and 304470/2010-4.

2http://www.ines.org.br

http://www.ines.org.br

References
[Borba et al. 2004] Borba, P., Sampaio, A., Cavalcanti, A., and Cornélio, M. (2004). Al-

gebraic Reasoning for Object-Oriented Programming. Science of Computer Program-
ming, 52:53–100.

[Daniel et al. 2007] Daniel, B., Dig, D., Garcia, K., and Marinov, D. (2007). Automated
testing of refactoring engines. In FSE ’07, pages 185–194.

[Fowler 1999] Fowler, M. (1999). Refactoring: Improving the Design of Existing Code.
Addison-Wesley.

[Jackson 2006] Jackson, D. (2006). Software Abstractions: Logic, Language and Analysis.
MIT press.

[Mens and Tourwé 2004] Mens, T. and Tourwé, T. (2004). A survey of software refactoring.
IEEE Transactions on Software Engineering, 30(2):126–139.

[Schäfer et al. 2010] Schäfer, M., , and de Moor, O. (2010). Specifying and implementing
refactorings. In OOPSLA ’10, pages 286–301.

[Schäfer et al. 2008] Schäfer, M., Ekman, T., and de Moor, O. (2008). Sound and extensible
renaming for Java. In OOPSLA ’08, pages 277–294.

[Schäfer et al. 2009a] Schäfer, M., Ekman, T., and de Moor, O. (2009a). Challenge pro-
posal: Verification of refactorings. In PLPV ’09, pages 67–72.

[Schäfer et al. 2009b] Schäfer, M., Verbaere, M., Ekman, T., and Moor, O. (2009b). Step-
ping stones over the refactoring rubicon. In ECOOP ’09, pages 369–393.

[Silva et al. 2008] Silva, L., Sampaio, A., and Liu, Z. (2008). Laws of object-orientation
with reference semantics. In SEFM ’08, pages 217–226.

[Soares 2010a] Soares, G. (2010a). Making program refactoring safer. In Student Research
Competition at ICSE ’10, pages 521–522.

[Soares 2010b] Soares, G. (2010b). Making program refactoring safer. In XVII Latin-
American Master Thesis Contest CLTM 2010 at CLEI ’10.

[Soares et al. 2009a] Soares, G., Cavalcanti, D., Gheyi, R., Massoni, T., Serey, D., and
Cornélio, M. (2009a). SafeRefactor - tool for checking refactoring safety. In Tools
Session at SBES, pages 49–54.

[Soares et al. 2009b] Soares, G., Gheyi, R., Massoni, T., Cornélio, M., and Cavalcanti, D.
(2009b). Generating unit tests for checking refactoring safety. In SBLP, pages 159–
172.

[Soares et al. 2010] Soares, G., Gheyi, R., Serey, D., and Massoni, T. (2010). Making pro-
gram refactoring safer. IEEE Software, 27:52–57.

[Steimann and Thies 2009] Steimann, F. and Thies, A. (2009). From public to private to
absent: Refactoring Java programs under constrained accessibility. In ECOOP ’09,
pages 419–443.

[Tip et al. 2003] Tip, F., Kiezun, A., and Baumer, D. (2003). Refactoring for Generalization
Using Type Constraints. In OOPSLA ’03, pages 13–26.

	Introduction
	SafeRefactor
	A technique for testing refactoring tools
	Evaluation
	Related work
	Conclusions

