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Abstract. Developers rely on compilation, test suite and tools to pre-
serve observable behavior during refactorings. However, most of the refac-
toring tools do not implement all preconditions that guarantee the refac-
toring correctness, since formally identifying them is cost-prohibitive.
Therefore, these tools may perform non-behavior-preserving transforma-
tions. We present a technique and tool (SafeRefactor) for making pro-
gram refactoring safer. It analyzes a transformation and automatically
generates a test suite that is suited for detecting behavioral changes.
Moreover, we propose a program generator (JDolly) useful for generat-
ing inputs for testing refactoring tools. We have evaluated both in two
experiments. First, we used SafeRefactor in seven real case study
refactorings (from 3 to 100 KLOC). We reason about an original version
of JHotDraw (23 KLOC) and its refactored version, and automatically
detected a behavioral change. Developers have not identified this prob-
lem before. Finally, we have used SafeRefactor and JDolly to test 12
refactorings implemented by Eclipse 3.4.2. As result, we have detected a
number of non-behavior-preserving transformations.

Keywords: Refactoring, Behavior-preservation, Unit-testing, Program
Generation, Automated testing

1 Introduction

Refactoring is the process of change a software system in such way that im-
proves its internal structure without changing its external behavioral [6]. Each
refactoring may have preconditions that guarantee the behavioral preservation.
For example, the Push Down Method refactoring moves a method from the su-
per class to the subclasses. Before we apply this change, we need to check if
others methods with same signature already exist in the subclasses. Most used
IDEs such as Eclipse, NetBeans, IntelliJ, and JBuilder automate a number of
refactorings. They automatically check the preconditions and perform the trans-
formation.

However, IDEs may perform incorrect transformations that introduce compi-
lation errors or change program behavior. Compilation errors are easier to detect;
we only need to compile the refactored program. On the other hand, behavioral
changes are more difficult to detect, since they are silently introduced by the
tool.

http://www.dsc.ufcg.edu.br/~{}spg/


Currently, each IDE implements refactorings based on an informal set of
preconditions, because establishing it with respect to a formal semantics is pro-
hibitive. An evidence of this fact is that some IDEs allow some transformations,
and others do not [4]. Identifying all refactoring preconditions for complex lan-
guages as Java is not trivial and formally verifying them is indeed a challenge [17].
The current practice to avoid behavioral changes in refactorings relies on solid
tests [6]. However, often test suites do not catch behavioral changes during trans-
formations. They may also be refactored (for instance, rename method) by the
tools since they may rely on the program structure that is modified by the refac-
toring. In this case, the tool changes the method invocations on the test suite,
and the original and refactored programs are checked against different test suites.
This scenario is undesirable since the refactoring tool may change the test suite
meaning [16].

In this work, we propose a technique and tool (SafeRefactor) for im-
proving confidence that a refactoring is sound. It analyzes the transformation
and generates unit tests suited for detecting behavioral changes. Moreover, we
propose a program generator (JDolly) useful for generating inputs for testing
refactoring tools. It is based on Alloy [10], a formal specification language, and
ASTGen [4], an imperative framework for generating Java programs. We show
an overview of Alloy and ASTGen in Section 3.

We have evaluated SafeRefactor and JDolly in two experiments 1. First,
we evaluated SafeRefactor on seven refactorings of real Java programs (from 3
to 100 KLOC) performed by developers that used refactoring tools and unit tests
to guarantee the behavior preservation. We have identified a behavioral change in
a refactoring applied to JHotDraw (23 KLOC). Finally, we used SafeRefactor
and JDolly to test 12 refactorings implemented by Eclipse 3.4.2. As result, we
have detected that many transformations performed by Eclipse change program
behavior. In summary, the main contributions of this paper are the following:

– A technique and tool for improving the confidence that a refactoring is sound
(Section 4) [23,22,21];

– A Java program generator useful for automated testing refactoring imple-
mentations (Section 5) [20];

– An evaluation of 7 refactorings applied to real Java programs (Section 6);
– An evaluation of our approach on automated testing 12 refactoring imple-

mented by Eclipse 3.4.2 (Section 7).

2 Motivating Example

In this section, we show one transformation performed by Eclipse IDE that
changes program behavior. For instance, consider the program illustrated in
Listing 1.1. It contains the class A with the methods k(int) and k(long), and
the class B with the method test(). The method test returns 10. If we apply the

1 All experiment data are available at: http://www.dsc.ufcg.edu.br/~spg/

saferefactor/experiments.htm
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Eclipse Change Method Signature refactoring to k(int) reducing its visibility to
private, the refactored code will be similar to the one in Listing 1.2. Now, the
method test returns 20 instead of 10. Therefore, this transformation changes
behavior. After the refactoring, k(int) is not visible in B. However, the method
k(long) is visible, and matches with the expression k(2) inside test(), leading
to a change of binding.

Fig. 1. Decreasing visibility leads to behavioral change

Listing 1.1. Original version

public class A {
public int k ( int i ) {

return 10 ;
}
public int k ( long l ){

return 20 ;
}

}
public class B extends A {

public long t e s t ( ){
return k ( 2 ) ;

}
}

Listing 1.2. Refactored version

public class A {
private int k ( int i ){

return 10 ;
}
public int k ( long l ){

return 20 ;
}

}
public class B extends A {

public long t e s t ( ){
return k ( 2 ) ;

}
}

The above example is small, and a small test suite can detect the behavioral
change. However, it shows the complexity of a language as Java and of identifying
refactoring preconditions. Although the program contains only 2 classes and few
lines of code, Eclipse incorrect refactor it. Moreover, in large systems, detection
of behavioral changes is more difficult.

3 Background

In this section, we show an overview of the technologies used in our program
generator JDolly. First, we describe the Alloy language (Section 3.1) and next
we show the ASTGen framework (Section 3.2).

3.1 Alloy

Alloy is a declarative language for formal specification [10] based on first order
logic and can be used for modeling object-oriented systems. It has syntax, type
system, and semantics formally defined, which allows a full automatically anal-
ysis of the model. An Alloy model is a sequence of paragraphs of three kinds:
signatures are used to define new types, facts are used to record constraints, and
analysis paragraphs are used to perform analysis of the model.



To illustrate an Alloy specification, we use an object model example of a
Java subset (Figure 2). Each box represents a set of objects, and the arrows are
relations between objects. For instance, the arrow labeled extends from Class

to Class models the class inheritance of Java. Relations may have multiplicities
on both ends. If a multiplicity is omitted, it is unconstrained.

Fig. 2. Object model of a Java subset

Next we describe an Alloy model similar to the previous object model. In
Listing 1.3, we specify three signatures that represents the sets of objects of our
model. The signature body may contain relations of these objects. Fo instance,
in the signature Class, we specified the relations extend, fields, and method

similar to ones modeled on our object model. Relations may have multiplicity
constraints as set (unconstrained), one (exactly one), lone (zero or one), some
(one or more).

Listing 1.3. Signatures that model classes, fields and methods

sig Class {
extend: lone Class,
fields: set Field,
methods: set Method,
}

sig Field {}
sig Method {}

Besides signatures and relations, we can specify facts containing invariants
of the system. A fact contains a set of constraints that hold for all executions of
the system. We can use it for describing well-formed rules of Java. For instance,
a class cannot extend itself in Java. Listing 1.4 shows a fact that has a constraint
related to this rule. The in operator represents a subset relation. The constraint
has a variable c of Class and a quantifier no (for none) on the left hand side.
On the right hand side, there is a constraint that holds for no c. The keyword
^ represents the transitive closure of c with respect to extend. If we consider
the extend relation as a graph, the transitive closure represents the set of nodes
that can be achieved starting at c.extend.



Listing 1.4. Fact that specifies a class cannot extends itself

fact JavaConstraints {
no c:Class | c in c·ˆextend
}

Next we show how to use the Alloy Analyzer to simulate instances of our
model. It find all solutions that satisfy the model for a given bound (Bounded-
exhaustive generation [12]). In this example, the scope is the number of classes,
methods, and fields. For instance, suppose we have specified to Alloy Analyzer
find solutions for the scope of three classes, two methods, and one field. Figure 3
shows one of the 858 solutions found. It has the class Class2 and its subclasses
Class0 and Class1.

Fig. 3. Solution found by the Alloy Analyzer

3.2 ASTGen

The ASTGen is a Java framework for generating Java programs [4]. It has a num-
ber of generators that produce elements of Java abstract syntax trees (ASTs).
ASTGen architecture allows the combination of the generators to produce more
complex Java code. For instance, Figure 4 shows the structure of a genera-
tor that creates fields declarations. It is composed of three sub-generators that
create the following elements: modifiers, types, and identifiers. Suppose these
sub-generators create the elements of Java abstract syntax: public and private
(modifiers), int and long (types), f1 (identifier), respectively. The FieldDeclara-
tionGenerator will produce field declarations combining all values produced by
its sub-generators. Figure 4 shows one of the 4 field declarations created.

ASTGen has more than 40 generators that are able to produce elements of
Java such as control flow statements (if, while, for), and methods and fields calls
expressions.



Fig. 4. Example of ASTGen FieldDeclarationGenerator

4 SafeRefactor

In this section, we present SafeRefactor, a tool for improving confidence that
a refactoring is sound. SafeRefactor is an Eclipse plugin 2 that receives a
source code and a refactoring to be applied (input). It reports whether it is safe
to apply the transformation (output).

Suppose that we use SafeRefactor in Listing 1.1 program. Next we explain
the whole process, which has seven sequential steps for each refactoring appli-
cation (Figure 5). First the developer selects the refactoring to be applied on
the source program (Step 1.1) and uses SafeRefactor (Step 1.2). The plugin
starts checking the refactoring safety (Steps 2-7).

It generates a target program based on the desired transformation using
Eclipse refactoring API (Step 2). In Step 3, a static analysis automatically iden-
tifies methods in common in both source and target programs. Step 4 aims at
generating unit tests for methods identified in Step 3. In Step 5, the plugin runs
the generated test suite on the source program. Next, it runs the same test suite
on the target program (Step 6). If a test passes in one of the programs and
fails in the other one, the plugin detects a behavioral change and reports to the
user (Step 7). Otherwise, the programmer can have more confidence that the
transformation does not introduce behavioral changes.

The goal of the static analysis (Step 3) is to identify methods in common: they
have exactly the same modifier, return type, qualified name, parameters types
and exceptions thrown in source and target programs. For example, Listings 1.1
and 1.2 contain A.k(long) and B.test() in common.

After identifying a set of useful methods, the plugin uses Randoop [15] to
generate unit tests (Step 4). Randoop generates tests for classes within a time
limit. A unit test typically consists of a sequence of method and constructor
invocations that creates and mutates objects with random values, plus a JUnit
assertion. Randoop executes the program to receive a feedback gathered from
executing test inputs as they are created, to avoid generating redundant and ille-
gal inputs [15]. It creates method sequences incrementally, by randomly selecting
a method call to apply and selecting arguments from previously constructed se-
quences. Each sequence is executed and checked against a set of contracts. For
instance, an object must be equal to itself. Our tool uses the Randoop default

2 Available at http://www.dsc.ufcg.edu.br/~spg/saferefactor/
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Fig. 5. SafeRefactor. 1. The user selects a refactoring in the menu to apply (1.1)
and click on the SafeRefactor button (1.2), 2. The tool generates the target program
using the Eclipse refactoring API, 3. It identifies common methods in the source and
target programs, 4. The tool generates unit tests using our modified Randoop, 5. It
runs the test suite on the source program, 6. The tool runs the test suite on the target
program, 7. The tool shows the report to developer. If it finds a behavior change, the
user can see some unit tests that fail.

contracts. We modified Randoop to remove some defects, and to pass a set of
methods as parameter. All tests generated only contain calls to the methods
identified in Step 3. The default time limit is 2s. Steps 3 and 4 ensure that the
same tests can be run on the source and target programs.

The whole process to finish Figure 1 example takes less than 8 seconds on a
dual-processor 2.2 GHz Dell Vostro 1400 laptop with 2 GB RAM, and generates
154 unit tests (151 of them failed in the target program). SafeRefactor reports
the user that the refactoring should not be applied. Users can see some tests
that expose the behavior change (Step 7). In other situations, SafeRefactor
can report compilation errors that may be introduced by refactoring tools. If
SafeRefactor does not find a behavior change or compilation error, it reports
that users can improve confidence that the transformation is sound.



Opdyke compares the observable behavior of two programs with respect to
the main method (a method in common). If it is called twice (source and target
programs) with the same set of inputs, the resulting set of output values must
be the same [14]. SafeRefactor checks the observable behavior with respect
to randomly generated sequences of methods and constructor invocations. They
only contain calls to methods in common. If the source and target programs
have different results for the same input, they do not have the same behavior.

5 JDolly

In this section, we present JDolly, a program generator useful for generating
inputs to test refactoring tools. First, we show its overview (Section 5.1). Next
we describe its expressivity (Section 5.2), and the program generation process
in detail (Section 5.3 and 5.4).

5.1 Overview

JDolly receives as input the number of packages, classes, fields, and methods.
Additionally, testers can specify some structural characteristics programs must
have. The generator outputs programs with this scope.

To illustrate the program generation, consider the program shown in List-
ing 1.5. First, JDolly creates the structural parts of the program, depicted in
black in the listing. As structural parts we mean package, class, method, field

declaration statements. This step is based on the declarative programming paradigm,
and as enable technology we used the formal specification language Alloy and
the Alloy Analyzer [9]. In the second step, JDolly generates the behavioral parts
(inside the boxes in Listing 1.5), that is, the statements that initialize fields and
inside of the methods bodies. For this step, we used the ASTGen [4], a Java
framework for imperative generating of Java programs.

Listing 1.5. Program generated by JDolly

package p1 ;
public class A {

private int f = 10;

public int k ( int i ){ return f; }
}

package p2 ;
import p1 . ∗ ;
public class B extends A {

public int m(){ return super.k(2); }
}



5.2 Language

JDolly generates programs that contain a subset of the Java elements. In the
current implementation, each program may have packages, classes, fields, and
methods declarations with full access control (public, protected, private, pack-
age). Types can be primitive, String or classes declared in the program. Methods
have zero or one parameter. Moreover, these elements can have structural rela-
tions such as inheritance, overloading, overriding, and field hiding.

Regarding the behavior of the classes. Fields can have assignment statements
for initialization. Methods have only one statement (return) that can have a
method or field call expression, or a simple value. Call expressions can use simple
name (e.g. m()), qualified name (e.g. A.m()), accesses keyword (e.g. super.m(),
this.m()), and new instance (e.g. new A().m()).

Next we describe the program generation process of JDolly. First we focus
on the structural generation for latter explain the behavior generation.

5.3 Structural generation

The generation of the structural parts of the programs is based on Alloy [10] and
Alloy Analyzer [9]. We specify a meta-model of a Java subset, and use the Alloy
Analyzer for finding solutions to this model. Then we transform the solutions in
Java code.

Meta-model We model in Alloy a subset of Java abstract syntax using sig-
natures and relations. Listing 1.6 shows our current model. Packages contain
imports and classes declarations. Each class has an id, a modifier, fields and
methods, and can extend one class. Fields have an id and a modifier, and de-
clare a type that can be primitive, String or a class. Methods have a return type,
zero or one argument, besides modifier and id.

Listing 1.6. Meta-model of a Java subset

sig Id { }
abstract sig Type {}
one sig Int ,Long , Char, Boolean, String extends Type {}
abstract sig Modifier {}
one sig public, private , protected, package extends Modifier {}
sig Package {

classes: set Class,
imports : set Package
}
sig Class extends Type {

id: one Id,
modifier : one Modifier,
extend: lone Class,
fields: set Field,
methods: set Method



}
sig Field {

id : one Id,
type: one Type,
modifier : one Modifier
}
sig Method {

id : one Id,
arguments: lone Type,
return: one Type,
modifier: one Modifier
}

Well-formed rules Java programs must satisfy a number of well-formed rules.
For instance, a class cannot extend itself. We have specified some of them in
Alloy facts (Listing 1.7). The first constraint specifies this exemplified rule. The
next three constraints specify a package cannot have two classes with same id, a
class cannot have two fields with same id, and a class cannot have two methods
with same signature, respectively. Finally, the last constraint specifies that a
package must have an import declaration if one of its classes extends a class of
other package.

Listing 1.7. Facts describing Java well-formed rules

fact WellFormedRules {
no c:Class | c in c·ˆextend

no c1,c2: Class | some p:Package
c1 6= c2 &&
c1 + c2 in p·classes &&
c1·id == c2·id

no f1,f2: Field | some c: Class |
f1 6= f2 &&
f1 + f2 in c·fields &&
f1·id == f2·id

no m1,m2: Method | some c: Class |
m1 6= m2 &&
m1 + m2 in c·methods &&
m1·id == m2·id &&
m1·arguments == m2·arguments

no p1,p2: Package | some c1,c2: Class |
p1 6= p2 &&
c1 6= c2 &&



c1 in p1·classes &&
c2 in p2·classes &&
c1 in c2·extend &&
p1 !in p2·imports

}

Generating programs with specific structural characteristics Sometimes
testers want to produce only programs with a specific structural characteristic.
For example, to test the pull up method refactoring implementation, the pro-
grams must have at least a class and its subclass with one method. Listing 1.8
shows the specification used to generate programs with these characteristics. The
first line models classes C1 and C2, and the fact PullUpMethod specifies that C2
extends C1, and C2 contains one method.

Listing 1.8. Pull Up Method Specification

one sig C1,C2 extends Class {}
fact PullUpMethod {

C1 in C2·extend
one m:Method | m in C2·methods

}

Transformation The Alloy distribution has a Java API [3] to manipulate the
Alloy Analyzer commands in Java. We use it to handle the Alloy solutions, and
then transform these solutions in Java code elements. To do so, we use the Java
Model Eclipse API 3 , which contains several classes to model elements of Java
syntax.

5.4 Behavioral generation

The next step of the generation is the creation of the behavioral parts of the
programs. We have implemented in JDolly an imperative generator based on
ASTGen to this function. For each structural part generated on step one, this
generator creates a number of programs with distinct behavior.

The behavioral generator is composed by n generators of field initialization
and m generators of method body where n and m is the number of fields and
methods of the program, respectively. The current version of these generators
uses the following ASTGen generators:

– ReturnStatementGenerator creates return statements that contain expres-
sions generated by sub-generators. In our case, expressions can be method
and field calls or literal values;

3 Eclipse Java Model API tutorial: http://www.eclipse.org/articles/article.

php?file=Article-JavaCodeManipulationAST/index.html
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– MethodCallGenerator creates four kinds of calls to a specific method;
– FieldCallGenerator is similar to above one but for fields;
– AssignmentGenerator creates assignment statements with expressions of sub-

generators. In our case, these expressions can be literal values;
– StringLiteralGenerator, NumberLiteralGenerator, and BooleanLiteralGen-

erator create strings, numbers, and boolean values, respectively.

The behavioral generator explores all combinations of values produced by
the sub-generators. For example, suppose it receives as input a structural part
of a program with one class, two methods, and one field. For each method, it
produces 9 different return statements: 4 kinds of method calls to the other
method, 4 kinds of field calls, and one literal value. The field is initialized with
one literal value. The combination of values results in 81 different behavior to
this program structure. Additionally, we implement filters related to well-formed
rules for removing of some invalid behaviors as a method call using super to a
method in same class.

6 Evaluating refactorings in real Java programs

In this section, we describe our experiment to analyze SafeRefactor with re-
spect to the efficiency of finding behavioral changes in likely refactorings applied
to real Java programs. First, we describe the subjects (Section 6.1) and the
experiment setup (Section 6.2). Finally, we show the experiment results (Sec-
tion 6.3).

6.1 Subject Characterization

Table 1 shows the subjects (pairs of source and target programs) used in the
experiment. Each of them is uniquely identified (Subject column). They consist
of refactorings performed by developers applied to real Java applications ranging
from 3-100 KLOC (non-blank, non-comment lines of code) using tools or manual
steps. All of them are considered behavior preserving by developers. We use
SafeRefactor to evaluate whether the transformation preserves the observable
behavior. Columns Program, KLOC, and Refactoring show the program name,
its size in KLOC, and the refactoring applied, respectively. Next we describe
these transformations.

Third-party developers performed a refactoring on JHotDraw and Check-
StylePlugin (Subjects 1-2) to modularize exception handling code [25]. Fuhrer
et al. [7] proposed and implemented an Eclipse refactoring to apply the infer
generic type argument refactoring, enabling applications to use Java generics.
They evaluated their refactoring in four real Java applications: JUnit, Vpoker,
ANTLR, and Xtc (Subjects 3-6). Murphy-Hill et al. [13] performed some exper-
iments to analyze how developers refactor. They used a set of twenty Eclipse
components versions from Eclipse CVS, and manually detected the refactorings
applied. We evaluate one transformation in Eclipse TextEditor module (Subject
7).



Table 1. Summary of SafeRefactor Evaluation in Refactoring Real Applications

6.2 Experimental Setup

We run the experiment on a dual-processor 2.2 GHz Dell Vostro 1400 laptop
with 2 GB RAM and running Ubuntu 9.04. In both categories, we used a com-
mand line interface provided by our SafeRefactor. It receives three parame-
ters: source and target program paths, and timeout to generate tests. We used
the default timeout of 90s and 2s to generate the tests in the first and second
categories, respectively. We did not use the SafeRefactor Eclipse graphical
interface in order to automate the experiment.

6.3 Experimental Results

SafeRefactor detected a behavioral change in one refactoring and two compi-
lation errors in less than 4 minutes in the first category. Table 1 shows total time
in seconds required by SafeRefactor to yield a result, the number of generated
tests, and the number of tests detecting the behavioral change (Error column)
for each subject in the Total Time, Tests, Error columns, respectively. The Re-
sult column indicates whether SafeRefactor identified a behavior change or a
compilation error. The symbol - indicates that no behavior change is detected.

Developers refactored JHotDraw in order to avoid code duplication with
identical exception handlers in different parts of a system [2]. Eight program-
mers working in pairs performed the change: they extracted the code inside the
try, catch, and finally blocks to methods in specific classes that handle excep-
tions. They relied on refactoring tools, pair review, and unit tests to assure that
the behavior was preserved. Some classes that implement Serializable were
refactored. Developers changed the clone method and introduced the handler

attribute to handle exceptions. However, they forgot to serialize this new at-
tribute. Thus, when the method clone try to serialize the object, an exception
is thrown. Therefore, the refactored method clone has a different behavior.

Moreover, Eclipse wrongly applied a refactoring to ANTLR and Xtc, intro-
ducing a compilation error that was not reported [7]. Finally, SafeRefactor
did not detect behavior change in Subjects 2-4 and 7. Table 1 summarize the
results.



7 Testing refactoring tools

In this section, we describe our experiment to analyze SafeRefactor and
JDolly with respect to the efficiency in automated testing of refactorings im-
plementations. The test consists of three steps. First, we generate a number of
programs using JDolly. Next, these programs are refactored using the refactor-
ing API under test. Finally, we use SafeRefactor to evaluate whether the
refactorings were correct applied.

First, we describe the refactorings implementations under test (Section 7.1)
and the experiment setup (Section 7.2). Next, we show the experiment results
and a discussion (Section 7.3 and 7.4).

7.1 Subject characterization

We tested 12 refactoring implemented in Eclipse 3.4.2. Table 2 shows the refac-
torings evaluated and the number of test cases in the Eclipse test suite for each
one. Eclipse team does not separate Pull up and Push down test cases between
methods and fields. Similarly, the Change method signature test suit has no dis-
tinction between add parameter, remove parameter, and change access modifier
test cases.

Table 2. Summary of evaluated refactoring implementations



7.2 Experiment Configuration

For each refactoring implementation under test, we modeled an Alloy specifica-
tion describing some characteristics generated programs must have and defined
the scope of the generation. In summary, we specified 12 executions of our tech-
nique illustrated in Table 3. Each line represents one execution. Column Scope
shows the number of packages, classes, fields, and methods of the programs.

We performed the experiment on a 2.2 GHz dual-core Dell Vostro laptop
running Ubuntu 9.04. As we mentioned before, the Eclipse version under test
was the 3.4.2.

Table 3. Summary of the experiment; Scope = packages, classes, fields, and methods;
TGP = generated programs; CP = compilable programs; Time = total time in hh:mm;
WS = warning status; CE = compilation errors; BC = behavioral changes

7.3 Results

Our approach detected faults in all refactorings implemented by Eclipse. Ta-
ble 3 shows the experiment results. We can see JDolly results in Column JDolly,
which is divided in three sub-columns. Our generator may create invalid pro-
grams. While Column TGP shows the number of generated programs, Column
CP shows only the programs that compile. The total time of the test, number of
transformations that leads to warning status, compilation errors, and behavioral
changes appear in Time, WS, CE, BC Columns, respectively.

Bounded-exhaustve testing can generate different test cases that reveal a
common fault. Jagannath et al. [11] proposes an approach called Oracle-based
Test Clustering (OTC) for automatically separating the failing tests by faults.



Their main idea is to split the tests based on the template of the error mes-
sage. We plan to use this approach to split the failing tests related to compi-
lation errors. Regarding the non-behavior-preserving transformations, we plan
to manually analyze them reporting identified bugs to Eclipse bug report. All
non-behavior-preserving transformations shown in this paper are examples of
bugs automatically detected by our approach.

7.4 Discussion

Our approach was useful for testing the refactorings implemented by Eclipse. It
revealed a number of faults that have not been detected so far using manually
written test cases or previous approach for automated testing.

While previous approach of automated refactoring tools testing [4] focused
on detecting compilation error faults, we focused one behavioral changes. We
believe that in most cases a behavioral change is more critical than a compilation
error in the refactored program, since the first one is silently introduced by the
tool, taking more time to be discovered. SafeRefactor [23] allowed us to detect
non-behavior-preserving transformations. We configured it with a timeout of
one second for test generation and it created around 100 unit tests for each
transformation.

Firstly, we tried to use the ASTGen approach combined with SafeRefac-
tor to improve the testing of refactoring tools. However, we realized that some
structural parts of the program are difficult to specify in a imperative way. For
example, ASTGen has a generator to produce inheritance between two classes.
However, to program the generation of inheritance for three classes A, B and C

in such a way that it produces all valid (and none invalid) inheritance relations
is not simple in a imperative language. On the other hand, we needed just one
constraint in our Java meta-model specified in Alloy (Listing 1.6) to the Alloy
Analyzer find all valid inheritance relations. So, the main motivation to propose
JDolly was the need for a program generator that allows to specify the structural
characteristics of the programs in a simple manner and that generates programs
with expressivity for testing refactoring tools. The programs generated by JDolly
have had enough expressivity for detecting a number of corner cases in refactor-
ing tools usage.And in our experiment, it has been easier to specify the structural
parts of the program using the declarative approach of JDolly than using AST-
Gen generators. However, behavioral parts of the program as expressions and
method sequences are difficult to specify in a declarative language, because of
that we used the imperative approach of ASTGen in this step. Therefore, the
combination of the imperative and declarative generation seems to achieve better
results than generation approaches that use only one of them [4,12].

We have not found behavioral changes problems in rename method imple-
mentations. Ekman et al. [16] manually catalogued examples of non-behavior-
preserving transformation applied by Eclipse rename refactoring. However, the
current Java meta-model of JDolly does not have enough expressivity to generate
programs useful for detected them. We aim at improving our meta-model with el-
ements such as static members and inner classes to find more bugs. Besides that,



we can see in Table 3 that 8846 out of 10872 transformations (82%) performed
by rename refactoring produced warning status. We plan to investigate whether
the preconditions implemented are forbidding behavior-preserving transforma-
tion. Our technique can be useful for specifying a smaller set of preconditions
that guarantee the behavioral preservation.

8 Conclusions

In this paper, we propose a technique and tool (SafeRefactor) for improving
confidence that a refactoring is sound. SafeRefactor analyzes a transforma-
tion and generates tests useful for detecting behavioral changes. Moreover, we
develop a Java program generator (JDolly) useful for generating inputs for test-
ing refactoring tools. We evaluate both in two experiments. In the first one, we
analyzed SafeRefactor with respect to the efficiency in detecting behavioral
changes in likely refactorings of Real Java programs. SafeRefactor detect one
behavioral change and two compilation errors. In the next experiment, we ana-
lyze the efficiency of SafeRefactor and JDolly in automated refactoring tool
testing. It has been useful for detecting a number of non-behavior-preserving
transformation.

Most of IDEs do not implement all preconditions to guarantee the refactoring
correctness. Therefore, they may perform transformations that introduce com-
pilation errors or behavioral changes. Our work can make program refactoring
safer. It can be used by developers to perform refactorings with more safety.
Additionally, tool developers can use it to improve automated refactoring tool
testing.

8.1 Related Work

Daniel et al. [4] proposed an approach for automated refactoring tools testing.
They developed a framework for generating Java program called ASTGen, and
used the programs generated by it as input for refactoring tools. They imple-
mented some oracles to evaluate the refactoring results. For example, one of the
oracles checks for compilation errors. Other one applies the inverse refactoring
to the output and compares the result with the input; if they were different, the
tester manually analyzes them. As result, they identified 21 bugs in Eclipse and
24 in NetBeans. Almost all of them were bugs that produce compilation errors.
Our approach improves the approach proposed by them. We combine Alloy with
ASTGen to create a program generator with more expressivity regarding the
generation of the structural parts of the program, since the declarative approach
makes easier to specify some of these structures as inheritance relations. More-
over, SafeRefactor allows identifying faults that leads to behavioral changes.

Ekman et al. proposed to evaluate the correctness of a refactoring based on
specific invariants of the transformation. For example, the rename method refac-
toring must preserve the binding between names and entities. They proposed a
technique for creating symbolic names that are guaranteed to bind to a desired



entity in a particular contex by inverting lookup functions. To implement this,
they used the JastAdd Extensible Java Compiler. They proposed solutions for
the rename and extract method refactoring [16,18]. They used ASTGen, the
Eclipse test suite, and their own test suite to evaluated the correctness of their
implementations. We plan to use JDolly and SafeRefactor to evaluate them.

Fuhrer et al.[26] proposed inference rules that guarantee the behavior preser-
vation with respect to types. They proposed and implemented in Eclipse the
refactoring Infer Generic Type Arguments, which transforms a program to use
the Generics feature of Java 5. In Section 6.1, we have shown two transformations
applied by this Eclipse refactoring that lead to compilation errors on resulting
program. In Java, changing modifier accessibility (public, protected, package,
private) can change the static biding of classes, methods, and fields. Steimann
e Thies [24] formal specified the Java accessibility and proposed constraints re-
lated to this that guarantee static binding preservation. These approaches can
be benefited of ours. Since formal proves are difficult, our technique can be useful
to improve the confidence that their implementations are sound.

Borba et al. [1] proposed a set of refactorings for a subset of Java with copy
semantic (ROOL). They proved the refactorings correctness based on a formal
semantic. This work can help to identify preconditions for Java refactorings.
Silva et al. [19] proposed a set of behavior-preserving transformation laws for
a sequential oriented-objected language with reference semantics (rCOS). They
proved the correctness of each one of the laws with respect to rCOS semantics.
Some of these laws can be used in the Java context. However, they did not
consider some Java functionalities, such as overloading and field hiding. As we
show in this work, our technique can detect behavioral changes introduced due
to these functionalities. Duarte [5] extended ROOL refactorings for Java. They
considered many Java features and parallelism. However, he did not prove these
laws with respect to a formal semantics. Therefore, they may have problems.
In fact, we manually analyzed some of them and verified that they allow non-
behavior-preserving transformations. Our work is related with above approaches.
We proposed a practical approach for detecting behavioral changes related to
missing preconditions. We plan to automated testing some of these laws, helping
to refine them and improving the confidence that they are sound.

Marinov e Khurshid [12] proposed TESTERA, a framework for automated
specification-based testing of Java programs. It uses Alloy to specify the pre- and
post-conditions of a method under test. Using this specification, it automatically
generates the test inputs and checks the postcondition. However, they not focus
on generating complex test inputs as Java programs. Gligoric et at. [8] propose
a language UDITA that combines the imperative and declarative approaches
for generating test inputs. They compared UTIDA with ASTGen on testing
refactoring tools. Using UDITA, they could specify program generations that
are difficult to specify in ASTGen, and realized that the combination of the
imperative and declarative paradigms improves the program generation. They
found 4 bugs (2 in Eclipse and 2 in Netbeans) related to compilation errors. Our
work is related to this, since we also have the idea of combine the declarative



and imperative generation. However, the main difference of our work is that we
focused on improving faults detection related to behavioral changes too.

Murphy-Hill et al. [13] analyzed the usage of the refactoring tools of Eclipse
by developers. The most used refactorings based on this work are: rename, ex-
tract local variable, move, extract method, and change method signature. We
tested three of them (rename, move, change method visibility). To evaluate ex-
tract method and local variable refactorings we need methods with sequence of
statements. The current version of JDolly only produces one statement at time,
but this limitation can be resolved by exploring more combinations of ASTGen
generators to produce method sequences.

8.2 Future Work

Proving refactoring correctness with respect to a formal semantic is difficult.
Some approaches in the state of art of refactoring proposed solutions to specific
kinds of refactorings [16,18] or to specific aspects of the language [24]. As future
work, we aim at testing these approaches, helping to improve them.

We also plan to improve JDolly expressivity. We can add more Java con-
structions to our Java meta-model specification and explore more combinations
of the ASTGenerators to create sequence of statements on methods bodies. In
this way, we can test more refactorings such as extract method and extract inline
variable. Finally, JDolly can be used to test other systems that receive programs
as input, such as compilers and model checkers.
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17. Schäfer, M., Ekman, T., de Moor, O.: Challenge proposal: Verification of refactor-
ings. In: Programming Languages meets Program Verification. pp. 67–72 (2009)
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