
Designing a set of Service-Oriented Systems as a
Software Product Line

Flávio Mota Medeiros1,3, Eduardo Santana de Almeida2,3 and Silvio Romero de Lemos Meira1,3
Federal University of Pernambuco (UFPE)1

Federal University of Bahia (UFBA)2

Reuse in Software Engineering (RiSE)3

Email: {fmm2,srlm}@cin.ufpe.br esa@dcc.ufba.br

Abstract—Software reuse is crucial for organizations interested
in productivity gains and software quality. In this context,
Software Product Line (SPL) and Service-Oriented Architecture
(SOA) are two reuse strategies that share common goals and
can be used together with the purpose of increasing reuse
and producing service-oriented systems, customizable to specific
customers, faster and cheaper than creating individual systems.
In this sense, this work investigates the problem of designing
software product lines using service-oriented architectures, and
presents a systematic approach to design product lines based
on services. The approach provides guidance to identify, design
and document components, services, service compositions and
their associated communication flows. In addition, an initial
experimental study performed with the intention of validating
and refining the approach is also depicted demonstrating that
the proposed solution can be viable.

I. INTRODUCTION

Software reuse is a key factor for enterprises interested in
productivity gains, reduced development costs, improved time-
to-market, and increased software quality [1]. In the context
of software reuse, SPL and SOA are two strategies that are
getting attention in research and practice lately [2][3]. In
addition, these strategies share common goals, i.e., they both
encourage organizations to develop flexible and cost-effective
software systems, and support the reuse of existing software
and capabilities during the development of new systems [4].

In this way, SPL and SOA concepts can be used together
with the purpose of increasing and systematizing reuse dur-
ing the Service-Oriented Development (SOD) and producing
service-oriented systems faster, cheaper and customizable to
specific customers [5]. Moreover, service characteristics, e.g.,
dynamic discoverability and binding, can be used to support
the development of flexible and dynamic product lines [6].

This work investigates the problem of designing software
product lines using service-oriented architectures. This com-
bination raises several challenges during the design, such as
how to identify and design services and service compositions
for the domain, decide the variation points to be considered in
the context of SOD, identify service variability implementation
mechanisms and define architectural views to represent the
Service-Oriented Product Line Architecture (SO-PLA).

In this sense, a systematic design approach with a set
of activities, with clearly defined inputs and outputs, and
performed by a predefined set of roles is described in this work

with the purpose of providing guidance to solve the problems
of designing service-oriented product line architectures. In this
work, a service-oriented product line is considered as a set
of similar service-oriented systems that supports the business
processes of a specific domain and can be developed from a
common platform or set of core assets [2].

In order to define a SO-PLA, an approach is essential
to provide guidance to the team, specify the artifacts to be
produced, and associate activities with specific roles and the
team as a whole. Without it, the development team may
develop software in an ad-hoc manner, with success relying
on the efforts of a few dedicated individual participants [7].

The remainder of this paper is organized as follows: Section
II discusses its related work; Section III presents an overview
of the proposed approach, and Section IV discusses its ac-
tivities in detail; Section V presents an experimental study
performed with the purpose of validating and refining the
proposed solution, and finally, Section VI concludes the paper
with some concluding remarks and directions for future work.

II. RELATED WORK

Few work in the literature has considered the combination of
SPL and SOA concepts. An approach for developing service-
oriented product lines was presented in [6]. In this work, a
method to identify services and service compositions from
feature models is depicted. Moreover, the work proposes tem-
plates to document the services identified. In our work, we also
provide methods to identify services candidates, not only from
feature models, but also using business processes, use cases
and quality attribute scenarios. We also suggest templates
to document services, components and their communication
flows. Some architectural views are also proposed to represent
the interactions among architectural elements.

The concept of Business Process Line (BPL) is used in
[8]. This work provides a process to develop service-oriented
product lines based on business processes that contain vari-
ability and can be customized to specific customers. In this
way, the business processes are adapted to a specific context
according to the customer’s requirements, and then, the target
SOA system is developed. Our work considers variability in
the business processes, but it also uses feature models to
represent variability in an easy and exploitable way. We believe



that representing too much variability information using only
business process models may pollute these diagrams.

In [9], an initial process for service-oriented product lines is
presented. This work discusses the characteristics of SOA and
SPL processes, but does not provide a systematic process for
service-oriented product lines. It also depicts the implementa-
tion of service variability using code transformation tools with
an example on the Web Store domain.

The key difference of the work presented in this paper
is the systematization of the design, which provides a set
of sequential activities and sub-activities with clearly defined
inputs and outputs. In addition, our work was validated and
refined through an initial experimental study, different from
the related work discussed.

III. APPROACH OVERVIEW

The approach is called SOPLE-DE, which means design in
the context of service-oriented product line engineering. It is
a top-down approach for the systematic identification, design
and documentation of service-oriented core assets supporting
the non-systematic reuse of service-oriented environments.
The SOPLE-DE is divided in two life cycles as the software
product line engineering [10]. The core asset development
aims to provide guidelines and steps to identify, design and
document generic architectural elements with variability. Dur-
ing the product development cycle, the architectural elements
are specialized to a particular context according to specific
customer requirements [2].

The SOPLE-DE receives the domain feature model, the
business process models and the quality attribute scenarios
of the domain as mandatory inputs. Moreover, the domain
use cases are also considered as optional inputs. The use
cases are not normally used in SOD because the focus is
on business processes rather than use cases [11]. However,
SOPLE-DE considers the use cases as optional inputs because
they can provide detailed (additional) information that may not
be presented in the feature model and business processes.

The output of the SOPLE-DE is an architecture document
describing the SO-PLA, with traceability links among the
architectural elements, i.e., components and services, and the
models used to identify them, e.g., domain feature model and
business process models. We recommend the following main
sections in the architecture document:

• Introduction: it describes an overview of the architecture
document;

• Glossary: it lists the main words and acronyms with their
meaning in the architecture document;

• Overview: depicts a description about the service-oriented
product line project, its purpose and systems;

• Technology description: it lists the technologies that will
be used in the project, e.g., programming languages;

• Architectural views: presents the architectural views pro-
duced to represent the SO-PLA;

• Architectural elements: describes the architectural ele-
ments identified including UML models to represent their
behavior.

The SOPLE-DE considers the architectural style shown in
Figure 1. This architectural style presents the layers that are
commonly used in SOA [12][13]. Thus, SOPLE-DE provides
guidelines to identify, design and document architectural ele-
ments for these layers. We use this architectural style because
we believe that these layers are essential for any SOA solution.

Components

Services

Service Composition
Layer

Graphical User
Interfaces (GUI)

Legend: Use OptionalVariability Alternative

Q
u

a
li

ty
A

tt
ri

b
u

te
s

M
o

n
it

o
ri

n
g

Component GUI ComponentService

Fig. 1. SOPLE-DE Layered Architectural Style

The interface layer is composed of Graphical User Interfaces
(GUI) components. Only service-oriented product lines that
require visual interfaces to interact with the services may use
this layer. In addition, the visual interface components may
be specific for each system, in this way, they will not be
considered as core assets in some product lines, i.e., they will
be developed specifically for each new system.

The service composition layer consists of composite ser-
vices, which implement coarse-grained business activities, or
even an entire business process, that need the participation and
interaction of several fine-grained services. The service layer
is composed of self-contained and business-aligned services,
which implement fine-grained business activities.

The component layer consists of a set of components
that provide functionality for the services and maintain their
Quality of Service (QoS) [12]. The quality attribute layer
consists of additional architectural elements responsible for
satisfying specific quality attributes, e.g., performance and
security. Finally, the monitoring layer, which is responsible for
monitoring the health of the SOA solution, e.g., monitoring the
number of service calls, the response time of services, number
of service errors and Service Level Agreements (SLA).

It is important to note that the architectural elements of
these layers are developed taking variability into account, and
they can be mandatory, optional or alternative. For instance,
different metrics can be monitored in specific systems and
each system of the product line may be customized to satisfy
specific quality attributes.

The SOPLE-DE considers that service-oriented product line
architectures support two variability levels [8]: Configuration
variability, in which architectural elements are selected from
the core assets in order to obtain the target system, i.e.,
optional and alternative architectural elements are selected or
excluded from the architecture; Customization variability, in
which architectural elements already selected for a system are
customized according to the requirements of the specific sys-
tem, i.e., architectural elements with variability are customized
internally.



Activity EndLegend: FlowBegin

2. SOA Architect

1. Domain Architect

3. Service Designer

4. Domain Designer

5. Business Analyst

Roles

Architectural Elements
Identification

Roles: 1, 2 and 5

Variability Analysis
Roles: 1

Architecture Specification
Roles: 1 and 2

Architectural Elements
Specification

Roles: 3 and 4

Design Decisions
Documentation

Roles: 1 and 2

Activities / Roles

Architectural Elements
Identification

Variability Analysis

Architecture Specification

Architectural Elements
Specification

Design Decisions
Documentation

Fig. 2. SOPLE-DE Activities and Roles

In addition, SOPLE-DE considers variability in the com-
munication among the architectural elements, e.g., different
protocols can be used for communication, and the messages
exchanged can be sent in a synchronous or asynchronous way.

IV. SOPLE-DE

In this section, the activities and tasks of the SOPLE-DE are
discussed in detail. The activities and roles of the SOPLE-DE
are presented in Figure 2. As it can be seen, its activities are
executed in an interactive way.

A. Architectural Elements Identification Activity

The identification of service candidates is a challenging and
crucial task of SOD [6]. In the context of SOPLE, it is even
harder due to concerns with commonality and variability. In
this sense, SOPLE-DE combines complimentary techniques
that use different sources to identify services.

The SOA architect should perform the service identification
activity. However, the business analyst should review the
service candidates to ensure an accurate representation of
the business logic [14]. The service identification techniques
provided by SOPLE-DE are described next.

1) Defining Services from Business Processes: The steps
that should be performed to define the architectural services
and service compositions from the business processes are:
identify automatic business activities and analyze business
activities interactions. In the first step, automatic and partially
automatic business process activities will be identified from
the business process models. Automatic business process ac-
tivities are performed entirely by a system with no manual
interference, while partially automatic activities are executed
manually, but supported by a system [15]. Initially, each
automatic and partially automatic business process activity is
considered as a service candidate.

The first step towards the identification of service compo-
sitions is the analysis of interactions among business process
activities. In this step, the list of automatic and partially auto-
matic business activities produced previously will be analyzed
to identify related activities that need to be executed in special

conditions, such as the interaction patterns listed next that
usually require service compositions to control and execute
the related business process activities correctly [16][17]:

• Sequential: business process activities that must be exe-
cuted in a pre-specified sequential order;

• Concurrent: activities that must be executed concurrently
in order to perform a functionality correctly;

• Exclusive: business process activities that cannot be ac-
tivated during the execution of other business activities;

• Subordinate: activities that can be activated only if an-
other business activity is being executed;

• Loop: business process activities that must be executed
until a condition becomes false, or executed a predefined
number of times;

• Optional: a business process activity that will be executed
according to conditions;

• Alternative: a set of business process activities in which
only one will be executed depending on conditions.

For instance, Figure 3 depicts a concurrent interaction
pattern. Considering that activities A,B and C are automatic
or partially automatic, service candidates can be identified
to implement each of these activities. Additionally, a service
composition can be used to control and execute these services
concurrently. In addition, a business process may contain
variability, thus, the services should be classified as mandatory,
optional and alternatives depending on the business activities
they implement, e.g., service B, which implements business
process activity B, is optional (dashed line) in the example.

... ...
Activity A

Activity B

Activity C

Concurrent Pattern

Business Activity EndLegend: FlowBegin

Fig. 3. A Concurrent Interaction Pattern



2) Defining Service and Component Candidates from Use
Cases: In this step, the key business entities of the domain
should be identified using the use cases. These entities are
directly manipulated by several services and need specific
services to implement their life-cycle operations, e.g., create,
delete, update and retrieve [3][14]. As the use cases are
optional inputs, if they were not provided, this identification
should be realized from the business processes and feature
model, which may turn this step more difficult.

The key business entities are described in the use cases
usually using nouns, e.g., customer and account. However,
other service and component candidates or their interface
operations can be obtained from the verbs contained in the
use cases, e.g., the users should authenticate themselves and
the system should restrict access to specific pages, can be
used to identify services to authenticate users and control user
access respectively [18][19].

A conceptual service model can be defined from the use
cases with the purpose of facilitating the identification of
services. It consists of a model of the problem domain and
it is created without regard for any application or technology.
Figure 4 depicted a conceptual service model [18]. Each entity
in the logical model is either a stateful entity or a stateless
entity. In this sense, stateful entities, such as account and
customer, can be considered as components, while the man-
agers are considered entity service candidates that manipulate
these entities. The conceptual service model will also be useful
during the definition of the architectural element’s interfaces.

Customer Manager

+ add (in customer)
+ delete (in id)
+ edit (in customer)
+ get (in id)

Account

+ debit (in amount)
+ credit (in amount)

- id
- amount

Customer

- name
- amount
- phone

1 *1*

Account Manager

+ add (in a )
+ delete (in id)
+ edit (in )
+ (in id)

ccount

account
get

1 *

Fig. 4. Conceptual Service Model

3) Defining Services and Components from Features: The
identification of service and component candidates from the
feature model should be performed using the concept of
service feature, which is a major functionality of a specific
domain that can be added or removed of systems, and config-
ured independently of other features [17].

In this task, each service feature identified is considered a
component, service or service composition depending on its
characteristics and granularity. The service features will dictate
the granularity of the architectural elements identified. Thus,
it should be taken into account that normally components
are finer-grained than services, which are finer-grained than
service compositions.

Additionally, service features considered as service candi-
dates should share the following service characteristics, i.e.,
they should be stateless, autonomous, coarse-grained and inter-
operable [3][20]. Service features without these characteristics
should be considered as components.

The architectural elements identified should be marked as
mandatory, optional or alternative depending on the type of the

service feature that originates them, i.e., they can be optional,
mandatory or alternative. Moreover, the architectural elements
may contain optional and alternative sub-features, which may
impose variation on their design.

For instance, Figure 5 presents a possible way to use the
feature model to identify services, compositions and compo-
nents. As it can be seen, service compositions control the
execution of services, while services use the functionalities
that are provided by the architectural components.

Legend: Use Service Orchestration Service Component

Root

Feature 2Feature 1

Feature 3 Feature 4 Feature 6

Feature 7 Feature 8 Feature 9

Feature 5

Fig. 5. Identification of Architectural Elements from Features

4) Defining Services and Components from Quality At-
tributes: SOPLE-DE considers a specific layer in its architec-
tural style to deal with quality attributes. In this sense, service
and component candidates can be identified using the quality
attribute scenarios. The SOA and Domain architects have to
analyze the quality attribute scenarios in order to identify
services and components that support the accomplishment
of architectural quality attributes. For instance, considering
availability, techniques such as ping/echo and heartbeat can
be used [21]. Thus, additional services can be identified to
send messages to check the availability of other services.
For security, services can be identified to authenticate users,
control access to specific functionalities or limit access to some
services depending on the user’s profile.

In addition, the quality attribute scenarios should be used
during the identification of architectural elements from busi-
ness processes, use cases and feature model. For instance,
if each business process activity is encapsulated into a spe-
cific service, each activity can be modified locally without
impacting on other activities. On the other hand, depending
on the granularity of the business activities it may lead to
the identification of several fine-grained services, which may
increase the number of service calls impacting performance
[22]. Hence, the quality attributes scenarios and their priority
should be considered during the identification of architectural
elements.

It is important to note that some components and services
may be identified in different techniques. In this way, at
the end of the architectural elements identification activity,
the service and component candidates identified using all
the available techniques should be consolidated, duplicated
elements should be removed and the complete list of archi-
tectural elements should be analyzed and reviewed by the
business analyst and architects with the purpose of producing
an accurate list of services and components. After performing
the architectural elements identification, an initial set of service
and component candidates including their interface operations
should be listed in the architecture document.



5) Define Flows: In this task, the communication among
services will be defined. The role responsible to perform the
flow identification is the SOA architect, who is responsible to
analyze the services identified and define their communication
protocols, e.g., SOAP or REST, and their communication
types, e.g., synchronous or asynchronous, that will be used
by the services to communicate. The quality attributes should
be considered in this task as well, since the protocol and
type of communication impact some quality attributes, e.g.,
asynchronous communication can increase performance.

Moreover, the integration mechanism that will be used in
the SOA should be defined. For example, service consumers
and providers can communicate directly without any broker
such as the peer-to-peer communication pattern, or they can
be mediated by a middleware, which in the context of SOA,
it is known as the Enterprise Service Bus (ESB) [20].

At this point, it is also important to decide if a service reg-
istry will be used. Service-oriented product lines that require
dynamic discoverability and binding should use it. In this way,
services will not communicate directly and will use the registry
to register their services and find service providers [20].

It is important to note that in the context of SOPLE, the
communication protocol and type can be treated as variation
points. In other words, the same service can be accessed
using several protocols in a synchronous or asynchronous way
depending on the system of the product line [23]. At this
point, the information about service communications should be
added to the list of architectural elements produced previously.

B. Variability Analysis Activity

At this point, the components, services, service composi-
tions and their communication flows were defined. During
the variability analysis activity, it will be defined how the
variability contained in the feature model, business processes,
use cases and quality attributes will be implemented. This task
is a refinement of the architectural elements identified previ-
ously. After the variability analysis activity, the components
and services are no longer candidates anymore. The following
steps should be performed in this activity.

1) Analyzing Architectural Elements: During this step, the
granularity and cohesion of the architectural elements should
be analyzed. Additionally, cross-cutting variability concerns
that cannot be isolated into a specific component or service
should be identified.

In this sense, the operations contained in the architectural
elements interfaces should be analyzed in order to identify
related operations, e.g., the ones related to the same business
entities, that can be joined in a unique architectural element
with the purpose of increasing cohesion and reducing the num-
ber of candidates. Interface variability, e.g., parameterization,
can be introduced here to group similar operations into a single
parameterized operation.

The granularity analysis will be useful to identify fine-
grained and coarse-grained variation points. Fine-grained vari-
ation points are the ones that can be implemented by changing
a class attribute or method. Thus, the selection of variability

mechanisms will be easier, since some variability implementa-
tion mechanisms can be more appropriated to implement fine-
grained variability, such as aspects, object-oriented and SOA
design patterns, conditional compilation and configuration
files, while others fit better in coarse-grained variability, e.g.,
component-based development and service-oriented develop-
ment, in which components or services are substituted/changed
to implement the variability [24], [25].

Finally, crosscutting variability concerns should be ana-
lyzed. In some cases, a logging component for instance, has
its code spread in several components. Thus, the domain
architect should analyze these cases in order to decide how
this variability is going to be implemented. Some mechanisms
are well-suited for this kind of variability, e.g., aspects [26].

2) Defining Variability Implementation Technique: In this
step, the variability implementation technique will be defined
and documented. It is important to note that the binding
time and the variability type of a variation point should be
considered during this step because different variability mech-
anisms support specific types of variability and binding times
[27]. For instance, conditional compilation cannot be used
to implement dynamic (runtime) binding times, since using
conditional compilation the selection of variants is realized at
compile-time.

C. Architecture Specification Activity

In the architecture specification activity, the high-level de-
sign of components, services, service compositions and their
flows will be specified. In this activity, architectural views
are produced, and they may contain variability as the arti-
facts of the core assets development cycle. Thus, architecture
specification requires notations with support for variability
representation, such as [28][29].

The architecture specification activity receives the list of
architectural elements (components, services and service com-
positions) and their flows identified in the previous activities
as inputs, and produces the architectural views that will be
documented in the architecture document. The domain and
SOA architects should perform this activity.

A SO-PLA, as any other software architecture, is a complex
entity that cannot be represented in a simple one-dimensional
fashion. Since there are different stakeholders involved in a
product line project with particular concerns about the systems,
it is important to use multiple views to represent the SO-PLA
[21]. Moreover, the use of multiple architectural views are
essential in order to handle separately the functional and non-
functional requirements [30]. The views used in SOPLE-DE
are depicted in Figure 6 and described next [31].

Layer View: the objective of this viewpoint is to represent
the layers of the SOA solution. Thus, in this perspective, the
architectural elements identified in the previous activities are
represented in their respective layer.

Integration View: the purpose of this view is to depict
the integration mechanism that will be used in the SOA, e.g.,
peer-to-peer (direct service communication) or hub-and-spoke,
which is mediated by an ESB [20].



Layer View Integration View

Hub-and-spoke Peer-to-peer

Component View Interaction View

A B C

SOAP

Message()

Message()

Message()

REST

SOAP

REST

SOAP

SOAP
ESB

AEntity
Service

Task
Service

Orchestration
Service

Utility
Service

Legend: Use Optional Alternative ComponentService

Fig. 6. SOPLE-DE Architectural Views

Interaction View: the main goal of this viewpoint is to
show the communication protocols and the messages ex-
changed among service consumers and providers. It is also
used to represent concurrency issues and depicts the dynamic
behavior of service compositions.

Component View: the purpose of this perspective is to
represent the logical structure of the components that will
be used by the services. It is a best practice to create high-
level and coarse-grained service interfaces that implement
a complete business process or set of business activities.
Thus, services should expose the functionality of a couple of
components [18].

The domain and SOA architects have to decide which
architectural views will be used to represent the SO-PLA
depending on the stakeholders involved in the project, and the
size and domain of the product line being constructed. The
architects also decide the level of details of each view.

D. Architectural Elements Specification Activity

In this activity, the low-level design and the detailed de-
scription of components and services will be defined and
documented. The purpose of this activity is to design and
document the internal behavior, pre-conditions, invariants,
post-conditions and contracts (interfaces) of the services and
components of the architecture. This activity receives the list
of architectural elements identified in the previous activities,
their flows and the architectural views produced as inputs,
and it produces UML diagrams, and service and component
description documents.

At the end of the architectural elements specification ac-
tivity, the component and service descriptions should be
documented in the architecture document. These descriptions
should contain the following fields:

• Description: describes the general purpose of the service
or component, i.e., functional requirements;

• Interfaces: describes the component and service opera-
tions, and its input and output parameters;

• Pre-conditions: lists the conditions that must be satisfied
before using the component or service functionalities;

• Invariants: describes the conditions that must be satisfied
during the whole execution of the service operations,
otherwise, the functionality being executed should stop
as soon as the condition fails;

• Post-conditions: lists the conditions that must be satisfied
after the execution of the component or service opera-
tions;

• Quality Attributes: describes the non-functional require-
ments (e.g., service level agreements) that are satisfied
by the service, e.g., considering a performance attribute,
the response time can be defined between 0.75 and 1.5
seconds.

E. Design Decisions Documentation Activity

Design decisions are very important parts of the design
discipline [32]. As it can be seen in Figure 2, these decisions
can be made during the whole SOPLE-DE, since design
decisions are made for problems that the domain and SOA
architects face during the project. In this context, problems
mean specific situations that need a special attention during the
design and must be discussed and documented. Such decisions
can be the selection of technologies that are going to be used
and the variability technique that will be used to implement
specific variation points. This activity receives as input the
design decisions that appear during the SOPLE-DE, and its
output is a set of solutions for each specific problem found
with the rationale that motivates the selection of each solution.

V. EXPERIMENTAL STUDY

An initial experimental study on the Travel Reservation
domain was performed with the purpose of evaluating and
refining the SOPLE-DE. In this experiment, the process of
Wohlin [33] was used to define, plan and execute the exper-
imental study. In addition, the Goal Question Metric (GQM)
framework was also used to define the experiment [34] as
described in the next sections.

A. The Definition

The goal of this experiment was to analyze the SOPLE-
DE for the purpose of evaluation with respect to its efficacy
and applicability from the point of view of researcher in the
context of service-oriented product line projects. The questions
used to define the experiment are described next:

• Does the SOPLE-DE aid architects to identify services
with low coupling?

• Does the SOPLE-DE aid architects to design services
with low instability?



• Does the SOPLE-DE aid architects to define service
operations with high cohesion?

• Do the subjects have difficulties to apply the SOPLE-DE
in practice?

The following metrics were analyzed in the experimental
study with the intention of validating the SOPLE-DE quanti-
tatively.

Service Coupling (SC): Coupling is a measure of the extent
to which interdependencies exist between software modules
[35]. Low coupling indicates a well-partitioned system and
avoids problems of service redundancy and duplication [36]. In
this sense, the following metric was evaluated [37]: SC (s) =
number of service providers used by a service consumer (s),
where (s) is a service of a given system. This coupling metric
has range [0, n], where n is the number of service providers
different from (s) of a given system. SC = 0 indicates a totally
loosely coupled service, and SC = n indicates a maximally
coupled service [37].

Service Instability (SI): The reason for a design to be rigid,
fragile and difficult to reuse is the interdependency among its
modules. A design is rigid if it cannot be changed easily, and a
single change in a specific service causes a cascade of changes
in several independent modules. In this sense, the following
metric was evaluated [38]: SI (s) = P/(P + C), where C
is the number of service consumers that call service (s), and
P is the number of service providers that service (s) uses.
The service instability metric has range [0, 1], where SI = 0
indicates a maximally stable service and SI = 1 indicates a
totally unstable service [38].

Lack of Service Cohesion (LSC): Cohesion is the degree
of the strength of functional relatedness of operations within
a service [36]. Highly cohesive service operations indicate
good functionalities subdivision, and imply high reusability.
Lack of cohesion increases complexity, thereby increasing
the likelihood of errors during the development process [39].
In this sense, the following metric was evaluated: LSC (s)
= Number of business entities accessed by the operations
of a service (s). This lack of service cohesion metric has
range [1, n], where n is the number of business entities of a
specific domain. LSC = 1 indicates totally cohesion among
service operations, and LSC = n indicates maximally low
cohesion. This metric assumes that the service operations of
a specific service should access at least one business entity of
the domain.

Applicability Problems (AP): This issue will be used to
identify possible applicability problems during the execution
of the SOPLE-DE. The applicability problems found will be
mapped to the respective activity of the approach according to
the information provided by the subjects using a questionnaire.
In this sense, the following metric was evaluated: AP = % of
subjects that had difficulties to apply the SOPLE-DE.

B. The Planning

The experiment definition determines the foundations for
the experiment, i.e., why the experimental study will be
conducted, while the experiment planning prepares for how the

study will be conducted [33]. As any other type of engineering
activity, the experiment must be planned and the plans must
be followed in order to control the experiment. Its results can
be disturbed, or even destroyed if not planned properly.

Context: The objective of this experiment is to evaluate
the efficacy, understanding and applicability of the SOPLE-
DE in the context of service-oriented product line projects.
The experiment was conducted in a university laboratory
with postgraduate students using a project on the Travel
Reservation domain. The experimental study was conducted as
a Replicated Project, which is characterized as being a study
which examines object(s) across a set of teams, and a single
project [40]. The subjects of the study will be requested to act
as the roles defined in the SOPLE-DE, i.e., domain architect
and SOA architect. However, a subject can play more than one
role during different activities and tasks of the SOPLE-DE. All
the subjects were trained to use the approach.

The Null Hypotheses: In the context of experimental
studies, there are two types of hypotheses: null and alternative
hypotheses. The null hypotheses are the ones that the experi-
menter wants to reject with as high as significance as possible,
while the the alternative hypotheses are the ones in favor of
which the null hypotheses are rejected [33].

In this experimental study, the null hypotheses determine
that the use of the SOPLE-DE in service-oriented product line
projects does not produce benefits that justify its use and that
the subjects will have difficulties to understand and apply the
approach in practice. Thus, according to the selected criteria,
the following null hypotheses were defined:

H1. µSC of services without SOPLE-DE < µSC of services with SOPLE-DE

H2. µSI of services without SOPLE-DE < µSI of services with SOPLE-DE

H3. µLSC of service operations without SOPLE-DE < µLSC of service

operations with SOPLE-DE

H4. µMore than 50% of the subjects will have difficulties to understand the

SOPLE-DE

H5. µMore than 50% of the subjects will have difficulties to apply the SOPLE-DE

in practice

The Alternative Hypotheses: In this experimental study,
the alternative hypotheses determine that the use of the
SOPLE-DE in service-oriented product line projects produces
benefits that justify its use and that most of the subjects will
not have difficulties to understand and apply the approach
in practice. Thus, the following alternative hypotheses were
defined:

H1. µSC of services without using SOPLE-DE >= µSC of services with

SOPLE-DE

H2. µSI of services without SOPLE-DE >= µSI of services with SOPLE-DE

H3. µLSC of service operations without SOPLE-DE >= µLSC of service

operations with SOPLE-DE

H4. µMore than, or 50% of the subjects will not have difficulties to understand

the SOPLE-DE

H5. µMore than, or 50% of the subjects will not have difficulties to apply the

SOPLE-DE in practice



The Project used in the Experimental Study: The busi-
ness process [16] and some variation points [10] of the project
used in the experimental study is presented in Figure 7.
The subjects received the inputs required by the SOPLE-DE
and produced an architecture document describing the design
performed. At the end of the experimental study, the artifacts
produced by the subjects were analyzed both quantitatively
and qualitatively as described in the results of the experiment.

Process Step ConditionLegend:

Receive Itinerary

Pay
Reservations

Notify
Customer

Make
Reservations

Cancel
Reservations

No

Yes

Ok?

Begin End

Variation Point: OR

Airline Hotel Vehicle

Variation Point: XOR

Email SMS

Fig. 7. The Project used in the Experimental Study

C. The Operation
This section presents the details about the execution of the

experimental study performed with the purpose of evaluating
and refining the SOPLE-DE.

The Environment: The experimental study was conducted
during 8 hours at the Federal University of Pernambuco
(UFPE). The experimental study was composed of 8 subjects
that performed the experiment in parallel. In the experiment,
three service-oriented systems were designed as a service-
oriented product line.

Training: The subjects were trained before the experimental
study began. The training took 22 hours, divided into 10
lectures with two hours each, during a postgraduate course
at the university, and 2 hours independently of the university
course presented by the experimenter. In addition, the subjects
who used the proposed approach were trained 2 hours more
to use the SOPLE-DE.

As previously described, the study was performed in two
steps: initially, the subjects were trained in several aspects of
software reuse, SPL, SOA, reuse processes and SOPLE-DE,
and after, they performed the design of the service-oriented
product line project in 8 hours.

Subjects: The subjects were four M.Sc. and four Ph.D.
students from the Federal University of Pernambuco. All
the subjects considered had industrial experience in software
development, more than one year at least. Two subjects had
participated in industrial projects involving some kind of
reuse activity, for instance, component-based development,
framework, or web services development. In addition, all the
subjects had participated in SPL academic projects, and two
subjects have taken part of an academic SOA project.

D. The Analysis and Results
In this section, the results obtained with the experimental

study are presented. This section is divided into quantitative
and qualitative analyses.

1) Quantitative Analysis: The quantitative analysis was di-
vided in four analyses: coupling and instability of the service-
oriented product line architecture, service operations cohesion
and difficulties found during the use of the SOPLE-DE in
practice.

After collecting the information about the service coupling,
instability and cohesion, the data collected was analyzed.
Figure 8 shows the metric results for the services identified
by the subjects. In the graphics, the axis (X) shows the ID of
the subjects, while the axis (Y) represents the service coupling
mean, service instability mean and the average cohesion of the
service operations.

The subjects with Id = 1, 2, 3 and 4 used the SOPLE-DE
during the experiment, while subjects with Id = 5, 6, 7 and
8 designed the project without following a structured method.
This is a threat of the experiment, since we cannot determine
if the results are consequence of using the SOPLE-DE, or just
because a structured method was used [41]. The experiment
was performed in this way due the lack of service-oriented
product line processes in the literature. In addition, we could
not found baselines for the metrics used in the experiment.
However, the metric results of this experiment can be used as
baselines for new experiments.

As it can be seen in Figure 8, the coupling, instability
and cohesion of the services generated using the SOPLE-DE
(subjects with Id = 1, 2, 3 and 4) are lower when compared
with the services identified by the subjects without use the
structured method (subjects with Id = 5, 6, 7 and 8). Analyzing
the answers of the subjects using the feedback questionnaire
with the difficulties found to apply the SOPLE-DE in practice,
it was identified that two subjects (Id = 3 and 4) had difficulties
to apply the approach in practice.

The subject (Id = 3) had difficulties during the archi-
tectural elements identification activity. It was highlighted
that sometimes it was difficult to determine if a specific
module identified was a component or a service. Thus, the
documentation was modified, and a set of characteristics of
services was added to ease the identification of architectural
elements. The other subject (Id = 4) mentioned difficulties
during the production of the architectural views. In order to
clarify this point, some examples with architectural views were
introduced in the documentation. In this sense, two subjects
had problems to apply the SOPLE-DE activities in practice. It
represents 50% of the total number of subjects that used the
approach. In this sense, the null hypotheses could be rejected.

A correlation could be identified between the experience of
the subjects and the difficulties found to apply the SOPLE-DE
in practice. The subjects that had difficulties did not have much
experience in software projects, i.e., they have participated of
two industrial software development projects as developers,
and have never worked with SPL or SOA, different from the
other two subjects that used the SOPLE-DE.



0.83 0.94
1.1 1.17

1.75
1.63

1.83
2

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Subjects ID

Service Coupling

Service Coupling

0.17

0.35

0.24

0.36

0.47
0.51 0.54

0.59

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8

Subjects ID

Service Instability

Service Instability

1.17 1.17
1.1

1

1.18 1.13 1.17
1.3

0

0.5

1

1.5

1 2 3 4 5 6 7 8

Subujects ID

Service Cohesion

Service Operation Cohesion

Fig. 8. Metric Results

2) Qualitative Analysis: After concluding the quantitative
analysis of the experiment, the qualitative analysis was per-
formed. This analysis was based on the answers of the subjects
using in a feedback questionnaire.

Training Analysis: The training was applied to all the
subjects who participated of the experimental study and was
composed of a set of slides involving topics related to software
reuse, software product lines and service-oriented architec-
tures. The training was performed in 24 hours. Two subjects
considered the training very good (Id = 6 and 7), four subjects
classified it as good (Id = 1, 2, 5 and 8) and two subjects
classified the training as regular (Id = 3 and 4). The scale
defined was: very good, good, regular, and unsatisfactory.

Usefulness of the SOPLE-DE: The four subjects that
used the SOPLE-DE reported that the approach was useful
to perform the service-oriented domain design. However, one
subject (Id = 3) indicated some improvements in the archi-
tectural elements identification activity with the purpose of
facilitating the identification of modules and their classification
as components or services. All the issues raised during the
experiment were considered, and the SOPLE-DE was refined.

Quality of the Documentation and Instruments: One
subject (Id = 2) complained about the lack of examples in
the documentation of the SOPLE-DE to clarify the different
activities of the approach. In this sense, examples were put in
the approach documentation to ease understanding. Regarding
the instruments of the experiment, two subjects (Id = 2 and
6) requested more information about the requirements of
the service-oriented product line on the Travel Reservation
domain. Thus, the requirements were carefully detailed con-
sidering the questions of the subjects.

Quality of the Architecture Document Produced by the
Subjects: We used the following scale to measure the quality
of the architecture documents produced by the subjects: very
good, good, regular, and unsatisfactory. It was noticed that
subjects (Id =1, 2 and 3) produced a well-structured document,
since they followed the SOPLE-DE template strictly. In this
sense, we classified the architecture documents produced by
these subjects as good. Considering the architecture documents
produced by the subjects without use the SOPLE-DE, we
could detect that subject (Id = 5 and 6) produced good archi-
tecture documents as well, however, with different sections,
since they do not followed a template. Regarding subjects (Id
= 4, 7 and 8), the architecture documents were classified as

regular, since they were not organized and well-structured as
the documents of the other subjects.

Even with the analysis not being conclusive, the experimen-
tal study indicates that the SOPLE-DE allows the architects to
design service-oriented product line architectures with a good
coupling and stability, and services with cohesive operations.
Additionally, the aspects related to the applicability of the
SOPLE-DE also returned satisfactory results for subjects with
a certain experience with SPL and SOA. Moreover, with the
results identified in this experiment, the metric values can
be calibrated in a more accurate way for new experiments.
However, two aspects should be considered: the repetition
of the study in different contexts and new studies based on
observation in order to identify more problems and new points
for improvements. The full description of the experimental
study discussing its definition, planning, operation, analysis
and interpretation can be found in [42].

VI. CONCLUSIONS AND FUTURE WORK

This work proposed an approach to design service-oriented
product line architectures, which combines SPL and SOA
concepts focusing on increasing reuse and flexibility, and
supporting customization during the development of service-
oriented systems.

The SOPLE-DE approach was based on an extensive review
of the available service-oriented processes, their weak and
strong points and gaps in the area [42]. It can be seen
as a systematic way to design service-oriented product line
architectures through a well-defined sequence of activities with
clearly defined inputs and outputs.

Additionally, the approach was evaluated in an initial ex-
perimental study, which analyzed it both quantitatively and
qualitatively. This experimental study presented findings that
the SOPLE-DE can be viable to aid software architects to
design service-oriented product line architectures with good
coupling and instability, and identify services with cohesive
operations.

Even it being a relevant contribution for the field, new routes
need to be investigated in order to define a more complete
process that consider all the software development disciplines,
such as requirements, design and implementation, for product
lines based on services. Moreover, the SOPLE-DE can be
extended to consider a bottom-up strategy that uses legacy
systems to identify and design services [3].



In addition, new experiments in different domains are nec-
essary to gather more evidences about the efficacy of the
proposed approach. The complete documentation about this
work can be found in the following M.Sc. thesis [42].

VII. ACKNOWLEDGEMENT

This work was partially supported by the National Institute
of Science and Technology for Software Engineering1, funded
by CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-
1.03/08.

REFERENCES

[1] C. W. Krueger, “Software reuse,” ACM Computing Surveys, vol. 24,
no. 2, 1992.

[2] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[3] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall, 2005.

[4] P. Istoan, “Software product lines for creating service-oriented applica-
tions,” Master’s thesis, Irisa Rennes Research Institute, 2009.

[5] F. M. Medeiros, E. S. de Almeida, and S. R. L. Meira, “Towards an
approach for service-oriented product line architectures,” in SOAPL’09:
3rd Workshop on Service-Oriented Architectures and Software Product
Lines, 2009.

[6] J. Lee, D. Muthig, and M. Naab, “An approach for developing service-
oriented product lines,” in SPLC’08: 12th International Software Prod-
uct Line Conference. IEEE Computer Society, 2008, pp. 275–284.

[7] G. Booch, Object Solutions: Managing the Object-Oriented Project.
Addison-Wesley, 1995.

[8] N. Boffoli, D. Caivano, D. Castelluccia, F. M. Maggi, and G. Visaggio,
“Business process lines to develop service-oriented architectures through
the software product lines paradigm,” in SOAPL’08: 2nd Workshop on
Service-Oriented Architectures and Software Product Lines, 2008, pp.
143–147.

[9] S. Günther and T. Berger, “Service-oriented product lines: Towards a
development process and feature management model for web services,”
in SOAPL’08: 2nd Workshop on Service-Oriented Architectures and
Software Product Lines, 2008, pp. 131–136.

[10] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[11] M. Abu-Matar, “Toward a service-oriented analysis and design method-
ology for software product lines,” IBM Developer Works, 2007.

[12] A. Arsanjani, “Service-oriented modeling and architecture,” Service-
Oriented Architecture and Web services Center of Excellence, IBM,
Tech. Rep., 2004.

[13] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and K. Channabasavaiah,
“S3: A service-oriented reference architecture,” IT Professional, vol. 9,
no. 3, pp. 10–17, 2007.

[14] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2007.

[15] L. G. Azevedo, F. Santoro, F. Baião, J. Souza, K. Revoredo, V. Pereira,
and I. Herlain, “A method for service identification from business
process models in a SOA approach,” in 10th International Workshops
on Business Process Modeling, Development and Support (BPMDS), ser.
Lecture Notes in Business Information Processing, vol. 29. Springer
Berlin Heidelberg, April 2009, pp. 99–112.

[16] M. Havey, Essential Business Process Modeling. O’Reilly, 2005.
[17] J. Lee and K. C. Kang, “Feature binding analysis for product line

component development,” in PFE’03: 5th International Workshop on
Software Product-Family Engineering, 2003, pp. 250–260.

[18] J. McGovern, S. Tyagi, M. Stevens, and S. Mathew, Java Web Services
Architecture. Morgan Kaufmann, 2003.

[19] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Prentice
Hall, 2004.

[20] N. M. Josuttis, SOA in Practice. O’Reilly, 2007.

1INES - http://www.ines.org.br

[21] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practices.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2003.

[22] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural frame-
work for service definition and realization,” in SCC’06: International
Conference on Services Computing. IEEE Computer Society, 2006,
pp. 151–158.

[23] S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad, “A taxonomy
of variability in web service flows,” in SOAPL’07: 1st Workshop on
Service-Oriented Architectures and Software Product Lines, 2007.

[24] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software prod-
uct lines,” in 30th International Conference on Software Engineering
(ICSE), 2008, pp. 311–320.

[25] T. Erl, SOA Design Patterns. Prentice Hall PTR, 2009.
[26] R. Laddad, AspectJ in Action: Practical Aspect-Oriented Programming.

Manning Publications, 2003.
[27] C. Gacek and M. Anastasopoules, “Implementing product line variabil-

ities,” SSR’01: Symposium on Software Reusability, vol. 26, no. 3, pp.
109–117, 2001.

[28] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison Wesley, 2004.

[29] M. Razavian and R. Khosravi, “Modeling variability in business process
models using uml,” in ITNG’08: 5th International Conference on
Information Technology - New Generations, 2008, pp. 82–87.

[30] P. Kruchten, “Architectural blueprints - the 4+1 view model of software
architecture,” IEEE Software, 1995.

[31] J. J. L. Dias Jr., “A software architecture process for soa-based enterprise
applications,” Master’s thesis, Federal University of Pernambuco, Brazil,
2008.

[32] A. P. J. Jarczyk, P. Löffler, and F. M. Shipman, “Design rationale for
software engineering: A survey,” in HICSS’92: 25th Hawaii Interna-
tional Conference on System Sciences, 1992.

[33] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering: An Introduction.
Springer, 2000.

[34] V. Basili, G. Caldiera, and D. H. Rombach, “The goal question metric
approach,” in Encyclopedia of Software Engineering. Wiley, 1994.

[35] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-oriented designs,” in
ASWEC’07: Australian Software Engineering Conference, 2007.

[36] M. P. Papazoglou and W.-J. V. D. Heuvel, “Service-oriented design and
development methodology,” International Journal of Web Engineering
and Technology (IJWET), vol. 2, no. 4, pp. 412–442, 2006.

[37] H. Hofmeister and G. Wirtz, “Supporting service-oriented design with
metrics,” in EDOC’08: 12th Enterprise Distributed Object Computing
Conference, 2008.

[38] P. T. Quynh and H. Q. Thang, “Dynamic coupling metrics for service–
oriented software,” IJCSE’09: International Journal of Computer Sci-
ence and Engineering, 2009.

[39] L. H. Rosenberg and L. Hyatt, “Applying and interpreting object oriented
metrics,” in Proceedings of the Software Technology Conference, 1998.

[40] V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in
software engineering,” IEEE Transactions on Software Engineering,
1986.

[41] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method
and tools evaluation,” IEEE Software, 1995.

[42] F. M. Medeiros, “An approach to design service-oriented product line
architectures,” Master’s thesis, Federal University of Pernambuco, 2010.


