An Empirical Study on Configuration-Related Issues:
Investigating Undeclared and Unused Identifiers

Flavio Medeiros

Federal University of Campina Grande
Campina Grande, Paraiba, Brazil

flaviomedeiros@copin.ufcg.edu.br

Leopoldo Teixeira

Federal University of Pernambuco
Recife, Pernambuco, Brazil

ImtQcin.ufpe.br

Abstract

The variability of configurable systems may lead to configuration-
related issues (i.e., faults and warnings) that appear only when we
select certain configuration options. Previous studies found that
issues related to configurability are harder to detect than issues
that appear in all configurations, because variability increases the
complexity. However, little effort has been put into understanding
configuration-related faults (e.g., undeclared functions and vari-
ables) and warnings (e.g., unused functions and variables). To
better understand the peculiarities of configuration-related unde-
clared/unused variables and functions, in this paper we perform an
empirical study of 15 systems to answer research questions related
to how developers introduce these issues, the number of configu-
ration options involved, and the time that these issues remain in
source files. To make the analysis of several projects feasible, we
propose a strategy that minimizes the initial setup problems of
variability-aware tools. We detect and confirm 2 undeclared vari-
ables, 14 undeclared functions, 16 unused variables, and 7 unused
functions related to configurability. We submit 30 patches to fix is-
sues not fixed by developers. Our findings support the effectiveness
of sampling (i.e., analysis of only a subset of valid configurations)
because most issues involve two or less configuration options. Nev-
ertheless, by analyzing the version history of the projects, we ob-
serve that a number of issues remain in the code for several years.
Furthermore, the corpus of undeclared/unused variables and func-
tions gathered is a valuable source to study these issues, compare
sampling algorithms, and test and improve variability-aware tools.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

Keywords Configurable Systems, Faults and Warnings

Iran Rodrigues

Federal University of Alagoas
Macei6, Alagoas, Brazil

irgj@ic.ufal.br

Marcio Ribeiro
Federal University of Alagoas
Macei6, Alagoas, Brazil

marcio@Qic.ufal.br

Rohit Gheyi

Federal University of Campina Grande
Campina Grande, Paraiba, Brazil

rohit@dsc.ufcg.edu.br

1. Introduction

Many software systems provide configuration options to tailor the
system to different target platforms and application scenarios. The
tailored systems differ in terms of features [[16], which encapsulate
platform-specific code, and optional functionalities. Developers of-
ten implement features in C with conditional compilation, through
the C preprocessor (i.e., #ifdef and #endif directives). Feature
implementations often cross-cut each other and share program el-
ements such as variables, types, and functions, raising feature de-
pendencies [32,133]. In real-world software systems with a number
of features, such dependencies become complex and may lead to
issues that appear only when we select certain combinations of fea-
tures, i.e., configuration-related faults and warnings.

We found in a previous study that more than 74% of devel-
opers believe that configuration-related issues are harder to detect
and more critical than issues that appear in all configurations [28],
because the variability increases the complexity of configuration-
related issues by causing, for example, undesirable feature inter-
actions [1]. However, little effort has been put into understanding
configuration-related faults (e.g., undeclared functions and vari-
ables) and warnings (e.g., unused variables and functions). Con-
figurable systems are prone to these issues because some of the
generated configurations might try to use, for example, variables
and functions previously removed during compilation due to the se-
lection of certain features [18]]. The corpus of configuration-related
issues previously studied focuses only on issues detected by us-
ing sampling algorithms (e.g., t-wise, and statement-coverage) that
check only a subset of valid configurations [15311137], and by an-
alyzing software repositories [1,11]. Sampling does not check the
entire configuration space and misses issues in configurations not
selected by the sampling algorithm. Analyses of software reposito-
ries also miss configuration-related issues, because they can only
detect issues that developers already fixed. Unfixed issues may
camouflage other problems, distract developers, lead to bug reports,
and impact software quality.

To ground research on this topic and better understand configura-
tion-related undeclared/unused variables and functions, we perform
an empirical study of 15 popular open-source systems written in C,
which are statically configurable with the C preprocessor, such as
Bash, Gzip, and Libssh. We answer research questions related to the
way developers introduce configuration-related issues, the number
of configuration options involved, and how long these issues re-

main in source files. Answering these questions is important to
quantify and study these issues, understand their peculiarities, and
support tool developers, so they can provide means to minimize or
even avoid configuration-related issues.

To detect configuration-related issues in a systematic way and
go beyond sampling and analysis of repositories, in this paper we
consider variability-aware analysis [17, [39] to check the entire
configuration space. To detect issues that span multiple files, we
perform global analysis (instead of a per-file analysis), and take the
header files into account. However, to scale our study and minimize
setup problems of variability-aware tools, we propose a strategy
that only considers the header files of the target platform. We
instantiate our strategy with the TypeChef [17] variability-aware
parser and we target headers of the Linux platform.

We detect 16 configuration-related faults (2 undeclared vari-
ables and 14 undeclared functions) and 23 warnings related to con-
figurability. Warnings include 16 unused variables and 7 unused
functions, which do not cause compilation errors, but are still con-
sidered by developers through several bug reportsﬂ The results re-
veal that configuration-related issues remain in the code for several
years, and others are still not fixed. We report that more than 87% of
the configuration-related issues involve two or less configuration
options, which support the effectiveness of sampling algorithms,
such as pair-wise [6} 9], confirming previous findings [1} [11} 27].
Developers introduce 73% of the configuration-related issues by
adding new code, such as new source files and functions. This result
differs from configuration-related syntax errors, i.e., developers in-
troduce more syntax errors when changing existing code [27]. Fur-
thermore, our results do not support the claim that configuration-
related issues occur more frequently in source files with high num-
bers of preprocessor conditional directives.

In summary, the main contributions of this paper are:

e An empirical study of 15 C software systems to quantify and
better understand undeclared/unused variables and functions
related to configurability;

e Results showing differences regarding the way developers in-
troduce configuration-related undeclared/unused variables and
functions when compared to configuration-related syntax er-
Iors;

¢ Findings that support the effectiveness of sampling analysis;

e A corpus of undeclared/unused variables and functions that can
be used by researchers and practitioners to study configuration-
related issues, compare sampling algorithms, and test and im-
prove variability-aware tools;

e A strategy that makes feasible the task of analyzing issues
related to configurability in several software systems.

We organize the remainder of this paper as follows. In Section[2]
we show a real example of configuration-related undeclared func-
tion that motivates our study. Then, in Section |3} we describe our
strategy to find configuration-related issues. Afterwards, we present
the empirical study settings in Section[d] and discuss the results in
Section 3] In Section[6} we discuss the implications of the results.
Last, we present the related work in Section[7] and the concluding
remarks in Section 8]

2. Motivating Example

Developers often use conditional compilation to implement fea-
tures in several real-world and popular systems [23| [35]. For in-
stance, Figure [T] depicts an excerpt of the C source code of the

'https://bugzilla.gnome.org/show_bug.cgi?id=461011
167715, and 401580, as discussed in our previous study [33].

File: execute_cmd.c
#ifdef ARITH
int eval_arith_for_expr OO {

Configuration 1
#define ARITH @
. #define DPAREN

print_arith_command ; Configuration 2

s #undef ARITH
¥ . #define DPAREN ()
#endi Configuration 3

#define ARITH
#undef DPAREN

Configuration 4
#undef ARITH
#undef DPAREN @

(:) Compilation error ‘

File: print_cmd.c
#ifdef DPAREN
void print_arith_command () {

}
#endif

‘ @5 Compilation succeed

Figure 1. An undeclared function in the Bash project that occurs
when ARITH is enabled and DPAREN is disabled.

Bas project, related to executing arithmetic in commands. The
arithmetic feature is optional and is included only when we enable
the configuration option ARITH. This code snippet also contains a
configuration option to use the Korn Shell evaluation pattern con-
trolled by the configuration option DPAREN. We can generate four
different configurations from this code snippet: (1) both configu-
ration options enabled; (2) only DPAREN enabled; (3) only ARITH
enabled; and (4) both options disabled.

Most analysis tools for C code, such as gcc and clang, operate
on preprocessed code, i.e., one configuration at a time. By compil-
ing the code snippet of Figure [T] with ARITH enabled and DPAREN
disabled, we get a compilation error. File execute_cmd.c uses func-
tion eval _arith for_expr, which is not declared in print_cmd.c
when DPAREN is disabled. Because traditional C compilers check
only one configuration at a time, they do not show warning or er-
ror messages when one compiles the code depicted in Figure [I]
considering the remaining configurations. This is an example of
a configuration-related undeclared function exposed only under
some combinations of configuration options [11| 21| 41]. Unfor-
tunately, the space of possible combinations is exponential in the
worst case, and it is usually too large to explore exhaustively.

Previous work [}, [10H12]] studied configuration-related issues
similar to the one we discuss by analyzing software repositories [1}
12], and using a number of sampling algorithms [15} [30l 131} 136].
Such studies focus on issues that developers have already fixed in
software repositories, and do not check all configurations of the
source code (i.e., sampling checks only a subset of valid configu-
rations), potentially missing configuration-related issues. In addi-
tion, a number of previous studies perform a per-file analysis [[13|
27, 136], which do not detect issues that span multiple files. This
specific issue in Bash, for example, spans multiple files. Having
two different files makes the task of detecting and fixing the issues
harder, specially in case we have two or more developers maintain-
ing these source files.

To detect configuration-related issues in a systematic way, we
can use variability-aware tools capable of checking all configura-
tions of the source code. However, when using these tools, there is
a time-consuming setup that hinders us from scaling the analysis
for several software systems. Therefore, we propose a strategy to
minimize this scalability problem (Section[3), and report an empir-
ical study of 15 popular open-source systems (Section) to better
understand configuration-related issues.

3. Detecting Configuration-Related Issues

In this section, we present our strategy to detect configuration-
related issues in software systems, explaining it using constructs of
the C language. Our strategy parses the system source code (C files

2http://www.gnu.org/software/bash/

https://bugzilla.gnome.org/show_bug.cgi?id=461011
http://www.gnu.org/software/bash/

only) without preprocessing and generates an Abstract Syntax Tree
(AST) for each source file. We create a data structure with global
information about variables, functions, and preprocessor macros
defined in all source files to check dependencies and uses. This data
structure also maintains information regarding which functions,
and variables are defined and used in each system configuration,
allowing us to detect issues related to configurability [19]. Figure[2]
explains the three steps of our strategy, detailed in what follows.

The goal of Step I is to enable us to analyze several soft-
ware systems. Variability-aware analysis tools can identify certain
classes of faults (mostly syntax and type issues) by covering the
entire configuration space. A common difficulty in setting up these
tools is that many configuration options are related to platform-
specific definitions and libraries. Hence, our strategy preprocesses
the included header files and generates platform-specific versions
of these files. Despite focusing only on one platform at a time,
the strategy enables us to analyze several software systems in such
a platform. To generate platform-specific headers, the strategy re-
moves the preprocessor conditional directives (such as #ifdef and
#endif) of the header files, according to the characteristics of a
specific platform. For instance, Figure [3| presents how we gener-
ate platform-specific headers for Linux using gcc. After preprocess-
ing the source code, the C preprocessor removes the preprocessor
conditional directives associated with the WIN32 configuration op-
tion, and resolves the includes. Thus, our strategy considers only
one configuration of each header file. To instantiate our strategy for
different platforms, one needs to generate platform-specific header
files for each different target platform. However, notice that we do
not preprocess the C files. For those files, we consider the entire
configuration space, as we explain in what follows.

Conswra
Constraints

Variability Abstract Global
Aware Tool Syntax Tree Checking

Cc Cc
#endif #endif ® ‘

Source Files

i
H H Platform-Specific - *\
#ifdef | Jrifdef Header Fil
#endif § | #endif eaat es Configuration-Related
Header Files gcc -E Faults and Warnings

Figure 2. Strategy to detect configuration-related issues.

In Step 2, we use a variability-aware tool to parse the source
code (C files) and generate an AST for each source file. When pars-
ing each source file, the tool uses the platform-specific header files
generated in the first step. Since we do not preprocess the source
files, they still contain preprocessor conditional directives. There-
fore, the resulting AST has variable nodes to represent the optional
and alternative code blocks. Figure] depicts a simplified AST en-
hanced with variability information from the code excerpt of Fig-
ure |1} During this step, our strategy may receive any known con-
straints to eliminate invalid configurations (e.g., configuration op-
tions A and B are mutually exclusive). We pass this information to
the variability-aware tool, which then ignores the invalid configura-
tions. Unfortunately, the majority of C open-source projects do not
have such constraints information defined explicitly.

Step 3 uses the abstract syntax trees of the source files to de-
tect the issues. Notice that we consider the abstract syntax trees
of all source files, which allow us to detect configuration-related
issues that span multiple files. Similar to safe composition ap-
proaches [7, [38]], we check simultaneously for all configurations,
if the required definitions (variables, functions, and preprocessor

H H

int printf (..);
// Definitions from stdio.h

#include <stdio.h>
#1ifdef WIN32
#include <windows.h>
#elif defined (LINUX)
void test); -U WIN32 void test Q;
#endif -D LINUX e

gce -E

Platform-Specific

Header Files Header Files

Figure 3. Generating platform-specific headers for Linux.

macros) are being provided. However, we are also able to cap-
ture warnings such as unused variables and functions. For instance,
we can see in Figure [that ARITH requires a function defini-
tion (print_arith_command) provided by DPAREN, as discussed
in Section 2] For this reason, Bash has an undeclared function
when we enable ARITH and disable DPAREN. The latter provides the
function print_arith_command, and no other source file provides
this required function definition for this specific configuration. At
this point, we have the following variability-aware checkers imple-
mented: undeclared variables, unused variables, undeclared func-
tions, and unused functions. Nonetheless, we can extend our infras-
tructure to add other checkers, such as checking for return types,
and fields in structure declarations.

execute_cmd.c

[eval_ari th_for‘_expr]

print_arith_command

l LEGEND: (D Function Call O Conditional Node [Function Definition l

print_cmd.c

DPAREN

[displen] [print_arith_command] [print_simple_command]

Figure 4. Simplified AST of the code excerpt of Figure[l]

4. Study Settings

In this section, we present the settings of the empirical study we
perform to better understand configuration-related issues. To per-
form the study, we instantiate our strategy to detect issues using
the well-known gcc compiler, TypeChef [17]], a variability-aware
parser widely used in previous studies [25H27, 40|, and the Linux
operating system to generate platform-specific header files. We
choose Linux because it provides simple and effective packaging
tools to identify and install the software system dependencies.

In particular, this empirical study addresses the following re-
search questions:

e RQ1. What are the frequencies of undeclared variables, unused
variables, undeclared functions, and unused functions?

¢ RQ2. Do configuration-related issues involve multiple configu-
ration options?

e RQ3. Do configuration-related issues span multiple files?

e RQ4. How do developers introduce configuration-related is-
sues?

¢ RQS5. For how long do configuration-related issues remain in
source files?

e RQ6. Do configuration-related issues occur more frequently in
source files with many configuration options?

Before answering the research questions, we consider feedback
from the actual system’s developers to confirm each configuration-
related issue. So, all numbers we report here do not include false
positives. We also receive feedback regarding configuration option
constraints and we use this information to avoid checking invalid
configurations in Bash, Libssh, and Privoxy. To answer RQ1, we
execute our four checkers (i.e., undeclared function, unused func-
tion, undeclared variables, and unused variables) and count their
frequencies. Regarding RQ2, we count the number of configura-
tion options involved in each configuration-related issue. To answer
RQ3, we identify the issues that span multiple source files. In RQ4,
we analyze each issue to verify how developers introduced them by
using the source file history in the software repository. Regarding
RQ5, we analyze the dates that developers introduced and fixed the
issues to measure the time in-between. To answer RQ6, we count
the number of preprocessor conditional directives of each source
file with at least one issue and compare with the average number of
preprocessor conditional directives.

4.1 Subject Selection

We analyze 15 subject systems written in C ranging from 4,988
to 44,828 lines of code. These systems are from different do-
mains, such as revision control systems, programming languages,
and games. Furthermore, we consider mature systems with many
developers as well as small systems with few developers. We select
these subject systems inspired by previous work [8, 110,24, 127]. We
present the details of each subject system in Table[I] For the subject
systems with git software repository available, we also consider the
commits history of the source files, as we present in Table[2]

Table 1. Subject characterization and number of issues.
Family Version Application Domain LOC Files Issues

Bash 4.2 Language interpreter 44,824 138 20
Bce 1.03 Calculator 5,177 27

Expat 2.1.0 XML library 17,103 54

Flex 2.5.37 Lexical analyzer 16,501 41
Gnuchess 5.06 Chess player 9,293 37 1
Gzip 1.2.4 File compressor 5,809 36 3
Libdsmcc 0.6 DVB library 5,453 30
Libpng 1.6.0 PNG library 44,828 61 9
Libsoup 2.41.1 SOUP library 40,061 178
Libssh 0.5.3 SSH library 28,015 125 2
Lua 5.2.1 Language Interpreter 14,503 59

M4 1.4.4 Macro expander 10,469 26 1
Mptris 1.9 Game 4,988 29
Privoxy 3.0.19 Proxy server 29,021 67 1
Res 5.7 Revision control system 11,916 28

Total 287,961 936 39

4.2 Instrumentation

We use the strategy presented in Section[3to investigate configura-
tion-related issues. We use TypeChef version 0.3.3 to parse all
configurations of the source code. Furthermore, we also count the
number of lines of code, and the number of files of each subject
system using the Count Lines of Code (CLOC) tool version 1.56,
which eliminates blank lines and comments. Finally, we use Git
version 1.7.12.4 to identify changes in source files, and to get
information about the project’s repositories.

5. Results and Discussion

In this section, we discuss the results of our empirical study and
answer the research questions. Table [I] presents the number of

Table 2. General information about the software repositories
Project Developers Commits First Commit Last Commit

Bash 2 109 Aug 26, 1996 May 19, 2015
Expat 13 47 Jan 12, 1970 Jun 22, 2014
Flex 5 1,607 Nov 8, 1987 Mar 21, 2012
Gnuchess 1 236 Oct 8, 2001 Jan 25, 2011
Gzip 13 464 Jan 21, 1993 Mar 16, 2015
Libpng 5 2,195 Jul 20, 1995 Mar 26, 2015
Libsoup 186 2,225 Dec 5, 2000 May 27, 2015
Libssh 26 3,206 Jul 5, 2005 May 8, 2015
Lua 7 85 Sep 30, 2010 Fev 19, 2014
M4 13 986 Feb 17, 2000 Dec 12, 2014
RCS 5 915 Nov 18, 1989 Jun 5, 2012
Total 12,075

configuration-related issues we detect in each subject system. No-
tice that we confirm all issues so that the numbers we report do not
include false positives. All results are available at the companion
web siteE] We answer the research questions in what follows.

5.1 What are the frequencies of undeclared variables, unused
variables, undeclared functions, and unused functions?

We analyze 15 subject systems. We find 14 undeclared functions;
7 unused functions; 2 undeclared variables; and 23 unused vari-
ables, as presented in Figure[5] Overall, we detect 39 configuration-
related issues. Because of variability, more than 74% of developers
believe that configuration-related issues are more difficult to de-
tect than issues that appear in all configurations [28]]. Nevertheless,
during the analysis, we also detect issues that occur in mandatory
code, i.e., issues that appear in all configurations. Yet, because we
focus on configuration-related issues, we remove numbers related
to mandatory code from our statistics. Figure [6] presents an exam-
ple of undeclared variable. This code excerpt is part of the Libpng
project, and it fails to compile when we enable SPLT and disable
POINTER. As we can see, developers declare variable p at line 4
only when POINTER is enabled. The problem is that they use this
variable at lines 8 and 9, in which configuration option POINTER is
disabled, causing a compilation error.

Undeclared Variables (5%) Undeclared Functions (36%)

Unused Variables (41%) Unused Functions (18%)

Figure 5. Kinds of configuration-related issues.

We also find unused variables and functions. Traditional C com-
pilers raise warnings like unused variables and functions when de-
velopers set specific command line parameters. Still, we are able to
find several unused variables and functions related to configurabil-
ity. As these warnings do not cause compilation errors, developers
might neglect them, even in mandatory code. Figure [/| presents a
code excerpt with an unused variable in Libssh. In this code ex-
cerpt, variable strong is not used when we disable LIBCRYPTO
and enable LIBCRYPT. The warning disappears when the opposite
configuration selection happens. Although unused variable is a sim-
ple warning, some developers still care about them, by raising bug
reports and providing patches to fix them. Indeed, we find bug re-
ports and patches to fix unused variables and functions, such as the
one to fix the Libssh warninﬂ presented in Figure

3http://wuw.dsc.ufcg.edu.br/~spg/gpce2015
“http://www.dsc.ufcg.edu.br/~spg/gpce2015/1ibssh. html

http://www.dsc.ufcg.edu.br/~spg/gpce2015
http://www.dsc.ufcg.edu.br/~spg/gpce2015/libssh.html

Overall, we conclude that the configuration-related issues we
focus on this paper are not so common in the repositories we study.
Still, it seems they are more common than configuration-related
syntax errors. In a previous work, we analyze 41 software families
but find only 24 syntax errors in valid configurations [27].

Configuration 1

#define SPLT
#define POINTER
png_sPLT_entryp p;

1. #ifdef SPLT

2

3

4 Configuration 2
5. p = palette + 1i;

6

7

8

. void png_handle_sPLT) {
#ifdef POINTER

#undef SPLT
p->red = *start++; #define POINTER

#else Configuration 3

. #define SPLT
9. p[i].red = *start++; #undef POINTER

10. #endif Configuration 4
11.3} #undef SPLT /
12. #endif #undef POINTER

@) Compilation succeed

p = new_palette;

@ Compilation error

Figure 6. An undeclared variable in the Libpng project that occurs
when SPLT is enabled and POINTER is disabled.

5.2 Do configuration-related issues involve multiple
configuration options?

We find that the majority of configuration-related issues (more
than 87%) involve two or less configuration options. Table[3|details
the number of configuration options involved in the issues. For
example, we find 16 issues involving only one configuration option.
We also find 18 issues depending on two options, 3 issues involving
three configuration options, and only 2 issues when setting four or
more configuration options.

1. int get_random (int strong) { Configuration 1
2. #ifdef LIBGCRYPT .

5 acry._randomize(Len): #define LIBCRYPTO
4. return 1; #undef LIBGCRYPT
5. #elif defined (LIBCRYPTO) :

6. if(strong){ O No warnings
7. return bytes(len); Configuration 2
8. } else {

9. return pseudo(len); #undef LIBCRYPTO
10. 1 #define LIBGCRYPT
E iendu‘ & Unused Variable

Figure 7. An unused variable in the Libssh project that occurs
when LIBCRYPTO is disabled and LIBCRYPT is enabled.

We observe similar results when comparing to the investigation
of configuration-related syntax errors we report in our previous
study [27]. Furthermore, studies that detect configuration-related
issues by analyzing software repositories and by using sampling
analysis also find similar results [} [11]]. Because we use a differ-
ent technique, i.e., variability-aware analysis, our empirical study
provides more evidence that configuration-related issues involving
more than two configuration options are not common in C open-
source systems. Our findings also support the effectiveness of sam-
pling algorithms, as the majority of the issues do not involve high
numbers of configuration options.

5.3 Do configuration-related issues span multiple files?

Previous studies perform per-file instead of global analysis [27,136].
Per-file analysis can only detect issues that do not span multi-
ple files. Global analysis considers information across all source
files instead of considering each file separately. In our empirical
study, however, the results reveal that the majority of configuration-
related issues occur in single files. Other 13 issues (33%) span mul-
tiple source files.

Table 3. Configuration options involved in issues.

Some configuration options enabled 5
a 4
alb 1
Some configuration options disabled 20
la 12
la A b 7
laNbAle 1
Some options enabled and some disabled 14
aAnlb 9
aV!b 1
aNlbAle 2
aNbAlenld 1
aNbAcANdNeNfAlg 1

5.4 How do developers introduce configuration-related
issues?

We investigate how developers introduce the issues we find in our
empirical study. Our goal here is to identify whether developers
introduce more issues when implementing new functionalities or
fixing other bugs in the source code. According to the results,
developers introduce more issues (73%) when introducing new
functionalities, such as a new source file, or adding a new function.
In contrast to configuration-related syntax errors, the results are
the opposite: developers introduce the majority of syntax errors
when fixing existing code [27]. We now present the results in
the following order: undeclared functions, undeclared variables,
unused functions, and unused variables.

Developers introduce configuration-related undeclared func-
tions in three different cases: (I) adding a call to existing functions
without checking the preprocessor conditional directives that en-
compass such function definitions; (II) adding a call to a function
without including the header file with the function definition; and
(III) changing a function definition without modifying the corre-
sponding function calls. Figure [§] illustrates these three cases with
small code excerpts. We find that developers introduce 79% of the
undeclared functions with case (I): Bash (1), Gnuchess (1), Gzip
(2), Libpng (6), and Privoxy (1); for case (II), we have one (7%)
undeclared function: Lua (1); and 14% of the undeclared functions
follow case (III): Libssh (1), and Lua (1).

I I 111
i #ifdef C
#;fgeiuﬁcl O1{ void funcs5 () {
v #ifdef B func6();
y void func3 O {
i + funcaQ); #endif
+ tz?jliuncz O1{ : - void funce OO {
+ funclQ; #endif + void funcé (int p) {
+3) .

= Removing line + Including line

Figure 8. Introducing configuration-related undeclared functions.

Figure [9] presents the only two cases we detect for undeclared
variables. In case (I), developers try to eliminate a shadowed decla-
ration of variable p1 at line 6. However, they change the conditional
directive at line 1, raising an undeclared variable at line 9. Develop-
ers introduce another undeclared variable following case (II), i.e.,
they introduce a new source file that defines variable p2 condition-
ally, but uses it in mandatory code. We find only one issue for each
case: (I) in Libpng, and (II) in Gzip.

I II

- 1. #ifndef A
+ 2. #ifdef A + void func3 O {
3. int pl; + #ifdef A
4. #endif + int p2;
5. #ifdef A + #endif
=6: int p; +
7. pl = funclQ); + p2 = func4Q;
8. #else + ..
9. pl = func2Q); + }
10. #endif

= Removing line + Including line

Figure 9. Introducing configuration-related undeclared variables.

Developers introduce unused functions in two cases: (I) con-
ditionally defining a function and calling it in code encompassed
with different preprocessor conditional directives; and (II) remov-
ing a call to a conditionally defined function, and adding another
call to a mandatory function. Figure[T0]depicts these two cases. We
find that 86% of unused functions follow case (I): Bash (4), Libpng
(1), and M4 (1); and 14% follow case (II): Libpng (1).

I II
- #ifdef A
- void func3 O {
+ #ifdef A = 000
+ void funcl) { -}
+ A - #endif
+ } void funcd O {
+ #endif e
+ void func2 OOf }
+ #if defined(A) && defined(B) void func5 O {
+ funclQ; #ifdef A
+ #endif - func3Q;
+ } + func4Q);
#endif
}

= Removing line + Including line

Figure 10. Introducing configuration-related unused functions.

Regarding the unused variables we find in our study, developers
introduce them following three cases: (I) adding a new variable to
an optional code without using such variable; (II) adding a new
variable to mandatory code and using this variable only in optional
code; and (IIT) moving the uses of a variable to optional code.
Figure|11|depicts these three cases. Case (II) is the most common
(50%): Bash (8); six unused variables (38%) follow case (I): Bash
(6); and 12% follow case (III): Bash (1), and Libssh (1).

I II III
void func2) {
#ifdef A void func4 O {
+ int p2; int p3;
+ void funcl O {
+ int pl; + #ifdef B + #ifdef C
+ ... + p2 = func3Q; p3 = func5Q);
+} + #endif + #endif
#endif . .
} }

+ Including line

Figure 11. Introducing configuration-related unused variables.

We also analyze whether developers introduce issues by chang-
ing mandatory or optional code. Our results reveal that the num-
ber of issues developers introduce when working on optional code
(55%) or in mandatory code (45%) is fairly similar.

5.5 For how long do configuration-related issues remain in
source files?

In this section, we analyze the time that developers take to fix
configuration-related issues. Our results show that the time varies
from days to years. For example, developers fix an issue of the
Libssh system (keyfiles.c) after 69 days. In contrast, the issue
of Bash we discuss in Section [2] remains in the source code since
July 2004. The Bash developers accept our patch to fix this issue.
Table[d] depicts the time developers take to fix some issues we find
in our empirical study. Notice that we only list issues we know
exactly when developers introduce them, and issues already fixed.

Table 4. Time to fix configuration-related issues.

Family File Kind Days to Fix
Gzip deflate.c undeclared function 6,678
Gzip util.c undeclared function 5,983
Libpng iccfrompng.c undeclared function 1,289
Libpng iccfrompng.c undeclared function 1,289
Libpng iccfrompng.c undeclared function 1,289
Libpng iccfrompng.c undeclared function 1,289
Libpng pngpixel.c undeclared function 1,289
Libpng pngpixel.c undeclared function 1,289
Libpng pngrutil.c undeclared variable 530
Libssh keyfiles.c undeclared function 69
Libssh dh.c unused variable 268
Lua loadlib_rel.c undeclared function 748
Lua loadlib_rel.c undeclared function 999

Developers may take a long time to fix issues due to different
reasons. First, the configuration-related issues may be difficult to
detect because of variability [28]. Second, developers might have
problems to understand code they are not familiar with, possibly
written by another developer [28]]. Third, in case the issues arise in
not exercised or deliverable configurations, developers tend to rank
the fixing task as lower priority [27]].

5.6 Do configuration-related issues occur more frequently in
source files with many configuration options?

To answer this question, we compute the average of preprocessor
conditional directives regarding all source files, i.e., we count the
number of preprocessor conditional directives of all source files
and divide by the number of files. We thus have the average for
each project. Then, for each file that contains at least one issue, we
compare the number of directives with the average.

Figure[I2]illustrates the averages (and standard deviation) of di-
rectives for each system. We represent the averages by using filled
circles. In contrast, we represent the number of directives of each
file with at least one issue using open circles. We denote the stan-
dard deviation by using vertical lines. Our results do not support
the claim that configuration-related issues occur more frequently
in source files with high numbers of preprocessor conditional di-
rectives. We can see in Figure [I2] that the numbers of conditional
directives of some files with at least one issue are close to the aver-
age. In particular, only 9 out of 29 files (31%) with at least one issue
contain more conditional directives than the average increased by
the standard deviation.

5.7 Submitting Patches to Fix Configuration-Related Issues

We submitted 30 patches—for each issue not fixed—to 3 families:
Bash (20), Libpng (6), and Libssh (4). We submitted these patches
using bug tracking systems and via email directly to the main
developer of the system. We consider that developers accept a patch
when they mention that it is a problem by email, or keep the patch
open after updating information, such as priority. Conversely, we

120 o
o 100

@

60
40
20

Directive

o
Bash —f=®-eio

Gzip —teof
Libpng —p—e—=-

M4 —re-
Privoxy ——ee—

Libssh —e$ o
Lua —

Gnuchess —p ©

Figure 12. Average numbers of conditional directives.

consider that developers reject the patch when they mention it is
not a problem by email, or update this information on the patch.
Thus, developers accepted 7 patches, rejected 4 patches, ignored
15 patches, and we did not receive feedback regarding the 4 patches
we submit to Libssh. Notice that we do not consider these 4 issues
of Libssh in our statistics. We present information about the patches
we submit in Table [5] which does not include the 15 patches
ignored by the Bash developers.

We submitted 20 patches to Bash and developers accepted only
one. Four issues do not happen in practice (i.e., they are false
positives), as the build system avoids the specific configurations
they appear in. In addition, one particular developer confirmed but
ignored the 15 patches we report to fix unused variables:

“I don’t care about unused variables too much; the
compiler gets rid of them. So, they have no cost.”

Despite having no performance cost, unused variables and func-
tions slightly pollute the code, which might explain other devel-
opers caring about them. For instance, we find a single patch to
Gnuchess that fixes 19 unused variablesE]

Regarding the patches we submit to Libpng, developers ac-
cepted all 6 patches, and they have already fixed the issues in the
software repository.

Table 5. Patches we submit to software systems.
Family File Accept Status Variable / Function

Bash execute_.cmd.c valid open arith_cmd undeclared
Bash bashline.c invalid closed add-history undeclared
Bash flags.c invalid closed init_hist undeclared
Bash jobs.c invalid closed imp_sigchld undeclared
Bash strerror.c invalid closed strerror undeclared

init_io undeclared
get_iCCP undeclared
read_info undeclared
destroy undeclared
get_depth undeclared
get_type undeclared

Libpng iccfrompng.c valid fixed
Libpng iccfrompng.c valid fixed
Libpng iccfrompng.c valid fixed
Libpng iccfrompng.c valid fixed
Libpng pngpixel.c valid fixed
Libpng pngpixel.c valid fixed

Libssh sftp.c - open sftp_read undeclared
Libssh main.c - open sftp_open undeclared
Libssh torture_rand.c - open ssh_pthread undeclared
Libssh chmodtest.c - open sftp_new undeclared

(-) We did not receive feedback regarding 4 issues of Libssh, so
we do not consider them in our statistics.

3 We list a number of patches (from different projects and developers) to fix
warnings, such as unused variables and functions in the project’s website:
http://wuw.dsc.ufcg.edu.br/~spg/gpce2015/warnings.html.

6 See the patch submitted to fix six undeclared functions in the Libpng code:
http://www.dsc.ufcg.edu.br/~spg/gpce2015/1libpng.html.

5.8 Threats to Validity

Checking whether the configuration-related issues appear in valid
configurations or represent false positives threatens construct va-
lidity. To minimize this threat, we perform two tasks: (i) for the
systems we know configuration option constraints in advance, we
set TypeChef to take them into account and consequently avoid ana-
lyzing invalid configurations (e.g., Bash, Libssh, and Privoxy); and
(i1) ask the actual developers to confirm each issue not fixed in the
software repository. Unfortunately, most projects do not provide
constraints information explicitly.

We analyze the issues manually, which is a time-consuming and
error-prone activity. This threatens internal validity. Nevertheless,
because we get feedback from the actual developers and confirm
the issues we report, we minimize this threat. Furthermore, we do
not consider build-system information, which is inherently difficult
to analyze automatically by using make files. In this way, our study
does not consider that certain files are not compiled in all configu-
rations (i.e., depending on certain configuration options). Thus, our
strategy may miss to detect configuration-related issues that are not
explicitly surrounded by preprocessor conditional directives.

To scale our analysis, our strategy considers only one configu-
ration of header files. We use gcc and generate only header files
for the Linux platform. However, notice that we may face false
negatives due to this limitation, which threatens external validity.
In this context, our strategy may miss some configuration-related
issues that occur only for other platforms, such as Windows and
Mac OS. Still, in our study, we find 39 configuration-related issues,
and we confirm them either by checking if developers fixed them
in software repositories or by getting feedback from developers.
Also, we analyze subject systems of different domains, sizes, and
different number of developers. We select well-known and active
C software systems used in industrial practice. Their communities
exist for years and they are in constant development. Therefore, we
alleviate this threat.

6. Implications

This section presents some implications that our results bring to
practice. First, we find evidence that configuration-related issues
remain in source files for several years, while issues that appear
in all configurations are normally fixed within a few days. Thus, it
seems that variability makes the detection of even simple bugs—
such as undeclared variables—more difficult.

Second, we find some differences regarding distinct kinds
of configuration-related issues. Developers normally introduce
configuration-related syntax errors when changing code [27]. On
the other hand, developers frequently introduce undeclared/unused
variables and functions when adding new code. Hence, instead of
using only one particular technique to detect both configuration-
related syntax errors and other issues, our results support the claim
that we need different strategies and tools to properly catch them.
For instance, the use of lightweight tools that check for syntax
errors on the fly, and more time-consuming analysis with global
information to detect other issues (including undeclared variables
and unused functions) only when introducing new source files or
before submitting new code versions to project repositories.

Previous studies perform analysis of software repositories and
sampling analysis to detect configuration-related issues and report
that most configuration-related issues do not involve several con-
figuration options. However, as discussed, they miss issues. Thus,
as we perform variability-aware analysis, which might minimize
the number of missed configuration-related issues, the findings of
our study increases evidence that configuration-related issues in-
volve, in most cases, one or two configuration options. So, the
third implication we present is that our findings regarding the num-

http://www.dsc.ufcg.edu.br/~spg/gpce2015/warnings.html
http://www.dsc.ufcg.edu.br/~spg/gpce2015/libpng.html

Table 6. Configuration-related issues detected in our empirical study.

Project File Kind Fix/New Optional/Mandatory = Macros Single/Multiple Directives LOC
bash vi_mode.c unused variable fix optional 1 single 36 2071
bash macro.c unused variable new optional 1 single 4 271
bash display.c unused variable fix optional 1 single 53 2688
bash array.c unused variable new optional 1 single 6 1085
bash bashline.c unused variable new optional 1 single 57 3611
bash braces.c unused variable fix optional 1 single 18 680
bash eITOr.C unused variable new optional 2 single 30 462
bash execute_cmd.c unused variable new optional 1 single 111 4028
bash finfo.c unused variable new mandatory 1 single 10 569
bash finfo.c unused variable new mandatory 1 single 10 569
bash general.c unused variable new mandatory 1 single 17 903
bash malloc.c unused variable new optional 3 single 55 1107
bash pcomplete.c unused variable new mandatory 1 single 32 1462
bash shell.c unused variable fix mandatory 1 single 18 208
bash watch.c unused variable new mandatory 1 single 4 150
bash execute_cmd.c undeclared function fix optional 2 multiple 111 4028
bash variables.c unused function new optional 2 multiple 107 4793
bash pcomplete.c unused function - - 2 multiple 32 1546
bash bashline.c unused function new optional 2 multiple 56 3704
bash array.c unused function new - 4 multiple 6 1130
gnuchess getopt.c undeclared function new optional 1 single 28 1067
gzip deflate.c undeclared function new optional 1 single 21 763
gzip util.c undeclared function new - 2 single 9 462
gzip deflate.c undeclared variable new - 1 single 21 763
libpng iccfrompng.c undeclared function new mandatory 2 multiple 1 185
libpng iccfrompng.c undeclared function new mandatory 2 multiple 1 185
libpng iccfrompng.c undeclared function new mandatory 3 multiple 1 185
libpng iccfrompng.c undeclared function new mandatory 1 multiple 1 185
libpng pngpixel.c undeclared function new mandatory 2 multiple 1 371
libpng pngpixel.c undeclared function new mandatory 2 multiple 1 371
libpng pngrutil.c undeclared variable new optional 2 single 92 4476
libpng pngvalid.c unused function fix optional 1 single 121 10140
libpng pngget.c unused function new optional 2 single 54 1177
libssh dh.c unused variable fix optional 2 single 33 629
libssh keyfiles.c undeclared function fix optional 2 multiple 12 1028
lua loadlib_rel.c undeclared function new mandatory 3 single 4 704
lua loadlib_rel.c undeclared function fix optional 7 single 4 704
m4 input.c unused function fix optional 2 multiple 11 886
privoxy filter.c undeclared function - - 2 single 24 2451

(-) We do not find the necessary information to answer the research question, e.g., in case we detect an issue in the first commit
available for analysis, so, we miss information regarding how developers introduce the issue. Developers introduce issues

by adding new code, and by modifying existing code (fix), see column “Fix/New”. They introduce issues by adding / modifying

mandatory or optional code, as we can see in column “Optional/Mandatory”. Column “Macros” depicts the number of macros involved in
each issue, which may appear in single files or span multiple files (column “Single/Multiple”). We present the number

of directives and lines of code for each file with at least one issue in “Directives” and “LOC”.

ber of macros involved in issues support the effectiveness of sam-
pling analysis. For instance, the pair-wise sampling algorithm [31]
checks all combinations of two configuration options, and would
detect all issues involving one or two configuration options. Over-
all, pair-wise can detect more than 87% of the issues we find in our
study, but there are also configuration-related issues involving more
than two configuration options that require more complex sampling
algorithms, such as statement-coverage [36]], and three-wise [15].
Fourth, the corpus of undeclared/unused variables and functions
gathered in our study is a valuable source to study configuration-
related issues, compare sampling algorithms, and test and improve
variability-aware tools. Besides the issues themselves, this corpus
also includes ways in which developers introduce them in practice.
These different ways can be explored for developing techniques to
detect such issues as soon as their introduction, through pattern-

matching, for instance. Another possibility is that these cases can
provide guidance for sampling algorithms, indicating which config-
urations to test. Thus, developers of bug-finding tools can use our
results to provide support for detecting configuration-related issues,
and consequently minimize them in practice, improving software
quality.

7. Related Work

Several researchers studied the way in which developers use the C
preprocessor, performing empirical studies with open-source sys-
tems written in C that are statically configurable with the C prepro-
cessor [5,18}24]. Hunsen et al. [[14] performed a study to understand
how the C preprocessor is used in open-source and industrial sys-
tems. In a previous study [28]], we interviewed 40 developers and
performed a survey with 202 developers to understand why the C

preprocessor is still widely used in practice despite the strong criti-
cism the preprocessor receives in academia. All of these studies dis-
cussed the C preprocessor and its problems, such as configuration-
related faults, inconsistencies, and code quality.

Other studies analyzed software repositories by looking at faults
already fixed by developers to understand the characteristics of
configuration-related faults [1, 27]. In particular, researchers an-
alyzed configuration-related faults in dynamic configurable sys-
tems [[11,112}21]. Iago et al. [1] analyzed the Linux Kernel software
repository to study configuration-related faults. Tartler et al. [37]
also performed studies to find configuration-related faults in the
Linux kernel using sampling. In addition, there are several stud-
ies proposing tools to find faults and dead code, such as Under-
taker [36], and Splint [22].

Previous studies considered combinatorial interaction testing
to check different combinations of configuration options and pri-
oritize test cases [21]. Nie et al. [29] performed a survey with
combinatorial testing approaches. Several researchers used the t-
wise sampling algorithm to cover all ¢ configuration option com-
binations [15 [31]. Other researchers proposed the statement-
coverage [36|] sampling algorithm, and Iago et al. [1] suggested
the one-disabled algorithm.

Kistner et al. [17] developed a variability-aware parser, which
analyzes all possible configurations of a C program at the same
time. In addition, it performs type checking [18]] and data-flow anal-
ysis [25]. Gazzillo and Grimm [13]] developed a similar parser. Dif-
ficulties in setting up these tools and narrow classes of detectable
faults limit their applicability. In addition, variability-aware anal-
ysis tools work at the preprocessor level, which hinders the reuse
of existing tools, such as gcc and clang. Our strategy minimizes
these problems by reducing the initial setup problems of variability-
aware analysis tools.

Another strategy adopted by a number of studies was to develop
variability-aware type systems [2| [7, [18l |34} [38], by proposing
new languages or language extensions, together with a soundness
proof for the underlying type system. Thaker et al. presented tech-
niques for verifying type safety properties of feature-oriented prod-
uct lines using SAT solvers [38]. Delaware et al. formalized this
work, proposing the Lightweight Feature Java (LFJ), an extension
of Lightweight Java with features [7]], which inferred type check-
ing constraints. Apel et al. proposed the Feature Featherweight Java
(FFJ) [2], performing analysis using SAT solvers to check if all pos-
sible configurations of a product line are well-typed. Schaefer et
al. proposed a compositional type system for delta-oriented prod-
uct lines implemented using Java [34]. Using annotations, Késtner
et al. proposed the Color Featherweight Java (CFJ) calculus, and
implemented checks for full Java in the Colored Integrated De-
velopment Environment (CIDE) tool. Different from these studies,
we do not propose new languages, language extensions or formal-
ize a type system for C with preprocessor directives. Here, instead
of focusing on a particular feature-oriented language, which could
limit the applicability of our strategy to real-world systems, we try
to leverage the way that developers often implement configurable
systems. This way, we perform an empirical study that goes be-
yond previous studies on variability-aware type systems. However,
we cannot claim that our strategy can find all of the configuration-
related issues.

Apel et al. also proposed a language-independent reference
checking algorithm for product lines [3], evaluated using small
product lines written in Java and C. They extend feature structure
trees with references, to have language-independent model of the
program. The strategy presented in this paper can also be applied
to configurable systems written in different languages, although we
only evaluated systems using the C preprocessor.

Some studies compared sampling and variability-aware strate-
gies. Apel et al. [4] developed a model checking tool for prod-
uct lines and used it to compare sampling and variability-aware
strategies with regard to verification performance and the abil-
ity to find defects. Liebig et al. [25] performed studies to de-
tect the strengths and weaknesses of variability-aware and sam-
pling analyses. Kolesnikov et al. [20] compared variability-aware,
feature-based, and product-based type checking. In our study,
we performed complimentary studies regarding understanding
configuration-related issues, and our findings support the effec-
tiveness of sampling analysis.

8. Concluding Remarks

In this paper, we presented an empirical study to investigate and
better understand preprocessor-related issues in C. We defined a
strategy to identify issues that minimizes the setting up problems
of variability-aware tools and allows us to analyze several systems.
We analyzed 15 subject systems to answer our research questions.
In particular, we answered questions related to how developers in-
troduce configuration-related issues, number of configuration op-
tions involved in each issue, and time issues remain in source files.
In summary, we found 39 distinct configuration-related issues, in-
cluding 14 undeclared functions, 2 undeclared variables, 7 unused
functions, and 23 unused variables that appear only in some con-
figurations of the source code.

The results revealed that developers took several years to fix
some configuration-related issues, and others are still not fixed.
The majority of configuration-related issues (87%) are detected
when we enable or disable one or two configuration options, which
support the effectiveness of sampling algorithms, such as pair-
wise. In addition, we found differences regarding the way devel-
opers introduce configuration-related undeclared/unused variables
and functions when compared to configuration-related syntax er-
rors. They introduce the majority of undeclared/unused functions
and variables when adding new source files and functions. In con-
trast, developers introduce most syntax errors when modifying ex-
isting code [27]. Our empirical study presented findings that may
be helpful to understand configuration-related issues, support tool
developers, minimize these issues in practice, and improve software
quality.

Acknowledgement

This work has been partially supported by CNPq (Universal
460883/2014-3) and the project DEVASSES, funded by the Eu-
ropean Union’s Seventh Framework Programme for research, tech-
nological development and demonstration under grant agreement
no PIRSES-GA-2013-612569.

References

[1] 1. Abal, C. Brabrand, and A. Wasowski. 42 variability bugs in the
Linux Kernel: A qualitative analysis. In Proceedings of the In-
ternational Conference on Automated Software Engineering, ASE.
IEEE/ACM, 2014.

S. Apel, C. Kistner, A. Grosslinger, and C. Lengauer. Type safety
for feature-oriented product lines. Journal of Automated Software
Engineering, 17:251-300, September 2010.

S. Apel, W. Scholz, C. Lengauer, and C. Késtner. Language-
independent reference checking in software product lines. In Proceed-
ings of the 2nd International Workshop on Feature-Oriented Software
Development, pages 65-71,2010. ISBN 978-1-4503-0208-1.

S. Apel, A. v. Rhein, P. Wendler, A. Grosslinger, and D. Beyer. Strate-
gies for product-line verification: Case studies and experiments. In
Proceedings of the International Conference on Software Engineer-
ing, ICSE. IEEE, 2013.

[2

—

[3

=

[4

=

[5] L. Baxter. Design maintenance systems. Communication of the ACM,
35(4):73-89, 1992.

[6] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for pair-
wise coverage with seeding and constraints. Information and Software
Technology, 48(10):960-970, 2006.

[71 B. Delaware, W. Cook, and D. Batory. Fitting the Pieces Together:
a machine-checked model of safe composition. In Proceedings of
the Joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2009.

[8

[t}

M. Ernst, G. Badros, and D. Notkin. An empirical analysis of C
preprocessor use. IEEE Transactions on Software Engineering, 28:
1146-1170, 2002.

M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and R. Kuhn. Refining
the in-parameter-order strategy for constructing covering arrays. Jour-
nal of Research of the National Institute of Standards and Technology,
2008.

[10] A. Garrido and R. Johnson. Analyzing multiple configurations of a C
program. In Proceedings of the International Conference on Software
Maintenance, ICSM. IEEE, 2005.

[11] B.J. Garvin and M. B. Cohen. Feature interaction faults revisited: An
exploratory study. In Proceeding of the International Symposium on
Software Reliability Engineering, ISSRE, 2011.

[12] B.J. Garvin, M. B. Cohen, and M. B. Dwyer. Using feature locality:
Can we leverage history to avoid failures during reconfiguration? In
Proceedings of the Workshop on Assurances for Self-adaptive Systems,
ASAS. ACM, 2011.

[13] P. Gazzillo and R. Grimm. SuperC: parsing all of C by taming the
preprocessor. In Proceedings of the programming language design
and implementation, PLDI. ACM, 2012.

[14] C. Hunsen, B. Zhang, J. Siegmund, C. Kistner, O. Lebenich,
M. Becker, and S. Apel. Preprocessor-based variability in open-source
and industrial software systems: An empirical study. Journal of Em-
pirical Software Engineering, 2015.

[9

—

[15] M. F. Johansen, O. Haugen, and F. Fleurey. An algorithm for generat-
ing t-wise covering arrays from large feature models. In Proceedings
of the International Software Product Line Conference, SPLC, 2012.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical
report, Carnegie Mellon University, Software Engineering Institute,
November 1990.

[17] C. Kistner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-aware parsing in the presence of lexical macros
and conditional compilation. In Proceedings of the ACM SIGPLAN
Object-oriented programming systems languages and applications,
OOPSLA. ACM, 2011.

[18] C. Kistner, S. Apel, T. Thiim, and G. Saake. Type checking
annotation-based product lines. ACM Transactions on Software En-
gineering and Methodology, 21(3):14:1-14:39, July 2012.

[19] C. Kistner, K. Ostermann, and S. Erdweg. A variability-aware mod-
ule system. In Proceedings of ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA). ACM, 2012.

[20] S. Kolesnikov, A. von Rhein, C. Hunsen, and S. Apel. A comparison
of product-based, feature-based, and family-based type checking. In
Proceedings of the International Conference on Generative Program-
ming: Concepts & Experiences, GPCE. ACM, 2013.

[21] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr. Software fault
interactions and implications for software testing. IEEE Transactions
on Software Engineering, 30(6):418-421, June 2004.

[22] D. Larochelle and D. Evans. Statically detecting likely buffer overflow
vulnerabilities. In Proceedings of the Conference on USENIX Security
Symposium, SSYM. USENIX Association, 2001.

[23] J. Liebig, S. Apel, C. Lengauer, C. Kistner, and M. Schulze. An
analysis of the variability in forty preprocessor-based software product

lines. In Proceedings of the International Conference on Software
Engineering, ICSE. ACM, 2010.

[24] J. Liebig, C. Kistner, and S. Apel. Analyzing the discipline of prepro-
cessor annotations in 30 million lines of C code. In Proceedings of the
10th Aspect-Oriented Software Development, AOSD. ACM, 2011.

[25] J.Liebig, A. von Rhein, C. Késtner, S. Apel, J. Dorre, and C. Lengauer.
Scalable analysis of variable software. In Proceedings of the Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE, pages 81-91. ACM, 2013.

[26] J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer. Morpheus:
Variability-aware refactoring in the wild. In Proceedings of the Inter-
national Conference on Software Engineering, ICSE. IEEE, 2015.

[27] F. Medeiros, M. Ribeiro, and R. Gheyi. Investigating preprocessor-
based syntax errors. In Proceedings of the International Conference
on Generative Programming: Concepts & Experiences, GPCE. ACM,
2013.

[28] F. Medeiros, C. Kistner, M. Ribeiro, S. Nadi, and R. Gheyi. The
love/hate relationship with the ¢ preprocessor: An interview study.
In Proceedings of the European Conference on Object-Oriented Pro-
gramming, ECOOP, 2015.

[29] C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys, 43(2):11:1-11:29, 2011.

[30] S. Oster, F. Markert, and P. Ritter. Automated incremental pairwise
testing of software product lines. In J. Bosch and J. Lee, editors,
Software Product Lines: Going Beyond, volume 6287 of Lecture Notes
in Computer Science, pages 196-210. Springer Berlin Heidelberg,
2010.

[31] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon. Automated
and scalable t-wise test case generation strategies for software product
lines. In Proceedings of the International Conference on Software
Testing, Verification and Validation, ICST, 2010.

[32] M. Ribeiro, F. Queiroz, P. Borba, T. Tolédo, C. Brabrand, and
S. Soares. On the impact of feature dependencies when maintain-
ing preprocessor-based software product lines. In Proceedings of the
Generative Programming and Component Engineering, GPCE. ACM,
2011.

[33] M. Ribeiro, P. Borba, and C. Kistner. Feature maintenance with
emergent interfaces. In Proceedings of the International Conference
on Software Engineering, ICSE, 2014.

[34] 1. Schaefer, L. Bettini, and F. Damiani. Compositional type-checking
for delta-oriented programming. In Proceedings of the International
Conference on Aspect-Oriented Software Development, 2011.

[35] H. Spencer and G. Collyer. Ifdef considered harmful, or portability
experience with C news. In USENIX Annual Technical Conference,
pages 185-197, 1992.

[36] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. Con-
figuration coverage in the analysis of large-scale system software. In
Proceedings of the Workshop on Programming Languages and Oper-
ating Systems, PLOS, 2011.

[37] R. Tartler, C. Dietrich, J. Sincero, W. Schroder-Preikschat, and
D. Lohmann. Static analysis of variability in system software: The
90,000 #ifdefs issue. In 2014 USENIX Annual Technical Conference,
USENIX, 2014.

[38] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition
of Product Lines. In Proceedings of the 6th International Conference
on Generative Programming and Component Engineering, pages 95—
104, 2007.

[39] T. Thiim, S. Apel, C. Kistner, I. Schaefer, and G. Saake. A classifica-
tion and survey of analysis strategies for software product lines. ACM
Computing Surveys, 47(1):6:1-6:45, June 2014.

[40] A. von Rhein, A. Grebhahn, S. Apel, N. Siegmund, D. Beyer, and
T. Berger. Presence-condition simplification in highly configurable

systems. In Proceedings of the International Conference on Software
Engineering, ICSE. IEEE, 2015.

[41] C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for efficient
fault characterization in complex configuration spaces. In Proceedings
of ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA. ACM, 2004.

	Introduction
	Motivating Example
	Detecting Configuration-Related Issues
	Study Settings
	Subject Selection
	Instrumentation

	Results and Discussion
	What are the frequencies of undeclared variables, unused variables, undeclared functions, and unused functions?
	Do configuration-related issues involve multiple configuration options?
	Do configuration-related issues span multiple files?
	How do developers introduce configuration-related issues?
	For how long do configuration-related issues remain in source files?
	Do configuration-related issues occur more frequently in source files with many configuration options?
	Submitting Patches to Fix Configuration-Related Issues
	Threats to Validity

	Implications
	Related Work
	Concluding Remarks

