
Investigating Preprocessor-Based Syntax Errors

Flávio Medeiros
Federal University of Campina Grande

Campina Grande, Brazil
flaviomedeiros@copin.ufcg.edu.br

Márcio Ribeiro
Federal University of Alagoas

Maceió, Brazil
marcio@ic.ufal.br

Rohit Gheyi
Federal University of Campina Grande

Campina Grande, Brazil
rohit@dsc.ufcg.edu.br

Abstract
The C preprocessor is commonly used to implement variability in
program families. Despite the widespread usage, some studies indi-
cate that the C preprocessor makes variability implementation dif-
ficult and error-prone. However, we still lack studies to investigate
preprocessor-based syntax errors and quantify to what extent they
occur in practice. In this paper, we define a technique based on a
variability-aware parser to find syntax errors in releases and com-
mits of program families. To investigate these errors, we perform an
empirical study where we use our technique in 41 program family
releases, and more than 51 thousand commits of 8 program fam-
ilies. We find 7 and 20 syntax errors in releases and commits of
program families, respectively. They are related not only to incom-
plete annotations, but also to complete ones. We submit 8 patches
to fix errors that developers have not fixed yet, and they accept 75%
of them. Our results reveal that the time developers need to fix the
errors varies from days to years in family repositories. We detect
errors even in releases of well-known and widely used program
families, such as Bash, CVS and Vim. We also classify the syntax
errors into 6 different categories. This classification may guide de-
velopers to avoid them during development.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

Keywords Program Families, Preprocessors, Syntax Errors

1. Introduction
A program family is a set of programs whose commonality is so
extensive that it is advantageous to study their common properties
before analyzing individual members [1]. In this context, devel-
opers often use the C preprocessor to handle variability and imple-
ment these individual members [2]. The C preprocessor is a simple,
effective, and language independent tool. However, despite their
widespread use in practice, preprocessors suffer of several draw-
backs, including no separation of concerns, which obfuscate the
code and hampers understanding [3–5].
In particular, preprocessors also ease the introduction of subtle

syntax errors [4, 6–8], like when we annotate an opening bracket
without its correspondent closing one. Although this claim is pretty

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GPCE ’13, October 27–28, 2013, Indianapolis, Indiana, USA.
Copyright c⃝ 2013 ACM 978-1-4503-2373-4/13/10. . . $15.00.
http://dx.doi.org/10.1145/2517208.2517221

reasonable due to the problems that preprocessors may cause, we
still lack studies to investigate preprocessor-based syntax errors and
quantify to what extent they occur in practice. Notice that categoriz-
ing the syntax errors and investigating the way developers introduce
them is important to aid developers on minimizing these errors dur-
ing their development tasks, improving quality and reducing effort.
To formulate the theory that preprocessors cause syntax errors,

we define a technique to identify preprocessor-based syntax errors
in releases and commits of C program families. Our technique
considers a syntax error as an incorrect output of the preprocessing
task [9], i.e., it generates an invalid program according to the
C grammar. To consider variability during our analysis, we rely
on TypeChef, a variability-aware parser that checks all possible
configurations of the source code [8].
To evaluate to what extent preprocessor-based syntax errors is a

problem in practice, we use our technique to conduct a comprehen-
sive empirical study. In particular, we answer research questions
related to the occurrence of syntax errors in releases and commits,
whether the errors arise in valid configurations, how developers in-
troduce the syntax errors, the time developers need to fix the errors,
the percentage of commits with errors, and if we can classify the
syntax errors in type categories.
To answer our research questions, we analyze releases of 41

C program families and more than 51 thousand commits of 8
families. We select these families inspired by previous work [7, 10,
11]. Besides, the majority of families are well-known and used in
industrial practice. In this context, however, notice that analyzing
many families with thousands of commits seems unfeasible, since
it is a time consuming task. Our technique minimizes this problem
sufficiently to enable us to analyze several program families while
still providing reasonable results.
Our study reveals that preprocessor-based syntax errors are not

common in family releases. We roughly conclude the same when
considering commits. In particular, we find 33 preprocessor-based
syntax errors, out of which only 24 happen in valid configurations.
To conclude that 9 errors arise in invalid configurations, we rely
on answers—from e-mail and bug reports—of the actual program
families developers. Further, we detect that developers introduce
syntax errors mainly by changing existing code and adding pre-
processor directives, for example, to support a different operating
system. Regarding the time that developers need to fix the errors,
we detect that it varies from days to years. Moreover, we identify
some errors that developers took more than five years to fix, and
some errors still not fixed. So, we submit patches with suggestions
to fix the errors, and developers accept 6 and reject 2 patches.
Also, we observe that the percentage of commits with syntax

errors vary significantly as well. We find files that contain errors
only in 0.43% of commits. In contrast, we also find files that contain
errors in all commits. Last but not least, we categorize the 24 syntax
errors we find into six types of errors. The results reveal that the
majority of syntax errors occur because of ill-formed constructions,

e.g., an else without its correspondent if statement, and missing
brackets. In summary, the main contributions of this paper are:

• We perform an empirical study using 41 C program families
and more than 51 thousands commits to quantify and better
understand preprocessor-based syntax errors;

• We classify preprocessor-based syntax errors and study the way
developers introduce them;

• We present a technique that makes feasible the task of analyzing
the syntax of several program families.

We organize the remainder of this paper as follows. In Section 2,
we show a real example of preprocessor-based syntax error that
motivates our study. Then, in Section 3, we describe our technique
to find preprocessor-based syntax errors. Afterwards, we present
the empirical study settings in Section 4, and discuss the results in
Section 5. Last, we present the related work in Section 6 and the
concluding remarks in Section 7.

2. Motivating Example
Developers often use preprocessors to handle variability in C pro-
gram families. For instance, libpng1 is a program family imple-
menting the official PNG reference library. Figure 1 presents part
of the libpng program family related to progressive display style,
which is useful to read images from the network. Figure 1 con-
tains a preprocessor macro that implements a progressive display
style, i.e., PNG READ INTERLACING SUPPORTED. The macro uses
the interlacing method, which is responsible for encoding a bitmap
image. During the download process, we can already see a copy of
the whole image despite the incompleteness. It is useful for trans-
mitting images over slow communication links.

1. // Other includes..
2. #include <fenv.h>
3. // Other function definitions..
4. static void progressive_row(png_structp ppIn, png_bytep new_row){
5. // Code Here..
6. if (new_row != NULL) {
7. // Code Here..
8. if (y >= dp->h)
9. png_error(pp, "invalid y to progressive row callback");
10. row = store_image_row(dp->ps, pp, 0, y);
11.#ifdef PNG_READ_INTERLACING_SUPPORTED
12. if (dp->do_interlace){
13. // Code Here..
14. } else
15. png_progressive_combine_row(pp, row, new_row);
16. } else if (dp->interlace_type == PNG_INTERLACE_ADAM7)
17. png_error(pp, "missing row in progressive de-interlacing");
18.#endif
19.}
20.// More function definitions..

Figure 1. Code snippet of libpng with a syntax error when we do
not define macro PNG READ INTERLACING SUPPORTED.

Developers of C program families like libpng use existing
compilers, such as GCC and clang. However, these compilers
do not have a good support to check whether all configurations
contain syntax errors. For example, preprocessing Figure 1 with-
out PNG READ INTERLACING SUPPORTED generates an invalid pro-
gram according to the C grammar. It contains a preprocessor-based
syntax error since it opens the if statement block at line 6, but it
does not close at line 16. The error presented in Figure 1 we find in
release 1.5.14 of libpng, which contains 360 preprocessor macros.
If there is no forbidden configuration, we might have 2360 possible
configurations, where 50% of them contain the preprocessor-based
syntax error we discuss here. We report this error by submitting a
patch to libpng developers, and they accepted and fixed the error.
To identify this error, developers have to check each configuration

1 http://www.libpng.org

individually to detect this error using the existing compilers. How-
ever, it is unfeasible in several cases due to the high number of pos-
sible configurations. Developers need a better tool support to de-
tect such kinds of errors. In this context, there are some variability-
aware parsers to detect preprocessor-based syntax errors in C pro-
gram families [8, 12] to help developers.
Previous studies [4, 6–8, 10] refer to syntax errors similar to

the one we describe in Figure 1. However, they do not provide
a comprehensive study to better understand to what extent these
errors happen in practice, if they happen in valid configurations, or
even if we can classify syntax errors into type categories. In this
paper, we present a technique to find preprocessor-based syntax
errors in program families (Section 3) and an empirical study to
answer research questions on this topic (Sections 4 and 5).

3. A Technique to Find Preprocessor-Based
Syntax Errors

In this section, we present a technique to identify syntax errors in
program families. To parse the program families and check all con-
figurations, we use the TypeChef variability-aware parser [8]. With-
out a variability-aware parser, we need to check each configuration
separately, which is unviable for program families with many con-
figurations. To better explain our technique, we refer to Figure 2,
and detail its four steps in what follows.
The goal of the first step is to enable us to analyze several pro-

gram families. In this step, our technique excludes all external li-
braries from the program family by eliminating #include direc-
tives. Notice that we still consider the header files of the program
families, but exclude the external ones. For example, the C file de-
picted by Figure 1 includes the fenv.h library, which is not available
in standard C compilers and it is not part of the program family
code. In addition, the program families use specific external de-
pendencies for different operating systems, e.g., we cannot use a
package-building mechanism from a Linux system to install the ex-
ternal windows.h library. Because finding and downloading the cor-
rect library version is a manual and time consuming task, consider-
ing these external libraries would hind our analysis. In this way, we
only focus on the program family code.
By excluding #include directives, Step 1 may leave some

types and macros undefined in the program family. We generate
stubs using C/C++ Development Tooling (CDT) with the default
configuration to replace the original types and macros. Then, we
create a stubs.h file to contain these stubs (Step 2) and now
TypeChef is able to parse the source code. We use the CDT parser
to generate an Abstract Syntax Tree (AST) for each source code
file. Then, we navigate through the AST, get the types and macros
that CDT identifies, and add them to the stubs.h file. We include
this file into the program family source code.
Step 3 generates a shell script that calls TypeChef for each

source code file. We built an Eclipse plug-in that automates Steps
1-3. Finally, we run the script our technique generates in Step 4.
When TypeChef reports an error, we perform a manual check to
verify whether the error is related to preprocessors. After fixing the
error, we may continue to analyze the program family, i.e., depend-
ing on the error, we add a missing bracket, or remove an additional
comma, and so on. This way, TypeChef continues to analyze the
file. In case of a preprocessor-based syntax error, we create an er-
ror report with information like the problematic configuration2 and
code snippet with the syntax error.
We use our technique to analyze Git and Mercurial software

repositories. For each set of files of a given commit in the reposi-

2 By problematic configuration we mean a valid configuration, according to
the feature model constraints, that contains a syntax error.

http://www.libpng.org

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

Program Family

#include <stubs.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

Program Family

typedef int myint;

Stubs

1

TypeChef

3

2

Script

Report

4

Input

Output

Figure 2. A technique to identify preprocessor-based syntax errors
in program families.

tory, we apply the technique to find preprocessor-based syntax er-
rors. In the first commit of a given program family, we analyze all
files. In the following commits, we only consider the updated and
added files. In this way, we avoid the overhead of analyzing files
that have not changed. We use the Git and Mercurial diff tools to
identify the changed files. Figure 3 depicts this process.

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

X
#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

X

Commit #1
#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

1

Commit #2
#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

2

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

Commit #3
#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

Strategy to find
Syntax Errors

X
X

X

X
X

X

#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

X
#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

X
#include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

X #include <stdio.h>
#include <mytypes.h>

void function () {
 myint x = 10;
 #ifdef ENGLISH
 printf("Value: %d.", x);
 #endif
 #ifdef PORTUGUESE
 printf("Valor: %d.", x);
 #endif
}

X Report

OutputInput

Files selected for analysis (X)

Files
Commit #1

Files updated
or added

Figure 3. Analyzing software repositories using our technique.

It is important to mention that our technique may generate false
positives and negatives. For example, CDT may not identify all
types and macros. Additionally, external libraries defining macros
may influence the program family code. Finally, our commits re-
trieval may miss to detect updates to a file that affect other files.
Section 5.4 discusses these topics in details.

4. Study settings
In this section, we present the settings of our empirical study
to investigate syntax errors. Our study considers 41 C program
families and more than 51 thousand commits. To better structure
our study, we use the Goal, Question, Metrics approach [13].

4.1 Definition
The goal of this empirical study is to analyze program families for
the purpose of evaluation with respect to verifying the presence of
preprocessor-based syntax errors in the context of the C language.
In particular, this study addresses the following research questions:

• Question 1. Do program families releases contain
preprocessor-based syntax errors?

• Question 2. Do commits to the program families repositories
contain preprocessor-based syntax errors?

• Question 3. Do preprocessor-based syntax errors arise in valid
configurations?

• Question 4. How do program families developers introduce the
preprocessor-based syntax errors?

• Question 5. For how long a preprocessor-based syntax error
remains in commits of a particular source file?

• Question 6. What is the percentage of commits with
preprocessor-based syntax errors for each file?

• Question 7. What are the types of preprocessor-based syntax
errors we find in practice?

To answer Questions 1 and 2, we count the number of syntax
errors in releases and the number of syntax errors in commits for
each family we analyze. To answer Question 3, we analyze each
syntax error to verify whether it arises in a valid configuration. In
this question, we consider feedbacks from the actual developers.
In Question 4, we investigate each syntax error to identify how

developers introduce it. For instance, we investigate whether de-
velopers introduce the syntax error in a new source file, or in an
existing one by altering a function code, and so on. Here we also
detect whether developers add or remove preprocessor directives.
Regarding Question 5, we analyze two metrics: Date of Commit

that Fixes the syntax Error (DCFE) and Date of Commit that
Introduces the syntax Error (DCIE). Now we can measure the
time in-between, the Time to Fix the syntax Error:

TFE = DCFE −DCIE

To better explain it, we refer to Figure 4 that depicts these
metrics. In this context, developer 2 introduces a syntax error in
file example.c on June 02, 2013 (commit #2). Then, developer 1
fixes this error on June 10, 2013 (commit #4). Thus, TFE = 8 days.
To answer Question 6, we measure the Percentage of Commits

with syntax Errors (PCE) for each source file. We compute this
metric in the following way:

PCE (file) =
Number of CommitswithErrors (file)

Total Number of Commits (file)

This way, we count the number of updates with errors in a par-
ticular file and the total number of commits that changes the spe-
cific file. For instance, as we show in Figure 4, we have one update
in example.c with the syntax error (commit #2), and developers
update this file four times (commits #1, #2, #4 and #5). Thus, PCE
(example.c) = 1/4 = 25%.
Regarding Question 7, we classify all errors. For example, Sec-

tion 2 illustrates a syntax error in which developers incorrectly an-
notate an else if statement. A similar error appears in other pro-
gram families. We classify them into a type of error (category).

4.2 Planning
Next, we describe the subjects and the instrumentation of our study.

4.2.1 Subjects Selection
We analyze 41 program families written in C ranging from 2,681 to
1,536,979 lines of code. These families are from different domains,
such as operating systems, web servers, text editors, games, and
databases. We select these program families inspired by previous
work [4, 6, 7]. We also randomly select program families that run
on different operating systems and use the C preprocessor from
Source Forge.3 We present the details of each family in Table 1.

4.2.2 Instrumentation
We use the technique presented in Section 3 to investigate syntax
errors. We use TypeChef version 0.3.3 to parse all possible config-

3 http://sourceforge.net/

http://sourceforge.net/

First
Commit

Commit
#2

Commit
#3

Commit
#4

Last
Commit

Introduce a
Syntax Error
in example.c

Fix the
Syntax Error
in example.c

TFE = DCFE - DCIE

DCIE DCFE

Date of Commit that introduces the syntax Error (DCIE)
Date of Commit that fixes the syntax Error (DCFE)

Time to fix the syntax Error (TFE)

PCE (file) =
Total Number

of Commits (file)

Number of Commits
with Errors (file)

Percentage of Commits with Errors (PCE)

Number of Developers that Commit
with the Error (example.c)

1
Number of Commits with

the Error (example.c)

1

Research Question 4 Research Question 5

06/10/201306/02/2013

Add file
example.c

06/01/2013

Add file
main.c

06/06/2013

Commit
changes in
example.c

06/13/2013

06/02/2013 06/10/2013

8 days

Total Number of
Commits (example.c)

4

PCE (example.c) = 1
4

= 25%

Developer 1 Developer 2 Developer 1 Developer 1 Developer 1

Figure 4. Scenario illustrating commits timeline and how we com-
pute our metrics.

urations and CDT version 8.1.2 to create the stubs. Further, to au-
tomatize our technique, we use Eclipse Classic 4.2.2 to implement
and run a plug-in to analyze the program families. We use Terminal
version 2.3 on Mac OS X to run the scripts. We also count the num-
ber of lines of code and the number of files of each program family
using the Count Lines of Code tool version 1.56, which eliminates
blank lines and comments. Finally, we use Git version 1.7.12.4 and
Mercurial version 2.5.4 tools to identify changes in files and get
information about program families repositories.

4.3 Operation
We execute the empirical study on a MacBook Pro 2.4GHz dual-
core Intel Core i5 8GB, running Mac OS X 10.8 Mountain Lion. As
a first part of our analysis, we execute our technique to find syntax
errors in releases of all 41 C program families we consider in this
study. The analysis of all releases considers 9,064 files and almost 4
Million Lines of Code (MLOC). Then, we investigate syntax errors
in commits. However, performing this analysis in all families is a
very time consuming task, since the fourth step of our technique is
semi-automatic. This way, we decide to analyze the commits only
on the families we identify syntax errors in their releases. If some
program family does not have Git or Mercurial repositories, we
select another one. To perform this selection, we consider well-
known families that several people use, and receive a considerable
support from the open source community. During the analysis of
the repositories, we consider only the trunk, i.e., we do not analyze
the individual branches.
Next, we interpret and discuss the results of this empirical study

to investigate preprocessor-based syntax errors.

5. Results and Discussion
In this section, we answer the research questions (Section 5.1),
examine the directives that cause the syntax errors (Section 5.2),
discuss the patches we submit (Section 5.3), and present the threats
to validity (Section 5.4). The artifacts necessary to execute this
empirical study are available at the project’s web site.4

5.1 Research Questions
Next we answer and discuss the research questions.

4 http://www.dsc.ufcg.edu.br/~spg/gpce2013/

5.1.1 Do program families releases contain
preprocessor-based syntax errors?

Usually developers make a release available after code reviews and
testing activities to minimize errors and improve quality. Neverthe-
less, our results reveal that preprocessor-based syntax errors still
occur in releases. We find 14 syntax errors in 7 program fami-
lies: Bash (2), CVS (1), libpng (1), libssh (4), Vim (3), Xfig (1),
and XTerm (2). See more details in Table 1.
Next, we discuss some reasons that may lead to the syntax er-

rors. Firstly, existing C compilers like GCC and clang are not vari-
ability aware. Developers identify syntax errors only when compile
the program family using the problematic configuration. So, these
errors may be difficult to detect using existing compilers.
Moreover, programs containing preprocessors are difficult to

read and understand [3, 4, 6–8]. For example, the error we describe
in Section 2 has been fixed immediately after our patch submission.
In this case, it seems that the libpng developers did not fix the error
earlier because they had not identified it during their maintenance
tasks. On the other hand, although developers can identify the error
earlier, they may decide to fix it later, setting this fixing task as low
priority. For example, the syntax error may happen in a not deliver-
able configuration (consequently not exercised by the compilers),
meaning that it is not important at least for now. However, notice
that the error can still hamper reading and understanding activities.

5.1.2 Do commits to the program families repositories
contain preprocessor-based syntax errors?

To perform the study in repositories, we select four out of seven
program families in which we find errors in releases (see Sec-
tion 5.1.1): Bash, libpng, libssh, Vim. We do not select all seven
because we do not find the git or mercurial repositories of three of
them. To increase the number of repositories to analyze, we also
consider other four program families in which we do not find syn-
tax errors in their releases: Apache, libxml2, Dia, and Gnuplot.
We analyze 51,035 commits and identify 27 preprocessor-based

syntax errors, out of which 8 syntax errors also belong to re-
leases. We find syntax errors in all repositories we analyze. Table 2
presents the commits results, indicating the number of developers
that submitted commits, total number of commits for each program
family, date of the first commit, date of the last commit, and total
number of syntax errors.
Not surprisingly, here we find more errors than in releases, since

the source code in commits is still under development. Neverthe-
less, our results reveal that preprocessor-based syntax errors are not
common in the repositories we analyze. We identify in total 33 dis-
tinct preprocessor-based syntax errors in releases and commits as
we can see in Figure 5.

6
errors

CommitsReleases

33 distinct syntax errors

8
errors

19
errors

4
errors

CommitsReleases

24 syntax errors in valid configurations

3
errors

17
errors

Figure 5. Syntax errors in releases and commits.

5.1.3 Do preprocessor-based syntax errors arise in valid
configurations?

In this section, we analyze whether the errors we find in commits
and releases happen in valid configurations. To answer this ques-
tion, we rely on answers of the actual developers of each family we
analyze. We get feedback via email and bug track systems.
We find 33 distinct preprocessor-based syntax errors in releases

and commits, out of which 24 errors arise in valid configurations
(72%) as we can see in Figure 5. In releases, we find 14 syntax

http://www.dsc.ufcg.edu.br/~spg/gpce2013/

Table 1. Subject Characterization and Number of Syntax Errors in Releases
Family Version Application Domain LOC Number of Files Syntax Errors Errors in Valid Configurations
apache 2.4.3 web server 144,768 362
atlantis 0.0.2.1 operating system 2,681 103
bash 4.2 command language interpreter 44,824 138 2 2
bc 1.03 calculator 5,177 27

berkeley 4.7.25 database system 185,111 580
bison 2 parser generator 24,325 129
cherokee 1.2.101 web server 63,109 346
clamav 0.97.6 antivirus 107,548 377
cvs 1.11.21 version control system 76,125 236 1 1
dia 0.97.2 diagramming software 28,074 132
expat 2.1.0 XML library 17,103 54
flex 2.5.37 lexical analyzer 16,501 41
fvwm 2.4.15 windows manager 102,301 270
gawk 3.1.4 GAWK interpreter 43,070 140

ghostscript 9.05 postscript interpreter 1,536,979 3,230
gnuchess 5.06 chess player 9,293 37
gnuplot 4.6.1 plotting tool 79,557 152
gzip 1.2.4 file compressor 5,809 36
irssi 0.8.15 IRC client 51,356 308
kin db 0.5 database system 64,120 119
libieee 0.2.11 IEEE standards for VHDL library 5,323 27
libdsmcc 0.6 DVB library 5,453 30
libpng 1.6.0 PNG library 44,828 61 1 1
libsoup 2.41.1 SOUP library 40,061 178
libssh 0.5.3 SSH library 28,015 125 4
libxml2 2.9.0 XML library 234,934 162
lighttpd 1.4.30 web server 38,847 132
lua 5.2.1 programming language 14,503 59
lynx 2.8.7 web browser 80,334 117
m4 1.4.4 macro expander 10,469 26

mpsolve 2.2 mathematical software 10,278 41
mptris 1.9 game 4,988 29
prc-tools 2.3 C/C++ library for palm OS 14,371 142
privoxy 3.0.19 proxy server 29,021 67
sendmail 8.14.6 mail transfer agent 91,288 243
sqlite 3.7.15.2 database system 94,113 134
sylpheed 3.3.0 e-mail client 83,528 218
rcs 5.7 revision control system 11,916 28
vim 7.3 text editor 288,654 178 3 2
xfig 3.2.4 vector graphics editor 70,493 192 1 1
xterm 2.4.3 terminal emulator 50,830 58 2 2
Total 3,860,078 9,064 14 9

Table 2. General Information about the Program Families Repositories
Project Total Number Total Number First Last Syntax Errors from valid
Name of Developers of Commits Commit Commit Errors Configurations
apache 108 24,719 Jul-3-1996 May-3-2013 3 3
bash 2 68 Aug-26-1996 Mar-7-2013 2 2
dia 217 5,397 Jan-3-1997 May-5-2013 2 2

gnuplot 16 7,611 Apr-15-1998 May-6-2013 5 5
libpng 5 2,179 Jul-20-1995 Apr-25-2013 2 2
libssh 26 2,569 Jul-5-2005 Apr-5-2013 7 2
libxml2 169 4,179 Jul-24-1998 May-9-2013 2 2
vim 2 4,313 Jun-13-2004 May-4-2013 4 2
Total 51,035 27 20

errors, out of which 7 errors (50%) happen in valid configurations.
We find 27 syntax errors in commits, out of which 20 (74%) arise
in valid configurations. Tables 1 and 2 summarize the results.
We identify 9 syntax errors in invalid configurations5 of lib-

ssh (5), Vim (2), and XTerm (2). Figure 6 illustrates part of a func-
tion of libssh. If we do not define macros HAVE LIBGCRYPT and
HAVE LIBCRYPTO, our technique identifies a function with no sig-
nature in this configuration. However, it is not valid according
to the developers. The libssh building process checks that these
macros are alternative and we must define exactly one of them.
Similar problems happen in the Vim program family. Some macros
(FEAT GUI W32, FEAT GUI MOTIF, and FEAT GUI GTK) are alter-
native as well and we must define exactly one of them.

1. #ifdef (HAVE_LIBGCRYPT)
2. static void dsa_public_to_string(gcry_sexp_t key, BUFFER *buffer){
3. #elif defined (HAVE_LIBCRYPTO)
4. static void dsa_public_to_string(DSA *key, BUFFER *buffer){
5. #endif
6. // Code Here..
7. }

Figure 6. Syntax error in libssh family in an invalid configuration.

As another example, Figure 7 illustrates a code snip-
pet of XTerm. Notice that configuration GLIBC and
USE ISPTS FLAG does not open the if statement bracket at
line 5, but it closes the bracket at line 14. However, according
to the XTerm developers, this configuration is invalid. They use
USE ISPTS FLAG to handle macro ISC (long obsolete), which
predated GLIBC .
Despite happening in invalid scenarios, we argue that this sit-

uation makes the task of understanding and maintaining the code
cumbersome. It can confuse developers unaware of particular con-
figuration constraints and lead them to wrongly suppose that there
is a syntax error in valid configurations.

5.1.4 How do program families developers introduce the
preprocessor-based syntax errors?

In this section, we investigate how developers introduce 20
preprocessor-based syntax errors in commits that happen in valid
configurations. We identify four categories:

1. Changing existing code and adding preprocessor directives: de-
velopers modify existing syntactical units by changing tokens.
In addition, they introduce new preprocessor macros, for exam-
ple, to support different operating systems;

2. Changing existing code and removing directives: developers
change existing syntactical units by changing tokens. Further,
they remove preprocessor macros;

3. Changing existing code without adding or removing preproces-
sor directives: developers modify existing syntactical units by
only changing tokens;

4. Adding completely new code: developers introduce new code,
e.g., adding new syntactical units, functions, and files.

In our study, developers introduce more syntax errors when
changing existing code and adding preprocessor directives. In this
category, they introduce 7 errors (35%). Further, developers in-
troduce 5 errors (25%) when modifying code without adding or
removing preprocessor directives. Finally, they introduce 2 errors
(10%) when adding completely new code, and 1 error (5%) when
changing code and removing directives. Developers may introduce
more errors when changing code because preprocessor directives

5 By invalid configuration we mean that it is not valid according to the
feature model constraints.

make the tasks of reading and understanding the source code more
difficult [3, 4].
We could not classify 5 errors (25%), since we find these errors

in the very first commit available for analysis. So, we miss informa-
tion. For instance, if developers migrated the program family from
one repository to the current one, our analysis does not consider the
information with respect to the former repository.

#ifdef __GLIBC__
2. // Code Here..
3. #else
4. #if defined (USE_ISPTS_FLAG)
5. if (result) {
6. #endif
7. result = ((*pty = open("/dev/ptmx", O_RDWR)) < 0);
8. #endif
9. // Code Here..
10.#if defined (SVR4) || defined (__SCO__) || defined (USE_ISPTS_FLAG)
11. if (!result)
12. strcpy(ttydev, ptsname(*pty));
13. #ifdef USE_ISPTS_FLAG
14. }
15. #endif
16. // Code Here..
17.#endif
18. // Code Here..

Figure 7. Syntax error in an invalid configuration of XTerm.

5.1.5 For how long a preprocessor-based syntax error
remains in commits of a particular source file?

In this section, we investigate the time required to fix errors in
valid configurations. In our study, the time developers need to fix
the errors varies from days to years. For example, developers fixed
the Vim error in file ex cmds2.c in a few days after introducing
it. In contrast, developers took more than 5 years to fix the error
in parser.c of Gnuplot. Table 3 depicts each syntax error we
find during the analysis of commits, indicating the file name that
contains the error, the date of the first commit containing the error,
the date of commit that fixes the error, and time to fix the error.
There are some reasons why developers may take a long time

to fix these errors. As described before, this might happen because
developers do not identify the errors. They may not use variability-
aware parsers or may have difficulties when reading and under-
standing preprocessor-based code. On the other hand, even if they
find an error, they might take some time to fix it, since the error
may arise in not exercised or deliverable configurations, leading
developers to set lower priority to these errors when compared to
semantic ones, for example.
In our study, we do not find a correlation between the file size—

see Column “Lines of Code (LOC)”—and the time developers need
to fix the errors (we remove errors developers have not fixed). There
are some syntax errors in files with thousands lines of code fixed in
two days, such as the file xpath.c in libxml2. On the other hand,
we also find the opposite: errors in smaller files like parser.c (468
LOC) in Gnuplot fixed after more than 5 years.
Finally, we do not find a correlation between the time to fix er-

rors and the number of developers that commit a file with syntax
error (we also remove errors developers have not fixed). Table 3
indicates the number of developers that commit a file with syn-
tax error (see column “Developers”). For instance, 13 different de-
velopers committed 77 times the file mod include.c containing a
syntax error in Apache. They took almost a year to fix the error. As
another example, we also find an error in os unix.c (Vim) that still
needs fixing, in spite of 131 commits in 9 years. Only two develop-
ers committed this file. Nevertheless, it is important to note that our
study cannot conclude if the developers were aware of these syntax
errors before fixing them.

Table 3. Results of the Analysis of Commits per Syntax Error (only in valid configurations)
Lines Date of Date of Time to Total Number of Number of Percentage

Project File of Commit that Commit Fix the Error Number Commits Developers of Commits Directive
Name Name Code Introduce that Fix (TFE) of with that Commit with Errors Type

(LOC) the Error the Error in days Commits the Error with the Error (PCE)
apache ssl util ssl.c 365 Jun-28-2001 Apr-2-2002 278 62 15 4 24.19% Complete
apache ab.c 751 Abr-24-2000 May-16-2000 22 222 4 1 1.80% Complete
apache mod include.c 2105 Oct-16-2000 Set-10-2001 329 353 77 13 21.81% Complete
bash getcppsyms.c 401 Aug-26-1996 Dec-23-1996 119 1 1 1 100% Complete
bash execute cmd.c 2578 Jul-27-2004 Not Fixed - 23 12 2 52.17% Incomplete
dia app procs.c 429 Sep-3-2001 Nov-1-2001 59 232 1 1 0.43% Complete
dia preferences.c 645 Sep-3-2001 Sep-23-2002 385 100 10 5 10% Incomplete

gnuplot plot.c 450 Apr-15-1998 Sep-22-1998 160 180 5 1 2.78% Incomplete
gnuplot util.c 505 Jun-2-1999 Jun-9-1999 7 123 2 1 1.63% Incomplete
gnuplot parse.c 468 Apr-15-1998 Jul-22-2003 1924 89 27 3 30.34% Complete
gnuplot graph3d.c 2211 Oct-21-2002 Jan-7-2003 78 293 3 2 1.02% Incomplete
gnuplot datafile.c 3662 Feb-23-2008 Apr-13-2009 414 268 34 1 12.69% Incomplete
libpng pngtest.c 1198 Mar-14-2001 May-14-2001 0 1204 8 1 0.66% Incomplete
libpng pngtrans.c 186 May-16-1997 Jan-30-1998 259 738 4 1 0.54% Incomplete
libssh server.c 910 Jul-5-2005 Jul-5-2005 0 173 1 1 0.58% Complete
libssh channels.c 715 Jun-12-2008 Jun-16-2008 4 229 1 1 0.44% Complete
libxml2 xmlregexp.c 2790 Apr-20-2002 Sep-17-2002 150 98 3 1 3.06% Complete
libxml2 xpath.c 7659 Apr-18-2004 Apr-20-2004 2 370 2 1 0.54% Complete
vim ex cmds2.c 3088 Jan-19-2010 Jan-19-2010 0 99 2 1 2.02% Incomplete
vim os unix.c 4520 Jun-13-2004 Not Fixed - 131 131 2 100% Incomplete

5.1.6 What is the percentage of commits with
preprocessor-based syntax errors for each file?

In this section, we analyze the percentage of commits with
preprocessor-based syntax errors for each file. We only consider er-
rors in valid configurations. As can be seen, the percentage of com-
mits with errors also varies significantly, from 0.43% to 100% (see
column “Percentage of Commits with Errors” (PCE) in Table 3).
For instance, Dia developers committed the app procs.c file 232
times but only once with the syntax error (PCE = 0.43%).
We also identify two syntax errors that developers have not

fixed, e.g., in os unix.c (Vim), and execute cmd.c (Bash). Re-
garding the syntax error in Vim, we find it in all commits (100%)
with the specific file, totaling 131 commits. It may arise only in
configurations that users do not use in practice. It is probably the
reason why developers did not fix it yet. Regarding the syntax error
in Bash, we find it in 57 commits (52.17%). However, this syntax
error may not be affecting the users of Bash as well, since it is in
the repository since 2004. This way, Bash and Vim developers may
not be worried about these syntax errors despite the fact that they
arise in valid configurations.
We do not observe correlation between PCE and LOC, TFE,

or the number of developers (again, we remove the errors not fixed
yet). Nevertheless, our results suggest a tendency that with few
commits, developers fix the errors.

5.1.7 What are the types of preprocessor-based syntax errors
we find in practice?

In this section, we categorize the preprocessor-based syntax errors
we find in valid configurations in our study. We classify them in 6
types: missing/additional array separator, ill-formed construction,
missing bracket, missing logical operator, missing parenthesis, and
missing semicolon. Our results reveal that the types of errors ill-
formed construction and missing bracket are the most common
ones. We present the number of errors of each type in Table 4.
We find two errors in the missing/additional array separator

type. For example, Figure 8 illustrates a syntax error of theGnuplot

Table 4. Syntax Errors for each type.
Type of error Number of Occurrences Percentage
Array Separator 2 8.33%

Ill-Formed Construction 7 29.16%
Missing Bracket 6 25%

Missing Logical Operator 2 8.33%
Missing Parentheses 4 16.66%
Missing Semicolon 3 12.5%

family. This code snippet generates an invalid C program when we
have EAM OBJECTS and !WITH IMAGE. In this configuration, we
have two array separators, one at line 3 and another at line 9.

1. df_bin_default_columns default_style_cols[LAST_PLOT_STYLE + 1] = {
2. // other elements here
3. {HISTOGRAMS, 1, 0},
4. #ifdef WITH_IMAGE
5. {IMAGE, 1, 2},
6. {RGBIMAGE, 3, 2}
7. #endif
8. #ifdef EAM_OBJECTS
9. , {CIRCLES, 2, 1}
10.#endif
11.};

Figure 8. Code snippet of Gnuplot with a syntax error when we
define EAM OBJECTS and !WITH IMAGE.

We also find some syntax errors related to ill-formed con-
struction type. The code snippet in Figure 9 generates an in-
valid C program when we have START RSH WITH POPEN RW and
!SHUTDOWN SERVER in CVS. In this configuration, we introduce an
else if without its corresponding if.
Regarding the missing bracket type, we present an example

of libpng in Section 2. In this example, we show a directive that
causes a syntax error, i.e., a missing bracket, when we do not de-
fine PNG READ INTERLACING SUPPORTED. We find 6 errors of this
type. Figure 10 depicts an error we find in Vim, where we classify as
missing logical operator type. In this example, if we define WIN32,
an error arises, since there is a missing logical operator at line 4.

1. // Code here..
2. #ifdef (SHUTDOWN_SERVER)
3. if (current_parsed_root->method != server_method)
4. #endif
5. #ifndef (NO_SOCKET_TO_FD)
6. {
7. if (S_ISSOCK (s.st_mode))
8. shutdown (fileno (bc->fp), 0);
9. }
10.#endif
11.#ifdef (START_RSH_WITH_POPEN_RW)
12. else if (pclose (bc->fp) == EOF){
13. error (1, errno, "closing connection to %s");
14. closefp = 0;
15. }
16.#endif
17.// Code continues here..

Figure 9. Code snippet of CVS with a syntax error when we define
START RSH WITH POPEN RW and !SHUTDOWN SERVER.

1. // More code here..
2. int fd_tmp = mch_open(filename, O_RDONLY
3. #ifdef WIN32
4. O_BINARY | O_NOINHERIT
5. #endif
6. , 0);
7. // Code continues here..

Figure 10. Code snippet of Vim with a syntax error at line 4 when
we define WIN32.

Next, we present in Figure 11 a syntax error in Apache of
the missing opening parentheses type. In this example, there is a
syntax error when we define SSL EXPERIMENTAL PROXY. There is
a missing opening parentheses at the if statement condition.

#ifdef SSL_EXPERIMENTAL_PROXY
2. // More code here..
3. if (apr_dir_open(&dir, pathname, sp)) != APR_SUCCESS) {
4. apr_pool_destroy(sp);
5. return FALSE;
6. }
7. // Code continues here..
8. #endif

Figure 11. Code snippet of Apache with a syntax error at line 3
when we define SSL EXPERIMENTAL PROXY.

Finally, Figure 12 presents another syntax error in Apache of
the missing semicolon type. We find a syntax error at line 8 in
configurations defining NOT ASCII. In this case, developers do not
include a semicolon at the end of line 8.

// More code here..
2. #ifdef NOT_ASCII
3. status = ap_xlate_open(&to_ascii, "ISO8859-1", cntxt);
4. if (status) {
5. fprintf(stderr, "ap_xlate_open(to ASCII)->%d\n", status);
6. exit(1);
7. }
8. status = ap_xlate_open(&from_ascii, "ISO8859-1", cntxt)
9. if (status) {
10. fprintf(stderr, "ap_xlate_open(from ASCII)->%d\n", status);
11. exit(1);
12. }
13.#endif
14.// Code continues here..

Figure 12. Code snippet of Apache with a syntax error at line 8
when we define NOT ASCII.

Notice that making developers aware of these types might be
useful to avoid these errors. For example, when defining optional
array elements, they can pay more attention to either not add un-
necessary or miss separators. So, they may avoid the code construc-
tions related to these types.

5.2 Verifying the Type of the Preprocessor Directives that
causes the Syntax Errors

The C preprocessor is expressive enough so that we can encom-
pass any code snippet. Developers can annotate part or a complete
syntactical unit using preprocessor directives. For example, the if

statement in Figure 11 represents a complete annotation, since the
preprocessor completely encompasses the statement. As another
example, Figure 10 presents the #ifdef directive that separates
the parameters of the mch open function call. In this case, it is an
incomplete annotation [6].
In our study, we find 24 distinct errors in valid configurations

in commits and releases (we find 3 common errors in both anal-
yses). We observe that 10 syntax errors (41.67%) are related to
complete annotations, and 14 to incomplete ones (58.33%). Table 3
details these results considering commits and valid configurations.
Regarding only the commits results, 10 errors (50%) happen in in-
complete annotations. On the other hand, we have 7 errors in re-
leases, out of which 6 (85.71%) happen in incomplete annotations.
In this context, related approaches [3, 4, 6, 7] suggest that the

use of incomplete annotations may be more error prone. Although
this hypothesis seems reasonable due to difficulties of reading and
understanding incomplete annotations, we find that 41.67% of the
syntax errors occur in complete annotations.

5.3 Submitting Patches to Fix the Syntax Errors
We submit 8 patches—for each syntax error not fixed—to 6 fami-
lies: Bash (1), CVS (1), libpng (1), libssh (2), Vim (2), and Xfig (1).
In each patch, we also suggest how to fix the error. To the best of
our knowledge, Xfig and Vim do not use bug track systems, so we
submit patches to these families via email. Regarding patches to the
other 4 families, we submit them via bug track systems.
We consider that developers accept a patch when they mention

that it is an error by email, or keep the patch open after updating
information like its priority. On the other hand, we consider that
developers reject the patch when they mention it is not an error by
email, or update this information on the patch. Thus, developers
accepted 6 out of 8 patches. We present information about the
patches we submit in Table 5, illustrating the family name, the file
name with the error, and the patches status and priority.
Two out of six patches accepted have been set as low prior-

ity because the errors happen in invalid configurations. Figure 6
illustrates one of them. To fix it, we suggest to add an #else di-
rective followed by the #error directive, making the source code
explicit regarding the definition of exactly one of the macros. Next,
we quote one of the libssh developers in response to our suggestion:

“Yes, we could add an error in this case. But the con-
figure step takes care of making sure either libcrypto or
libgcrypt is available.”

Notice that the libssh developers accepted our patch even occur-
ring in invalid configurations. Therefore, it seems that it is worth-
while to change the source code so it becomes more readable
and understandable regarding configuration constraints. The sec-
ond patch of libssh is in the same file (keys.c), and it is very sim-
ilar to the one we present in Figure 6.
We submit a patch to libpng and developers fixed the error

immediately after our patch submission (see Section 2). Regarding
two patches we submit to Bash and CVS, developers accepted
and the patches are still with the open status and normal priority.
Developers accepted another patch to Vim as well, but they set no
priority explicitly since we submit patches to Vim via email.

Vim developers rejected one patch by just arguing that it arises
in an invalid configuration. Developers rejected a patch we submit
to the Xfig program family as well. In this case, developers mention
they do not use (at least for now) the erroneous macro we identify.
According to the following quotation, it seems that the macro will
be used when they decide to distribute the Xfigmanual in Japanese.
So, we still count this as an error, since it may arise in the future.

“It is not used now as Japanese PDF manual is not
distributed with xfig, and I think you can simply ignore it.”

Table 5. Patches we submit to Program Families.
Family File Configuration Status Priority
bash execute cmd.c valid open normal
cvs buffer.c valid open normal
libpng pngvalid.c valid fixed normal
libssh keys.c invalid new low
libssh keys.c invalid new low
vim os unix.c valid open -
vim if mzsch.c invalid not a bug -
xfig w cmdpanel.c valid not a bug -

5.4 Threats to Validity
Construct Validity. It refers to whether the preprocessor-based
syntax errors we find are indeed errors in valid configurations. We
minimize this threat by getting feedback from the actual develop-
ers. They accepted 6 out of the 8 syntax errors we report.
Internal Validity. Our technique excludes #include directives

to eliminate external libraries in order to scale. However, notice that
we may face false negatives due to the exclusion of these #include
directives, which makes our technique unsound. In some cases,
the external libraries can introduce additional code through macro
definitions that may cause preprocessor-based syntax errors into the
family source code. In this context, our technique may miss some
syntax errors. Moreover, our technique may yield false positives
due to types and macros that the CDT parser does not identify, i.e.,
these types and macros may not be included in our stubs.h file.
So, we add the type or macro manually, which is an error-prone
task. Still, in our study, our technique found 33 syntax errors in
26.83% of the program families we analyze. Moreover, we detect
that 24 out of 33 syntax errors arise in valid configurations.
Our technique analyzes only updated and added files in software

repositories from the second to the last commit, as described in
Section 3. However, this approach may lead to false negatives. For
instance, developers may update a macro definition in a file A,
which leads to errors in a different file B. In our approach, because
only A has been modified, we only analyze A. However, later, if
developers modify B, our technique may catch the syntax error.
Further, we may miss some syntax errors during the analysis of
the repositories since we analyze only the trunk, i.e., branches may
contain syntax errors as well.
Finally, the last step of our technique is semi-automatic, which

is an error prone activity. However, it is important to be semi-
automatic. For example, due to several C standards such as ANSI
C, C99, and C11, TypeChef might not parse some C constructions,
arising false positives easily recognizable by humans.
External Validity.We analyze 41 releases of different domains,

sizes, and different number of developers. Moreover, we analyze
more than 51 thousands commits of 8 families from small to mid
sizes. We select well-known and active C families used in indus-
trial practice. The families communities exist for years and seem
very active: there are commits in 2013. In this way, we alleviate
this threat. However, the small number of errors we identify makes
it hard to apply inference statistics. Thus, the results are initial mea-
surements and we should not use them to any direct comparison.

6. Related Work
Analysis of C Preprocessor Usage. Some approaches studied the
way developers use the C preprocessor in practice. Liebig et al. [7]
analyzed 40 program families, and suggested that developers can

introduce subtle syntax errors, for example, by annotating a clos-
ing bracket but not the opening one. They define this kind of an-
notation as undisciplined. According to their study, undisciplined
annotations correspond to 15.6% of the total number of annota-
tions. Undisciplined annotations are similar to incomplete annota-
tions [6, 14, 15] we use in this paper. In our work, we found 24
syntax errors related to undisciplined and disciplined annotations.
Baxter and Mehlich proposed DMS, a source-code transforma-

tion tool for C and C++ [16]. In a more recent work, these authors
used DMS and emphasized the problem of using unstructured an-
notations [3], similar to incomplete annotations as well. Further,
the authors presented an example with a syntax error related to the
missing bracket error type we discuss here. In our work, we per-
form an empirical study investigating the presence of syntax errors
in program families different from their approach.
Ernst et al. [4] presented an empirical study on how the C pre-

processor is used in practice. They analyzed 26 packages compris-
ing 1.4 MLOC. They found that most C preprocessor usage follows
simple patterns. It also discussed about the undisciplined use of the
C preprocessor and its problems, such as that it makes the pro-
gram more difficult to understand. However, it focused mainly on
macro definitions using #define directives. In this sense, our work
complements the analysis of using the C preprocessor and presents
findings about problems related to syntax errors in practice.
Others approaches also complemented these studies providing

more information about the preprocessor usage. In a previous work,
Ribeiro et al. [11] analyzed how often methods with preprocessor
directives contain feature dependencies. Liebig et al. [10] proposed
and collected some metrics to analyze the feature code scattering
and tangling when using preprocessor directives. They analyzed 40
families implemented in C. However, none of them investigated the
presence of syntax errors in C program families.
Variability-Aware Parsers. There are some strategies to parse

C code with preprocessor directives. Some approaches [6, 17, 18]
applied the strategy of preprocessing or modifying the code before
parsing it. However, this strategy is not interesting to analyze vari-
ability since we lose information about the preprocessor directives.
Kästner et al. [8] proposed a variability-aware parser, i.e., a

parser that analyze all possible configurations of a C program at
once. In addition, it performs type checking analysis [19, 20]. In our
work, we use TypeChef to identify errors in C program families.
Gazzillo and Grimm [12] proposed a variability-aware parser

called SuperC. This parser is faster than TypeChef, but it does not
perform type checking analysis. Since SuperC does not recognize
some C constructions of different standards, we did not use it in our
work. It does not parse some families that we use in this study.
Extracting Variability Information. Others proposed tech-

niques to extract variability information from C program families.
Some researches considered the Linux kernel in their studies and
analyzed its source code files, Kconfig files, and Makefiles [21–
23]. Other researches analyzed the rapid evolution of the Linux
configurations. The number of features had doubled in the period
analyzed [24]. She et al. [25] analyzed different operating sys-
tems, such as FreeBSD and eCos. In our work, we decide to con-
tact the developers of the program families to check configuration
constraints. This way, we avoid the effort of gathering information
about configuration constraints for each family.
Tartler et al. [26] revealed the presence of zombie configura-

tions, i.e., macros that cannot be either enabled or disabled at all, in
the Linux kernel. Besides, others researches found several inconsis-
tencies in the Linux kernel by analyzing source files, Kconfig and
makefiles [27, 28]. In our work, we focused only on syntax errors in
source code files and their presence in valid configurations. To the
best of our knowledge, there is no existing work that investigated
the impact of syntax errors in many C program families.

7. Concluding Remarks
In this paper, we presented an empirical study to investigate
preprocessor-based syntax errors in C program families. Firstly, we
defined a technique to identify syntax errors. Then, we analyzed 41
C program families and more than 51 thousands commits to answer
our research questions. In summary, we found 24 distinct syntax
errors (7 syntax errors in releases and 20 errors in commits). More-
over, we detected 9 errors that arise only in invalid configurations.
The results showed that preprocessor-based syntax errors are

not common in practice. Furthermore, the results revealed that de-
velopers introduce syntax errors mainly by modifying existing code
and adding preprocessor directives, e.g., adding new directives to
support other operating systems. We detected that the time devel-
opers need to fix syntax errors varies from days to years. In this
context, we could not find correlation with the LOC of the file that
contains the error, or even with the number of developers modi-
fying that particular file. The percentage of commits with syntax
errors varies as well. We found files in which 0.43% of the com-
mits with them contain the syntax error, but also files that contain
the syntax error in all commits. Regarding the types of errors, we
identified that we can categorize the syntax errors we found in 6
different types. We presented them using real code snippets of the
program families we consider in this study. Finally, our empirical
study presented findings that may be helpful to actual program fam-
ilies developers minimize the problem of syntax errors in practice.

Acknowledgments
We gratefully thank Christian Kästner for helpful comments. This
work was partially supported by the National Institute of Sci-
ence and Technology for Software Engineering (INES), funded by
CNPq grants 573964/2008-4 and 480160/2011-2.

References
[1] D. Parnas, “On the design and development of program families,”

IEEE Transactions on Software Engineering, vol. 2, pp. 1–9, 1976.
[2] H. Spencer, “Ifdef considered harmful, or portability experience with

C news,” in USENIX Annual Technical Conference, pp. 185–197,
1992.

[3] I. Baxter and M. Mehlich, “Preprocessor conditional removal by sim-
ple partial evaluation,” in Proceedings of the Working Conference on
Reverse Engineering, WCRE ’01, pp. 281–290, IEEE Computer Soci-
ety, 2001.

[4] M. Ernst, G. Badros, and D. Notkin, “An empirical analysis of C pre-
processor use,” IEEE Transactions on Software Engineering, vol. 28,
pp. 1146–1170, 2002.

[5] C. Kästner and S. Apel, “Virtual separation of concerns – a second
chance for preprocessors,” Journal of Object Technology (JOT), vol. 8,
no. 6, 2009.

[6] A. Garrido and R. Johnson, “Analyzing multiple configurations of a C
program,” in Proceedings of the 21st IEEE International Conference
on Software Maintenance, ICSM ’05, pp. 379–388, IEEE Computer
Society, 2005.

[7] J. Liebig, C. Kästner, and S. Apel, “Analyzing the discipline of pre-
processor annotations in 30 million lines of C code,” in Proceedings of
the 10th Aspect-Oriented Software Development, AOSD ’11, pp. 191–
202, ACM, 2011.

[8] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in Proceedings of the 26th ACM SIG-
PLAN Object-Oriented Programming Systems Languages and Appli-
cations, OOPSLA ’11, ACM, 2011.

[9] IEEE, “Standard Glossary of Software Engineering Terminology,”
IEEE Std 610.12-1990, pp. 1–84, 1990.

[10] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An anal-
ysis of the variability in forty preprocessor-based software product
lines,” in Proceedings of the 32nd International Conference on Soft-
ware Engineering, ICSE ’10, pp. 105–114, ACM, 2010.

[11] M. Ribeiro, F. Queiroz, P. Borba, T. Tolêdo, C. Brabrand, and
S. Soares, “On the impact of feature dependencies when maintain-
ing preprocessor-based software product lines,” in Proceedings of the
10th Generative Programming and Component Engineering, GPCE
’11, pp. 23–32, ACM, 2011.

[12] P. Gazzillo and R. Grimm, “SuperC: parsing all of C by taming the
preprocessor,” in Proceedings of the 33rd Programming Language
Design and Implementation, PLDI ’12, pp. 323–334, ACM, 2012.

[13] V. Basili, G. Caldiera, and D. H. Rombach, “The goal question metric
approach,” in Encyclopedia of Software Engineering, Wiley, 1994.

[14] A. Garrido and R. Johnson, “Challenges of refactoring C programs,” in
Proceedings of the International Workshop on Principles of Software
Evolution, IWPSE ’02, pp. 6–14, 2002.

[15] A. Garrido and R. Johnson, “Refactoring C with conditional compi-
lation,” in Proceedings of the 18th Automated Software Engineering,
ASE ’03, pp. 323–326, IEEE Computer Society, 2003.

[16] I. Baxter, “Design maintenance systems,” Communication of the ACM,
vol. 35, no. 4, pp. 73–89, 1992.

[17] S. Somé and T. Lethbridge, “Parsing minimization when extracting
information from code in the presence of conditional,” in Proceedings
of the International Workshop on Program Comprehension, IWPC
’98, pp. 118–125, 1998.

[18] Y. Padioleau, “Parsing C/C++ code without pre-processing,” in Com-
piler Construction, vol. 5501 of Lecture Notes in Computer Science,
pp. 109–125, Springer Berlin Heidelberg, 2009.

[19] A. Kenner, C. Kästner, S. Haase, and T. Leich, “Typechef: toward type
checking #ifdef variability in C,” in Proceedings of the 2nd Feature-
Oriented Software Development, FOSD ’10, pp. 25–32, ACM, 2010.

[20] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking
annotation-based product lines,” ACM Transactions on Software En-
gineering and Methodology, vol. 21, pp. 14:1–14:39, July 2012.

[21] J. Sincero, R. Tartler, D. Lohmann, and W. Schröder-Preikschat, “Ef-
ficient extraction and analysis of preprocessor-based variability,” in
Proceedings of the 9th Generative Programming and Component En-
gineering, GPCE ’10, pp. 23–32, ACM, 2010.

[22] N. Andersen, K. Czarnecki, S. She, and A. Wasowski, “Efficient syn-
thesis of feature models,” in Proceedings of the 16th Software Product-
Line Conference, SPLC ’12, pp. 106–115, ACM, 2012.

[23] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D. Lohmann, “A
robust approach for variability extraction from the linux build system,”
in Proceedings of the 16th Software Product-Line Conference, SPLC
’12, pp. 21–30, ACM, 2012.

[24] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolu-
tion of the linux kernel variability model,” in Proceedings of the 14th
Software Product-Line Conference, SPLC ’10, pp. 136–150, Springer-
Verlag, 2010.

[25] S. She, R. Lotufo, T. Berger, A.Wasowski, and K. Czarnecki, “Reverse
engineering feature models,” in Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pp. 461–470, ACM,
2011.

[26] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann,
“Dead or alive: finding zombie features in the linux kernel,” in Pro-
ceedings of the 1st Feature-Oriented Software Development, FOSD
’09, pp. 81–86, 2009.

[27] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Fea-
ture consistency in compile-time-configurable system software: facing
the linux 10,000 feature problem,” in Proceedings of the 6th Computer
Systems, pp. 47–60, ACM, 2011.

[28] R. Tartler, J. Sincero, C. Dietrich, W. Schröder-Preikschat, and
D. Lohmann, “Revealing and repairing configuration inconsistencies
in large-scale system software,” International Journal on Software
Tools for Technology Transfer, vol. 14, no. 5, pp. 531–551, 2012.

	Introduction
	Motivating Example
	A Technique to Find Preprocessor-Based Syntax Errors
	Study settings
	Definition
	Planning
	Subjects Selection
	Instrumentation

	Operation

	Results and Discussion
	Research Questions
	Do program families releases contain preprocessor-based syntax errors?
	Do commits to the program families repositories contain preprocessor-based syntax errors?
	Do preprocessor-based syntax errors arise in valid configurations?
	How do program families developers introduce the preprocessor-based syntax errors?
	For how long a preprocessor-based syntax error remains in commits of a particular source file?
	What is the percentage of commits with preprocessor-based syntax errors for each file?
	What are the types of preprocessor-based syntax errors we find in practice?

	Verifying the Type of the Preprocessor Directives that causes the Syntax Errors
	Submitting Patches to Fix the Syntax Errors
	Threats to Validity

	Related Work
	Concluding Remarks

