
Java Reflection API: Revealing the Dark Side of the Mirror
Felipe Pontes
Rohit Gheyi

Federal University of Campina Grande
Campina Grande, Brazil

felipepontes@copin.ufcg.edu.br,rohit@dsc.ufcg.edu.br

Sabrina Souto
State University of Paraiba
Campina Grande, Brazil
sabrinadfs@gmail.com

Alessandro Garcia
PUC-Rio

Rio de Janeiro, Brazil
afgarcia@inf.puc-rio.br

Márcio Ribeiro
Federal University of Alagoas

Maceió, Brazil
marcio@ic.ufal.br

ABSTRACT
Developers of widely used Java Virtual Machines (JVMs) implement
and test the Java Reflection API based on a Javadoc, which is speci-
fied using a natural language. However, there is limited knowledge
onwhether Java Reflection API developers are able to systematically
reveal i) underdetermined specifications; and ii) non-conformances
between their implementation and the Javadoc. Moreover, current
automatic test suite generators cannot be used to detect them. To
better understand the problem, we analyze test suites of two widely
used JVMs, and we conduct a survey with 130 developers who use
the Java Reflection API to see whether the Javadoc impacts on their
understanding. We also propose a technique to detect underdeter-
mined specifications and non-conformances between the Javadoc
and the implementations of the Java Reflection API. It automatically
creates test cases, and executes them using different JVMs. Then,
we manually execute some steps to identify underdetermined spec-
ifications and to confirm whether a non-conformance candidate
is indeed a bug. We evaluate our technique in 439 input programs.
Our technique identifies underdetermined specification and non-
conformance candidates in 32 Java Reflection API public methods
of 7 classes. We report underdetermined specification candidates
in 12 Java Reflection API methods. Java Reflection API specifiers
accept 3 underdetermined specification candidates (25%). We also
report 24 non-conformance candidates to Eclipse OpenJ9 JVM, and
7 to Oracle JVM. Eclipse OpenJ9 JVM developers accept and fix 21
candidates (87.5%), and Oracle JVM developers accept 5 and fix 4
non-conformance candidates.
CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Reflection API, Non-conformance, Underdetermined Specification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338946

ACM Reference Format:
Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio
Ribeiro. 2019. Java Reflection API: Revealing the Dark Side of the Mirror. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3338906.3338946

1 INTRODUCTION
Reflection is the ability to examine a program and to change its
structure and behavior at run time [16]. It is a feature present in
Python, C#, and Java. In Java, 78% of open source Java projects
use reflection [10], such as JBoss, JUnit5, Maven, and Spring Boot.
These projects often depend on the Java Reflection API to imple-
ment critical tasks in a program, such as handling dependencies
dynamically, inspecting program components, manipulating fields,
and invoking methods at run time.

The reliable use of a reflection API largely depends on the sys-
tematic conformance testing of the API implementation. Otherwise,
two basic problemsmay occur. First, the implementation of eachAPI
method might not be in conformance with its specification. Second,
API developers may not be able to reveal issues in the API spec-
ification. These two problems may induce misunderstandings of
API methods even by experienced Java programmers [32] [33] [39].
Java Virtual Machine (JVM) developers implement and test the Java
Reflection API based on a Javadoc [13, p. 37], which is specified
using a natural language. In fact, developers of widely used JVMs —
e.g., Eclipse OpenJ9 and OpenJDK — implement test cases to verify
whether their implementation is in conformance with the Javadoc.

However, there is limited knowledge on whether Java Reflection
API developers systematically reveal underdetermined specifica-
tions and non-conformances in their implementations. Following
Liskov [14], we say that a specification is underdetermined if it
allows multiple implementations to return different results for the
same input. In its turn, a non-conformance occurs when a Java
Reflection API method does not follow its Javadoc specification.
Empirical studies tend to only investigate the frequency [10] and
the complexity on the use of the Java Reflection API [34]. They
conclude that API users often have to invoke many API methods
to implement recurring non-trivial tasks in their programs [10],
which makes the use of reflection in Java even harder. However,
the scenario may be even more worrisome. It may be the case that

636

https://doi.org/10.1145/3338906.3338946
https://doi.org/10.1145/3338906.3338946

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro

each Reflection API method is poorly tested based on its specifi-
cation. The lack of proper conformance testing does not help API
developers to either fix bugs or improve the specification. The latter
may in turn induce developers to misunderstand the behavior of
API methods. Popular test cases generators, such as Randoop [28]
and EvoSuite [7], heavily use and depend on the Java Reflection
API in their implementations. However, these tools do not deal
with complex objects in parameter objects [35], such as Class and
Method, and do not focus on detecting non-conformances in the
Java Reflection API [2].

To better understand the problem, we analyze test suites of two
widely used JVMs— Eclipse OpenJ9 and OpenJDK. Their developers
implement most test cases to check the conformance between the
Javadoc specification and the Java Reflection API implementation
only after a bug has been reported. Moreover, developers do not
consider any strategies on choosing data to invoke methods in test
cases. Second, we conduct a survey with 130 developers who use
the Java Reflection API to see whether the Javadoc specified in
natural language impacts on their understanding. We present some
Javadoc sentences, and ask for the output of three APIs’ methods
used in 77% of open source Java projects. Although 67.7% of devel-
opers have more than 7 years of experience in Java and 86.9% have
knowledge about the Java Reflection API, there is no consensus
in the responses. Some developers’ comments increase evidence
that the Javadoc specification is imprecise and incomplete. Also,
some developers face similar problems, as we can see in some is-
sues reported in Randoop and EvoSuite bug trackers. The results
of both investigations reinforce the need for improving systematic
conformance testing of the Java Reflection API. Moreover, there is
limited understanding of how often non-conformances occur and
how critical they are.

To improve this scenario, we propose a technique to detect un-
derdetermined specifications and non-conformances between the
specification and the implementations of the Java Reflection API
(Section 3). Our technique automatically creates test cases for all
possible combinations of parameter values received, and executes
them in different JVMs to identify differences (i.e. underdetermined
specification and non-conformance candidates). During the test
cases execution, objects and primitive values yielded by methods
are saved to create more test cases. The technique groups underde-
termined specification and non-conformance candidates into three
groups: different values, difference between exception thrown and
value, and different exceptions. Then, we execute some manual
steps to confirm whether an underdetermined specification or non-
conformance candidate is indeed a bug, and submit to API specifiers
or JVM developers.

We evaluate our technique using 439 input programs from
GitHub, and four JVMs (Oracle, OpenJDK, Eclipse OpenJ9, and
IBM J9) in Section 4. It identifies underdetermined specification and
non-conformance candidates in 32 Java Reflection API public meth-
ods of 7 classes. Twenty-one (55.3%) candidates are detected due to
test cases created using objects and primitive values saved during
the test cases execution. We report underdetermined specification
candidates in 12 Java Reflection API methods. The Java Reflection
API specifiers accept 3 candidates (25%). We also report 24 non-
conformance candidates to Eclipse OpenJ9, and 7 to Oracle JVMs.
Eclipse OpenJ9 developers accept and fix 87.5% non-conformance

candidates. Our technique identifies non-conformance candidates
in methods, such as Class.getMethods that is used in 77% of Java
open source projects [10]. A number of non-conformance candi-
dates (17) are related to Class. Eighty percent of non-conformances
candidates in Class are due to differences between exception and
value. A number of input programs (77%) used in our technique
expose at least one non-conformance candidate. Our technique
helps JVM developers not only to improve the implementation
but also to promote discussions about underdetermined specifica-
tions in the Java Reflection API specification. In summary, the main
contributions of this work are:

• We analyze the test suites of widely used JVMs, Eclipse
OpenJ9 and OpenJDK (Section 2.2);
• We conduct a survey to investigate whether the Java Re-
flection Javadoc specified in natural language impacts on
developers understanding (Section 2.3);
• We propose a technique to detect underdetermined specifica-
tions and non-conformances between the specification and
the implementations of the Java Reflection API (Section 3);
• We report 12 underdetermined specification candidates to
JVM specifiers detected by our technique. They accept 3
candidates. We also report 31 non-conformance candidates
to JVM developers detected by our technique. They accept
26 and fix 25 of them. Twelve test cases are now part of the
Eclipse OpenJ9 JVM test suite (Section 4).

2 PROBLEM
Next we characterize the problem from three perspectives.

2.1 Motivating Example
We present an example of an underdetermined specification in the
Java Reflection API Javadoc. Jsprit is a Java based toolkit for solving
rich traveling salesman and vehicle routing problems. Listing 1
presents the Route enum declaring three options. The ConstManager
class defines the private field array rts to store supported routes.

Listing 1: Code snippet of a project related to routes.
1 public enum Route {
2 INTER_ROUTE , INTRA_ROUTE , NO_TYPE }
3 c l a s s ConstManager { pr ivate Route [] r t s ; }

Consider a test case t1 invoking the Java Reflection API
Class.getResource method to retrieve a resource related to
Route[] type (Listing 2). Suppose c is a Class object representing
Route[] type created to inspect the program of Listing 1. Using Ora-
cle 1.8.0_151 JVM, t1 yields a class folder URL (e.g. file://home/classes).
However, when using Eclipse OpenJ9 JVM 0.8.0, t1 yields null. The
Java ReflectionAPI is specified in a Javadoc using a natural language.
According to it, Class.getResource should return a resource with
a given name. Javadoc presents some rules of a valid resource name,
but the specification does not explain the expected result when an
empty name is passed as parameter.

Listing 2: Class.getResource test case.
1 c . g e tRe sou r c e (" ") ;

637

Java Reflection API: Revealing the Dark Side of the Mirror ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

According to Landman et al. [10], 72% of Java open source
projects use the Class.getResource method, such as JUnit5, Hi-
bernate ORM, and Apache Maven. They use it mainly to retrieve
files inside a jar file, load files resources used in tests, and build
projects defined in a resource folder. Java applications that contain
a code similar to Listing 2 may have different behaviors when run-
ning on the Oracle and Eclipse OpenJ9 JVMs. We present examples
of non-conformances between the Java Reflection API implementa-
tions and the Javadoc in Section 4.4.

2.2 JVMs Test Suites
To better understand how API developers deal with the problem
presented in Section 2.1, we analyze two (Eclipse OpenJ9 and Open-
JDK) popular JVMs test suites.We investigate how developers reveal
underdetermined specifications and how they check conformance
between the specification and the implementation of the Java Re-
flection API. This investigation enables us to identify gaps in the
tests of the Java Reflection API implementations.

We consider the master branch commit 1d288ad of OpenJDK
source code repository and the openj9 branch commit c2aa034 of
Eclipse OpenJ9 source code repository. As the JVMs’ test suites
present 1,366 source files containing test cases related to Java Re-
flection API methods, we analyze only the set of files related to
popular methods [10]. We identify test cases invoking those popular
Java Reflection API methods, and containing references to Class
type and to java.lang.reflect package.

OpenJDK JVM developers implement 71% of source files in the
test suite based on reported bugs (i.e. files presenting the@bug cus-
tom tag in code comments [26]). Some test cases invoke some Java
Reflection API methods multiple times (e.g. Class.newInstance).
JVM developers manually implement test cases using complex
objects (e.g. Method) returned by invoking a Java Reflection API
method (e.g. Class.getMethods). Test cases consider two oracles
to check whether: i) invoking a Java Reflection API method throws
an exception; and ii) the values returned by a method match the
expected results.

We do not identify automatic tools used by developers to gener-
ate test cases. Input programs size range from 2 SLOC to 32 KSLOC.
JVM developers consider all Java keywords in test cases but goto.
We identify usage of enum, annotations, generics, inheritance, static
initialization, inner classes, and so on in input programs. However,
we do not identify usage of those Java constructs to implement
test cases invoking all Java Reflection API methods. For instance,
we do not find an input program that use enum to implement test
cases of Class.getResource method. Test cases are not executed
in random order, which can help identifying unexpected results.

We identify the following types used as data to invoke Java
Reflection API methods: Class[], String.class, List.class, String, bool,
and so on. We do not find differential testing neither strategies to
choose method parameters values. For instance, there is no test
case invoking Class.getResource method with an empty string
as parameter value in Eclipse OpenJ9 JVM test suite. Some Eclipse
OpenJ9 test cases do not check limit values. For example, tests
to create arrays using Class.forName method check whether the
new array has at most 10 dimensions. The Javadoc specification
of Class.forName does not specify the maximum dimension of
an array. However, the Javadoc of Array.newInstance (another

method used to create arrays) specifies “The number of dimensions
of the new array must not exceed 255.” Moreover, Section 4.4.1 (The
CONSTANT_Class_info Structure) of the Java Virtual Machine
Specification (JVMS) [13, p. 80] specifies “An array type descriptor
is valid only if it represents 255 or fewer dimensions.”

2.3 Survey
We also investigate whether underdetermined specifications, sim-
ilar to the one presented in Section 2.1, actually impact on the
understanding of programmers who use the Java Reflection API.
We conduct a survey to investigate whether developers who use the
Java Reflection API have the same understanding of the Javadoc.
We send e-mails to 3,500 GitHub developers. Overall, 130 (3.6%)
developers completed the survey, which is the usual response rate
for surveys of this kind [19, 22]. A number of 88 (67.7%) develop-
ers have more than 7 years of experience in Java, and 86.9% have
knowledge about the Java Reflection API.

We ask three questions about methods (Class.getDeclaredMe-
thods, Class.getMethod, and Class.getDeclaredFields) used
in 77% of Java open source projects [10]. Figure 1 shows a com-
mon question of our survey, in this case related to the Class.get-
DeclaredMethodsmethod. For each question, we present a Javadoc
snippet, a small program (3–13 SLOC), and we ask a question about
a method call. We present some options, and an open text box in
case developers have a different answer.

Class.getDeclaredMethods() returns an array containing Method objects reflecting all the
declared methods of the class or interface represented by this Class object, including public,
protected, default (package) access, and private methods, but excluding inherited methods.

public interface A {
 public A clone();
}

What is the result of getDeclaredMethods() for interface “A”?

public abstract A A.clone() and public default Object A.clone()

public abstract A A.clone()

public default Object A.clone()

No declared methods

Other...

Figure 1: Question 1 about Class.getDeclaredMethods.

Next, we explain results of all questions in our survey. The
Class.getDeclaredMethods method returns all declared meth-
ods of a class, excluding inherited ones [24]. Figure 1 presents the
program used in Question 1. It declares an interface A with a public
method clone. Question 1 asks developers the result of invoking
Class.getDeclaredMethods on interface A. A number of devel-
opers (79.3%) answer public abstract A A.clone(). However, others
(21.7%) disagree on that (Figure 2). Developers present six different
answers to this question.

The Class.getMethod method returns a Method object that re-
flects the specified public member method of the class [25]. Ques-
tion 2 presents three classes to developers (Figure 3 (a)). Class A
extends class B and class B extends class C. Class C contains a public
method c. We ask developers the result of invoking Class.getMe-
thod(‘‘c’’) on class A. Some developers (57%) answer public void

638

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro

1
5.2%

79.3%

1.7%

6.9%

2

3

4

5

1 - public abstract A A.clone() and

 public default Object A.clone()

2 - public abstract A A.clone()

3 - public default Object A.clone()

4 - No declared methods

5 - Other

78.8%

All developers > 10 years experienced developers

6.2%

2.7%

8.8%

6.9%
3.5%

Figure 2: Results of Question 1: A.getDeclaredMethods.

C.c, while others (27.6%) answer public void A.c. Figure 3 (b) presents
the percentage of developers for each answer. We obtained eight
different answers to this question. Thus, the divergence here is even
more worrisome than the one obtained in Question 1.

1

2

3

4

5

1 - public void C.c

2 - public void A.c

3 - public void B.c

4 - public void Object.c

5 - Other

All developers > 10 years experienced developers

57%

27.6%

5.2%

1.7%

31%

55.8%

4.4%

1.8%

8.5%
7%

public class A extends B {}

public class B extends C {}

class C {

public void c() {}

}

(a) (b)

Figure 3: Results of Question 2: A.getMethod c.

The Class.getDeclaredFields method returns all declared
fields of a class, excluding inherited ones [23]. Figure 4 (a) presents
a program containing a class B with an enum C. Moreover, the
class A extends B, and declares a method with a parameter
of C type. Question 3 asks developers the result of invoking
Class.getDeclaredFields on class A. A number of developers
(70.7%) answer class A has no declared fields. However, 29.3% of
developers disagree on that. Developers present nine different an-
swers to this question.

public class B {

 public enum C {

 X

 }

}

public final class A extends B {

 public void a(C c) {

 switch(c) {

 case X:

 }

 }

}

1 - No declared fields

2 - protected C B.c

3 - private static int[] A.$SWITCH_TABLE$B$C

4 - protected int[] A.$SWITCH_TABLE

5 - Other

(a) (b)

1

2

3

4

5

All developers > 10 years experienced developers

70.7%

6.9%

17.2%

0%

8.8%

67.3%

12.4%

1.8%

5.2%
9.7%

Figure 4: Results of Question 3: A.getDeclaredFields.

Although 58 (44.6%) participants have more than 10 years of
experience in developing Java applications and knowledge about

Java Reflection API, there is no consensus in their survey responses.
Overall, the number of different answers varied from six to nine,
and responses diverging from the most common one varied from
20.7% to 43%. Moreover, developers also send us some comments
about the Java Reflection API in the open text box. An experienced
developer does not recommend the use of the Java Reflection API
to develop applications other than libraries and frameworks.

Popular automatic test suite generators (Randoop and EvoSuite)
heavily use and depend on the Java Reflection API in their im-
plementations. They face similar challenges when using the Java
Reflection API. For example, there are some issues reported in their
GitHub related underdetermined specifications in the Java Reflec-
tion API. Randoop can yield uncompilable test cases when trying
to access a class field that implements multiple interfaces that de-
fine static fields with the same name. This can happen if a test
case tries to access the interface field through the class that imple-
ments it because compilers do not know what interface to consider.
According to the Javadoc, Class.getFields “...returns the public
fields of the class and of all its superclasses.” However, the Javadoc
of the Class.getFields method does not specify anything about
returning static fields inherited from multiple interfaces. To fix that
bug, Randoop’s developers consider generating test cases only to
the classes or interfaces that declare static fields. Moreover, if we
generate test cases using a JVM, and run them using another one,
we may face some issues, such as flaky tests that may be due to the
problems in the Java Reflection API.

In summary, developers do not have a systematic strategy to
identify underdetermined specifications in the Javadoc and to test
the Java Reflection API to reveal non-conformances. This way, the
results presented in this section reinforce the need for such a strat-
egy to help specifiers to improve the specification and developers
to implement JVMs. Also, it can prevent users from experiencing
issues.

3 TECHNIQUE
We propose a technique to detect underdetermined specifications
and non-conformances in the Java Reflection API. Algorithm 1 and
Figure 5 summarize the steps of our technique.

Our technique receives as input a Java program, Java Reflection
API implementations (JVMs), the Java Reflection API Javadoc [27],
and values for Java primitive and non-primitive types. It uses reflec-
tion to examine any Java program, such as Listing 1. For instance,
we can get the fields of the ConstManager class (Listing 1). It tests
different implementations, such as the Eclipse OpenJ9 0.8.0 and
Oracle 1.8.0_151 JVMs. We can use Java Reflection API Javadoc
provided by the Oracle JVM as input [9]. Moreover, our algorithm
can consider the following values {MIN_INT, -1, 0, 1, MAX_INT }
for integers, {′′′′, ′′ ′′, ′′дEuOVmBvn1′′, ′′#A1′′, null} for strings,
and so on. We define those values based on Equivalence Class (e.g.
“gEuOVmBvn1” for String), Boundary Value (e.g. -1, 0, 1 for integers),
and Limit Value (e.g. 263 − 1 for long) strategies [29].

Before creating test cases in Step 1 for each public method
declared in the Javadoc, we use the input program to cre-
ate Class objects (c) (Algorithm 1, Line 5). Consider the in-
put program of Listing 1. We compile the ConstManager.java
file into the ConstManager.class and load it in a JVM using

639

Java Reflection API: Revealing the Dark Side of the Mirror ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Algorithm 1: Detect underdetermined specification and non-
conformance candidates.
Input: program, implementations, specification, values

1 testCases ← ∅;
2 allResults ← ∅;
3 f ailedTestCases ← ∅;
4 executedTestCases ← ∅;
5 values ← values ∪ дetClassObjects(proдram);
Step 1. Create test cases

6 foreach m: specification.getPublicMethods() do
7 foreach p: m.getParameters() do
8 types ← p.дetTypes();
9 tcs ← createTestCases(m,values, types);

10 testCases ← tcs ∪ testCases;
11 end
12 end
Step 2. Execute test cases

13 foreach t: testCases – executedTestCases do
14 tcResults ← ∅;
15 foreach implementation: implementations do
16 result ← implementation.execute(testCase);
17 allResults ← {(t , {result})} ∪ allResults;
18 tcResults ← {(t , {result})} ∪ tcResults;
19 end
20 executedTestCases ← {t} ∪ executedTestCases;

Step 3. Identify new non-conformance candidates
21 if tcResults are different then
22 f ailedTestCases ← {t} ∪ f ailedTestCases;
23 end
24 end
Step 4. Create new test cases using new values

25 newParams ← ∅;
26 foreach r: allResults do
27 newParams ← {(r .type(), r .value())} ∪ newParams;
28 end
29 if newParams <> values then
30 values ← newParams ∪values;
31 go to Step 1;
32 end
Step 5. Grouping failed test cases into distinct ones

33 f ailedTestCases ← classi f ier (f ailedTestCases);
Output: (program, failedTestCases)

Class.forName(‘‘ConstManager.class’’) to yield a Class ob-
ject and improve the values received as a parameter. In Step 1, we
identify all Java Reflection API public methods in the Javadoc. For
instance, it identifies public URL Class.getResource(String
name) method in the Javadoc. It also identifies parameters
types for each Java Reflection API public method. For example,
Class.getResource receives a String as a parameter. We can
use ′′′′ (an empty string) as parameter value for a String, and
the type (Route[]) of rts field of the ConstManager class of List-
ing 1 to create the test case presented in Listing 2. The tech-
nique creates test cases for all possible combinations of all pa-
rameters values (Algorithm 1, Line 9). For instance, consider
the public Method Class.getMethod(String name, Class[]
parameterTypes) method. Our algorithm can create the follow-
ing test cases: c.getMethod(′′′′, null), c.getMethod(′′′′, new Object()),
c.getMethod(null, null), and so on. Our technique does not generate

redundant test cases. Before generating a new test case, the tech-
nique verifies whether the input program, values, and types have
already been used.

Algorithm 1 executes all test cases in all implementations (Step 2).
For instance, we execute a test case in Eclipse OpenJ9 0.8.0 JVM and
in Oracle 1.8.0_151 JVM. The test case execution order is random.
All test case results are saved so that they can be used to create new
tests. We will use them in Step 4.

Our technique compares the results using differential testing [18]
(Step 3, Line 21). Differential testing requires two or more compa-
rable systems. If the results differ or one of the systems loops in-
definitely or crashes, the tester has a candidate for a bug-exposing
test. Algorithm 1 detects an underdetermined specification or a
non-conformance candidate in a Java Reflection API method when
a test case presents different results in at least two JVMs. It verifies
the return type of a test case. If the return type is primitive (e.g. int),
it considers the == operator to compare results. When the return
type is non-primitive (e.g. String), our algorithm invokes the equals
method of that type to compare results. We implement the equals
method for some Java Reflection API classes (e.g. TypeVariable).
For example, Listing 2 presents a test case that has different results
in Eclipse OpenJ9 and Oracle JVMs. Eclipse OpenJ9 0.8.0 JVM yields
null, while Oracle 1.8.0_151 JVM returns a class folder URL. Since
they have different values, the technique yields the input program
and the failed test case representing an underdetermined specifica-
tion or a non-conformance candidate in the Class.getResource
method. In case a test case throws an exception, our algorithm
analyzes whether the exceptions thrown by each JVM are different.

To improve the chances of detecting underdetermined specifi-
cation and non-conformance candidates, our technique saves the
objects and primitive values yielded by the test cases execution.
The goal is to improve Java primitive and non-primitive values used
by our technique (Step 4). It checks whether the returned data is
already considered (Algorithm 1, Line 29). In case it was not con-
sidered as an input for Java types, our technique goes to Step 1 in
Algorithm 1 to generate more test cases by considering all possible
combinations with the new values. For instance, Class.getFields
returns Field instances that Algorithm 1 uses to create tests for the
Field class (e.g. Field.getName). It uses the field name returned
by executing Field.getName test case to create a new test case for
Class.getField(String fieldName), and so on. The technique
can generate test cases for methods that require values different
of those initially considered, such as Method, Field, and Class.
The number of generated test cases depends on the number of
Java Reflection API public methods, parameters values, and class
members of an input program. Then, Algorithm 1 yields the under-
determined specification and non-conformance candidates. Each
one contains a program used as input and a failed test case, such as
Listing 2. The technique then groups underdetermined specifica-
tion and non-conformance candidates into three distinct groups:
different values, difference between exception thrown and value,
and different exceptions (Step 5, Line 33).

After performing the automatic steps, we perform some manual
steps to check whether each underdetermined specification or non-
conformance candidate is indeed a bug. To better understand each
underdetermined specification and non-conformance candidate, we

640

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro

remove all Java constructs from input programs that are not re-
lated to each underdetermined specification and non-conformance
candidate. We simplify an input program inspired by the delta de-
bugging technique [40] in Step 6. We remove some code snippets,
and check whether the new resulting program compiles and the
underdetermined specification or non-conformance candidate is
still detected. Otherwise, we put back the removed code snippet.
We repeat this process until we cannot remove any Java construct
in the input program anymore.

We analyze each failed test case with respect to the Javadoc
(Step 7) to identify false positives, and correct results. For instance,
somemethodsmay yield randomvalues (false positive).We consider
a non-conformance candidate when a Java Reflection API method
throws an exception not declared in the specification, or yields a
result different than specified in Section Returns of the specification.
We consider an underdetermined specification candidate when the
Javadoc of a method is incomplete, imprecise, or ambiguous. In
other cases, JVM is in conformance with the specification (), and
we exclude them. Finally, we report the remaining candidates to
API specifiers and to JVM developers (Step 8).

4 EVALUATION
In this section, we evaluate our technique. The complete results
and replication package are available at our website [31].

4.1 Definition
The goal of our experiment consists of analyzing our technique
for the purpose of detecting underdetermined specifications and
non-conformances between the Javadoc and the Java Reflection
API implementations with respect to Oracle, OpenJDK, IBM J9,
and Eclipse OpenJ9 JVMs from the point of view of specifiers and
developers in the context of Java input programs hosted at GitHub.
We address the following research questions:
RQ1: How many underdetermined specifications and non-
conformances between Javadoc and the Java Reflection API
implementations can our technique detect?
We compute the number of underdetermined specifications and
non-conformances accepted by Java Reflection API specifiers and
JVM developers. The answer to this question enables us to identify
issues in the specification and in the implementations of the Java
Reflection API.
RQ2: How many input programs used by our technique
yield at least one underdetermined specification or non-
conformance candidate?
We count all distinct input programs that yield at least one underde-
termined specification or non-conformance candidate. The answer
to this question reveals how often real input programs can detect
underdetermined specification or non-conformance candidates.

4.2 Planning
We useMetricMiner [37] to retrieve a commit of 439 input programs
hosted at GitHub with support to Maven and no dependency to
Android SDK. Maven helps to resolve dependencies and to compile
source files, which are necessary to invoke Java Reflection APImeth-
ods. We consider input programs from some popular companies,
such that: Apache (5), Spotify (3), Twitter (2), Google (2), Netflix (1),

and Microsoft (1). Retrieved input programs contain 60,387 source
files, and Maven generates 45,984 binary files. Input programs have
from 85 to 399,129 SLOC, and 19,919 SLOC on average.

Spring Boot is the most popular input program (22,905 interested
people and 339 developers) used in our study. Apache Maven input
program has the greater number of commits (12,052). The input
programs considered in Algorithm 1 do not need to use the Java
Reflection API. Each test case uses an input program to invoke
one Java Reflection API method. In our study, 53.5% of analyzed
input programs do not use reflection. We calculate the number of
executed test cases by summing all API methods calls.

We consider the Java Reflection API Javadoc provided by
the Oracle JVM [27]. Algorithm 1 evaluates 237 public methods
(98.75%) of classes Class, ClassLoader, and Package, from the
java.lang package, and AccessibleObject, AnnotatedElement,
AnnotatedType, Constructor, Executable, Field, Method, and
Parameter from the java.lang.reflect package. We define val-
ues for the Java Reflection API methods’ parameters based on
Equivalence Class, Boundary Value, and Limit Value strategies [29].
We test Oracle 1.8.0_151, OpenJDK 1.8.0_141, IBM J9 8.0.5.10, and
Eclipse OpenJ9 0.8.0 JVMs. We execute the experiment on Linux
Deepin 15.5 64-bit (i7 3.40GHz and 32GB RAM). We use Maven 3.5,
MetricMiner 2, and Git 2.12.2.

Algorithm 1 executes Maven to compile input programs and gen-
erate .class files (bytecodes). It creates a Class instance representing
a bytecode invoking Class.forNamemethod. Algorithm 1 uses pub-
lic methods signatures, parameters values, and the Class instance
to create test cases. It randomly executes test cases in a JVM and logs
results to files identified by the JVM name (e.g. eclipse-openj9.txt).
Each line of the result files contains a key-value pair. Keys contain
a reference to the input program (e.g. spring-boot), to the class and
method of the Java Reflection API (e.g. Class.getResource), and to
parameters values (e.g. ′′′′). Values contain results of the test case ex-
ecution (e.g. null). Algorithm 1 considers the same key for all results
files and compares values. If values differ for the same key, it detects
an underdetermined specification or a non-conformance candidate.
The technique analyzes the results of Class test cases to create new
test cases with new values to other Java Reflection API methods.
For instance, Class.getMethods returns Method instances that Al-
gorithm 1 uses to create tests for Method (e.g. Method.getName).
Algorithm 1 uses the method name returned by Method.getName
to create a new test case for Class.getMethod, and so on.

4.3 Results
Algorithm 1 executes a total of 288M test cases. Some of them
(0.03%) failed. The technique takes about 12 hours to execute all
steps presented in Algorithm 1. It yields 10 underdetermined speci-
fication and 17 non-conformance candidates. We detect manually
11 candidates during Step 6. We take approximately one hour to
manually analyze each of them in Steps 6 and 7. Experienced JVM
developers may take less time. We identified 10 candidates as false
positives in Step 7. Some JVMs yield results in conformance with
the specification in Step 7 (). Then, we submit the remaining un-
derdetermined specification and non-conformance candidates only
to JVMs that provide bug trackers open to the community in Step 8.
Table 1 presents methods with detected candidates, number of test
cases, number of failures, and the status of a candidate reported to

641

Java Reflection API: Revealing the Dark Side of the Mirror ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Step 4Step 1 Step 2

Test Cases
Generator

Input
Program

Predefined
Parameters

Values

Step 3

Test Cases
Executor

Specification

JVM
Implementations

≠
FeedbackOracle

Input
Program Failed Test

Cases
Non-conformance/Undetermined

Specification Candidates

Step 6

Simplify Input
Program

Step 7

Read the
Specification

Step 8

Report to
Developers/Specifiers

Step 5

Classifier

Figure 5: Steps of our technique to detect underdetermined specifications and non-conformances.

the Java Reflection API specifiers, and to Eclipse OpenJ9, and Oracle
JVMs’ bug trackers. Twenty-one (55.3%) candidates are detected
due to test cases created using objects and primitive values saved
during the test cases execution.

Eclipse OpenJ9 and IBM J9 JVMs throw an unexpected exception
on candidates Ids: 14-25, 26-27, and 30-32. All JVMs return expected
exception but with different messages on candidate Id 28. IBM J9
JVM returns a result different than expected on candidates Ids: 13,
and 29. Oracle and OpenJDK JVMs return a result different than
expected on candidates Ids 1-12. We consider all JVMs that do not
throw an unexpected exception, and returns expected results as
correct. As IBM J9 and OpenJDK do not provide open bug trackers,
and some JVMs follow the specification for some non-conformance
candidates, we submitted 12 underdetermined specifications to
Javadoc specifiers and 31 reports to JVM developers. Java Reflection
API specifiers and JVM developers accepted 67.4% as real bugs.
Eleven bugs are open. So far, we have no answer to them.

Class.getMethod is executed in more test cases (8,205,417).
Class.getMethods yields more test failures (160,213). Algorithm 1
detects 7 non-conformance candidates in Oracle and in OpenJDK,
and 26 in Eclipse OpenJ9 and in IBM JVMs. JVM developers an-
swered to 72.7% of them. Oracle JVM developers accepted 5 non-
conformance candidates, and Eclipse OpenJ9 JVM developers ac-
cepted and fixed 87.5% of the non-conformance candidates. We do
not report non-conformances to OpenJDK and IBM J9 JVMs. Their
bug trackers can only be accessed by registered developers.

A number of input programs (73.1%) used in our technique ex-
pose underdetermined specifications and non-conformance candi-
dates accepted by JVM developers. Cubeqa is the input program
that exposed most candidates (23). It is also the input program that
most accepted the reported bugs (17). Figure 6 presents a histogram
with the number of input programs according to the number of
detected candidates, except false positives.

4.4 Discussion
4.4.1 Report Candidates to JVM Developers. In RQ1, in some cases
JVM developers do not agree on how to fix some bugs related to
the Java Reflection API. For instance, we report a non-conformance
candidate in the Class.getResource method (Listings 1 and 2) to
Oracle JVM and Eclipse OpenJ9 developers. Oracle JVM developers
consider the non-conformance as a specification issue because the
Java Reflection API Javadoc does not specify what to return when
a resource name is empty. On the other hand, developers of Eclipse

Number of Candidates

N
u
m

b
e
r

o
f
In

p
u
t
P

ro
g
ra

m
s

0
5
0

1
5
0

2
5
0

3
5
0

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23

338
322

281

129
114

93

60
45

30
18 11 10 8 8 6 6 6 6 6 6 3 2 1

Figure 6: Number of input programs that expose candidates
after Step 7 (Figure 5).

OpenJ9 do not agree: “I don’t think it is an spec issue. The javadocs
define: The rules for searching resources associated with a given class
are implemented by the defining class loader of the class.” Eclipse
OpenJ9 developers fix the reported non-conformance candidate by
changing the Class.getResource method result to have the same
behavior of the Oracle JVM.

In other cases, developers initially did not accept some of our
reported bugs. For instance, when we reported a non-conformance
candidate in Class.getDeclaredFields, developers stated we
must initialize a class instance before accessing declared fields.
Javadoc specification for Class.getDeclaredFields is not clear
about class initialization. Section Structural Constraints (4.9.2) of
JVMS [13] states: “When any instance method is invoked or when
any instance variable is accessed, the class instance that contains
the instance method or instance variable must already be initialized.”
However, since Class declares getDeclaredFields, we should
initialize ManagerServer.class instance instead of ManagerServer
instance. Developers agreed on that, fixed the non-conformance
and asked us to add our test case to their test suite. We submit a pull
request containing that test case and other 11 test cases exposing
non-conformances.

Eclipse OpenJ9 developers rejected three reported non-
conformance candidates. Since the bug in Method.invoke is
present in a code imported from the OpenJDK JVM, they asked
us to report the bug to the OpenJDK JVM developers. More-
over, Oracle JVM developers have doubts about the specification
of Class.getDeclaredAnnotations, Class.getResource, and
Class.getResourceAsStream. The bugs related to these methods
(Ids: 2, 3, and 4 in Table 1) are still unfixed.

642

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro

Table 1: Detected Java Reflection API candidates. Test Cases: number of test cases executed by Algorithm 1 calling the method.
Failures: number of test cases exposing a candidate in the method. Status: – = Unreported bug; O = Bug Open; F = Fixed bug; A
= Accepted bug; R = Rejected bug; = Correct result; D = Duplicated bug.

Id Method Test Cases Failures Specification Oracle OpenJDK Eclipse OpenJ9 IBM J9
1 Class.getAnnotations 937,860 3,602 O – – – –
2 Class.getDeclaredAnnotations 939,368 3,490 D – – – –
3 Class.getResource 1,178,325 200 A – – – –
4 Class.getResourceAsStream 1,172,325 200 A – – – –
5 Executable.getAnnotations 177,220 41 O – – – –
6 Executable.getDeclaredAnnotations 177,412 48 O – – – –
7 Executable.getParameterAnnotations 177,212 7 O – – – –
8 Field.getAnnotations 603,028 120 O – – – –
9 Field.getDeclaredAnnotations 615,960 122 O – – – –
10 Method.getAnnotations 965,740 293 O – – – –
11 Method.getDeclaredAnnotations 976,304 338 O – – – –
12 Method.getParameterAnnotations 963,708 45 O – – – –
13 Class.getPackage 473,436 471 – –
14 Class.getConstructor 470,384 59,934 – F –
15 Class.getConstructors 468,663 979 – F –
16 Class.getDeclaredConstructor 469,624 15,389 – F –
17 Class.getDeclaredConstructors 466,646 1,013 – F –
18 Class.getDeclaredField 2,350,808 298 – F –
19 Class.getDeclaredFields 467,522 449 – F –
20 Class.getDeclaredMethod 8,184,703 480 – F –
21 Class.getDeclaredMethods 467,347 1,265 – F –
22 Class.getField 2,359,361 1,768 – F –
23 Class.getFields 470,437 880 – F –
24 Class.getMethod 8,205,417 40 – F –
25 Class.getMethods 467,821 160,213 – F –

– F – F –
– F – F –26 Constructor.getAnnotatedParameterTypes 356,884 7,657
– F –
– F – F –
– F – F –27 Executable.getAnnotatedParameterTypes 88,702 435
– F –
– O – R –
– O – R –28 Method.invoke 1,468,228 240
– D – R –

29 Package.getImplementationTitle 59,014 117 – –
30 Parameter.getAnnotatedType 88,806 1,135 – F –
31 Parameter.getParameterizedType 88,764 1,131 – F –
32 Parameter.toString 88,664 1,154 – F –

4.4.2 Input Programs. RQ2 is important to better understand the
Java input programs that yield candidates. For instance, JVM devel-
opers can use Cubeqa input program to detect 23 candidates. Some
candidates can be detected by more than 70% of our input programs.
Those results indicate that JVM developers consider simpler Java
programs as inputs than us. Real input programs contain more Java
constructs, which increases the probability of detecting candidates,
since we can create more complex objects.

Even small input programs expose candidates. We manually
simplify programs in Step 6. They have 6.8 SLOC on average, and
use 14 (28%) Java keywords (4.5 on average). Only one simplified
input program contains a method body. Listing 3 presents a sim-
plified input program from the Pulsar Reporting. When invoking
the Parameter.getAnnotatedType method to get the annotated
type of the d parameter, the Oracle JVM yields Class BytesBound-
edLinkedQueue. Eclipse OpenJ9 JVM, however, yields an exception.

Listing 3: The Pulsar Reporting program input.
1 public c l a s s BytesBoundedLinkedQueue <E> {
2 pr ivate c l a s s I t r implements
3 I t e r a t o r <E> { I t r (I t e r a t o r <E> d) { } } }

As a feasibility study, we used an automatic program gener-
ator (JDolly [36]) to generate input programs to identify candi-
dates. JDolly generated 197,530 input programs. They contain one

package, at most two classes and two methods, inheritance be-
tween classes, interface, and one field. However, it does not con-
tain some popular Java constructs, like enum, static blocks, inner
classes, generics, or annotations. We used the programs generated
by JDolly in Algorithm 1. Our technique detects one candidate in
the Class.getMethods method. The Object.wait method is imple-
mented by the Eclipse OpenJ9 JVM as a native method and it is
implemented by the Oracle JVM as a non-native method. We re-
ported that candidate. However, developers of both JVMs claimed
that the Java Reflection API specification does not specify whether
a method should be native, and rejected it. The technique also re-
ported one false positive in Class.hashCode. Step 6 is much easier
to be done in small programs generated by JDolly. To detect more
candidates using programs generated by JDolly, we must include
other Java constructs (e.g. generics, inner classes) in Alloy theory.
However, we can face problems related to state explosion. We can
improve this scenario by skipping some similar programs [21]. We
decided to use real programs because they use a number of Java
constructs, and we can create a number of complex objects, and
reuse the saved ones.

4.4.3 False positives. In Step 7, we identify 10 false positives in
the following methods: Class.hashCode, Class.newInstance,
Constructor.isAccessible, Constructor.newInstance,
Field.getInt, Field.getLong, Field.isAccessible,

643

Java Reflection API: Revealing the Dark Side of the Mirror ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Method.isAccessible, Parameter.getDeclaringExecutable,
and Parameter.hashCode. The Java Reflection API represents
parameters identifiers of a method as arg0, arg1, and so on. So,
two methods can have different parameters types represented by
the same identifier. Methods returning hash codes of an object
(e.g. Class.hashCode) must return the same value more than
once just during an execution of a Java application. Hash codes
calculated by different JVMs do not necessarily have to be equal.
We must invoke the Field.setAccessible method before trying
to access the value of a private, protected or package-private
field. Otherwise it yields an exception. If the running order of the
Field.setAccessible and Field.getInt test cases is different
between JVMs, results are also different.

4.4.4 Underdetermined APIs. Recent studies indicate that incom-
pleteness in an API specification can avoid developers to use an
API [32] [33] [39]. In fact, some developers who answered our Sur-
vey suggest to use other Java Reflection APIs. Other developers state
that it is difficult to read the specification and get coding [31]. More-
over, developers that implement APIs must assume some particular
constraints in underdetermined APIs, which can lead different im-
plementations to present different results.

However, it is not an easy task to find underdetermined APIs. Our
evaluation gives evidence that our technique can help developers to
detect specifications excerpts that are incomplete. We found parts
of the specification that do not explain what to do when considering
some Java constructs, such as annotations (e.g. underdetermined
specification 2 in Table 1) , or input values, such as empty string
(Listing 1). In our evaluation, first we assumed the problem was
in at least one JVM implementation. We reported candidates to all
possible implementations. In some cases, they accepted them in
at least one implementation. In other cases, developers indicated
underdetermined specifications. We send them to developers in
charge of the Java Reflection API specification. We hope that the
results presented here can help the Java Reflection API specifiers
and the JVM’s developers to better understand and improve the
specification and, consequently, the JVM’s implementations.

4.4.5 Automatic Test Suite Generators. Tools like Randoop [28]
and EvoSuite [7] can be used to aid developers on improving tests
coverage, and finding bugs in widely-deployed commercial and
open-source software. However, we cannot use these tools since
most Java Reflection API classes do not expose a public constructor
to allow instantiating an object and invoking methods directly. We
execute Randoop and EvoSuite to generate tests for the Method
class. Since Method defines only methods that need an instance to
be invoked, Randoop does not generate tests to Method. So, Ran-
doop does not generate tests invoking Java Reflection API methods.
EvoSuite throws an exception when trying to generate tests to the
Method class. Our technique finds non-conformance bugs in the
Oracle JVM, like Method.invoke.

We also evaluate Randoop and EvoSuite in small programs that
use the Java Reflection API. For example, consider the program of
Listing 4. It defines a class A and a method m containing a Method
parameter p. Randoop does not generate tests, while EvoSuite con-
sider null for p. Randoop and EvoSuite do not deal with these com-
plex objects. It is a complex and challenging task for them, since
it requires a certain sequence of method calls prior to exercising

the target method [35]. For instance, to generate a Method object,
an automated tool must consider accessibility, parameters, body,
return type, and so on. Moreover, the software behavior using the
Java Reflection API is fundamentally hard to predict by analyzing
the code [10]. So, these tools do not focus on testing programs using
the Java Reflection API [2] differently from our technique.

Listing 4: Small program used as input.
1 public c l a s s A {
2 public int m(Method p) { return 0 ; } }

4.4.6 Testing Other APIs. As future work, we intend to adapt our
technique to test other API implementations than Java Reflection
API. Algorithm 1 can receive the Javadoc to identify all public
methods, and their parameters types. Other APIs, like the Java
Collections API, do not require a Java input program. In this case,
we can remove this parameter. We can test the Java Collections API
implemented by the Oracle JVM and Eclipse OpenJ9 JVMs. We also
have to implement equals methods for some classes (e.g. ArrayList)
(Step 3 in Algorithm 1). We do not need to change the other steps
of our technique to test the Java Collections API implementations.

4.5 Threats to Validity
Algorithm 1 does not detect an underdetermined specification
or a non-conformance candidate if a Java Reflection API method
presents the same results in different JVMs. To reduce this threat,
we evaluated four JVMs. Our classifier may miss some candidates
in Step 5. Due to manual reasoning, we can incorrectly classify a
candidate as a false positive, or having a correct result in Step 7.

We selected all Maven input programs hosted at GitHub. Al-
though this set of Java input programs may not be representative,
we need input programs with support to resolving dependencies
because we need to build input programs to execute our analysis.
Although input programs are from one code repository, GitHub has
almost 20M contributors and more than 1M Java input programs.
We consider input programs with different SLOC, amount of de-
velopers, and from different domains, including: build automation
tools, Web frameworks, and JDBC drivers.

5 RELATEDWORK
To the best of our knowledge, there is no study aiming to detect un-
derdetermined specifications and to check conformances between
the specification and the implementations of the Java Reflection
API. Tan et al. [38] present a technique, called @TCOMMENT, to
check conformance between the Javadoc and Java programs im-
plementations. @TCOMMENT analyzes Javadoc of Java input pro-
grams to infer properties about null values and related exceptions.
Then, it generates random tests for the input programs, checks the
inferred properties, and reports inconsistencies. We have two non-
conformance candidates related to the null normal property [38].
@TCOMMENT can be useful to confirm them as implementation
bugs. Considering other types of non-conformances may be a chal-
lenge [38], but we will investigate other heuristics.

Gyori et al. [8] propose NonDex, a tool for detecting and debug-
ging wrong assumptions on Java APIs. Some APIs have underdeter-
mined specifications to allow the implementations to achieve differ-
ent goals, e.g., to optimize performance. When clients of such APIs

644

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro

assume stronger-than-specified guarantees, the resulting client
code can fail. NonDex tool executes application’s test suite, then
it changes the API implementation (e.g. the order of elements in a
collection), and it executes tests again. If results differ, it detects an
underdetermined specification candidate and presents an API code
snippet. NonDex uses a binary search to locate invocations that
cause a failure. We manually reduced the programs inspired by the
delta debugging technique [40]. We can automate that reduction
by adapting our technique based on binary search [8].

Chen et al. [4] present the Classfuzz tool that creates Java pro-
grams by using mutations, and uses differential testing to identify
bugs in JVMs’ startup processes. Classfuzz uses predefined binary
files to generate mutants used as input programs to create test cases.
Chen et al. [3] evaluate some differential testing techniques (Ran-
domized Differential Testing – RDT and Different Optimization
Levels – DOL) in compilers. RDT randomly tests compilers, and
DOL looks for optimization bugs. We can use their tool to mutate
the input programs considered in our evaluation. Our technique
considers all combinations of input programs, values, and Java
Reflection API methods to create test cases. Algorithm 1 applies
differential testing to check whether the tests results are different
when running in more than one JVM.

Pham et al. [30] propose Java StarFinder (JSF), a tool that uses
symbolic execution to generate test cases. JSF handles dynamically-
allocated linked data structures (e.g. trees) as input. Those tools
do not focus on testing the Java Reflection API. Algorithm 1 gen-
erates test cases to identify underdetermined specification and
non-conformance candidates in the Java Reflection API.

Legunsen et al. [12] perform a study of the bug-finding effective-
ness of formal specifications by using JavaMOP to check whether
test suite execution results are in conformance with formal specifi-
cations. Ahrendt et al. [1] propose a tool (KeYTestGen) that generate
test cases for a real-time Java API. KeYTestGen uses JML specifica-
tions as input of a prover and uses each proof branch to generate test
inputs satisfying each constraint. Cheon and Leavens [5] propose a
tool that automatically generates test cases from JML formal speci-
fications. Milanez [20] proposes a tool to automatically check con-
formance of Java programs annotated with JML [11] specifications
based on automatic test generation using Randoop [28]. Massoni
et al. [17] propose a formal approach to semi-automatically refac-
tor Java programs in a model-driven manner. They explain their
approach in a case study considering three refactorings [6]. They
show evidences about issues with keeping object models and the
implementation in conformance during refactoring. Our technique
checks conformance between the specification of Java Reflection
API, which is described in natural language.

Livshits et al. [15] propose an algorithm to statically analyze
programs that use Java Reflection. It does not cover all reflection
usage because some classes are available only at run time, specially
in dynamic class loading scenarios. Landman et al. [10] perform
studies to identify challenges related to static analysis of programs
using Java Reflection API. They suggest that combining both static
and dynamic analysis of programs using Java Reflection API may
improve the existing solutions for the challenges found. Algorithm 1
performs dynamic analysis to identify candidates.

6 CONCLUSIONS
This work presents empirical investigations and a new technique
that enables us to understand “the dark side of the mirror.” We ana-
lyze test suites of popular JVMs, and we find that their developers
implement most test cases to reveal underdetermined specifications
and to check the conformance between the Javadoc specification
and the Java Reflection API implementation only after a bug has
been reported. We conduct a survey with 130 developers who use
the Java Reflection API to see whether the Javadoc impacts on their
understanding. Although 67.7% of developers have more than 7
years of experience in Java and 86.9% have knowledge about the
Java Reflection API, there is no consensus in their responses.

To improve this scenario, we propose a technique to detect un-
derdetermined specifications and non-conformances between the
specification and the implementations of the Java Reflection API. It
automatically creates test cases and executes them in different JVMs.
We evaluate our technique in 439 input programs hosted at GitHub.
We find underdetermined specifications and non-conformance can-
didates in 32 public methods of 7 Java Reflection API classes. We
report underdetermined specification candidates on 12 Java Re-
flection API methods. Java Reflection API specifiers accept 3 un-
derdetermined specification candidates (25%). We also report 31
non-conformance candidates to JVM developers. Oracle developers
accept 5 and fix 4 non-conformance candidates and Eclipse OpenJ9
developers accept and fix 21 non-conformance candidates, and in-
clude 12 test cases in their suite. Twenty-one (55.3%) candidates are
detected due to test cases created using objects and values saved
during previous test case execution. The test suites described in
Section 2.2 cannot detect the candidates found by our technique.
So far, we do not find any patterns in the bugs found.

The results of applying our technique helped JVM developers
to improve the implementation and promote discussions about un-
derdetermined specifications in the Java Reflection API Javadoc,
confirming the lack of consensus found by our survey. Java Reflec-
tion API specifiers should propose a formal specification to avoid
underdetermined specifications and consider more Java constructs
and values for method parameters when specifying method results.
We recommend JVM developers to improve their testing strategies
to identify underdetermined specifications and non-conformances:
i) create test cases using more combinations between input pro-
grams and parameter values for all Java Reflection API methods;
ii) use strategies to choose values (like Limit Value); iii) execute
test cases in random order; iv) use differential testing; v) use real
programs to richer complex objects; and vi) consider more complex
objects for Class, Method, and so on.

As future work, we intend to consider new parameters values
and methods, and implement test cases creation considering more
than one Java Reflection API method per test case. We aim at eval-
uating Algorithm 1 in different operating systems, and using new
versions of JVMs that fixed the detected non-conformance candi-
dates found. We also aim to extend our technique to other APIs (e.g.
Java Collections API), and to other languages (e.g. C#).

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers. This work was
partially supported by CNPq and CAPES grants.

645

Java Reflection API: Revealing the Dark Side of the Mirror ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Wolfgang Ahrendt, Wojciech Mostowski, and Gabriele Paganelli. 2012. Real-time

Java API Specifications for High Coverage Test Generation. In Proceedings of the
10th International Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES’12). Copenhagen, Denmark, 145–154.

[2] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated Unit
Test Generation for Classes with Environment Dependencies. In Proceedings of the
2014 29th IEEE/ACM International Conference on Automated Software Engineering
(ASE) (ASE’14). New York, NY, USA, 79–90.

[3] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An Empirical Comparison of Compiler Testing Techniques. In
Proceedings of the 38th International Conference on Software Engineering (ICSE’16).
Austin, USA, 180–190.

[4] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed Differential Testing of JVM Implementations. ACM SIGPLAN
Notices 51, 6 (2016), 85–99.

[5] Yoonsik Cheon and Gary Leavens. 2002. A Simple and Practical Approach to Unit
Testing: The JML and JUnit Way. In Proceedings of the 16th European Conference
on Object-Oriented Programming (ECOOP’02). Malaga, Spain, 231–255.

[6] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code (1st ed.).
Addison-Wesley.

[7] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and 13th European Conference on Foundations of Software Engineering
(ESEC/FSE’11). Szeged, Hungary, 416–419.

[8] Alex Gyori, Ben Lambeth, August Shi, Owolabi Legunsen, and Darko Marinov.
2016. NonDex: A Tool for Detecting and Debugging Wrong Assumptions on Java
API Specifications. In Proceedings of the 24th SIGSOFT International Symposium
on Foundations of Software Engineering (FSE’16). Seattle, USA, 993–997.

[9] IBM. 2015. API Reference. https://www.ibm.com/support/knowledgecenter/
SSYKE2_8.0.0/com.ibm.java.api.80.doc/api_overview.html.

[10] Davy Landman, Alexander Serebrenik, and Jurgen Vinju. 2017. Challenges for
Static Analysis of Java Reflection – Literature Review and Empirical Study. In
Proceedings of the 39th International Conference on Software Engineering (ICSE’17).
Buenos Aires, Argentina, 507–518.

[11] A. Leavens, G. Baker and C. Ruby. 2006. Preliminary Design of JML: A Behavioral
Interface Specification Language for Java. SIGSOFT Software Engineering Notes
31, 3 (2006), 1–38.

[12] Owolabi Legunsen, Wajih Hassan, Xinyue Xu, Grigore Roşu, and Darko Marinov.
2016. How Good Are the Specs? A Study of the Bug-finding Effectiveness of
Existing Java API Specifications. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE’16). Singapore, Singapore,
602–613.

[13] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java
Virtual Machine Specification, Java SE 8 Edition (1st ed.). Addison-Wesley Profes-
sional.

[14] Barbara Liskov and John Guttag. 2000. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design (1st ed.). Addison-Wesley Professional.

[15] Benjamin Livshits, John Whaley, and Monica Lam. 2005. Reflection Analysis for
Java. In Proceedings of the 3rd Asian Conference on Programming Languages and
Systems (APLAS’05). Tsukuba, Japan, 139–160.

[16] Pattie Maes. 1987. Concepts and Experiments in Computational Reflection. ACM
SIGPLAN Notices 22, 12 (1987), 147–155.

[17] Tiago Massoni, Rohit Gheyi, and Paulo Borba. 2008. Formal Model-driven Pro-
gram Refactoring. In Proceedings of the Theory and Practice of Software, 11th
International Conference on Fundamental Approaches to Software Engineering
(FASE’08/ETAPS’08). Berlin, Heidelberg, 362–376.

[18] William McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10, 1 (1998), 100–107.

[19] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2018. Discipline Matters:

Refactoring of Preprocessor Directives in the #ifdef Hell. IEEE Transactions on
Software Engineering 44, 5 (2018), 453–469.

[20] Alysson Milanez. 2018. Fostering Design By Contract by Exploiting the Relationship
between Code Commentary and Contracts. Ph.D. Dissertation. UFCG.

[21] Melina Mongiovi, Gustavo Wagner, Rohit Gheyi, Gustavo Soares, and Márcio
Ribeiro. 2014. Scaling Testing of Refactoring Tools. In Proceedings of the 2014 Inter-
national Conference on Software Maintenance and Evolution (ICSME) (ICSME’14).
Victoria, BC, Canada, 371–380.

[22] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping Through
Hoops: Why do Java Developers Struggle with Cryptography APIs?. In Proceed-
ings of the 38th International Conference on Software Engineering (ICSE’16). Austin,
USA, 935–946.

[23] Oracle. 2014. Class.getDeclaredFields Method Javadoc Specification. https:
//docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getDeclaredFields--.

[24] Oracle. 2014. Class.getDeclaredMethods Method Javadoc Specifica-
tion. https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#
getDeclaredMethods--.

[25] Oracle. 2014. Class.getMethod Method Javadoc Specification. https:
//docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getMethod-
java.lang.String-java.lang.Class...-.

[26] Oracle. 2014. How to Write Doc Comments for the Javadoc Tool. http://www.
oracle.com/technetwork/java/javase/documentation/index-137868.html.

[27] Oracle. 2014. Java Reflection API Javadoc Specification. https://docs.oracle.com/
javase/8/docs/api/java/lang/reflect/package-summary.html.

[28] Carlos Pacheco, Shuvendu Lahiri, Michael Ernst, and Thomas Ball. 2007.
Feedback-directed Random Test Generation. In Proceedings of the 29th Inter-
national Conference on Software Engineering (ICSE’07). Minneapolis, USA, 75–84.

[29] Mauro Pezzè and Michal Young. 2007. Software Testing and Analysis: Process,
Principles and Techniques (1st ed.). Wiley.

[30] Long Pham, Quang Le, Quoc-Sang Phan, Jun Sun, and Shengchao Qin. 2018.
Testing Heap-based Programs with Java StarFinder. In Proceedings of the 40th
International Conference on Software Engineering (ICSE’18). Gothenburg, Sweden,
268–269.

[31] Felipe Pontes, Rohit Gheyi, Sabrina Souto, Alessandro Garcia, and Márcio Ribeiro.
2019. Java Reflection API: Revealing the Dark Side of the Mirror (Artifacts).
http://www.dsc.ufcg.edu.br/~spg/fse2019.html.

[32] Martin Robillard. 2009. What Makes APIs Hard to Learn? Answers from Devel-
opers. IEEE Software 26, 6 (2009), 27–34.

[33] Martin Robillard and Robert Deline. 2011. A Field Study of API Learning Obstacles.
EMSE 16, 6 (2011), 703–732.

[34] Zalia Shams and Stephen Edwards. 2013. Reflection Support: Java Reflection
Made Easy. The Open Software Engineering Journal 7, 1 (2013), 38–52.

[35] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges. In Proceedings of the 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE)
(ASE’15). Washington, DC, USA, 201–211.

[36] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. 2013. Automated Behavioral
Testing of Refactoring Engines. IEEE Transactions on Software Engineering 39, 2
(2013), 147–162.

[37] Francisco Sokol, Mauricio Aniche, and Marco Gerosa. 2013. MetricMiner: Sup-
porting Researchers in Mining Software Repositories. IEEE 13th International
Working Conference on Source Code Analysis and Manipulation (SCAM) 1, 1 (2013),
142–146.

[38] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tCom-
ment: Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In
Proceedings of the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST’12). Washington, USA, 260–269.

[39] Gias Uddin and Martin Robillard. 2015. How API Documentation Fails. IEEE
Software 32, 4 (2015), 68–75.

[40] Andreas Zeller. 2009. Why Programs Fail: A Guide to Systematic Debugging (2nd
ed.). Morgan Kaufmann Publishers.

646

https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.api.80.doc/api_overview.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.api.80.doc/api_overview.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getDeclaredFields--
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getDeclaredFields--
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getDeclaredMethods--
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getDeclaredMethods--
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getMethod-java.lang.String-java.lang.Class...-
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getMethod-java.lang.String-java.lang.Class...-
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getMethod-java.lang.String-java.lang.Class...-
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
http://www.dsc.ufcg.edu.br/~spg/fse2019.html

	Abstract
	1 Introduction
	2 Problem
	2.1 Motivating Example
	2.2 JVMs Test Suites
	2.3 Survey

	3 Technique
	4 Evaluation
	4.1 Definition
	4.2 Planning
	4.3 Results
	4.4 Discussion
	4.5 Threats to Validity

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

