
Scaling Testing of Refactoring Engines
Melina Mongiovi, Gustavo Mendes, Rohit Gheyi, Gustavo Soares

Federal University of Campina Grande
Campina Grande, Brasil

{melina,gugawag}@copin.ufcg.edu.br, {rohit,gsoares}@dsc.ufcg.edu.br

Márcio Ribeiro
Federal University of Alagoas

Maceió, Brazil
marcio@ic.ufal.br

Abstract—Proving refactoring sound with respect to a formal
semantics is considered a challenge. In practice, developers write
test cases to check their refactoring implementations. However,
it is difficult and time consuming to have a good test suite
since it requires complex inputs (programs) and an oracle to
check whether it is possible to apply the transformation. If it
is possible, the resulting program must preserve the observable
behavior. There are some automated techniques for testing
refactoring engines. Nevertheless, they may have limitations
related to the program generator (exhaustiveness, setup, expres-
siveness), automation (types of oracles, bug categorization), time
consumption or kinds of refactorings that can be tested. In
this paper, we extend our previous technique to test refactoring
engines. We improve expressiveness of the program generator
for testing more kinds of refactorings, such as Extract Function.
Moreover, developers just need to specify the input’s structure
in a declarative language. They may also set the technique to
skip some consecutive test inputs to improve performance. We
evaluate our technique in 18 refactoring implementations of Java
(Eclipse and JRRT) and C (Eclipse). We identify 76 bugs (53
new bugs) related to compilation errors, behavioral changes, and
overly strong conditions. We also compare the impact of the skip
on the time consumption and bug detection in our technique. By
using a skip of 25 in the program generator, it reduces in 96%
the time to test the refactoring implementations while missing
only 3.9% of the bugs. In a few seconds, it finds the first failure
related to compilation error or behavioral change.

I. INTRODUCTION

Defining and implementing refactorings is a nontrivial task
since it is difficult to define all preconditions to guarantee that
the transformation preserves the program behavior. In fact,
proving refactoring correctness for entire languages such as
Java and C constitutes a challenge [1]. As a result, refactoring
engines may have bugs [2], [3]. In practice, developers of
refactoring engines use tests to evaluate the refactoring imple-
mentations. However, testing refactoring engines is not trivial
since it requires complex inputs, such as programs, and an
oracle to define the correct resulting program or whether the
transformation must be rejected. Manually writing test cases
may be costly, and thus it may be difficult to create a good
test suite considering all the language constructs.

Researchers have proposed a number of automated tech-
niques for testing refactoring engines [4], [5], [3], [6]. They
automate four major steps of the testing process: (i) generating
test inputs; (ii) applying the refactoring implementation; (iii)
checking the output correctness; (iv) and classifying the de-
tected failures into distinct bugs. Although these techniques
have detected a number of bugs in refactoring engines, it

remains a question whether they scale to detect more bugs
without considerable effort.

For example, to automate the test input generation, Gligoric
et al. [5] propose UDITA (an extension of ASTGEN [4]),
a Java-like language to write program generators so that
developers can generate programs as test inputs. They used
UDITA to generate about 5,000 programs with up to 3 classes
as test inputs [5]. However, writing some of these program
generators demands a considerable effort [6]. Soares et al. [2],
[3] propose a Java program generator called JDOLLY for ex-
haustively generating programs. By using JDOLLY, developers
can specify the number of some Java constructs and constraints
for the generated programs by using Alloy [7], a formal
specification language. They used JDOLLY to generate more
than 100,000 programs. Although JDOLLY can reduce the
effort for generating Java programs, it only generates programs
with simple method bodies (only one statement), which is not
enough to test refactorings within method level. Additionally,
exhaustively generating programs, even for a small number
of Java constructs, can require a lot of time. To alleviate
this problem, Jagannath et al. [8] propose the Sparse Test
Generation technique (STG), which skips some test inputs.

Later, Gligoric et al. [6] propose to use real programs as
test inputs, automatically applying the refactoring under test
in every possible location of the program. They found 141
bugs related to compilation errors and engine crash in 8 real
systems in Java and C. Although this approach can reduce
the effort to create test inputs, testing refactoring engines in
large programs may increase the costs of checking the output
correctness. For example, to identify bugs related to behavioral
changes, Soares et al. [3] use SAFEREFACTOR, a tool that
analyzes a transformation and generates tests to compare the
program behavior before and after the transformation. SAFER-
EFACTOR was useful for finding 63 bugs related to behavioral
changes in the programs generated by JDOLLY. However, us-
ing SAFEREFACTOR to evaluate transformations on large real
programs would require a much higher time for analyzing the
transformation and generating tests. Additionally, understand a
failure in a large transformation demands more time. Gligoric
et al. [6] take 1-60 minutes to analyze each failure in order to
categorize them into distinct bugs. In summary, the previous
approaches have limitations related to the program generator
(exhaustiveness, setup, expressiveness), automation (types of
oracles, bug categorization), time consumption or kinds of
refactorings that can be tested.



In this paper, we extend our technique [3] to scale testing of
refactoring engines. To improve the expressiveness of the pro-
gram generation, we propose the DOLLY program generator. It
can generate Java (JDOLLY [3]) and C programs (we propose
CDOLLY in this paper). The programs generated by CDOLLY
can have functions with a sequence of statements, which allow
us to test refactorings applied within function level that is,
refactorings that modify statements inside function body. For
example, Extract Function refactoring extracts a code fragment
of a function into a new function. By implementing CDOLLY,
we also show evidence that our previous approach [3] can be
used for testing refactoring engines for other languages than
Java, such as C.

To reduce the time to test the refactoring implementations,
we implement a technique to skip some consecutive test
inputs [8]. Consecutive programs generated by DOLLY tends
to be very similar, potentially detecting the same kind of bug.
Thus, developers can set a parameter to skip some programs
to reduce the time to test the refactoring implementations.
By skipping these programs, we can reduce the Time to
First Failure (TTFF), reducing the developer idle time [8].
Our technique uses a set of automated oracles to evaluate
the correctness of the transformations related to compilation
errors, behavioral changes, and overly strong conditions. After
identifying the failures, the technique uses a set of automated
bug categorizers to classify all failing transformations into dis-
tinct bugs. For simplification we use the term transformation
to refer to a refactoring or a failing transformation.

We evaluate 18 kinds of refactoring implementations of
JastAdd Refactoring Tools (JRRT) [9], Eclipse JDT (Java)
and Eclipse CDT (C). We found 76 (53 new bugs) bugs
in a total of 49 bugs related to compilation errors, 17 bugs
related to behavioral changes, and 10 bugs related to overly
strong conditions. Among those bugs, we found 28 bugs in
refactorings applied within function level. We also compare
the impact of the skip on the time consumption and bug
detection in our technique. By using a skip of 25 in the
program generator, it reduces in 96% the time to test the
refactoring implementations while missing only 3.9% of the
bugs. Moreover, by using this same skip we find the first
failure in general in a few seconds. So, the refactoring engine
developer can find a bug in the refactoring implementation
relatively quickly, fix it, run our technique again to find another
bug, and so on. Before a release, tool developers can run the
technique without skip to find some missed bugs.

II. TECHNIQUE

In this section, we explain the main steps of our technique
(Figure 1). First, it automatically generates programs as test
inputs for a refactoring using DOLLY, an automated program
generator (Section II-A). Next, the refactoring under test
is automatically applied to each generated program (Sec-
tion II-B). To evaluate the correctness of the transformations,
our technique uses a set of automated oracles (Section II-C).
Finally, the detected failures are automatically categorized into
distinct bugs (Section II-D).

Fig. 1. A technique for scaling testing of refactoring engines.

A. Test Input Generation

We use DOLLY to automatically generate programs. It can
generate Java and C programs. DOLLY uses JDOLLY, pro-
posed by Soares et al. [2], [3], to generate Java programs. To
generate C programs it uses CDOLLY (we propose CDOLLY
in this paper in Section III). The refactoring engine developer
passes as input an Alloy specification with the maximum
number of elements that the generated programs may declare
and additional constraints for guiding the program generation.
DOLLY uses the Alloy Analyzer tool [10] that takes a specifi-
cation and finds a finite set of all possible instances that satisfy
the constraints within a scope. For each Alloy instance found
by the Alloy Analyzer, DOLLY translates it to a program.
Furthermore, developers can specify a skip number to jump
some of the Alloy instances to avoid state explosion.

B. Refactoring Application

The second step of the technique is to automatically apply
the refactoring under test to each program generated by
DOLLY. For this purpose, we implemented a program that
uses the engines API to apply the refactorings automatically.
If there are more than one engine under test, it can perform
differential testing to detect bugs related to overly strong
conditions [2]. The engine checks a set of preconditions
before applying the transformation. If they are satisfied, the
transformation is applied. Otherwise, the transformation is
rejected.

C. Automated Test Oracles

In this step, the technique uses a set of automated oracles
to evaluate correctness of the transformations. Refactoring
engines can have overly weak and strong conditions [3],
[2]. Refactoring implementations with overly weak conditions
allow applying transformations that change the program be-
havior. On the other hand, refactoring implementations with
overly strong conditions reject applying transformations that
preserve the program behavior.

We use a compiler to identify bugs related to compilation
errors, and SAFEREFACTOR [11], [12] to identify behavioral
changes. SAFEREFACTOR evaluates whether the transforma-
tion preserves the program behavior by automatically generat-
ing tests to the methods impacted by the change. By comparing
two versions of a program, it identifies the common methods
impacted by the change. Next, SAFEREFACTOR generates
a test suite for the previously identified methods using an



automatic test suite generator. It executes the same test suite
before and after the transformation. If the results are different,
the tool reports a behavioral change, and yields the test cases
that reveal it. Otherwise, we improve confidence that the
transformation is behavior preserving.

In our previous work, we proposed a technique [2] to
identify overly strong conditions in refactoring implemen-
tations based on differential testing [13]. It needs at least
two engines to apply the same kind of refactoring. If an
engine rejects a transformation, and the other one applies
it and preserves behavior according to SAFEREFACTOR, the
technique establishes that the former engine contains an overly
strong condition.

D. Bug Categorizer

In the previous step, the automated oracles may detect a
number of failures in the refactoring implementations. A single
bug in the refactoring may cause several of those failures.
Classifying them manually may be time consuming. Then, we
automate this classification. Soares et al. [3] implemented a
tool to categorize failures related to compilation errors and
overly strong conditions. They use the technique proposed by
Jagannath et al. [8] to automatically classify failures related to
compilation errors into distinct bugs. It is based on splitting
the failing tests based on messages from the test oracle.
Soares et al. [3] used a similar approach to classify failures
related to overly strong conditions. Moreover, they specified a
systematic but manual approach to categorize failures related
to behavioral changes based on structural characteristics of the
transformation, such as overloading, overriding, and implicit
cast. In this work, we automate the classification of failures
related to behavioral changes based on their approach.

III. DOLLY

DOLLY is a program generator that exhaustively generates
programs, up to a given scope. It has a parameter to skip
some instances in order to reduce the set of generated pro-
grams. DOLLY generates programs for Java (JDOLLY) and
C (CDOLLY). Soares et al. [3] proposed JDOLLY. In this
section, we follow a similar approach and propose CDOLLY. It
generates C programs from a C meta-model specification and
additional constraints specified in Alloy. The main difference
between JDOLLY and CDOLLY is that CDOLLY generates
richer method bodies.

Next we provide an overview of Alloy (Section III-A).
Section III-B presents the C meta-model used by CDOLLY.
We then describe how to translate each Alloy instance to C and
how to use CDOLLY for generating more specific C programs
in Section III-C. Finally, Section III-D explains the technique
to skip programs.

A. Alloy Overview

Alloy is a formal specification language, based on first
order logic that allows the user to specify software systems
by abstracting their key characteristics [7]. An Alloy specifi-
cation is a sequence of signatures and constraints paragraphs

declarations. A signature introduces a type and can declare
a set of relations. The Alloy relations have a multiplicity
that is specified using qualifiers, such as one (exactly one),
lone (zero or one), set (zero or more), and seq (sequence
of elements). In Alloy, one signature can extend another,
establishing that the extended signature is a subset of the
parent signature. Next we specify a list of objects in Alloy.
Each list (List) may have a sequence of objects (Object)
in the relation objs.

sig Object {}
sig List {
objs: seq Object

}

Facts are used to package formulas that always hold. The
fact listSize specifies that all lists must have at most 10
elements.

fact listSize {
all l: List | #l·objs < = 10

}

The keywords all, some, and no denote the universal,
existential, and non-existential quantifiers, respectively. Pred-
icates are used to package reusable formulas and specify
operations. The predicate noEmptyList specifies that all
lists are non empty. The relation objs yields the elements
of the sequence and the relation isEmpty checks whether a
sequence is empty.

pred noEmptyList[] {
no l: List | l·objs·isEmpty

}

The Alloy Analyzer tool allows us to perform analysis
on an Alloy specification [10]. A run command is applied
to a predicate, specifying a scope for all declared signa-
tures. For example, in the following command the Alloy
Analyzer searches for an instance with at most three objects
(scope) for List and Object satisfying all signature and
fact constraints, in addition to the constraints specified in
noEmptyList. The Alloy Analyzer has a feature to find all
valid instances for a given scope.

run noEmptyList for 3

B. C Meta-Model

CDOLLY generates a subset of C programs. Next we present
the C abstract syntax and well-formedness rules considered in
CDOLLY.

1) Abstract Syntax: We specified in Alloy a subset of the
C meta-model. A C program may declare some functions. We
specified the signature Function representing the functions
of a program. A function can have parameters, a sequence of
statements, and one return type.

sig Function {
param: lone LocalVar,
stmt: seq Stmt,
returnType: one Type

}



For simplicity, all functions contain at most one parameter
and we consider only the primitive types int and float in
the specification. A function return type can be void or a
primitive type. The statements of a function can be variable
attributions (VarAttrib), a return statement (Return),
local variable declarations (LocalVarDecl), or #ifdef dec-
laration (IfDef). We have also considered programs with
global variables and some C preprocessor directives such as
#define, #ifdef, and #endif. Figure 2 specifies the
UML class diagram of CDOLLY’s meta-model.

Fig. 2. UML class diagram of CDOLLY’s meta-model.

2) Well-Formedness Rules: We specify well-formedness
rules within Alloy facts. For example, the following fact
specifies that if the return type of a function is not void
the function must have a Return statement. The operator &
denotes the set intersection operator.

fact WellFormednessRules {
all f: Function |
f·returnType 6= Void ⇒
#f·stmt·elems & Return = 1

···
}

We also specify some additional rules to cope with state
explosion. For example, the predicate optimization does
not allow functions with more than four statements. Moreover,
all statements must be distinct. The relation hasDups yields
whether there is some duplicate in the sequence.

pred optimization [] {
all f: Function | #f·stmt < 5
all f:Function | not f·stmt·hasDups
···

}

Similarly, we specified other elements of C’s abstract syn-
tax and other well-formedness rules. Notice that a sequence
in Alloy may have a substantial impact in the number of
Alloy instances generated by the Alloy Analyzer. Consider
that a sequence may have at most k elements and n kinds
of statements. The maximum number of valid sequences is
k∑

i=0

ni. This number is multiplied by the number of all possible

combinations of other elements of the specification.

C. Program Generation

We use this Alloy specification to generate C programs.
Each Alloy instance found by the Alloy Analyzer is translated

into a C program by CDOLLY. For example, on the left-hand
side of Figure 3, the Alloy instance has one function contain-
ing a sequence of two statements (local variable declaration
and variable assignment). CDOLLY translates this instance to
the C program illustrated on the right-hand side of Figure 3.
For variable assignments, CDOLLY randomly selects a value
in a set of predefined values.

We can specify additional constraints to guide the program
generation. For example, Listing 1 states that the generated
programs must have at least one function (func) and one local
variable (varDecl), which must be declared in a statement of
func. The operator in denotes the set membership operator.
We use a command to generate instances with at most two
elements for each type declared in the C meta-model used
by CDOLLY but Stmt, which can have up to three elements.
Notice that the instances generated by the Alloy Analyzer may
be used as input to test the Extract Function refactoring.

Listing 1. Specification to guide program generation.
one sig varDecl extends LocalVarDecl {}
one sig func extends Function {}
pred ExtractFunction {
varDecl in func·stmt·elems

}
run ExtractFunction for 2 but 3 Stmt

Fig. 3. Alloy instance and corresponding C program translated by CDOLLY.

D. Skipping Programs

By default, DOLLY exhaustively searches for all possible
combinations yielded by the run command. Even for a small
scope, DOLLY may generate thousands of programs specially
when considering sequence of statements. However, the Al-
loy Analyzer may generate a number of similar consecutive
instances [14]. Inspired on the STG technique [8], we allow
developers to guide the program generation by skipping some
instances. For a skip n greater than one, DOLLY generates
one program from an Alloy instance, and jumps the following
n-1 Alloy instances. It follows this approach until the Alloy
Analyzer does not generate more instances.

IV. EVALUATION

We evaluate our technique in 18 refactoring implemen-
tations of Java (Eclipse and JRRT) and C (Eclipse) with
respect to time-consumption and bug detection. First, we
present the experiment definition (Section IV-A) and planning



(Section IV-B). Then, Sections IV-C and IV-D present and
discuss the results, respectively. Section IV-E describes some
threats to validity and Section IV-F summarizes the main
findings. Finally, we also compare our technique to other ones
to test refactoring engines with respect to automation, oracles,
exhaustiveness, setup and other characteristics in Section IV-G.

A. Definition

The goal of this experiment is to analyze our technique for
the purpose of evaluating with respect to time consumption,
bug detection, and kinds of refactorings that can be tested from
the point of view of the developers of refactoring engines in
the context of refactoring implementations for Java and C. In
particular, we address the following research questions:

• Q1 In what kinds of refactorings the proposed technique
can detect bugs?
We measure the number of bugs related to compilation
errors, behavioral changes, and overly strong conditions
for each kind of refactoring implementation.

• Q2 What is the rate of time reduction and undetected
bugs using skips in the technique?
We measure the number of detected bugs and the total
time to test the refactoring implementations without skip
and using skips of 10 and 25 to generate programs. The
total time includes the time to generate the programs,
apply the transformations, and execute the automated
oracles and bug categorizers.

• Q3 What is the impact of using skip to generate programs
on the time to find the first failure?
We measure the time to find the first failure related to
compilation error or behavioral change without skip and
using skips of 10 and 25 to generate programs.

B. Planning

In this section, we describe the subjects used in the exper-
iment and its instrumentation.

1) Selection of subjects: We tested 18 refactoring imple-
mentations of Java (Eclipse and JRRT [9]) and C (Eclipse).
Eclipse is a widely used refactoring engine in practice and
JRRT was proposed to improve the correctness of refactorings
by using formal techniques. The evaluated refactorings focus
on a representative set of program structures. We also evaluate
all refactoring implementations of Eclipse CDT (C) but one:
toggle function. This refactoring needs more than one C
file to apply the refactoring, which is not supported by the
current version of CDOLLY. Table I summarizes all evaluated
refactorings for Java and C.

2) Instrumentation: We ran the experiment on a Desktop
3.0 GHz core i5 with 8 GB RAM running Ubuntu 12.04.
We tested the refactoring implementations of Eclipse JDT 4.3,
Eclipse CDT 8.1, and JRRT (03/feb/2013). We use SAFER-
EFACTOR [11] with the change impact analysis parameter
activated to evaluate whether a transformation preserves the
program behavior. This version of SAFEREFACTOR generates
tests only for the methods impacted by the changes. We use
SAFEREFACTOR for C to detect behavioral changes in C

refactoring implementations. The time limit used by SAFER-
EFACTOR generates tests is 0.3 second. This time limit is
enough to test transformations applied to small programs [11].
Finally, we use JDOLLY 0.2 and CDOLLY 0.1 to generate the
programs.

We use the same Alloy specifications proposed before [3]
as input parameter of JDOLLY to test the Java refactoring
implementations. We use the scope of two packages, three
classes, and at most two fields and three methods to JDOLLY
generate the programs. We use the scope of two functions,
two variables, two defines, and three statements to CDOLLY
generate the programs. We define some additional constraints
for guiding DOLLY to generate programs with certain char-
acteristics needed to apply the refactoring. They prevent the
generation of programs to which the refactoring under test
is not applicable. For example, to test the Pull Up Field
refactoring, the program must have at least two classes in
a hierarchy, which a subclass contains a field that its super
class does not contain. Another example, Listing 1 is used
to generate programs to test Extract Function. Finally, the
oracles save the results in files, which are used by the bug
categorization module.

C. Results

JDOLLY and CDOLLY generated 96,129 compilable pro-
grams to evaluate all refactorings without skip. We use skips
of 10 and 25 to reduce the set of generated programs. DOLLY
generated 9,371 and 3,932 compilable programs to those skips,
respectively (see Table I). The technique detects a total of 76
bugs (53 new bugs), which 49 bugs are related to compilation
errors, 17 to behavioral changes, and 10 to overly strong
conditions. When using skips of 10 and 25 the technique
misses 3 bugs related to compilation error, behavioral change,
and overly strong conditions in the Move Method refactoring.

Since we test newer versions of Eclipse JDT and JRRT
comparing with our previous works [3], [2], we detect some
new bugs that our previous works did not detect. But, we
also detect some bugs that we have already detected (those
bugs have not been fixed yet in the engines). In this work we
show that the technique can be instantiated to test refactoring
implementations of another language, such as C. Then, all bugs
that we have detected in Eclipse CDT we reported as new bugs.
We also reported the new bugs in the Java refactoring engines.
Tables II, III, and IV summarize the results of the detected
bugs related to compilation errors, behavioral changes, and
overly strong conditions, respectively.

The total time to evaluate the 18 refactoring implementa-
tions without skip to generate programs is 61.61h. When using
skips of 10 and 25, the technique takes 5.89h (90% of time
reduction) and 2.34h (96% of time reduction), respectively. By
using both skips the technique misses only 3.9% of the bugs.
Table I summarizes the results related to the time to test the
refactoring implementations.

We measure the TTFF in the refactoring implementations
under test. The technique takes in general a few seconds to find
the first failure, which can be related to compilation error or



TABLE I
SUMMARY OF THE NUMBER OF GENERATED PROGRAMS AND THE TIME TO EVALUATE THE REFACTORING IMPLEMENTATIONS.

TABLE II
SUMMARY OF THE DETECTED BUGS RELATED TO COMPILATION ERRORS.

behavioral change (see Table V). In some refactorings, such as
Push Down Field and Encapsulate Field, it takes some minutes
to find the first failure without skip. In case of no failure, we
show “n/a.”

TABLE V
SUMMARY OF THE TIME TO FIND THE FIRST FAILURE (TTFF).

D. Discussion

Now we discuss issues of the detected bugs related to
compilation errors, behavioral changes, and overly strong
conditions, the time to test the refactoring implementations,
and the refactorings applied within function level.

1) Compilation Errors: A total of 29,118 transformations
applied by Eclipse failed due to compilation errors without
skip. Those failures were categorized in 48 bugs (42 new
bugs). Among the new bugs, the C refactoring implementa-
tions have 41 and the Java ones have 1 new bug. We missed
no bugs in the C refactoring implementations using the skips
of 10 and 25. In this context, there is a high number of
failure transformations regarding compilation errors in such
implementations. For example, the Eclipse CDT does not
check whether the new names are keywords and, then intro-
duces compilation errors when applying the transformation.
JRRT applied only three transformations (Move Method) with
compilation errors. These failures were categorized in one bug.

2) Behavioral Changes: JRRT applied 6,320 behavioral
changes transformations. We categorized them in three distinct



TABLE III
SUMMARY OF THE DETECTED BUGS RELATED TO BEHAVIORAL CHANGES.

TABLE IV
SUMMARY OF THE DETECTED BUGS RELATED TO OVERLY STRONG CONDITIONS.

bugs. Eclipse JDT applied 3,744 transformations that change
the program behavior while Eclipse CDT applied 2,425 ones.
We found 14 distinct bugs related to behavioral changes in
the refactorings of Eclipse. Among those bugs, we found six
new bugs in Eclipse CDT. For example, we can extract the
assign of a local variable to a function with a name starting
with * in Eclipse CDT. This introduces a behavioral change.
We found a new bug in the Pull Up Field of Eclipse JDT.
The transformation enables a field to hide another field, which
changes the program behavior.

3) Overly Strong Conditions: We found eight bugs (two
new ones) related to overly strong conditions in Eclipse JDT
and two new bugs in JRRT. We found new bugs in the Move
Method refactorings of Eclipse and JRRT. Listing 2 shows
the original program generated by JDOLLY and Listing 3
illustrates the resulting program after the Move Method refac-
toring of Eclipse JDT. The transformation moved the method
m(int) from class B to class A. This transformation does not
change the program behavior. All methods of the program re-
sult the same value before and after the transformations. JRRT
rejects applying this transformation and reports the following
warning: cannot adjust accessibilities.

4) Time: Our technique takes 61.61 hours to evaluate all
refactoring implementations under test without skips. DOLLY
generates a number of similar programs that may increase the
time for testing refactoring engines and potentially detect the
same kind of bug. We have observed that similar programs
tend to be generated consecutively by DOLLY. Then, to

Listing 2. Before Refactoring.
class A {}
class B extends A {

A f = null;
long m(int a) {
return 0;

}
}
class C extends B {

long m(int a) {
return 1;

}
long k() {
return super.m(2);

}
}

Listing 3. After a Move Method
Refactoring.
class A {
long m(int a) {

return 0;
}

}
class B extends A {

A f = null;
}
class C extends B {

long m(int a) {
return 1;

}
long k() {
return super.m(2);

}
}

alleviate this problem we implemented a feature that allows
skipping consecutive test inputs.

When using skips, the refactoring engine developer can
detect a number of bugs in a few hours. For example, the
technique evaluated 18 refactoring implementations and de-
tects 73 bugs in 2.34 hours using a skip of 25 to generate
programs. The developer can run the technique again without
skipping while fixing the detected bugs in order to find some
missed bugs. Moreover, we can reduce even more the idle
time of the developer. The technique finds the first failure in



Listing 4. Before Refactoring.
void func() {
int var = 1; ...

}

Listing 5. After a Extract Con-
stant Refactoring.
static const int one = 1;
void func() {
int var = one; ...

}

the refactoring implementations in a few seconds using a skip
of 10 or 25. When there are many failures transformations in a
refactoring implementation, the TTFF is similar even varying
the skip to generate programs. So, the developer can find a
bug in a few seconds, fix the bug, run it again to find another
bug, and so on. By using this strategy, the bug categorization
step is no longer needed since there is only one failure in
each execution. Before a new release, the developer can run
the technique without skip to improve confidence that the
implementation is correct.

5) Refactorings Applied within Function Level: The state-
ments variable assignment and local variable declaration, spec-
ified in the C meta-model of CDOLLY, enable testing refactor-
ings applied within function level, such as Extract Constant,
Extract Function, Extract Local Variable, and Rename Local
Variable. For example, Figure IV-D5 illustrates an Extract
Constant refactoring applied within a variable assignment
statement.

E. Threats to Validity

Next we present the threats to validity of our evaluation.
1) Construct Validity: We reported all bugs found by our

technique. Developers accepted some of them and marked
others as duplicate or new bugs.

2) Internal Validity: We specify some additional constraints
in Alloy for guiding the program generation to each kind
of refactoring. Those constraints aim to generate programs
with certain characteristics needed to apply the refactoring.
It also avoids a state explosion of Alloy instances. However,
the additional constraints may hide possibly detectable bugs.
We categorize the bugs related to compilation errors and
overly strong conditions by splitting the failing tests based
on messages from the engine. We classify behavioral changes
based on the program’s structure. However, we can miss some
bugs if the engine reports the same message to different kinds
of bugs. Developers can mitigate this threat when they execute
the technique a number of times after fixing the bugs.

3) External Validity: We have only considered a subset of
Java and C and a small scope to generate programs. Some
of the generated programs may be artificial. We cannot assert
that all bugs actually happen in practice. Nevertheless, the
technique is useful to warn developers about some overly weak
and strong preconditions in the refactoring implementations.

F. Answer to the Research Questions

We now answer our research questions.
• Q1 In what kinds of refactorings the proposed technique

can detect bugs?

The technique detects a total of 76 bugs related to
compilation errors, behavioral changes, and overly strong
conditions in 18 refactorings applied above method/func-
tion level and within function level. Among those bugs,
it detects 28 bugs in the refactorings applied within
function level. We improve our previous technique [3] in
order to test more kinds of refactoring implementations,
such as refactorings applied within function level. Yet, to
apply some kinds of refactorings the program must have
some language constructs currently not supported by the
program generator.

• Q2 What is the rate of time reduction and undetected
bugs using skips in the technique?
When using skips of 10 and 25, the technique takes 5.89h
(90% of time reduction) and 2.34h (96% of time re-
duction), respectively. By using both skips the technique
misses only 3.9% of the bugs.

• Q3 What is the impact of using skip to generate programs
on the time to find the first failure?
The technique reduces on average 47% and 60% (it takes
a few seconds) the time to find the first failure using skips
of 10 and 25, respectively.

G. Comparison with other techniques

Next, we compare our technique with other related tech-
niques to test refactoring engines.

Daniel et al. [4] proposed an approach for automated testing
refactoring engines. The technique is based on ASTGEN, a
Java program generator, and a set of programmatic oracles.
However, their oracles can only syntactically compare the
programs to detect behavioral changes. So, they found only
one bug related to behavioral change in Eclipse JDT. The other
bugs are related to compilation errors and engine crashes. We
found 17 bugs related to behavioral change in 18 refactoring
implementations of JRRT and Eclipse.

Jagannath et at. [8] presented the STG technique to reduce
the costs of bounded-exhaustive testing by skipping some test
inputs. They randomly select a skip up to 20 after generating
each program. They evaluated it using ASTGEN and found
that the technique took some seconds to find the first failure
related to compilation error or engine crash in the refactoring
implementations using STG. We also included the skip pa-
rameter in DOLLY to reduce the time to test the refactoring
implementations and to find the first failure, which can be
related to compilation error or behavioral change. Different
from them, we use a fixed skip that is set by the user. As the
results are deterministic, we can execute the tests again using
the same skip to evaluate whether we have already fixed the
bugs. Moreover, we can execute using a different skip to find
some missed bugs. Finally, they do not measure the rate of
missed bugs using skips to generate programs different from
our work.

Later, Gligoric et al. [5] proposed UDITA, a Java-like
language that extends ASTGEN allowing users to describe
properties in UDITA using any desired mix of filtering and
generating style in opposed to ASTGEN that uses a purely



generating style. UDITA evolved ASTGEN to be more ex-
pressive and easier to use, usually resulting in faster program
generation as well. They found four new bugs related to
compilation errors in Eclipse in a few minutes. However, the
technique requires substantial manual effort for writing test
generators [6], since they are specified in a Java-like language.
Soares et al. [3] found that UDITA does not generate some
programs that JDOLLY generates using the same scope and
without skipping.

More recently Gligoric et at. [6] used real systems to reduce
the effort for writing test generators using the same oracles [5].
They found 141 bugs related to compilation errors in refactor-
ing implementations for Java and C in 285 hours. However,
the technique may be costly to apply the refactoring in large
systems and to minimize the failure into a small program
to categorize the bugs. Moreover, evaluating transformations
on large real programs is time consuming, and it would
produce less accurate results. We can use SAFEREFACTOR
to automatically detect behavioral changes in their technique.
SAFEREFACTOR detected behavioral transformations applied
on real systems that even a well defined manual inspection
conducted by experts did not detect [15], [11].

In our previous work [2], [3] we proposed a technique to
test refactoring engines by detecting bugs related to compila-
tion errors, behavioral changes, and overly strong conditions.
It is based on JDOLLY, an exhaustive program generator,
a set of automated oracles, such as SAFEREFACTOR [12],
and differential testing to identify overly strong conditions.
As opposed to ASTGEN and UDITA that use a Java-like
language, JDOLLY only needs to declaratively specify the
structures of the programs. However, it may be costly to
evaluate all test inputs. It took a total of 590 hours to detect
106 bugs related to compilation errors and behavioral changes
in 39 refactoring implementations. Moreover, the technique
does not test refactorings applied within method level. In
this work, we optimize the technique to reduce the costs
of testing. For example, using a skip of 25 in the program
generator, it reduces in 96% the time to test the refactoring
implementations while missing only 3.9% of the bugs. We
also extend the technique to improve expressiveness of the
program generator and show that it is also useful to test
refactoring implementations in C language. We found 28
bugs in refactorings applied within function level. Our current
technique may allow developers to run it more often during
the refactoring implementation.

Table VI summarizes the comparison among our technique
and the main techniques to test refactoring engines. The
column Automation indicates whether the technique is au-
tomated in generating test inputs and categorizing the bugs.
In the column Oracle we use yes whether the technique
implements the oracle and no otherwise. In the BC (behavioral
change) column we also differentiate the oracles by the kind
of approach used to detect behavioral change, which can be
syntactic or dynamic. The column Refactoring represents the
kinds of refactorings supported by the techniques. Finally,
the column Test Input indicates whether the generation or

selection of the test inputs are exhaustive, and the effort to
setup the program generator or to select the test inputs.

V. RELATED WORK

Opdyke [16] coined the term refactoring. He proposed a
number of refactorings for C++ and specified conditions to
guarantee behavior preservation. However, there was no formal
proof of the correctness and minimality of these conditions.
Later, Tokuda and Batory [17] showed that Opdyke’s notion
was not sufficient to ensure preservation of behavior.

Garrido and Johnson [18], [19] proposed CRefactory, a
refactoring engine for C. They specified a set of refactoring
preconditions that support programs in the presence of condi-
tional compilation directives and implemented the refactorings.
However, they did not prove them sound. We can use our
technique to test their refactoring implementations.

Steimann and Thies [20] proposed a constraint-based ap-
proach to specify Java accessibility. It is useful for detect-
ing bugs regarding accessibility-related properties. Schäfer et
al. [9] implemented a number of Java refactoring implemen-
tations in JRRT. They aim to improve correctness of the
refactoring implementations of Eclipse. They included some of
the results presented by Steimann and Thies [20]. We evaluated
five JRRT implementations and found some bugs.

Borba et al. [21] proposed a set of refactorings for a subset
of Java with copy semantics. They proved them to sound with
respect to a formal semantics. Later, Silva et al. [22] extended
their work to consider an OO language with reference seman-
tics. However, they have not considered all Java constructs,
such as overloading and field hiding. Developers may use their
templates to implement the refactorings and use our technique
to test the refactoring implementations.

Li and Thompson [23] proposed a technique to test refac-
torings using a tool, called Quvid QuickCheck, for Erlang.
They evaluated a number of implementations of the Wrangler
refactoring engine. For each refactoring, they state a number
of properties that it must satisfy. If a refactoring applies a
transformation but does not satisfy a property, they indicate
a bug in the implementation. They found four bugs. We
use SAFEREFACTOR to evaluate behavior preservation. Our
technique uses a similar approach for testing refactorings for
Java and C. Their approach applies refactorings to a number
of real case studies and toy examples. In contrast, we apply
refactorings to a number of programs generated by DOLLY.

Vakilian and Johnson [24] presented a technique to detect
usability problems in refactoring engines. It is based on refac-
toring alternate paths. They adapt critical incident technique to
refactoring tools and show that alternate refactoring paths are
indicators of the usability problems of refactoring tools. Their
technique manually found two usability problems related to
overly strong conditions. We use SAFEREFACTOR to evaluates
whether the applied transformation is behavior preserving. Our
technique automatically found 10 bugs related to overly strong
conditions in Eclipse JDT and JRRT.

Rachatasumrit and Kim [25] found that refactorings are not
well tested in real systems. The existing regression test suites



TABLE VI
COMPARISON BETWEEN TECHNIQUES TO TEST REFACTORING ENGINES. CE = COMPILATION ERRORS; BC = BEHAVIORAL CHANGES; OS = OVERLY

STRONG CONDITIONS.

may not cover the impacted entities, and a number of test
cases may not be relevant for testing the refactorings. In our
previous work, we evolved SAFEREFACTOR to generate tests
only for the methods impacted by the change [11]. It generates
only relevant tests that exercise at least one entity impacted
by the change. The change impact analysis performed by
SAFEREFACTOR also reduced the time to test the refactoring
implementations comparing with our previous work [3].

VI. CONCLUSIONS

In this work we propose a technique to scale testing of
refactoring engines. We extend our previous technique [3]
by improving expressiveness of the program generator to
enable testing refactorings applied within function level. We
also optimize it to reduce the time to test the refactoring
implementations by skipping some consecutive test inputs. We
evaluate it on testing 18 kinds of refactorings implemented by
Eclipse JDT, Eclipse CDT, and JRRT. We found 76 (53 new
bugs) bugs in a total of 49 bugs related to compilation errors,
17 bugs related to behavioral changes, and 10 bugs related
to overly strong conditions. Among those bugs, we found 28
bugs in refactorings applied within function level. Moreover,
using a skip of 25 in the program generator, it reduces in 96%
the time to test the refactoring implementations while missing
only 3.9% of the bugs.

In our study, the technique finds the first failure in a few
seconds. The refactoring engine developer can fix the bug and
run it again while implementing the transformation. Since it
takes less than an hour to test each implementation using a
skip of 10, developers may also run it a couple of times to
find the bugs missed using a different skip. Before a release,
developers may run the technique without skipping instances
to improve confidence that the implementations are correct.

As a future work we aim at proposing some automated
oracles to detect other kinds of bugs in refactoring implemen-
tations. We also intend to improve the skip mechanisms to
reduce the rate of missed bugs. Finally, we aim at specifying
more language constructs in DOLLY and testing other kinds
of refactoring implementations.

REFERENCES

[1] M. Schäfer, T. Ekman, and O. de Moor, “Challenge proposal: verification
of refactorings,” in PLPV, 2008, pp. 67–72.

[2] G. Soares, M. Mongiovi, and R. Gheyi, “Identifying overly strong
conditions in refactoring implementations,” in ICSM, 2011, pp. 173–
182.

[3] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral testing
of refactoring engines,” IEEE Transactions on Software Engineering,
vol. 39, pp. 147–162, 2013.

[4] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of
refactoring engines,” in FSE, 2007, pp. 185–194.

[5] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov, “Test generation through programming in UDITA,” in ICSE,
2010, pp. 225–234.

[6] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Marinov,
“Systematic testing of refactoring engines on real software projects,” in
ECOOP, 2013, pp. 629–653.

[7] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
Revised edition. The MIT Press, 2012.

[8] V. Jagannath, Y. Lee, B. Daniel, and D. Marinov, “Reducing the costs
of bounded-exhaustive testing,” in FASE, 2009, pp. 171–185.

[9] M. Schäfer and O. Moor, “Specifying and implementing refactorings,”
in OOPSLA, 2010, pp. 286–301.

[10] D. Jackson, I. Schechter, and H. Shlyahter, “Alcoa: the Alloy constraint
analyzer,” in ICSE, 2000, pp. 730–733.

[11] M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba, “Making
refactoring safer through impact analysis,” SCP, 2014, In press.

[12] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program
refactoring safer,” IEEE Software, vol. 27, pp. 52–57, 2010.

[13] W. Mckeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[14] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
TACAS. Wiley, 2007, pp. 632–647.

[15] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson, “Comparing
Approaches to Analyze Refactoring Activity on Software Repositories,”
JSS, pp. 1006–1022, 2013.

[16] W. Opdyke, “Refactoring Object-Oriented frameworks,” Ph.D. disserta-
tion, University of Illinois at Urbana-Champaign, 1992.

[17] L. Tokuda and D. Batory, “Evolving object-oriented designs with
refactorings,” ASE, vol. 8, pp. 89–120, 2001.

[18] A. Garrido and R. Johnson, “Refactoring C with conditional compila-
tion,” in ASE, 2003, pp. 323–326.

[19] A. Garrido and R. E. Johnson, “Analyzing multiple configurations of a
C program,” in ICSM, 2005, pp. 379–388.

[20] F. Steimann and A. Thies, “From public to private to absent: Refactoring
Java programs under constrained accessibility,” in ECOOP, 2009, pp.
419–443.

[21] P. Borba, A. Sampaio, A. Cavalcanti, and M. Cornélio, “Algebraic
reasoning for Object-Oriented programming,” SCP, vol. 52, pp. 53–100,
2004.

[22] L. Silva, A. Sampaio, and Z. Liu, “Laws of Object-Orientation with
reference semantics,” in SEFM, 2008, pp. 217–226.

[23] H. Li and S. Thompson, “Testing Erlang Refactorings with
QuickCheck,” in IFL, 2008, pp. 19–36.

[24] M. Vakilian and R. E. Johnson, “Alternate refactoring paths reveal
usability problems,” in ICSE, 2014, pp. 1–11.

[25] N. Rachatasumrit and M. Kim, “An empirical investigation into the
impact of refactoring on regression testing,” in ICSM, 2012, pp. 357–
366.


