Disabling refactoring preconditions for
evaluating whether they are overly strong

Melina Mongiovi, Rohit Gheyi, Gustavo Soares Maircio Ribeiro
Federal University of Campina Grande Federal University of Alagoas
Campina Grande, Brazil Maceid, Brazil
melina@copin.ufcg.edu.br, {rohit,gsoares}@dsc.ufcg.edu.br marcio@ic.ufal.br

Leopoldo Teixeira, Paulo Borba
Federal University of Pernambuco
Recife, Brazil
{Imt,phmb} @cin.ufpe.br

I. TEMPLATES

We specify a set of transformation templates that allow disabling preconditions of 10 refactoring imple-
mentations of JRRT [1] and Eclipse [2]. The implementations are of the following refactoring types: Add
Parameter, Encapsulate Field, Move Method, Pull Up Field, Pull Up Method, Push Down Field, Push Down
Method, Rename Class, Rename Field, and Rename Method. A template specifies a kind of transformation in
the refactoring engine code that allows disabling the execution of a refactoring precondition. The left and right
hand sides of a template illustrate a template of a Java program before and after the transformation, respectively.

The templates of JRRT and Eclipse have the following common meta-variables: C specifies a class of the
refactoring engine source code (it extends a D class); ds specifies a set of class and interface declarations of
the refactoring engine code; m specifies a method name; T specifies a type name, Stmts specifies a sequence of
statements; msg specifies a message reported to the user by the refactoring engine when it rejects a transformation;
and cs specifies a set of class structures, such as methods, attributes, inner classes, and static blocks. Meta-
variables equal on both sides of a template means that the transformation does not change them. We create the
ConditionsManagement class (CM) to manipulate the execution of each refactoring condition (condl, cond2, ...,
condN) by runtime. Next, we explain the templates of JRRT (Section [[-A)) and Eclipse (Section [[-B).

A. Template of JRRT

JRRT rejects a refactoring transformation when a precondition is not satisfied. As JRRT does not have a
graphical user interface, it only throws a RefactoringException (RefExc) to terminate the execution and report
the error message to the user. To disable a refactoring precondition, we apply a transformation for preventing
JRRT of throwing the RefactoringException when this precondition is unsatisfied. Transformation 1 illustrates
the template of JRRT.

Transformation 1: (Avoid throwing an exception)

ds ds
class C' extends D { class C' extends D {
cs cs
T m(...) { T m(...) {
Stmts Stmts
throw new RefFEzc(msg); — if (CM.condN.isEnabled()) {
Stmits' throw new RefFxzc(msg);
} }
} Stmts'
}
}

B. Templates of Eclipse JDT 4.5

Eclipse implements a class (RefactoringStatus) that stores the outcome of the preconditions checking op-
eration. It contains methods, such as addError, addEntry, addWarning, createStatus, createFatalErrorStatus,
createErrorStatus, and createWarningStatus. Those methods receive a message and other arguments, describing
one particular problem detected during the precondition checking. The methods starting with create return a
RefactoringStatus object. The messages are stored in the refactoring.properties file. They are represented by a
field of the RefactoringCoreMessages class. They can be directly accessed by a field call or through a variable,
parameter of the method, or the return of a method call. The refactoring implementations of Eclipse check
the status of a refactoring transformation, in a RefactoringStatus object, after evaluating the preconditions. If
it contains some warning or error messages, Eclipse rejects the transformation and reports the messages to the
user.

We create the templates of Eclipse by analyzing the smallest code snippet we need to disable for avoiding
the engine adds a new error or warning status in a RefactoringStatus object. The templates of Eclipse have
the following specific meta-variables: status specifies an object of RefactoringStatus type; s specifies a method
of RefactoringStatus; and seq specifies a sequence of nested method calls, which the last method receives a
RefactoringStatus object as parameter. Transformations 2 and 3 illustrate the templates of Eclipse.

Transformation 2: (Avoid adding a refactoring status)

ds ds
class C extends D { class C' extends D {
cs cs
T m(...) { T m(...) {
Stmts Stmts
status.s(...,msg, ...); — if (CM.condN.isEnabled()) {
Stmts’ status.s(...,msg, ...);
} }
} Stmits’
}
}

Transformation 3: (Avoid adding a refactoring status within a method parameter)

ds ds
class C extends D { class C extends D {
cs cs
T m(...) { T m(...) {
Stmts Stmts
seq(..., status.s(...,msg, ...)); — if (CM.condN.isEnabled()) {
Stmts’ seq(..., status.s(...,msg, ...));
} }
1 Stmits’
}
}

II. IMPLEMENTATION USING ASPECTS

Aspect-Oriented Programming (AOP) allows to reduce the program complexity by breaking it into different
concerns [3]]. AOP languages have three critical elements: a join point model, a means of identifying join points,
and a means of affecting implementation at join points [4]. A join point is an identifiable execution point in a
system, such as a call to a method. AOP allows identifying joint points and alters behavior at them. Aspect] [4]]
is an Aspect-Oriented extension to the Java programming. It offers pointcuts to identify particular join points

by filtering out a subset of all the join points in the program flow and advices to alter behavior at join points
selected by pointcuts.

Disabling refactoring preconditions can be seen as a separate concern of the refactoring engine that we want
to implement. Therefore, we also implement in Aspect] the disabling precondition concern of our technique
by following the specified transformation templates. We write pointcuts to collect all refactoring engine code
places that match with the left hand side of the templates. We also write an around advice for each pointcut to
disable the refactoring preconditions execution in that place. First, we write an abstract aspect (Aspect), which
declares a general pointcut, advice and auxiliary method to both the Eclipse and JRRT aspects. Aspect declares
an abstract pointcut methodMsg to collect calls to methods with a String parameter (msg). It also declares an
around advice to allow executing only the methods collected in methodMsg, which the list Messages.messages
contains msg (execute method). Messages.messages stores the messages related to the conditions we want to
disable by runtime and msg is the message related to the evaluated condition. Listing [I] illustrates Aspect. Next,
we explain the aspects of JRRT (Section and Eclipse (Section [[I-B).

Listing 1. Abstract aspect to disable preconditions.
public abstract aspect DisablingPreconditions {
abstract pointcut methodMsg(String msg);

void around(String msg): methodMsg(msg)
if (executePrecond (msg)) {
proceed (msg);
}
}

public boolean executePrecond (String msg) {
return ! Messages.reportedMsgs.contains (msg);
}
}

A. Aspect of JRRT

In this section, we explain the aspect we write to disable preconditions of JRRT. The goal of this aspect is
to avoid JRRT rejects the transformation by throwing the RefactoringException. To make it possible by using
aspects, we create the hook method AST.RefactoringException.throwException that throws a RefactoringExcep-
tion. Then, we replace in the refactoring implementation code the occurrences of “throws new RefactoringEx-
ception(msg)” with a call to this method. Without this change, we cannot implement in aspects due to a pointcut
limitation. We implement the methodMsg pointcut to collect all calls to this method. Therefore, the refactoring
implementations of JRRT do not throws the RefactoringException (reject the transformation), when set the
Messages.messages list with the messages related to the preconditions wanted to disable. Listing [2] illustrates
the aspect used to disable preconditions of JRRT.

Listing 2. Aspect to disable refactoring preconditions of JRRT.
public aspect DisablingPreconditionsJRRT extends DisablingPreconditions {
pointcut methodMsg(String msg):
call (void AST.RefactoringException.throwException(String ,..)) && args(msg,..);

B. Aspect of Eclipse

In this section, we explain the aspect we write to disable preconditions of Eclipse. The goal of this aspect is to
avoid Eclipse of adding a new warning or error status in a RefactoringStatus object. The RefactoringStatus class
declares some void methods that add a new status in a RefactoringStatus object (methods starting with add). It
also declares methods that create a new RefactoringStatus object, add the status, and return this object (methods
starting with create). We implement a pointcut and an advice for both kinds of methods. The methodMsg
pointcut collects calls to the addError, addWarning, and addEntry void methods of RefactoringStatus and the
method_msg_nonvoid pointcut collects calls to the createStatus, createErrorsStatus, createWarningStatus, and
createFatalErrorStatus methods. Therefore, the refactoring implementations of Eclipse do not add or create a
new status when set the Messages.messages list with the messages related to the preconditions wanted to disable.
Listing [3| illustrates the aspect used to disable preconditions of Eclipse.

Listing 3. Aspect to disable refactoring preconditions of Eclipse.
import org.eclipse.ltk.core.refactoring.RefactoringStatus;

public aspect DisablingPreconditionsEclipse extends DisablingPreconditions {
pointcut methodMsg(String msg):
call (void RefactoringStatus.addError(String ,..)) && args(msg,..) |l
call (void RefactoringStatus.addWarning(String ,..)) && args(msg,..) |l
call (void RefactoringStatus.addEntry(int, String ,..)) && args(int ,msg,..);

pointcut methodMsgNonVoid(String msg):
call (RefactoringStatus RefactoringStatus.createErrorStatus (String ,..)) && args(msg,..) Il
call (RefactoringStatus RefactoringStatus.createWarningStatus (String ,..)) && args(msg,..) Il
call (RefactoringStatus RefactoringStatus.createFatalErrorStatus (String ,..)) && args(msg,..) |l
call (RefactoringStatus RefactoringStatus.createStatus (int,String ,..)) && args(int msg,..);

RefactoringStatus around(String msg): methodMsgNonVoid(msg) {
if (executePrecond (msg)) {
return proceed(msg);
} else {
return new RefactoringStatus ();
}

}
}

REFERENCES

[1] M. Schifer and O. de Moor, “Specifying and implementing refactorings,” in Proceedings of the 25th ACM International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA *10. ACM, 2010, pp. 286-301.

[2] Eclipse.org, “JDT Core Component,” 2016, at http://www.eclipse.org/jdt/core.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin, Aspect-oriented programming. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 220-242.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold, “Getting started with Aspect],” Communications of the
ACM, vol. 44, no. 10, pp. 59-65, 2001.

	Templates
	Template of JRRT
	Templates of Eclipse JDT 4.5

	Implementation using Aspects
	Aspect of JRRT
	Aspect of Eclipse

	References

