Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Curso de Bacharelado em Ciência da Computação

Organização e Arquitetura de Computadores

Revisão (Projeto de Circuitos Combinacionais)

Profa. Joseana Macêdo Fechine Régis de Araújo

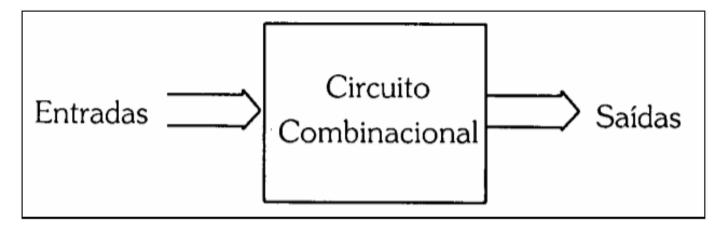
joseana@computacao.ufcg.edu.br

Carga Horária: 60 horas

Tópicos

- Revisão
 - Projeto de Circuitos Combinacionais
 - Expressões Lógicas
 - Álgebra de Boole
 - Circuitos Lógicos

BLOCOS LÓGICOS BÁSICOS					
Porta	Símbolo usual	Tabela Verdade	Função Lógica	Expressão	
E AND		A B S 0 0 0 0 1 0 1 0 0 1 1 1	Função E: assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	S = A·B	
ou or	$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$	A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função OU: assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S = A +B	
NÃO NOT		A S 0 1 1 0	Função NOT: inverte a variável aplicada a sua entrada.	$S = \overline{A}$	

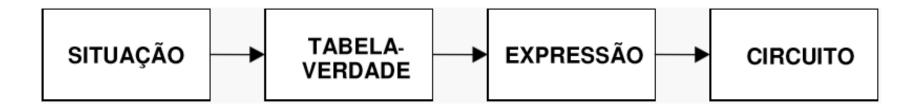

BLOCOS LÓGICOS BÁSICOS				
Porta	Símbolo usual	Tabela Verdade	Função Lógica	Expressão
NÃO E NAND		A B S 0 0 1 0 1 1 1 0 1 1 1 0	Função NÃO E: Inverso da função E	$S = \overline{A \cdot B}$
NÃO OU NOR		A B S 0 0 1 0 1 0 1 0 0 1 1 0	Função NÃO OU: Inverso da função OU	$S = \overline{A + B}$

BLOCOS LÓGICOS BÁSICOS					
Porta	Símbolo usual	Tabela Verdade	Função Lógica	Expressão	
OU EXCLUSIVO XOR		A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função XOR: Assume 1 quando as duas variáveis assumirem valores diferentes entre si.	S≕A⊕B	
COINCIDÊNCIA XNOR		A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função XNOR: Assume 1 quando houver coincidên- cia entre os valores das variáveis.	S = A⊗B	

As Portas lógicas XOR e XNOR são na verdade circuitos obtidos de portas lógicas básicas.

$$S = A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$$
 $S = A \otimes B = A \cdot B + \overline{A} \cdot \overline{B}$

 CIRCUITOS COMBINACIONAIS - a saída é função dos valores de entrada correntes; esses circuitos não têm capacidade de armazenamento.


 Exemplos em um computador: operações matemáticas e controle do fluxo dos sinais.

Projeto de Circuitos Lógicos

- Uma expressão lógica (booleana) descreve uma função ou uma operação a ser concretizada por um sistema lógico (circuito eletrônico, software, etc), de forma a resolver um determinado problema.
- Um circuito lógico executa uma expressão booleana, formado pela interligação das portas lógicas.

Sequência de operações:

- Determinar todas as variáveis de entrada;
- Determinar todas as variáveis de saída;
- A partir da combinação das variáveis de entrada, montar a tabelaverdade para cada saída;
- Obter, a partir da tabela-verdade, a expressão booleana de cada saída;
- Implementar, a partir da expressão booleana, o circuito combinacional correspondente.

Função AND ⇒ PRODUTO Função OR ⇒ SOMA

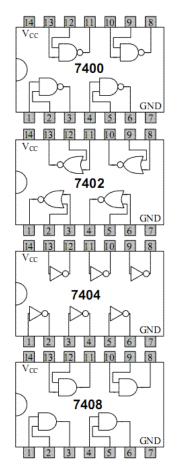
"SOMA DE PRODUTOS":
"PRODUTO DE SOMAS":

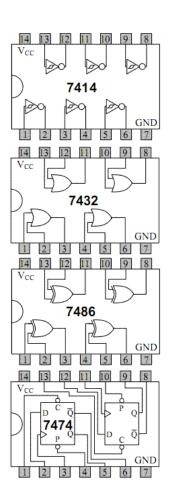
$$A \cdot B + \overline{A} \cdot C + B \cdot \overline{C}$$

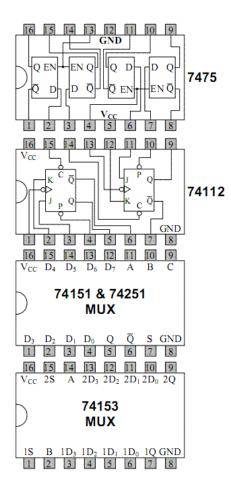
 $(A + B) \cdot (\overline{B + C}) \cdot (A + \overline{C})$

- Soma de Produtos OR dos minitermos que levam a saída para "1" (método mais utilizado).
- Produto de Somas AND dos maxitermos que levam a saída para "O".

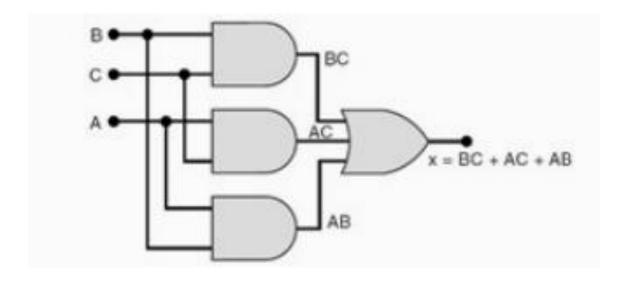
Regras Básicas da Álgebra de Boole


Postulados				
<u>Complementação</u>				
Se A = 0 então $\overline{A} = 1$				
Se A = 1 então $\overline{A} = 0$				
Ident	Identidade			
$\overline{\overline{A}} = A$				
<u>Adição</u>	<u>Multiplicação</u>			
0 + 0 = 0	0 . 0 = 0			
0 + 1 = 1	0 . 1 = 0			
1 + 0 = 1	1 . 0 = 0			
1 + 1 = 1	1 . 1 = 1			
Identidade	Identidade			
A + 0 = A	A . 0 = 0			
A + 1 = 1	A . 1 = A			
A + A = A	A . A = A			
$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$			

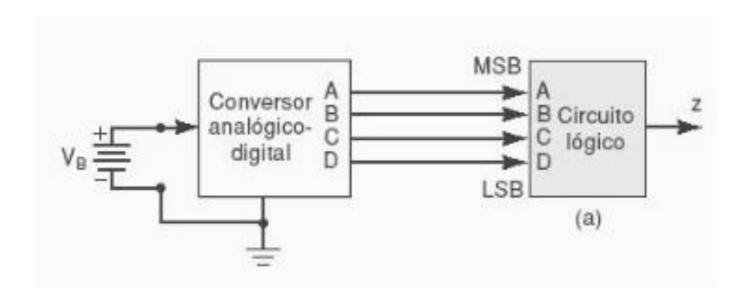

Regras Básicas da Álgebra de Boole


A simplificação também pode ser feita a partir do Mapa de Veitch-Karnaugh.

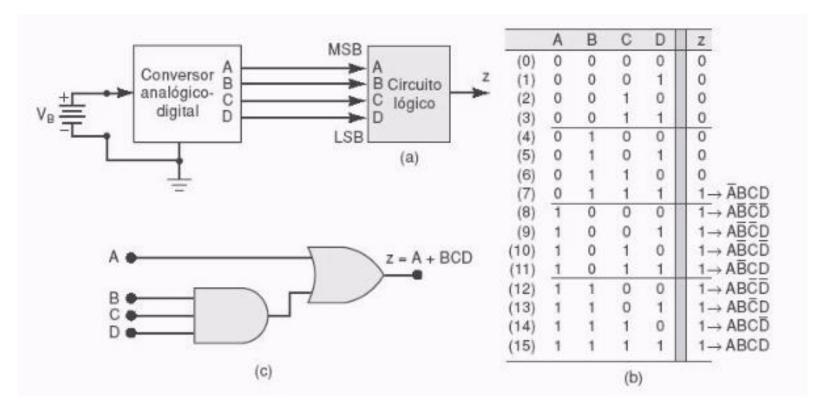
Exemplos de Circuitos Integrados



Exemplo 1: Projetar um circuito lógico com três entradas, A, B e C, cuja saída *x* estará no nível alto apenas quando a maioria das entradas estiver no nível alto.



Exemplo 1: Projetar um circuito lógico com três entradas, A, B e C, cuja saída *x* estará no nível alto apenas quando a maioria das entradas estiver no nível alto.



Exemplo 2: Projetar o circuito lógico abaixo cuja saída será 1 quando a tensão analógica VB for maior que 6.

Exemplo 2: Projetar o circuito lógico abaixo cuja saída será 1 quando a tensão analógica VB for maior que 6.

