
On The Precision And Accuracy Of Impact
Analysis Techniques

Abstract—Several techniques and algorithms for impact analy-
sis of software systems have been recently published in literature.
Most of them, however, are not practical enough to be applied
in the software industry because, among other reasons, they
produce too many false results (either positive or negative). In
this paper, we propose and evaluate the use of two measures
from information retrieval, namely precision and recall, to help
express and compare precision and accuracy of impact analysis
techniques and algorithms.

I. INTRODUCTION

Software change impact analysis is the process of identi-
fying the potential consequences (side-effects) of a proposed
change. It can be used to estimate what has to be modified
in an implementation to accomplish a change [1]. Current
approaches are based on static or dynamic analysis of the
program.

Static impact analysis [1]–[4] is usually based on slicing
techniques and transitive closure on call graphs. Static tech-
niques consider all possible executions of the program and
produce too many false-positives, i.e., elements identified that
are not impacted by the change. Dynamic analysis [5]–[7]
calculates the impact of a change at run-time. They generate
less false-positives than static analysis because they calculate
the result based on possible executions of the program. In
contrast, as they depend on the input used to execute the
program, they usually miss on identifying some impacted
elements - i.e., they produce false-negatives. Both static and
dynamic impact analysis techniques produce false-positives
and false-negatives. One example of false-negative in static
analysis is the use of reflection in Java (very late binding)
where information about what class is instantiated is known
only at run-time.

Some of the current work on impact analysis [6], [8], [9]
investigate how to assess the accuracy of existing techniques.
The measures used, however, are either not formally defined
or unsound. They assume that their algorithms are safe in
terms of not excluding from the identified impact set any entity
that is actually impacted [9]. However, they do not prove this
assumption. They measure precision in terms of the number
of methods in the impact sets against the total number of
methods. They consider algorithm A to be more precise than
algorithm B if the results of A are, overall, a subset of the
results from B. However, they do not investigate if A has
produced more false-negatives than B and, consequently, is
more imprecise than B.

In this paper, we propose and evaluate the use of two
measures from information retrieval, namely precision and

recall, to express and compare the precision and accuracy of
impact analysis techniques and algorithms. Precision measures
the amount of identified elements that are not impacted (false-
positives), and recall evaluates the elements that are not
identified but are impacted (false-negatives). The combination
of the two measures gives the accuracy result.

In order to evaluate our measures, we implemented a coarse-
grained static impact analysis technique on a tool, called
Impala. It calculates the impacted elements by identifying all
the direct and indirect dependencies of a change (e.g. class A
uses class B, so A depends directly on B). In order to reduce
the amount of false-positives generated by static analysis,
Impala’s algorithms allow the adjustment of a stop point on
the identification of indirect dependencies. In the empirical
study, we assess the trade-offs of reducing false-positives and
enlarging false-negatives of three software systems based on
precision and recall results.

The remainder of this paper is organized as follows. Section
II defines the measures precision, recall and accuracy to
assess impact analysis techniques and algorithms. Section
III describes the Impala tool and its algorithms. Section IV
presents an empirical study conducted by applying Impala to
two small and one medium size projects, including Impala’s
project. In section V we present and evaluate the results and
discuss some research questions. We compare our measures
with the ones proposed by other impact analysis techniques in
section VI. Finally, we conclude our paper and discuss future
work in section VII.

II. PRECISION AND RECALL

Before introducing precision and recall concepts, it is
important to define what are false-positive and false-negative
in the context of impact analysis.

False-positive. Given a set I of impacted elements
identified by an impact analysis technique and a set M of the
real modified elements, a false-positive is an element that is
in I, but not in M.

False-positive= I−M

One concrete example of where it happens is when static
impact analysis is used in object oriented software and a
case of inheritance is involved. The class diagram from
Figure 1 shows the relations among class A, interface B
and its implementations B1, B2 and B3. Suppose a change
in class A impacted in B, because B has a dependency



relationship with A. B is an interface and, probably, only
one of its implementations will be impacted by a change in
A. However, this is known only at run-time. Static impact
techniques do not have the information of which, out of B1,
B2 and B3 will be affected, because they analyze the source
code or the bytecode. So they include all of them in the impact
set. In this case, two out of B1, B2 and B3, are false-positives.

Fig. 1. Example of inheritance in an object oriented program.

False-negative. Given a set I of impacted elements
identified by an impact analysis technique and a set M of the
real modified elements, a false-positive is an element that is
in M, but not in I.

False-negative= M− I

To exemplify, suppose all classes from the dependency
graph from Figure 2 are impacted by a change. A dynamic
technique is used to analyze the impact based on trace execu-
tions. This technique only analyzes two traces: {A,B,C} and
{A,D,F}. One trace, {A,B,E}, is ignored, and the final change
set is {A,B,C,D,F}. In this case, E is a false-negative, because
it is an impacted element, but dynamic analysis missed on
identifying it.

Fig. 2. Example of traces from dynamic analysis.

Now that should be clear what we call false-positives and
false-negatives, we define our measures. Precision and recall
are two measures from information retrieval [10] that we
adapted for the impact analysis context.

Precision. The precision P indicates which fraction of the
estimated impacted classes, I, was actually modified, M. This
relation is defined by the following equation:

P = |I
⋂

M|
|I|

The relationship between false-positives and precision
is: the fewer false-positives an impact analysis technique
produces, the higher is precision.

Recall. The recall R describes the proportion of the modi-
fied classes, M, that were estimated, I. This relation is defined
by:

R = |I
⋂

M|
|M|

The relationship between false-negative and recall is: the
fewer false-negatives an impact analysis technique produces,
the higher is recall.

Accuracy. The accuracy A measures the total error, consid-
ering both precision and recall. The calculation of accuracy is
given by:

A = P+R
2

The goal of an impact analysis technique is to achieve high
precision and high recall, which means that the technique
estimated the impact of all classes actually modified and only
them.

III. IMPALA TOOL

To evaluate the proposed measures, we conducted an em-
pirical study using Impala, our change impact analysis tool
that performs static analysis. In this section, we present the
overall aspects of Impala and describe its static impact analysis
algorithms.

Impala is a Java tool composed by a group of algorithms
based on call graph dependencies that, given a set of changes,
calculates the set of impacted elements. Impala analyzes Java
systems at method level. In other words, Impala analyzes only
the control flow of the system, ignoring information that can
be obtained by data flow analysis.

Each change on the set of changes is composed by the entity
to be modified and the type of change. We classify the types
of changes as:

• add and remove class, field and method;
• change visibility of class, field and method;
• add and remove super/sub-types;
• change signature, semantics and return type of a method;
• change type or name of a field.
Impala uses the DesignWizard API [11] to extract a rep-

resentation of the system to be analyzed as sets of entities
and relations. An entity is defined as a class, a method or
a field. Each relation connects two entities. They can be of
the following types: instanceof, contains, extends, implements,
getstatic, putstatic, getfield, putfield, invokevirtual, invokespe-
cial, invokestatic, invokeinterface, isinvokedby, isaccessedby,
issuperclass, catch, throws, isdeclaredon, load.

A. Impala’s Algorithms

Impala is composed by a collection of algorithms that
searches for impacts based on the type of each change in
the set of changes. The analysis process consists of two
steps: extracting a representation of the system in terms of
entity sets and relations; and calculating the impacts given
a set of changes. The impact analysis itself starts with
analyzeChanges routine, shown in Pseudocode 1. It receives



as argument the change set and the depth. For each change,
analyzeChanges invokes a specific algorithm that calculates
the set of impacted entities according to the type of change.
The impacted set of each change is included in impactedSet,
which is the final result.

Pseudocode 1 Initial routine that calls impact analysis algo-
rithms according to the change type.
1 Enity[] analyzeChanges(changeSet[], depth)
2 Entity entity
3 Entity impactedSet[]
4 Algorithm algorithm
5 FOR each change in changeSet[] DO
6 entity <- change.getEntity()
7 algorithm <- getAlgorithm(entity.changeType)
8 IF entity is not in impactedSet[] THEN
9 include entity in impactedSet[]

10 ENDIF
11 Entity impactedChildren[]
12 impactedChildren[] <- algorithm.execute(entity,depth)
13 IF impactedChildren[] are not in impactedSet[] THEN
14 include impactedChildren[] in impactedSet[]
15 ENDIF
16 ENDFOR
13 RETURN impactedSet[]

In line 7, there are ten algorithms that can be returned
by getAlgorithm(entity.changeType). These algorithms
search for the dependencies that can be impacted by the
change proposed according to their types. In order to reduce
false-positives these algorithms are parameterized to stop the
search on the entity dependency graph by using the depth as
a criterion. The depth on a dependency graph represents the
distance of one entity to another. For instance, if A calls B,
B calls C, C calls D; distance from A to B is 1, from A to
C is 2, and from A to D is 3. When depth is one, only direct
dependencies will be returned as impacted entities. If depth
is set to 3, two levels of indirect dependencies are considered
together with direct ones. These algorithms are based on the
assumption that the farther an entity is from a change, the less
likely is its impact.

Due to space limitation, we are unable to show all the
algorithms. In Pseudocode 2, we present the algorithm for
the remove change type. The remove() algorithm was chosen
because of its general aspects - most of the other algorithms
derive from it - and the easiness to foresee what impacts an
entity removal may cause. This algorithm recursively searches
for indirect dependencies until there is no more dependency
or depth is equal to zero.

When a class, a method or a field is removed, the remove()
algorithm searches for their callers: classes that inherit from
the removed class, and methods that use a field or call the
removed method. First, it gets the direct callers, in line 8.
Then, it recursively searches for indirect dependencies - lines
11 to 14.

The call entity.getDirectCallers() has different im-
plementations for each entity type. This is due to the type
of relations that can be associated to an entity. For a field,
it can be accessed by a method. For a method, the logic is

Pseudocode 2 Impact analysis algorithm from the remove
change type.
1 Entity[] execute(entity, depth)
2 Entity entity
3 Entity impactedSet[]
4 IF (depth=0) THEN
5 RETURN void
6 ENDIF
7 //Direct callers of the entity
8 impactedSet[] <- entity.getDirectCallers()
9 //Indirect callers

10 Entity indirectCallers[] <- 0
11 FOR each entity in impactedSet[] DO
12 //Gets the indirect callers
13 indirectCallers[] <- execute(entity, depth-1))
14 ENDFOR
15 IF indirectCallers[] are not in impactedSet[] THEN
16 include indirectCallers[] in impactedSet[]
17 ENDIF
18 return impactedSet[]

quite similar, and the callers of a class are a combination
of the first two. Because of their similarities, we only show
getDirectCallers() from the entity type field.

Pseudocode 3 Routine to get the callers of a field.
1 Entity[] getDirectCallers()
2 Entity callerSet[] <- 0
3 //This relation: <field><IS_ACCESSEDBY><method>
4 Relation relations[] <-
5 getRelations(TypesOfRelation.IS_ACCESSEDBY)
6 FOR each relation in relations[] DO
7 //Gets the method side of the relation
8 entity <- relation.getCaller()
9 include entity in callerSet[]

10 ENDFOR
11 return callerSet[]

In Pseudocode 3, we show the method
getDirectCallers() from a field representation class, called
FieldNode. It gets all the relations from type isaccessedby
in which the field represented by this FieldNode is called
by a method - lines 4 and 5. Then, for each relation, it puts
the caller method in the caller set that is returned to the
algorithm. In the remove() algorithm we showed before, this
caller set is added in the impact set of an entity.

IV. EMPIRICAL STUDY

In order to investigate the hypothesis of increasing the
accuracy of impact analysis by adjusting the depth criterion,
we conducted an empirical study with three different Java
software projects, shown in Table I. Impala was used to
validate itself. The second project chosen was DesignWizard
[11], which is also used as part of our solution. OurGrid is
a free to join peer-to-peer grid developed by the Distributed
Systems Labs at UFCG [12].



TABLE I
PROJECTS SELECTED FOR THE CASE STUDY. LOCS = LINES OF CODE.

Name Description LOCs Number of classes
Impala Static impact analysis tool 1,584 45
DesignWizard API for automated inspection of Java programs 3,644 44
OurGrid Free to join peer-to-peer grid 48,752 627

A. Research Questions

We want to investigate the behavior of precision and recall
measures using Impala’s algorithms in an empirical study.
It is known that static impact analysis produces too many
false-positives. Impala uses the adjustment of depth criterion
in order to reduce these false-positives. Our feeling is that the
reduction of false-positives causes an increase in the number
of false-negatives. So, the research questions we sought to
answer are:

RQ1: Does the reductions of depth value increase precision
on Impala’s results?

RQ2: Do the increase of precision lead to the decrease of
recall?

RQ3: Is precision sufficient to measure accuracy? Is recall
as important as precision?

B. Setup

We analyzed Impala’s algorithms with five different depth
values. For the evaluation we call them:

• A1 - searches only for direct dependencies, depth equals
to one;

• A2 - searches for direct and indirect dependencies, depth
equals to two;

• A3 - searches for direct and indirect dependencies, depth
equals to three;

• A6 - searches for direct and indirect dependencies, depth
equals to six;

• A∞ - searches for entire dependence hierarchy.
In order to evaluate all five variations, we randomly selected

5 to 15% of the total number of classes from each project and
applied Impala’s algorithms using a predefined methodology,
show in Figure 3 and described below.

1) Randomly choose from the project’s verisioning system
- CVS [13] - the classes to be analyzed.

2) For each class, identify in the versioning system the
revisions that incorporated at least one structural change.

3) For each of these revisions, obtain the change set C,
which contains all structural changes of a determined
revision. This set was obtained through structural com-
parison of the code from two subsequent revisions. So,
each element of C represents an entity (e.g., a method)
that was modified from one revision to another.

4) For each change set C, apply Impala’s algorithms
and obtain the sets of possible impacted entities:
A1(C),A2(C),A3(C),A6(C),A∞(C).

5) For each set of impacted entities An(C), obtain the set
of their class names: I1, I2, I3, I6, I∞.

6) For each change set C, extract from CVS what was really
modified, M due to each change in C. Suppose a change
c in C. We extract every change that occurred after c and
because of c; and include the corresponding class name
on M.

7) Compare each In to its correspondent M in terms of
precision, recall and accuracy.

Fig. 3. Setup steps.

To get an overall measure for each software system
analyzed, we summarized precision and recall results using
macro-evaluation from information retrieval:

Macro-evaluation: takes the mean values of precision and
recall:

PM = 1
N ∑

N
i=1 Pi RM = 1

N ∑
N
i=1 Ri

Macro-evaluation determines the accuracy of applying im-
pact analysis algorithms in each change, individually. It allows
us to determine with which depth the algorithms returned less
false-positives and less false-negatives.

V. EVALUATION
Table II summarizes the precision and recall results obtained

for OurGrid project. We chose to show the results of OurGrid
because of its size, complexity and maturity. OurGrid is under
development since 2004 and is considered a stable software
system at the moment.

Due to space limitation, we chose to show only one result
obtained for each class, which represents the analysis of one



revision. The total number of revisions analyzed is shown in
column “Number of revisions”. These are the revisions where
one class underwent at least one structural change. Revisions
due to change in license term, formatting or any other that did
not represent a structural change were discarded.

From the results in Table II, we notice that there is no
clear pattern that relates the increase of depth criterion and
the variation of precision and recall. Both measures can
remain unaltered, like what happens with RemoteAccessImpl
and EBReplicaManager. One of the measures can remain
unaltered while the other varies, as we can see in Repli-
caExecutorThread. Finally, both measures can vary increasing,
decreasing or behaving as second degree equation.

To extract an overall behavior and answer RQ1, we calcu-
lated the macro-evaluation of OurGrid’s precision and recall
results. Figure 4 shows the relationship between precision
and recall for the different depth values. As expected, when
depth value increases, precision decreases. However, the exact
opposite happens with recall: when depth value increases,
recall increases. In other words, the deeper the search goes,
more false-positive and less false-negatives it produces.

Fig. 4. Precision and recall for OurGrid.

In order to answer RQ1 and RQ2, we constructed the
same graph for DesignWizard and Impala, shown in Figure 5.
Although precision results were less significative, especially
for Impala, the same behavior can be noticed: the grater the
depth is, the lower is precision and the higher is recall.

From these results, we can positively answer RQ1. The
reduction of depth value increases precision of Impala’s results
and vice-versa. If precision increases when depth is reduced
it means that entities connected with indirect dependencies
are less likely to be impacted for a change than entities that
have direct dependencies. In other words, precision of A1
≥ precision of A2 ≥ precision of A3 ≥ precision of A6 ≥
precision of A∞ on average.

Table III shows the average precision and recall results
from the three projects. From the results of Table III and the
precision versus recall graphs, we a can infer that the increase
of precision is associated with the decrease of recall and vice-
versa, answering RQ2. The results from Impala’s algorithms

Fig. 5. Precision and recall for DesignWizard and Impala.

TABLE III
AVERAGE GAIN ON precision AND LOSS ON recall COMPARED WITH A∞ .

Depth PM Gain on P RM Loss on R
A∞ 73.46% - 100% -
A6 72.86% -1% 100% 0%
A3 73.97% 1% 98.15% 2%
A2 75.56% 3% 93.85% 6%
A1 84.18% 15% 81.15% 19%

show that, opposite to precision, recall of A1 ≤ recall of A2
≤ recall of A3 ≤ recall of A6 ≤ recall of A∞ on average.

Now, we are able to discuss RQ3. Although no importance
is given by recent impact analysis approaches [8], [9], [14] to
the false-negatives produced, the results show that recall is as
important as precision to measure the accuracy of an impact
analysis technique. It is known that every approach, static
or dynamic, produces both false-positives and false-negatives.
From the empirical study conducted, we showed that ignoring
recall can lead to a false result of accuracy.

Finally, Figure 6 shows the relative results of precision,
recall and accuracy. In this empirical study, if only precision
was taken into account, the best choice would be to search
only for direct dependencies. However, precision and recall
relative results show that the higher accuracy, 87% for infinite
search, was found where precision is lower. There seems to be
a trade-off between precision and recall for impact analysis.
It is important to investigate if this trade-off exists only with
Impala or it is a common behavior for other impact analysis
techniques. If this is a common behavior, it is important to
balance precision and recall measures in order to increase
accuracy.

VI. RELATED WORK

Law et al [6] evaluate the precision of two dynamic impact
analysis algorithms, CoverageImpact and PathImpact, by mea-
suring the relative sizes of the impact sets computed, change
set and set of program executions. Precision is measured in
terms of the number of methods in the impact sets versus the
total number of methods. They consider algorithm A to be
more precise than algorithm B if the results of A are, overall,



TABLE II
Precision AND recall RESULTS FOR OURGRID.

Class N. of revisions
Depth

1 2 3 6 ∞

P R P R P R P R P R
CorePeerImpl 11 1.00 0.25 0.60 0.75 0.67 1.00 0.67 1 0.67 1.00
RemoteAccessImpl 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GumSpecService 1 0.80 0.57 0.88 1.00 0.88 1.00 0.88 1.00 0.88 1.00
UserAgentClient 4 0.50 0.50 0.56 0.75 0.58 0.92 0.60 1.00 0.60 1.00
EBReplicaExecutorFacade 4 0.67 0.50 0.80 1.00 0.50 1.00 0.50 1.00 0.50 1.00
EBReplicaManager 5 0.33 1.00 0.33 1.00 0.33 1.00 0.33 1.00 0.33 1.00
PermissionManager 2 1.00 0.17 1.00 0.17 1.00 0.50 1.00 1.00 1.00 1.00
ReplicaExecutor 1 1.00 0.50 0.67 0.50 0.80 1.00 0.80 1.00 0.80 1.00
ReplicaExecutorThread 10 1.00 0.14 1.00 0.43 1.00 0.71 1.00 1.00 1.00 1.00
ReplicaExecutorThreadManager 5 0.67 0.50 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00

Fig. 6. Relative results of precision, recall and accuracy - in percentage.

a subset of the results from B. An important information is
that they consider their algorithms to be safe in the sense
that no method that is not in the impact set for a change can
be affected by that change. That is, the algorithms do not
produce false-negatives for the executions analyzed. However,
one can never assure that all possible executions were taken
into consideration.

The same approach is used by Apiwattanapong et al [8]
to compare another dynamic algorithm, CollectEA, with Cov-
erageImpact and PathImpact. It is also used by Breech et al
[9] to compare one static and one dynamic algorithms with
their correspondent improvements. One can never assume that
a static technique is safe, because some code information, like
the ones from very late binding, can only be collected at run-
time.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed, applied and evaluated two measures to
assess accuracy of impact analysis techniques and algorithms:
precision and recall. We have defined the concepts of false-
positives and false-negatives in the context of impact anal-
ysis to relate precision to false-positives and recall to false-
negatives. Previous works [6], [8], [9] use the term precision as
a general measure, ignoring the conceptual difference between
impacts that are not identified by an algorithm and identified
impacts that do not really occur.

By applying the precision and recall measures to assess
the accuracy of Impala’s static impact analysis algorithms, we
have been able to demonstrate that both measures influence
on the accuracy results in a manner that reflects the usual
understanding of the concept. As they are stated in formal
setting, however, they can be used to compare, evaluate and
improve new algorithms. In our empirical study, specifically,
a higher accuracy was found by analyzing the adjustment of
the depth value to balance precision and recall.

We are currently investigating if the need to balance pre-
cision and recall to achieve a higher accuracy is a common
behavior for other impact analysis techniques. In the empirical
study conducted for this paper, we analyzed the results on class
level. We plan to analyze the same results on entity (method
and field) level and to use the same methodology to evaluate
some dynamic impact analysis techniques.

REFERENCES

[1] R. S. Arnold and S. Bohner, Software Change Impact Analysis. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1996.

[2] M. Lee, A. J. Offutt, and R. T. Alexander, “Algorithmic analysis
of the impacts of changes to object-oriented software,” in TOOLS
’00: Proceedings of the Technology of Object-Oriented Languages and
Systems (TOOLS 34’00). Washington, DC, USA: IEEE Computer
Society, 2000, p. 61.

[3] B. G. Ryder and F. Tip, “Change impact analysis for object-oriented
programs,” in PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engi-
neering. New York, NY, USA: ACM Press, 2001, pp. 46–53.

[4] R. J. Turver and M. Malcolm, “An early impact analysis technique for
software maintenance,” Journal of Software Maintenance: Research and
Practice, vol. 6, no. 1, pp. 35–52, 1994.

[5] B. Korel and J. Laski, “Dynamic slicing of computer programs,” J. Syst.
Softw., vol. 13, no. 3, pp. 187–195, 1990.

[6] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J. Harrold,
“An empirical comparison of dynamic impact analysis algorithms,” in
ICSE ’04: Proceedings of the 26th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 491–500.

[7] B. Breech, M. Tegtmeyer, and L. Pollock, “A comparison of online
and dynamic impact analysis algorithms,” in CSMR ’05: Proceedings of
the Ninth European Conference on Software Maintenance and Reengi-
neering. Washington, DC, USA: IEEE Computer Society, 2005, pp.
143–152.

[8] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in ICSE ’05:
Proceedings of the 27th international conference on Software engineer-
ing. New York, NY, USA: ACM, 2005, pp. 432–441.



[9] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating influence mech-
anisms into impact analysis for increased precision,” in ICSM ’06:
Proceedings of the 22nd IEEE International Conference on Software
Maintenance. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 55–65.

[10] C. J. Van Rijsbergen, Information Retrieval, 2nd edition. Dept. of
Computer Science, University of Glasgow, 1979. [Online]. Available:
http://www.dcs.gla.ac.uk/Keith/Preface.html

[11] “Design wizard,” 2007, http://www.designwizard.org.
[12] W. Cirne, F. V. Brasileiro, N. Andrade, L. Costa, A. Andrade, R. Novaes,

and M. Mowbray, “Labs of the world, unite!!!” J. Grid Comput., vol. 4,
no. 3, pp. 225–246, 2006.

[13] Free Software Foundation, “CVS - Concurrent Versions System,” 2006,
http://savannah.nongnu.org/projects/cvs/.

[14] L. Huang and Y.-T. Song, “Precise dynamic impact analysis with depen-
dency analysis for object-oriented programs,” in Software Engineering
Research, Management & Applications, 2007. SERA 2007. 5th ACIS
International Conference on, 2007, pp. 374–384.


