
Faults in Grids:
Why are they so bad and What can be done about it?

Raissa Medeiros, Walfredo Cirne, Francisco Brasileiro, Jacques Sauvé
{raissa,walfredo,fubica,jacques}@dsc.ufcg.edu.br

Universidade Federal de Campina Grande – Paraíba - Brazil

Abstract
Computational Grids have the potential to become

the main execution platform for high performance and
distributed applications. However, such systems are ex-
tremely complex and prone to failures. In this paper, we
present a survey with the grid community on which sev-
eral people shared their actual experience regarding fault
treatment. The survey reveals that, nowadays, users have
to be highly involved in diagnosing failures, that most
failures are due to configuration problems (a hint of the
area’s immaturity), and that solutions for dealing with
failures are mainly application-dependent. Going further,
we identify two main reasons for this state of affairs.
First, grid components that provide high-level abstrac-
tions when working, do expose all gory details when bro-
ken. Since there are no appropriate mechanisms to deal
with the complexity exposed (configuration, middleware,
hardware and software issues), users need to be deeply
involved in the diagnosis and correction of failures,
when, in fact, all they want is to run their applications.
One needs a way to coordinate different support teams
working at the grids different levels of abstraction. Sec-
ond, fault tolerance schemes today implemented on grids
tolerate only crash failures. Since grids are prone to more
complex failures, such those caused by heisenbugs, one
needs to tolerate tougher failures. Our hope is that the
very heterogeneity, that makes a grid a complex envi-
ronment, can help in the creation of diverse software rep-
licas, a strategy that can tolerate more complex failures.

1 Introduction
The use of computational grids as a platform to

execute parallel applications is a promising research area.
The possibility to allocate an enormous amount of re-
sources to a parallel application (thousands of machines
connected through the Internet) and to make it with lower
cost than traditional alternatives (based in parallel super-

computers) is one of the main attractive in grid comput-
ing.

In fact, grids have the potential to reach unprece-
dented levels of parallelism. Such levels of parallelism
can improve the performance of existing applications,
and raises the possibility to execute entirely new applica-
tions, with huge computation and storage requirements.
On the other hand, grid characteristics, as high heteroge-
neity, complexity and distribution – traversing multiple
administrative domains – create many new technical chal-
lenges, which need to be addressed.

In particular, grids are more prone to failures than
traditional computing platforms. In a grid environment
there are potentially thousands of resources, services and
applications that need to interact in order to make possi-
ble the use of the grid as an execution platform. Since
these elements are extremely heterogeneous, there are
many failure possibilities, including not only independent
failures of each element, but also those resulting from
interactions between them (for example, a task may fail
because the browser version in a specific grid node is not
compatible with the Java version available). Moreover,
machines may be disconnected from the grid due to ma-
chine failures, network partitions, or process abortion in
remote machines to prioritize local computation. Such
situations cause non-availability of the processing ser-
vice, characterizing failure scenarios.

Dealing with these complex failure scenarios is
challenging. Detecting that something is wrong is not so
difficult (in general, symptoms are quickly identified),
but difficulties arise to identify the root cause of the prob-
lem, i.e., to diagnose a failure in a very complex and het-
erogeneous environment such as a computational grid.

The first barrier is to understand what is really
happening and the problem here seems to be a cognitive
one. It is often possible to obtain logs and information
about the resources that compose the grid. However, in
order to make sense of this information, one would have

to know what should be happening. In a grid context, this
means to understand the functioning of the many differ-
ent technologies that compose it. When failures occur and
the transparency provided by the middleware is compro-
mised, the user needs to drill down to lower level of ab-
stractions in order to locate and diagnose failures. This
requires understanding many different technologies in
terms of middleware, operating systems and hardware. It
is just too much for any single human being!

Note that some solutions for grid monitoring have
been proposed [1] [2] [3] [4] [5] [7] [8]. They are cer-
tainly useful, since they allow for failures detection and
also ease the collection of data describing the failure.
However, they do not provide mechanisms for failure
diagnosis and correction, so grid users are unhappy be-
cause they need to be too much involved in these highly
complex tasks. Moreover, fault-tolerant solutions (such as
[6] [14] [17]) address only crash failure semantics for
both hardware and software components. Software faults
with more malign failure semantics, such as those caused
by heisenbugs [9], are not covered by them.

Consequently, dealing with failures in grids is cur-
rent a serious problem for grid users. No wonder that, in a
survey we conducted, grid users said that they are highly
involved in diagnosing failures, that most failures are due
to configuration problems (a hint of the area’s immatur-
ity), and that solutions for dealing with failures are
mainly application-dependent.

In this paper, we describe the status quo of failures
in grids. In Section 2 we present a survey that exposes the
difficulties highlighted above. The aim of this survey was
to capture the actual experience, regarding fault treat-
ment, of those who have been using grids as a computa-
tional environment. In Section 3, we show why the avail-
able solutions are not sufficient to treat faults in grid en-
vironments in an effective manner. Further, in Section 4,
we point research directions that could be taken in order
to facilitate the grid fault treatment and to provide soft-
ware fault tolerance in a grid environment. Section 5 con-
cludes the paper with our final remarks.

2 The Status Quo of Failures in Grids
In order to identify the status quo of failures in

grids, we have consulted grid users spread throughout the
world through the multiple-choice questions below.

1. What are the more frequent kinds of failures you face
on Grids?

2. What are the mechanisms used for detecting and/or
correcting and/or tolerating faults?

3. What are the greatest problems you encounter when
you need to recover from a failure scenario?

4. To what degree is the user involved during the failure
recovery process?

5. What are the greatest users´ complaints?
6. Are there mechanisms for application debugging in

your grid environment?

A full version of the questionnaire is available at
http://www.dsc.ufcg.edu.br/~raissa/survey/form.html.
The questionnaire was sent on 11 April 2003 to several
grid discussion lists, such as:

• users@gridengine.sunsource.net
• centurion-sysadmin@cs.virginia.edu
• wp11@datagrid.cnr.it
• users@cactuscode.org
• agupta@phys.ufl.edu
• vaziri@nas.nasa.gov
• condor-admin@cs.wisc.edu
• grads-users@isi.edu
• support@entropia.com
• mygrid-l@dsc.ufcg.edu.br
• developer-discuss@globus.org
• discuss@globus.org
• gridcpr-wg@gridforum.org
• grid@cnpq.br

Answers were received via email and Web. On 25
April 2003, we had 22 responses. It is interesting to note
that a similar survey (i.e. a self-selected survey conducted
on-line) with users of parallel supercomputers resulted in
214 responses [18], an order of magnitude higher than
our survey. Furthermore, many respondents have demon-
strated a high level of interest about the results of our
research, signing their hope for better ways to deal with
failures in grids. These facts highlight the infancy of grid
computing and that better fault treatment is a key to bring
grids to maturity.

2.1 The Survey

Kinds of Failures
The main kinds of failures (see Figure 1) are re-

lated to the environment configuration. Almost 76% of
the responses have pointed this out. According to some

people surveyed, the lack of control over grid resources is
the main source of configuration failures. Following this,
we have middleware failures with 48%, application fail-
ures with 43% and finally hardware failures with 34%.
Note that, in the majority of the responses, more than one
kind of failure was chosen.

Kinds of Failures

76%

48%
43%

34%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Configuration
Middleware
Application
Hardware

Figure 1: Kinds of failures

Fault Treatment Mechanisms
In addition to ad-hoc mechanisms – based on us-

ers’ complaints and log files analysis – grid users have
used automatic ways to deal with failures on their sys-
tems (see Figure 2). Nevertheless, 57% of them are appli-
cation-dependent. Even when monitoring systems are
used (29% of the cases) they are proprietary ones (in fact,
standards such as GMA [1] and ReGS [8] are very new
specifications and have few implementations). Check-
pointing is used in 29% of the systems and fault-tolerant
scheduling in 19%. In some cases, different mechanisms
are combined.

Fault Treatment Mechanisms in Current Use

57%

29% 29%

19%

0%

10%

20%

30%

40%

50%

60%

Application-dependent
Monitoring systems
Checkpointing-recovery
Fault-tolerant scheduling

Figure 2: Fault Treatment Mechanisms in Current Use

In case of checkpointing-recovery and fault-

tolerant scheduling, they are only able to deal with crash
failure semantics for both hardware and software compo-
nents. Software faults with more malign failure semantics

– such as timing or omission ones, which are even more
difficult to deal with - are not covered by them.

The Greatest Problems for Recovering from a Failure
The greatest problem is to diagnose the failure, i.e.

to identify its root cause. About 71% of the responses
have pointed this out (see Figure 3). The difficulty to
implement the application-dependent failure recovery
behavior is present in 48% of the cases (the user does not
know what to do to recover from a failure), and to gain
authorization to correct the faulty component is a problem
in 14% of cases.

Problems When Recovering From a Failure
Scenario

71%

48%

14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Diagnosing the failure

Difficulty to implement
the failure recovery
behavior
Gain authorization to
correct the faulty
component

Figure 3: Problems When Recovering From a Failure Scenario

Other problems such as ensuring that failures do

not result in orphaned jobs on remote systems (i.e. they
get cleaned up in a reasonable time), cleaning up cor-
rupted cache files without losing lots of work in progress,
and getting access to preserved state when checkpointing-
recovery is used (e.g. checkpoint files may be inaccessi-
ble or totally lost) were also highlighted.

Degree of User Involvement
As the above results suggest, the user needs to be

highly involved during the failure recovery process (see
Figure 4). About 58% of them need to define exactly
what should be done when failures occur (which is not an
easy task). 29% of them are somewhat involved - e.g. the
user can specify at submission time if he/she should be
notified when serious errors happen or if the system
should attempt to recover as best as it can, resulting in
orphaned jobs etc. Only 13% of the users are involved in
a low degree and can rely on the mechanisms provided by
the system.

Degree of User Involvement

58%

29%

13%

0%

10%

20%

30%

40%

50%

60%

70%

High
Medium
Low

Figure 4: Degree of User Involvement

The Greatest Users´ Complaints
When we asked about the users´ complaints, the

main result is related to the complexity of the failure
treatment abstractions/mechanisms (71% - see Figure 5).
Once more, the users are concerned with the ability to
recover from failures, more than the failure occurrence
rate (33%) or the time to recover from them (10%).

The Greatest User Complaints

71%

33%

10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Complexity of the failure
treatment abstractions
Failure occurrence rate

Time to recover from
failure

Figure 5: The Greatest Users´ Complaints

Application Debugging
The following result highlights a clear open issue

in grid computing: grid users do not have appropriate
mechanisms for application debugging (see Figure 6).
Less than 5% (just one response) have good mechanisms
that allow them to influence the application execution
(e.g. change a variable value); 14% have “passive
mechanisms” that only allow them watching the applica-
tion execution; 19% have mechanisms that do not show
them a grid-wide vision of their application (i.e. the
mechanism scope is limited to a single resource that com-
prise the grid); and 62% of the grid users have no avail-
able application debugging mechanism.

The lack of debugging mechanisms almost suggest
that grid developers believe that applications have no
bugs and will operate correctly despite of grid complexity

and heterogeneity. Unfortunately, the reality is quite dif-
ferent.

Application Debugging Mechanisms in Current Use

62,30%

19%
14%

4,70%

0%

10%

20%

30%

40%

50%

60%

70% None available application
debugging

Mechanisms with limited
scope

Passive mechanisms
(watching the application
execution)
Good mechanisms

Figure 6: Application Debugging Mechanisms in Current Use

2.2 Survey Lessons
From the responses above, we can infer that grid

users are unhappy, since failures are not rare and they
cannot rely on appropriate failure treatment abstractions.
They are using application-dependent solutions, so they
need to be too much involved in the time-consuming and
complex task of dealing with failures. The main source of
failures is related to configuration issues and failure diag-
nosis is the main problem.

This scenario is a result of the following fact:
grid application developers use abstractions provided by
grid middleware to simplify the development of applica-
tion software for such a complex environment that is a
grid. Similarly, grid middleware developers use abstrac-
tions provided by operating system to ease their jobs.
This is an excellent way to deal with complexity and het-
erogeneity, except when things go wrong. When a soft-
ware component malfunctions, it typically affects the
components that use it. This propagates up to the user,
who sees the failure. Then, in order to solve the problem,
one has to drill-down through abstraction layers to find
the original failure. The problem is that, when everything
works, one has to know only what a software component
does, but when things break, one has also to know how
the component works. Although not exclusive of grids,
this characterization is a much bigger problem in grids
than in traditional systems. This is because grids are
much more complex and heterogeneous, encompassing a
much greater number of technologies than traditional
computing systems. In a grid, one can discover a failure
in a grid processor about what he/she could never know
its hardware platform model has existed. Thus he/she
know nothing about it. He/she does not know how it

should work. He/she does not know where its logs are.
Thus, solving the problem is a very difficult task.

Therefore, there is a huge cognitive barrier be-
tween the failure detection and the failure diagnosis. Most
of the time the logs are available, indicating a problem,
but who reads them can not interpret them. Consequently,
grid fault treatment depends on intensive user collabora-
tion, including not only system administrators but also
application developers. In this way, the focus of applica-
tion developer is lost when he/she would probably like to
concentrate on application functionality, rather than diag-
nosing middleware or configuration failures. The avail-
able solutions are unable to overcome this cognitive prob-
lem as we will see on the next section.

3 Existing Solutions
There are solutions available for grid fault treat-

ment. However, most of them were designed with per-
formance analysis in mind [1] [2] [3] [4] [7] [8] and they
basically provide an infrastructure for grid monitoring. Of
course, the information collected on the grid resources
and/or applications may be used for several purposes,
including failure detection and diagnosis. However, these
solutions do not solve the cognitive problem described
above.

The GMA (Grid Monitoring Architecture) [1], for
instance, is an open standard being developed by the
Global Grid Forum Performance Working Group for grid
monitoring. As such, it can be used as a template solution
through which we can describe grid monitoring solutions
in general.

Its architecture consists of three types of compo-
nents, shown in Figure 7. The directory service supports
information publication and discovery. The producer
makes management information available. The consumer
receives management information and processes it.

Typically, the information exchanged between the
components is described as events, a data collection with
a specific structure defined by an event schema. Events
are always sent directly from a producer to a consumer.
The data used to produce events may be gathered from
several sources and any of the following may be data
sources: hardware or software sensors that collect real-
time measurements (such as CPU load, memory usage

etc), databases, monitoring systems (such as JAMM [3])
and applications with their specific events.

Directory
service

Producer

Consumer

events

event
publication
information

event
publication
information

Figure 7: A general monitoring architecture [1]

Consumers, in turn, may have different functional-

ities, using the received information for several purposes.
Some consumers examples are: a real-time monitor,
which provides information for real-time analysis; an
archiver, which stores information for future use; an
event correlator, which makes decisions based on events
gathered from different sources; a process manager;
which restarts services once process failures occur. In any
case, the consumer behavior is defined by the application.

Besides producers and consumers, it is possible to
design new components, called intermediaries, which
implement both interfaces simultaneously to provide spe-
cialized services. For instance, an intermediary can col-
lect events from several producers, produce new data
derived from the received events and make this informa-
tion available to other consumers. The Reporting Grid
Services (ReGS) system [8] specifies two kinds of inter-
mediaries for OGSA [15] application monitoring: an in-
termediary for filtering events and another for logging.

As we can notice, grid monitoring solutions are
concerned with the gathering of information across grid
nodes. However, the problem does not seem to be gather-
ing data, but having the knowledge to use them. Since
there is no available mechanism to help diagnosing the
failure once it is detected, a consumer that performs fail-
ure diagnosis and recover must know what the events
should look like, identify the events that do not match
with the expected pattern, and devise a suitable way to
tackle this mismatch. All the knowledge encapsulated
into the consumer is defined by the application.

There are also solutions focusing on fault toler-
ance, rather than grid monitoring. Such solutions strive to
make the application run correctly even in the presence of
crash failures. Solutions such as GALLOP [6] and WQR
[14], for instance, use task replication to provide fault
tolerance. GALLOP replicates SPMD (single-program-
multiple-data) applications in different sites within the
virtual organization, while WQR is an efficient fault-
tolerant scheduler for bag-of-tasks applications. If a task
fails, the user is not aware of it and the solution resched-
ules the task automatically. Certainly, in order to prevent
undesirable side-effects due to replica execution, these
solutions allow for committing tasks results only in the
end of the execution.

Checkpoint-recovery has also been used. Although
this mechanism is difficult to do for parallel jobs with
tasks spread across multiple processors where messages
may be in transit [6], systems such as Legion [19] and
Condor [20] provide fault tolerance through it. In Legion
system, checkpoint-recovery is provided in the applica-
tion level; in Condor, it is embedded into the system
level.

Some of the survey respondents have been using
both checkpoint-recovery and fault-tolerant scheduling
solutions (see Figure 2). In all cases, however, they deal
only with crash failure semantics for both hardware and
software components. They do not deal with software
faults or faults with more malign failure semantics, de-
spite grids being even more prone to these kind of fail-
ures, as is detailed in Section 4.2.

4 What Can Be Done About It?
It is necessary to look for solutions that allow

managing the complexity involved in grid fault treatment
in an efficient manner. Application developers or users
should not be involved on diagnosis and correction of
middleware or configuration failures. We see improve-
ment needed in both (i) failure diagnosis and correction,
and (ii) fault tolerance.

4.1 Failure Diagnosis and Correction
In order to solve the cognitive problem that no one

is going to know all details of a grid when failures occur,
it should be possible to define different hierarchical levels
of abstraction. At each hierarchical level, appropriate
personal (e.g. application developer, middleware admin-

istrator and system support staff) should be responsible
for dealing with faults. In this way, if a failure is detected
on a higher layer, but its root cause is at a lower one, the
corresponding staff should be activated to solve the prob-
lem. The challenge is to identify the right levels for this
hand-on, allowing collaborative drilling-down in a con-
trolled and effective manner. Ideally, the hand-off points
should be narrow interfaces.

Besides, it may be necessary to define mechanisms
to coordinate the interaction between the different groups
to fix the problems. Once these mechanisms are available,
debugging tools could take advantage of them. A possible
mechanism is an automated test of a given service.
Automated tests are key for enabling the staff solving a
problem at layer n to determine whether the problem is
their own or is at layer n - 1, without understanding how
layer n - 1 works. Note that, although components are
exhaustive tested before going into production, the ability
to run tests in production is very useful. It allows for find-
ing configuration errors and even bugs that were not de-
tected in the developers’ environment. Additionally,
automated tests ease not only problem hand-on. After
using the tests for the lower layer and concluding that the
problem is at their own layer, support staff can use the
tests for their own layer to expedite the problem isolation.

4.2 Fault Tolerance
Besides the issue of failure diagnosis and correc-

tion, there is also another interesting question to be con-
sidered in terms of fault treatment. It is important to in-
vestigate how to provide broader fault tolerance in grids,
since grid software (middleware and applications) is
complex and, as all complex software, prone to failures
that are more malign than crashes, such as timing or
omission ones. Fault tolerance mechanisms such as repli-
cation and checkpointing-recovery have been used in grid
systems. However, as highlighted above, they are only
able to deal with crash failure semantics.

Special care should be taken with heisenbugs, i.e.
software bugs that lead to intermittent failures whose
conditions of activation occur rarely or are not easily re-
producible [10]. Heisenbugs cause a class of software
failures that typically surface in situations where there are
boundaries between various software components [11],
and thus they are likely to appear in grids. Note that, by
their very nature, heisenbugs result in intermittent failures

that are extremely difficult to identify through testing.
This is particularly preoccupying because we have just
seen that automated tests may play a very important role
in failure diagnosis and correction in grids, but they can
take no effect when facing with heisenbugs.

Software fault tolerance is provided by software
diversity [12] [13] [14]. Diversity can be introduced in
software systems by constructing diverse replicas that
solve the same problem in different ways (different algo-
rithms, different programming languages etc). The idea is
to make different replicas to fail independently and so to
avoid a specific failure to compromises the whole proc-
essing.

Since grids are extremely heterogeneous, one
might be able to take advantage of this diversity to pro-
vide software fault tolerance through software diversity.
In grids, if on one hand the compilers, operating systems
and hardware heterogeneity can increase the system com-
plexity, on the other hand it can potentially facilitate the
construction of diverse software replicas, thus increasing
software reliability. In particular, it is interesting to inves-
tigate how to introduce software diversity automatically,
rather than involving different and independent groups of
programmers to develop each replica. In this sense, ran-
domized compilation techniques [12] may be a starting
point. Furthermore, replicas could be scheduled and exe-
cuted in different grid nodes where different hardware
architectures or programming languages could be avail-
able.

5 Conclusions
In this paper we described the status quo of fail-

ures in grids. A survey we conducted with grid users
showed that they are not pleased with the current state of
affairs. The survey revealed that users have to be highly
involved in diagnosing failures, that most failures are due
to configuration problems (a hint of the area’s immatur-
ity), and that solutions for dealing with failures are
mainly application-dependent.

We identified two basic problems in grid fault
management. First, existing solutions for failure diagno-
sis and correction mainly address information collection.
However, while in principle one has to know only what
software component does, when such a component
breaks, one has also to know how the component works.
Unfortunately, there are too many different components

in a grid. It is not reasonable to expect for a single human
to master all details of a grid. We propose the definition
of specific hand-on points for different support teams to
cooperate in diagnosing and correcting grid problems. In
this way, application, middleware and resource problems
can be handled in a coordinated manner. Such a coopera-
tive effort would be much helped by automated tests.

Second, fault tolerance schemes today imple-
mented on grids tolerate only crash failures. Since grids
are prone to more complex failures, such as heisenbugs,
one needs to tolerate tougher failures. Our hope is that the
very heterogeneity that makes a grid a complex environ-
ment can help in the creation of diverse software replicas,
a strategy that can tolerate more complex failures.

Acknowledgments
We would like to thank Paulo Roisemberg and

Daniel Paranhos for a number of useful comments and
criticisms. This research was supported by grants from
Hewlett Packard/Brazil, CNPq/Brazil and CAPES/Brazil.

References
[1] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor,

R. Wolski, and M. Swany. A grid Monitoring Archi-
tecture. Working Document, January 2002,
http://www-didc.lbl.gov/GGF-PERF/GMA-WG
/papers/GWD-GP-16-2.pdf

[2] W. Smith. A Framework for Control and Observation
in Distributed Environments. NASA Advanced Su-
percomputing Division, NASA Ames Research Cen-
ter, Moffett Field, CA, NAS-01-006, June 2001.

[3] B. Tierney, B. Crowley, D. Gunter, M. Holding, J.
Lee, and M. Thompson. A Monitoring Sensor Man-
agement System for Grid Environments. Proceedings
of the IEEE High Performance Distributed Comput-
ing Conference (HPDC-9), August 2000.

[4] A. Waheed, W. Smith, J. George, and J. Yan. An In-
frastructure for Monitoring and Management in
Computational Grids. In Proceedings of the 2000
Conference on Languages, Compilers and Runtime
Systems, 2000.

[5] P. Stelling, I. Foster, C. Kesselman, C. Lee, and G.
Laszewski. A Fault Detection Service for Wide Area
Distributed Computations. Proc. of the 7th IEEE
Symp. On High Performance Distributed Computing,
1998, pp. 268-278.

[6] J. Weissman. Fault Tolerant Computing on the Grid:
What are My Options? Technical Report, University
of Texas at San Antonio, 1998.

[7] M. Baker, and G. Smith. GridRM: A resource Moni-
toring Architecture for the Grid. The Distributed
Systems Group, University of Postsmouth UK, June
2002.

[8] Y. Aridor, D. Lorenz, B. Rochwerger, B. Horn, and
H. Salem. Reporting Grid Services (ReGS) Specifica-
tion. IBM Haifa Research Lab, draft-ggf-ogsa-regs-
0.3.1, January 2003.

[9] J. Gray. Why do Computers Stop and What Can Be
Done About it? Tandem Computers, Technical Re-
port 85.7, PN 87614, June 1985.

[10] K. Vaydianathan and K. S. Trivedi. Extended Classi-
fication of Software Faults based on Aging. Dept. of
ECE, Duke University, Durham, USA, 2001.

[11] S. Forrest, A. Somayahi and D. H. Ackley. Building
Diverse Computer Systems. In Proceedings of The
6th Workshop on Hot Topics in Operating Systems,
IEEE Computer Society Press, Los Alamitos, CA,
pp. 67-72, 1997.

[12] A. Avizienis. The N-Version Approach to Fault-
Tolerant Software. In IEEE Transactions in Software
Engineering SE-11(12), pp. 1491-1501, 1985.

[13] B. Randell. System Structure for Fault Tolerance. In
Yeh R T (Ed) Current Trends in Programming Meth-
odology (Vol 1), Prentice-Hall, Englewood Cliffs,
NJ, 1977.

[14] D. Paranhos, W. Cirne and F. Brasileiro. Trading
Information for Cycles: Using Replication to Sched-
ule Bag of Tasks Applications on Computational
Grids. In Proceedings of the Euro-Par 2003: Interna-
tional Conference on Parallel and Distributed Com-
puting, August 2003.

[15] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, and C. Kesselman. Grid Service Specification.
Draft 3, Global Grid Forum, July 2002.
http://www.globus.org/research/ papers/ gsspec.pdf.

[16] ETTK home page. http://www.alphaworks.ibm.
com/tech/ettk

[17] A. Tuong and A. Grimshaw. Using Reflection for
Incorporating Fault-Tolerance Techniques into Dis-

tributed Applications. University of Virginia, De-
partment of Computer Science, September 1999.

[18] W. Cirne and F. Berman. A Model for Moldable Su-
percomputer Jobs. Proc. IPDPS 2001: International
Parallel and Distributed Processing Symposium,
April 2001.

[19] A. S. Grimshaw, A. Ferrari, F. Knabe and M. Hum-
phrey. Wide-Area Computing: Resource Sharing on
a Large Scale. IEEE Computer, May 1999.

[20] M. Litzkow, M. Livny, and M. Mutka. Condor – A
Hunter of Idle Workstations. In Proceedings of the
8th International Conference of Distributed Com-
puting Systems, pp. 104-111, June 1988.

