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Abstract 
Computational Grids have the potential to become 

the main execution platform for high performance and 
distributed applications. However, such systems are ex-
tremely complex and prone to failures. In this paper, we 
present a survey with the grid community on which sev-
eral people shared their actual experience regarding fault 
treatment. The survey reveals that, nowadays, users have 
to be highly involved in diagnosing failures, that most 
failures are due to configuration problems (a hint of the 
area’s immaturity), and that solutions for dealing with 
failures are mainly application-dependent. Going further, 
we identify two main reasons for this state of affairs. 
First, grid components that provide high-level abstrac-
tions when working, do expose all gory details when bro-
ken. Since there are no appropriate mechanisms to deal 
with the complexity exposed (configuration, middleware, 
hardware and software issues), users need to be deeply 
involved in the diagnosis and correction of failures, 
when, in fact, all they want is to run their applications. 
One needs a way to coordinate different support teams 
working at the grids different levels of abstraction. Sec-
ond, fault tolerance schemes today implemented on grids 
tolerate only crash failures. Since grids are prone to more 
complex failures, such those caused by heisenbugs, one 
needs to tolerate tougher failures. Our hope is that the 
very heterogeneity, that makes a grid a complex envi-
ronment, can help in the creation of diverse software rep-
licas, a strategy that can tolerate more complex failures. 

1 Introduction 
The use of computational grids as a platform to 

execute parallel applications is a promising research area. 
The possibility to allocate an enormous amount of re-
sources to a parallel application (thousands of machines 
connected through the Internet) and to make it with lower 
cost than traditional alternatives (based in parallel super-

computers) is one of the main attractive in grid comput-
ing. 

In fact, grids have the potential to reach unprece-
dented levels of parallelism. Such levels of parallelism 
can improve the performance of existing applications, 
and raises the possibility to execute entirely new applica-
tions, with huge computation and storage requirements. 
On the other hand, grid characteristics, as high heteroge-
neity, complexity and distribution – traversing multiple 
administrative domains – create many new technical chal-
lenges, which need to be addressed. 

In particular, grids are more prone to failures than 
traditional computing platforms. In a grid environment 
there are potentially thousands of resources, services and 
applications that need to interact in order to make possi-
ble the use of the grid as an execution platform. Since 
these elements are extremely heterogeneous, there are 
many failure possibilities, including not only independent 
failures of each element, but also those resulting from 
interactions between them (for example, a task may fail 
because the browser version in a specific grid node is not 
compatible with the Java version available). Moreover, 
machines may be disconnected from the grid due to ma-
chine failures, network partitions, or process abortion in 
remote machines to prioritize local computation. Such 
situations cause non-availability of the processing ser-
vice, characterizing failure scenarios.  

Dealing with these complex failure scenarios is 
challenging. Detecting that something is wrong is not so 
difficult (in general, symptoms are quickly identified), 
but difficulties arise to identify the root cause of the prob-
lem, i.e., to diagnose a failure in a very complex and het-
erogeneous environment such as a computational grid.  

The first barrier is to understand what is really 
happening and the problem here seems to be a cognitive 
one. It is often possible to obtain logs and information 
about the resources that compose the grid. However, in 
order to make sense of this information, one would have 



to know what should be happening. In a grid context, this 
means to understand the functioning of the many differ-
ent technologies that compose it. When failures occur and 
the transparency provided by the middleware is compro-
mised, the user needs to drill down to lower level of ab-
stractions in order to locate and diagnose failures. This 
requires understanding many different technologies in 
terms of middleware, operating systems and hardware. It 
is just too much for any single human being! 

Note that some solutions for grid monitoring have 
been proposed [1] [2] [3] [4] [5] [7] [8]. They are cer-
tainly useful, since they allow for failures detection and 
also ease the collection of data describing the failure. 
However, they do not provide mechanisms for failure 
diagnosis and correction, so grid users are unhappy be-
cause they need to be too much involved in these highly 
complex tasks. Moreover, fault-tolerant solutions (such as 
[6] [14] [17]) address only crash failure semantics for 
both hardware and software components. Software faults 
with more malign failure semantics, such as those caused 
by heisenbugs [9], are not covered by them. 

Consequently, dealing with failures in grids is cur-
rent a serious problem for grid users. No wonder that, in a 
survey we conducted, grid users said that they are highly 
involved in diagnosing failures, that most failures are due 
to configuration problems (a hint of the area’s immatur-
ity), and that solutions for dealing with failures are 
mainly application-dependent. 

In this paper, we describe the status quo of failures 
in grids. In Section 2 we present a survey that exposes the 
difficulties highlighted above. The aim of this survey was 
to capture the actual experience, regarding fault treat-
ment, of those who have been using grids as a computa-
tional environment. In Section 3, we show why the avail-
able solutions are not sufficient to treat faults in grid en-
vironments in an effective manner. Further, in Section 4, 
we point research directions that could be taken in order 
to facilitate the grid fault treatment and to provide soft-
ware fault tolerance in a grid environment. Section 5 con-
cludes the paper with our final remarks. 

2  The Status Quo of Failures in Grids 
In order to identify the status quo of failures in 

grids, we have consulted grid users spread throughout the 
world through the multiple-choice questions below. 

1.  What are the more frequent kinds of failures you face 
on Grids?  

2.  What are the mechanisms used for detecting and/or 
correcting and/or tolerating faults?  

3.  What are the greatest problems you encounter when 
you need to recover from a failure scenario? 

4.  To what degree is the user involved during the failure 
recovery process?  

5.  What are the greatest users´ complaints? 
6.  Are there mechanisms for application debugging in 

your grid environment?  

A full version of the questionnaire is available at 
http://www.dsc.ufcg.edu.br/~raissa/survey/form.html. 
The questionnaire was sent on 11 April 2003 to several 
grid discussion lists, such as: 

• users@gridengine.sunsource.net 
• centurion-sysadmin@cs.virginia.edu 
• wp11@datagrid.cnr.it 
• users@cactuscode.org 
• agupta@phys.ufl.edu 
• vaziri@nas.nasa.gov 
• condor-admin@cs.wisc.edu 
• grads-users@isi.edu 
• support@entropia.com 
• mygrid-l@dsc.ufcg.edu.br 
• developer-discuss@globus.org 
• discuss@globus.org 
• gridcpr-wg@gridforum.org 
• grid@cnpq.br 

Answers were received via email and Web. On 25 
April 2003, we had 22 responses. It is interesting to note 
that a similar survey (i.e. a self-selected survey conducted 
on-line) with users of parallel supercomputers resulted in 
214 responses [18], an order of magnitude higher than 
our survey. Furthermore, many respondents have demon-
strated a high level of interest about the results of our 
research, signing their hope for better ways to deal with 
failures in grids. These facts highlight the infancy of grid 
computing and that better fault treatment is a key to bring 
grids to maturity.  

2.1 The Survey 

Kinds of Failures 
The main kinds of failures (see Figure 1) are re-

lated to the environment configuration. Almost 76% of 
the responses have pointed this out. According to some 



people surveyed, the lack of control over grid resources is 
the main source of configuration failures. Following this, 
we have middleware failures with 48%, application fail-
ures with 43% and finally hardware failures with 34%. 
Note that, in the majority of the responses, more than one 
kind of failure was chosen.  
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Figure 1: Kinds of failures 

Fault Treatment Mechanisms 
In addition to ad-hoc mechanisms – based on us-

ers’ complaints and log files analysis – grid users have 
used automatic ways to deal with failures on their sys-
tems (see Figure 2). Nevertheless, 57% of them are appli-
cation-dependent. Even when monitoring systems are 
used (29% of the cases) they are proprietary ones (in fact, 
standards such as GMA [1] and ReGS [8] are very new 
specifications and have few implementations). Check-
pointing is used in 29% of the systems and fault-tolerant 
scheduling in 19%. In some cases, different mechanisms 
are combined. 
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Figure 2: Fault Treatment Mechanisms in Current Use 

 
In case of checkpointing-recovery and fault-

tolerant scheduling, they are only able to deal with crash 
failure semantics for both hardware and software compo-
nents. Software faults with more malign failure semantics 

– such as timing or omission ones, which are even more 
difficult to deal with - are not covered by them. 

The Greatest Problems for Recovering from a Failure  
The greatest problem is to diagnose the failure, i.e. 

to identify its root cause. About 71% of the responses 
have pointed this out (see Figure 3). The difficulty to 
implement the application-dependent failure recovery 
behavior is present in 48% of the cases (the user does not 
know what to do to recover from a failure), and to gain 
authorization to correct the faulty component is a problem 
in 14% of cases.  
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Figure 3: Problems When Recovering From a Failure Scenario 

 
Other problems such as ensuring that failures do 

not result in orphaned jobs on remote systems (i.e. they 
get cleaned up in a reasonable time), cleaning up cor-
rupted cache files without losing lots of work in progress, 
and getting access to preserved state when checkpointing-
recovery is used (e.g. checkpoint files may be inaccessi-
ble or totally lost) were also highlighted. 

Degree of User Involvement  
As the above results suggest, the user needs to be 

highly involved during the failure recovery process (see 
Figure 4). About 58% of them need to define exactly 
what should be done when failures occur (which is not an 
easy task). 29% of them are somewhat involved - e.g. the 
user can specify at submission time if he/she should be 
notified when serious errors happen or if the system 
should attempt to recover as best as it can,  resulting in 
orphaned jobs etc. Only 13% of the users are involved in 
a low degree and can rely on the mechanisms provided by 
the system. 
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Figure 4: Degree of User Involvement 

The Greatest Users´ Complaints 
When we asked about the users´ complaints, the 

main result is related to the complexity of the failure 
treatment abstractions/mechanisms (71% - see Figure 5). 
Once more, the users are concerned with the ability to 
recover from failures, more than the failure occurrence 
rate (33%) or the time to recover from them (10%). 
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Figure 5: The Greatest Users´ Complaints 

Application Debugging 
The following result highlights a clear open issue 

in grid computing: grid users do not have appropriate 
mechanisms for application debugging (see Figure 6). 
Less than 5% (just one response) have good mechanisms 
that allow them to influence the application execution 
(e.g. change a variable value); 14% have “passive 
mechanisms” that only allow them watching the applica-
tion execution; 19% have mechanisms that do not show 
them a grid-wide vision of their application (i.e. the 
mechanism scope is limited to a single resource that com-
prise the grid); and 62% of the grid users have no avail-
able application debugging mechanism.  

The lack of debugging mechanisms almost suggest 
that grid developers believe that applications have no 
bugs and will operate correctly despite of grid complexity 

and heterogeneity. Unfortunately, the reality is quite dif-
ferent. 
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Figure 6: Application Debugging Mechanisms in Current Use 

2.2 Survey Lessons 
From the responses above, we can infer that grid 

users are unhappy, since failures are not rare and they 
cannot rely on appropriate failure treatment abstractions. 
They are using application-dependent solutions, so they 
need to be too much involved in the time-consuming and 
complex task of dealing with failures. The main source of 
failures is related to configuration issues and failure diag-
nosis is the main problem. 

This scenario is a result of the following fact:                        
grid application developers use abstractions provided by 
grid middleware to simplify the development of applica-
tion software for such a complex environment that is a 
grid. Similarly, grid middleware developers use abstrac-
tions provided by operating system to ease their jobs. 
This is an excellent way to deal with complexity and het-
erogeneity, except when things go wrong. When a soft-
ware component malfunctions, it typically affects the 
components that use it. This propagates up to the user, 
who sees the failure. Then, in order to solve the problem, 
one has to drill-down through abstraction layers to find 
the original failure. The problem is that, when everything 
works, one has to know only what a software component 
does, but when things break, one has also to know how 
the component works. Although not exclusive of grids, 
this characterization is a much bigger problem in grids 
than in traditional systems. This is because grids are 
much more complex and heterogeneous, encompassing a 
much greater number of technologies than traditional 
computing systems. In a grid, one can discover a failure 
in a grid processor about what he/she could never know 
its hardware platform model has existed. Thus he/she 
know nothing about it. He/she does not know how it 



should work. He/she does not know where its logs are. 
Thus,  solving the problem is a very difficult task. 

Therefore, there is a huge cognitive barrier be-
tween the failure detection and the failure diagnosis. Most 
of the time the logs are available, indicating a problem, 
but who reads them can not interpret them. Consequently, 
grid fault treatment depends on intensive user collabora-
tion, including not only system administrators but also 
application developers. In this way, the focus of applica-
tion developer is lost when he/she would probably like to 
concentrate on application functionality, rather than diag-
nosing middleware or configuration failures. The avail-
able solutions are unable to overcome this cognitive prob-
lem as we will see on the next section. 

3 Existing Solutions 
There are solutions available for grid fault treat-

ment. However, most of them were designed with per-
formance analysis in mind [1] [2] [3] [4] [7] [8] and they 
basically provide an infrastructure for grid monitoring. Of 
course, the information collected on the grid resources 
and/or applications may be used for several purposes, 
including failure detection and diagnosis. However, these 
solutions do not solve the cognitive problem described 
above. 

The GMA (Grid Monitoring Architecture) [1], for 
instance, is an open standard being developed by the 
Global Grid Forum Performance Working Group for grid 
monitoring. As such, it can be used as a template solution 
through which we can describe grid monitoring solutions 
in general.  

Its architecture consists of three types of compo-
nents, shown in Figure 7. The directory service supports 
information publication and discovery. The producer 
makes management information available. The consumer 
receives management information and processes it. 

Typically, the information exchanged between the 
components is described as events, a data collection with 
a specific structure defined by an event schema. Events 
are always sent directly from a producer to a consumer. 
The data used to produce events may be gathered from 
several sources and any of the following may be data 
sources: hardware or software sensors that collect real-
time measurements (such as CPU load, memory usage 

etc), databases, monitoring systems (such as JAMM [3]) 
and applications with their specific events. 
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Figure 7: A general monitoring architecture [1]
 
Consumers, in turn, may have different functional-

ities, using the received information for several purposes. 
Some consumers examples are: a real-time monitor, 
which provides information for real-time analysis; an 
archiver, which stores information for future use; an 
event correlator, which makes decisions based on events 
gathered from different sources; a process manager; 
which restarts services once process failures occur. In any 
case, the consumer behavior is defined by the application. 

Besides producers and consumers, it is possible to 
design new components, called intermediaries, which 
implement both interfaces simultaneously to provide spe-
cialized services. For instance, an intermediary can col-
lect events from several producers, produce new data 
derived from the received events and make this informa-
tion available to other consumers. The Reporting Grid 
Services (ReGS) system [8] specifies two kinds of inter-
mediaries for OGSA [15] application monitoring: an in-
termediary for filtering events and another for logging. 

As we can notice, grid monitoring solutions are 
concerned with the gathering of information across grid 
nodes. However, the problem does not seem to be gather-
ing data, but having the knowledge to use them. Since 
there is no available mechanism to help diagnosing the 
failure once it is detected, a consumer that performs fail-
ure diagnosis and recover must know what the events 
should look like, identify the events that do not match 
with the expected pattern, and devise a suitable way to 
tackle this mismatch. All the knowledge encapsulated 
into the consumer is defined by the application. 



There are also solutions focusing on fault toler-
ance, rather than grid monitoring. Such solutions strive to 
make the application run correctly even in the presence of 
crash failures. Solutions such as GALLOP [6] and WQR 
[14], for instance, use task replication to provide fault 
tolerance. GALLOP replicates SPMD (single-program-
multiple-data) applications in different sites within the 
virtual organization, while WQR is an efficient fault-
tolerant scheduler for bag-of-tasks applications. If a task 
fails, the user is not aware of it and the solution resched-
ules the task automatically. Certainly, in order to prevent 
undesirable side-effects due to replica execution, these 
solutions allow for committing tasks results only in the 
end of the execution. 

Checkpoint-recovery has also been used. Although 
this mechanism is difficult to do for parallel jobs with 
tasks spread across multiple processors where messages 
may be in transit [6], systems such as Legion [19] and 
Condor [20] provide fault tolerance through it. In Legion 
system, checkpoint-recovery is provided in the applica-
tion level; in Condor, it is embedded into the system 
level.  

Some of the survey respondents have been using 
both checkpoint-recovery and fault-tolerant scheduling 
solutions (see Figure 2). In all cases, however, they deal 
only with crash failure semantics for both hardware and 
software components.  They do not deal with software 
faults or faults with more malign failure semantics, de-
spite grids being even more prone to these kind of fail-
ures, as is detailed in Section 4.2. 

4 What Can Be Done About It? 
It is necessary to look for solutions that allow 

managing the complexity involved in grid fault treatment 
in an efficient manner. Application developers or users 
should not be involved on diagnosis and correction of 
middleware or configuration failures. We see improve-
ment needed in both (i) failure diagnosis and correction, 
and (ii) fault tolerance. 

4.1 Failure Diagnosis and Correction 
In order to solve the cognitive problem that no one 

is going to know all details of a grid when failures occur, 
it should be possible to define different hierarchical levels 
of abstraction. At each hierarchical level, appropriate 
personal (e.g. application developer, middleware admin-

istrator and system support staff) should be responsible 
for dealing with faults. In this way, if a failure is detected 
on a higher layer, but its root cause is at a lower one, the 
corresponding staff should be activated to solve the prob-
lem. The challenge is to identify the right levels for this 
hand-on, allowing collaborative drilling-down in a con-
trolled and effective manner. Ideally, the hand-off points 
should be narrow interfaces.  

Besides, it may be necessary to define mechanisms 
to coordinate the interaction between the different groups 
to fix the problems. Once these mechanisms are available, 
debugging tools could take advantage of them. A possible 
mechanism is an automated test of a given service. 
Automated tests are key for enabling the staff solving a 
problem at layer n to determine whether the problem is 
their own or is at layer n - 1, without understanding how 
layer n - 1 works. Note that, although components are 
exhaustive tested before going into production, the ability 
to run tests in production is very useful. It allows for find-
ing configuration errors and even bugs that were not de-
tected in the developers’ environment. Additionally, 
automated tests ease not only problem hand-on. After 
using the tests for the lower layer and concluding that the 
problem is at their own layer, support staff can use the 
tests for their own layer to expedite the problem isolation. 

4.2 Fault Tolerance 
Besides the issue of failure diagnosis and correc-

tion, there is also another interesting question to be con-
sidered in terms of fault treatment. It is important to in-
vestigate how to provide broader fault tolerance in grids, 
since grid software (middleware and applications) is 
complex and, as all complex software, prone to failures 
that are more malign than crashes, such as timing or 
omission ones. Fault tolerance mechanisms such as repli-
cation and checkpointing-recovery have been used in grid 
systems. However, as highlighted above, they are only 
able to deal with crash failure semantics. 

Special care should be taken with heisenbugs, i.e. 
software bugs that lead to intermittent failures whose 
conditions of activation occur rarely or are not easily re-
producible [10]. Heisenbugs cause a class of software 
failures that typically surface in situations where there are 
boundaries between various software components [11], 
and thus they are likely to appear in grids. Note that, by 
their very nature, heisenbugs result in intermittent failures 



that are extremely difficult to identify through testing. 
This is particularly preoccupying because we have just 
seen that automated tests may play a very important role 
in failure diagnosis and correction in grids, but they can 
take no effect when facing with heisenbugs. 

Software fault tolerance is provided by software 
diversity [12] [13] [14]. Diversity can be introduced in 
software systems by constructing diverse replicas that 
solve the same problem in different ways (different algo-
rithms, different programming languages etc). The idea is 
to make different replicas to fail independently and so to 
avoid a specific failure to compromises the whole proc-
essing. 

Since grids are extremely heterogeneous, one 
might be able to take advantage of this diversity to pro-
vide software fault tolerance through software diversity. 
In grids, if on one hand the compilers, operating systems 
and hardware heterogeneity can increase the system com-
plexity, on the other hand it can potentially facilitate the 
construction of diverse software replicas, thus increasing 
software reliability. In particular, it is interesting to inves-
tigate how to introduce software diversity automatically, 
rather than involving different and independent groups of 
programmers to develop each replica. In this sense, ran-
domized compilation techniques [12] may be a starting 
point. Furthermore, replicas could be scheduled and exe-
cuted in different grid nodes where different hardware 
architectures or programming languages could be avail-
able. 

5 Conclusions 
In this paper we described the status quo of fail-

ures in grids. A survey we conducted with grid users 
showed that they are not pleased with the current state of 
affairs. The survey revealed that users have to be highly 
involved in diagnosing failures, that most failures are due 
to configuration problems (a hint of the area’s immatur-
ity), and that solutions for dealing with failures are 
mainly application-dependent. 

We identified two basic problems in grid fault 
management. First, existing solutions for failure diagno-
sis and correction mainly address information collection. 
However, while in principle one has to know only what 
software component does, when such a component 
breaks, one has also to know how the component works. 
Unfortunately, there are too many different components 

in a grid. It is not reasonable to expect for a single human 
to master all details of a grid. We propose the definition 
of specific hand-on points for different support teams to 
cooperate in diagnosing and correcting grid problems. In 
this way, application, middleware and resource problems 
can be handled in a coordinated manner. Such a coopera-
tive effort would be much helped by automated tests. 

Second, fault tolerance schemes today imple-
mented on grids tolerate only crash failures. Since grids 
are prone to more complex failures, such as heisenbugs, 
one needs to tolerate tougher failures. Our hope is that the 
very heterogeneity that makes a grid a complex environ-
ment can help in the creation of diverse software replicas, 
a strategy that can tolerate more complex failures. 
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