
Future Generation Computer Systems 22 (2006) 721–731
www.elsevier.com/locate/fgcs
Evaluating architectures for independently auditing service level agreements

Ana Carolina Barbosa, Jacques Sauvé, Walfredo Cirne∗, Mirna Carelli
Universidade Federal de Campina Grande, Programa de Pós-Graduação em Ciência da Computação, Av. Aprı́gio Veloso, 882 – 58.109-970,

Campina Grande – PB, Brazil

Received 26 August 2005; received in revised form 25 December 2005; accepted 5 January 2006
Available online 9 March 2006

Abstract

Web and grid services are quickly maturing as a technology that allows for the integration of applications belonging to different administrative
domains, enabling much faster and more efficient business-to-business arrangements. For such an integration to be effective, the provider and the
consumer of a service must negotiate a service level agreement (SLA), i.e. a contract that specifies what one party can expect from the other.
But, since SLAs are just contracts, auditing is key to assure that they hold. However, auditing can be very challenging when the parties do not
blindly trust each other, which is expected to be the common case for large grid deployments. We here evaluate six architectures that perform
SLA auditing both quantitatively and qualitatively. The quantitative evaluation focuses on the performance penalty that auditing introduces. The
qualitative evaluation compares the architectures based on aspects such as intrusiveness, trust, use of extra requests, possibility of preferential
treatment, possibility of auditing consumer load, and possibility of auditing encrypted messages. We conclude that no single architecture seems
to be the best solution for all cases and indicate where each one is best suited.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Service auditing; Independent auditing; Grid; Web services; Service level agreements
1. Introduction

Web services are maturing as a technology that allows for the
integration of applications belonging to different administrative
domains, enabling much faster and more efficient business-
to-business arrangements. Grid services have recently evolved
from web services and high-performance grid technology
and promise an unprecedented level of service dynamism.
In the grid vision, the relationship between suppliers and
consumers is very dynamic and the services are transient (i.e.
have a lifetime). Since applications integrated via web and
grid services typically span multiple administrative domains,
contracts called service level agreements (SLAs) are used
to establish what a consumer application can expect from a
provider and vice versa. An SLA is composed of a set of service
level objectives (SLOs), which are evaluated using measurable
data, called service level indicators (SLIs).

Since SLAs are simply contracts, they do not provide hard
guarantees per se. One must audit them to ensure that they

∗ Corresponding author. Tel.: +55 83 3310 1433; fax: +55 83 3310 1365.
E-mail addresses: carolina@dsc.ufcg.edu.br (A.C. Barbosa),

jacques@dsc.ufcg.edu.br (J. Sauvé), walfredo@dsc.ufcg.edu.br (W. Cirne),
mirna@dsc.ufcg.edu.br (M. Carelli).

0167-739X/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.01.001
hold. However, since these applications typically belong to
different entities, there may be no implicit trust relationship
between them. In particular, a consumer may be suspicious of
the provider’s audit findings and vice versa. When there is no
trust between services, auditing can be done by an independent
mutually trusted third-party entity.

In a very dynamic service environment, SLA management
should be an automatic and dynamic process. This process
is composed of the phases of SLA negotiation, definition,
auditing, notification of violation and triggering of management
actions when SLA non-compliance is detected. Although SLA
management is addressed by other works, such as [1,3,5,7,11,
13], they do not analyze the SLA auditing phase in detail.

This paper fills this gap, evaluating six architectures for
independently auditing computational services. We address
issues concerning trust between services; where and how to
instrument the services and evaluate their SLAs; about the
response time increase from the consumer point of view caused
by the introduction of the SLA auditing process, as well as
other aspects. Although our results are not tied to web and grid
service technology, we believe that automated service auditing
is key for the full deployment of such technology. Our efforts
extend initial results presented in [2] and are part of the OurGrid

http://www.elsevier.com/locate/fgcs
mailto:carolina@dsc.ufcg.edu.br
mailto:jacques@dsc.ufcg.edu.br
mailto:walfredo@dsc.ufcg.edu.br
mailto:mirna@dsc.ufcg.edu.br
http://dx.doi.org/10.1016/j.future.2006.01.001


722 A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731
project developed in collaboration between the Universidade
Federal de Campina Grande (UFCG) and Hewlett Packard (HP)
[14].

The paper is organized as follows: Section 2 presents
related work; Section 3 presents some issues concerning SLA
auditing; Section 4 describes possible architectures for auditing
services, and evaluates them qualitatively; Section 5 develops
a quantitative performance analysis of these architectures; and,
finally, Section 6 concludes the paper.

2. Related work

Service level agreements have been applied to managing
web services and, recently, to managing resources and grid
services. This section presents some work being developed in
this area.

Web service distributed management (WSDM) is an
Organization for the Advancement of Structured Information
Standards (OASIS) standard that introduces a framework for
managing resources through web services [13]. The managed
objects are web services representing resources or services.
These web services implement management interfaces and are
thus responsible for providing management information. In
this framework, although there are no constraints on using
SLAs, web service management does not consider them and
there is consequently no concern with trust in the management
information provided by the managed objects. In contrast to the
WSDM, our work focuses on the SLA auditing phase.

The web service level agreement (WSLA) framework [5]
is an IBM effort for specifying and monitoring SLAs for web
services. It consists of an SLA definition language based on
an XML scheme and of a runtime architecture that provides
several monitoring services that can be outsourced to assure
greater objectivity. The IBM project offers SLA management
for web services in the phases of SLA negotiation, monitoring
and triggering of corrective actions by management tools when
an SLA violation is detected. The monitoring process can be
performed either by signing parties or by third parties, through
investigation and interception of consumer requests. Our work
is different because it focuses, details and analyzes the
monitoring process, which we call the SLA auditing process.
Although the WSLA framework cites many possibilities for
performing instrumentation and monitoring of services, it does
not explore each of these possibilities in detail. This paper
analyzes six possible architectures for SLA auditing between
services, their advantages and drawbacks related to diverse
factors, such as the trust issue and the impact on service
provider performance due to the auditing process.

Other related works are the G-QoSM framework [1],
SEQUIN [3], and the RAC Utility Model [11]. The
G-QoSM framework addresses SLA management for grid
services, including the process of service discovery based
on quality of service (QoS) requirements, SLA negotiation,
monitoring and execution of management actions in case
of SLA non-compliance [1]. It aims to enable grid
services to describe their QoS properties and enable
their users to select services/resources based on QoS
requirements. QoS management is performed based on SLAs
in order to provide adaptation to attain the consumers’ QoS
requirements. SEQUIN defines and implements an end-to-
end approach to quality of service, operating across multiple
management domains and exploiting a combination of link
layer technologies [3]. However, the SLI gathering phase is
not detailed. It is only suggested that the infrastructure have
monitoring equipment or functionality placed in intermediate
positions along the end-to-end path between end-users, as well
as at the premises of each end-user. Khana et al. deal with the
problem of accepting or rejecting an Internet session request
according to SLA requirements [11]. They introduce a RAC
(routing and admission control) system using a utility model,
which may be used for admission control of new sessions,
resource allocation to existing sessions, and dynamic resource
reallocation to cope with changes in system sessions and/or
network properties. In common, these works do not include in
their scope considerations about trust relationships among the
parties involved in the SLA. The SLA auditing phase is neither
detailed nor analyzed as it is in our work.

The Globus project has an architecture for discovery,
reservation and allocation of heterogeneous resources based on
QoS, called the General-purpose Architecture for Reservation
and Allocation (GARA) [7]. The client application requests the
reservation agent to reserve resources aiming to attain particular
QoS requirements. After the resource reservation agent finds
resources that can attain the requirements, the allocation agent
allocates the resources and returns handlers to the client. The
client application can perform QoS monitoring of a resource
through its handler. Although this architecture allows QoS
monitoring of allocated resources, this process is not detailed.
In particular, there is no discussion on how non-trusty parties
agree on the monitoring result.

3. Issues concerning SLA auditing

SLAs need to be audited to give real QoS guarantees.
However, when one thinks of auditing an SLA established
between services belonging to diverse entities under different
administrative control, one faces a major trust problem. In fact,
when the providing and consuming entities have a strong trust
relationship, they can believe in each other’s SLIs (such as
consumer rate of submitted requests and service response time).
While current grid deployments are small in scale and are built
over human trust relations, the vision is that the grid is going
to scale planet-wide and promote a highly dynamic service
ecosystem, in which services discover and bind to each other
on the fly [6]. In such a scenario, strong pre-established trust
relationships are not expected to be the norm. This can create
serious problems because SLIs can also be recorded at the other
end and reported results from both parties may not match. For
example, the consumer can measure service response time and
the provider can compute request rate. However, this does not
address the real issue, which is trust. If the consumer claims
that the SLA was not met because, for instance, response time
was too high, the provider can dispute this claim by presenting
its own (smaller) response times.



A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731 723
Another issue to be addressed is that the services may
not be willing to instrument the code to calculate SLIs for
auditing, or this may not be feasible or appropriate due to
the interaction dynamicity between services. To circumvent
the trust problem and the intrusiveness in service code, we
argue that an independent third-party auditor should do the
instrumentation and the SLA evaluation. Of course, both
provider and consumer must agree to use the auditor beforehand
and must trust it. Therefore, we expect to see a few widely
known companies providing SLA auditing in the grid.

However, this proposal begs the question: How is the
auditor going to obtain trustworthy SLIs? Asking the consumer
and provider for SLIs suffers from the same problems just
described. One idea is for an entity called an inspector to probe
the provider as if it were the consumer. A basic drawback is
the overhead generated: that is, the inspector can reduce service
performance due to the additional requests issued to obtain
SLIs. Also, if the provider identifies a request as coming from
the inspector, it may give preferential treatment to the request,
meaning that the SLIs obtained by the inspector will not reflect
the performance seen by a real customer. Furthermore, probing
only helps to get provider-related SLIs; gauging consumer-
related SLIs (such as the submitted load) remains an issue.

Another issue in auditing SLAs relates to the change in real
SLI values by including mechanisms to instrument and audit the
services; in other words, the auditing process itself can affect
the values observed during interactions between provider and
consumer. This difference in SLI values due to the auditing
process is here termed Measurement Interference Error (MIE).
By means of the MIE, we can analyze the response time
increase viewed by the consumer due to the auditing process.

4. Architectures for independently auditing services

We started this research aiming to determine the best way
for an independent third-party SLA auditor to work. We found,
however, that there is no simple solution to this problem.
Different architectures have different pros and cons, and the
solution considered best depends on the criteria judged to be
most important. We here qualitatively evaluate six architectures
for SLA auditing. In the next section, we quantitatively evaluate
their performance. The architectures presented here represent
reasonable ways to tackle the problem of SLA auditing: we do
not claim that they are new. For example, WSLA mentions that
SLA monitoring can be done by third parties, possibly through
probing or request interception. Our contribution is to describe
the architectures using a common framework and, principally,
to evaluate and compare them to each other along dimensions
of functionality and performance.

4.1. Naive architecture

A basic solution to deal with SLA auditing introduces a
third party – called an auditor – responsible for evaluating the
SLA established between the signing parties (see Fig. 1). In
this solution, the auditor obtains SLIs from the parties and
compares them with the values agreed upon in the SLA to
Fig. 1. Auditor evaluates the SLA from SLIs provided by consumer and
provider.

verify contract compliance. SLA evaluation can be automated
for SLAs defined through a common language [15]. Thus, a
single auditor service can be used to evaluate several SLAs
established for diverse services. If the auditor is a grid service,
service instances can be used to distribute the processing of
SLA evaluations.

Naturally, this solution requires the auditor to trust both the
provider and the consumer and is thus not appropriate for the
general case we investigate here. We present this architecture as
a base solution against which more sophisticated architectures
are compared. Observe also that this solution requires the
services themselves to provide the SLIs to the auditor, requiring
changes in the original consumer and provider code.

4.2. Packet sniffing architecture

A second architecture uses trusted sniffers in the provider
and consumer Local Area Networks (LANs) in order to
passively capture packets by means of, say, a port mirroring
technique. Through this technique, packets coming to LAN
switches addressed to the provider or consumer are copied to
the sniffers’ ports configured to work in promiscuous mode in
order to receive packets not addressed to them. This architecture
delegates the instrumentation function to a support service,
called the inspector, which calculates SLIs based on sniffer
information. Therefore the auditor requests SLIs from the
inspector (see Fig. 2) rather than from the consumer or provider.
In this solution all requests come from a real consumer; sniffers
do not introduce new requests and thus do not affect response
time to requests; furthermore, the inspector can calculate either
provider SLIs or consumer SLIs from sniffer information.

This solution assumes that the sniffers are handed by the
inspector to the consumer and provider. Moreover, it must be
impossible for both provider and consumer to tamper with the
sniffers, which requires hardware support [16] such as tamper-
resistant sniffers or the installation of a secure coprocessor
on regular sniffers. A secure coprocessor [17,19] provides a
tamper-resistant core on which one can store cryptographic
keys, process cryptographic algorithms, and check the overall
compute system for changes and tampering. It thus can be used
to add tamper-resistance to conventional computing systems.
The secure coprocessor would also encrypt and digitally sign
the sniffer information sent to the inspector, so that the
calculated SLIs can be trusted.

A drawback of this solution is that sniffers may not be
able to capture enough information needed to calculate SLIs if
the packets are encrypted, a common situation in inter-domain



724 A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731
Fig. 2. Auditor evaluates the SLA from SLIs provided by the inspector, which calculates them from sniffer information. Sniffers are represented in the figure by S.
communication. When packets are encrypted, it becomes very
hard to infer which packets form a service message. This
problem may be avoided in the other architectures because
they use service-level instrumentation and thus can see all
information needed to measure SLIs. Another drawback is that
the consumer and the provider must blindly trust the inspector.
This is so because the packet sniffers may capture any traffic
in the LAN and can therefore access sensitive information that
is not related to the SLA being audited. The consumer and the
provider must trust that the inspector will not do so.

4.3. Host decorator architecture

A third architecture has inspectors residing in the provider
and in consumer hosts (see Fig. 3). The inspectors implement
the provider interface. In fact, inspectors act as decorators to the
provider. (A decorator is a well-known design pattern based
on object composition that is used to add functionality to a
particular object as opposed to a class of objects [9].) The
consumer requests service from the inspector in its own host,
which forwards requests to the inspector in the provider host,
which then forwards them to the provider.

Since the inspectors participate in communication at the
service level, they may overcome the cryptography limitation
seen in the packet sniffing architecture. On the other hand,
this may expose sensitive service-related information to
the inspectors. A solution would be to encrypt sensitive
information with the provider’s public key, sending such
sensitive information as an attribute of the whole message.
In principle, encrypting request/response information may
preclude the inspector from evaluating the SLA. However,
most SLAs do not seem to care about application data; they
typically use response time and availability as SLIs. Therefore,
this solution allows for the safe transfer of sensitive data and
auditing in many situations.

As in the packet sniffing architecture, key elements (in this
case, the inspectors) are placed in provider and consumer sites.
As such, inspectors must be made tamper-resistant via, for
example, the installation of secure coprocessors [17,19].

4.4. Independent inspector architecture

A fourth architecture deals with the trust issue without
burdening the services or its hosts with instrumentation code.
Fig. 3. Auditor evaluates the SLA from SLIs provided by inspectors, which are
located in provider and consumer hosts.

It delegates the instrumentation function to a third party
inspector, located in a different host (see Fig. 4(A)). This
service calculates service SLIs by sending extra requests to
the provider and hands them to the auditor, which performs
the SLA evaluation. Since an inspector is a consumer to
the provider, it needs to know the provider interface. Thus,
each provider must have its own inspector that knows how to
calculate its SLIs.

A drawback of this approach is the extra requests sent by
the inspector to the provider. These extra requests can cause
undesirable side effects (such as modifying a provider database)
and impose extra load, reducing provider performance. Another
problem with this solution is that the provider may be
able to identify the requests coming from the inspector and
give them preferential treatment. A possible solution for
preferential treatment consists of using anonymizer techniques
– as described in [18] – to conceal the network address of
both consumer and inspector. But extra care should be taken
to avoid service-level information giving away which requests
come from the inspector (e.g. requests submitted on behalf of a
“test” user).

Another point to notice is that the inspector does not measure
the consumer SLIs, such as load submitted by the consumer,
and thus cannot audit them. A work-around would be to
embody the right to make a request in a digital ticket issued
by the auditor (see Fig. 4(B)). Here, the auditor digitally signs
a number of tickets T and hands them to the consumer. The
provider only answers a request if it has a ticket digitally signed
by the auditor. The tickets have a useful lifetime to avoid having
the consumer accumulate them and overload the provider with
requests. Ticket lifetime is defined in the SLA. The consumer
asks the auditor for more tickets on an as-needed basis. When
receiving a request, the provider verifies that the ticket is signed
by the auditor and that the ticket did not timeout. Since the



A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731 725
Fig. 4. (A) Auditor evaluates the SLA from SLIs provided by inspector and calculated through extra requests. (B) In order to audit consumer-related SLIs, the
auditor can provider the consumer with signed tickets that are required by the provider to deliver service.

Fig. 5. Auditor evaluates the SLA from SLIs provided by inspector working as a decorator to the provider and calculated without extra requests.
inspector works as a consumer, it also obtains tickets from the
auditor.

4.5. External decorator architecture

A fifth architecture can solve some of the problems outlined
above. This architecture has the inspector working as a
decorator to the provider, but outside both consumer and
provider sites (see Fig. 5). In this way, all requests coming from
the consumer pass through the inspector before arriving at the
provider. The inspector needs to implement the same interface
as the provider in addition to a management interface, which
provides the SLI values. Inside the inspector, the methods that
calculate the SLI values are called before and/or after the calls
to the provider. The inspector forwards consumer requests,
measures the load submitted by the consumer to the provider
(or anything else of interest in the consumer data) and calculates
SLIs obtained from the provider side. It is interesting to note
that HP’s OpenView SOA Manager uses this architecture [20].

This solution has several advantages over previous attempts.
Among them, there are no additional requests generated by
the inspector; that is, all requests made to provider are
requests coming from a real consumer. As such, no additional
load is imposed on the provider and no side effects (e.g.
database modifications) need be worried about. The provider
cannot identify inspector requests and give them preferential
treatment because all requests come from consumers through
the inspector. Another problem solved by this architecture is
the measurement of the load submitted by the consumer, which
may also be restricted by SLA clauses. Since the inspector
forwards all consumer requests, it can audit them by counting.

As with all instrumentation and monitoring solutions,
however, this solution imposes costs for the services.
One cost is performance loss due to the addition of an
inspector. However, since requests from different consumer are
independent, the performance loss can be reduced if many
distributed sites are used for inspectors and consumers are
allowed to use the closest inspector. Such a strategy has been
very successful in building highly scalable content distribution
networks [8]. The downside, clearly, is that several inspectors
have an additional cost of deployment, maintenance and
administration. Another cost is an error in the SLI measurement
caused by the instrumentation process itself. These costs are
greater when the inspector is introduced at a distant site since
requests that could use a shorter route will need to access the
inspector for the purpose of SLA auditing.

4.6. External decorator with bypass architecture

An alternative to the previous architecture is to make some
requests from the consumer go directly to the provider and
some requests go through the inspector (See Fig. 6). This
alternative tries to reduce the performance impact caused when
all requests are forwarded to the inspector. While this solution



726 A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731
Fig. 6. Auditor evaluates the SLA from SLIs provided by inspector working as a decorator to the provider. Some requests go to provider directly to reduce the
performance impact.
Table 1
Comparing the characteristics of the six architectures

Trust Intrusiveness Additional requests Preferential treatment Consumer load Encrypted messages

1. Naive Yes Code No No Yes Yes
2. Packet sniffing No Hardware No No Yes No
3. Host decorators No Hardware No No Yes Yes
4. Independent inspect. No No Yes Yes Ticket use Yes
5. External decorator No No No No Yes Yes
6. Ext. decor. w bypass No No No Yes Ticket use Yes
may improve the performance, it suffers from many problems
outlined earlier; for example, the provider can give preferential
treatment to the requests coming through the inspector; it also
brings back the difficulty of auditing the requests submitted by
the consumer, since the inspector does not see all requests.

4.7. Summary of the qualitative evaluation

Table 1 summarizes the qualitative advantages and draw-
backs of each architecture, providing an overall comparison to
the reader. A quantitative comparison will be undertaken in the
next section. As discussed above, the features explored in the
evaluation are:

• Trust: whether or not trust is necessary between the parties
signing the SLA.

• Intrusiveness: the need to instrument the service code or to
include hardware in the hosts of the parties signing the SLA.

• Additional requests: whether or not the architecture uses
additional requests coming from a fake consumer (inspector)
to perform auditing; this increases load and may produce
undesirable effects in the service (inclusion of fake data in
the service database, for example).

• Preferential treatment: whether or not the provider can
identify the requests coming from an inspector and therefore
give preferential treatment to these requests, hampering
requests coming from real consumers.

• Consumer load: whether or not the architecture can measure
the consumer load, that is, the submitted request rate.

• Encrypted messages: whether or not the architecture can
perform auditing when the communication between provider
and consumer is encrypted; naturally, SLAs that refer to
service attributes will require them to be exposed to enable
SLA evaluation.
5. Performance analysis

In this section we are concerned with the performance
behavior of the architectures presented previously. That is, we
are interested in analyzing how much performance the provider
loses due to SLA auditing, as seen by the consumer. In general
terms, two factors decrease the performance of the services in
an auditing process. The first is what we term the Measurement
Interference Error (MIE), which is the error introduced in the
measured value due to the measurement process itself. For
example, in the external decorator architecture, the calculated
response time SLI typically diverges from the value of the
response time obtained had auditing not been performed,
because the request has to go through by the inspector. Another
factor is due to additional requests processed by the provider
in order to calculate SLI values. The greater the sample size
of additional requests, the larger the intrusive effect on the
performance of the service. Naturally, one can use statistical
techniques to estimate the smallest sample size that assures
the desired confidence interval and confidence level in the
measurements [4]. Nevertheless, any number of additional
requests will affect performance.

These two factors present themselves differently under the
various architectures. In the naive architecture, in which an
auditor obtains SLI values from the parties, no extra requests
are performed and the sample size factor does not apply. On
the other hand, some additional processing will need to be
performed by the provider in order to periodically provide SLI
values to the auditor. The MIE in the first architecture, e1, is
considered to be negligible because the processing time spent in
performing an SLI measurement is typically very much smaller
than the processing time spent in performing service requests.
Experimental measurements confirm this, as we shall see in
Section 5.2.



A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731 727
In the packet sniffing architecture, which uses sniffers to
passively capture packets, sampling is not required since all
requests come from a real consumer and there is no MIE
(e2 = 0), since the performance of the service is not affected by
auditing. Although cryptography is needed to digitally sign and
hide sniffer information, it does not influence request response
time, since it will only be used when the inspector requests
information to calculate SLI values.

In the host decorator architecture, which has an inspector
in the consumer and provider hosts, sampling is not necessary
since there are no additional requests. The MIE factor e3 is
present due to the delay spent during cryptography and to
digital sign the information when there is no trust between
provider and consumer.

In the independent inspector architecture, sample size is
important, since additional service requests are performed
for auditing purposes. The additional load imposed on the
provider by these requests will affect the performance seen by
consumers, and the SLI values calculated will therefore include
an MIE, e4. This value is larger than e1 since the load imposed
by business requests is typically much larger than the load
imposed by a few requests for SLI values.

In the external decorator architecture, where the inspector
works as a decorator to the provider, we only need worry about
the MIE, e5. Since the inspector will examine all requests sent
to the provider, no sampling is needed. The MIE e5 is different
from e4 because it is not caused by extra requests. The SLI val-
ues seen by consumers may be substantially different because
requests must go through the inspector. However this error may
be substantially reduced if we consider that there may be many
inspectors available, distributed by locality, for example.

Finally, in the external decorator with bypass architecture
both factors matter. Since only a sample of requests is audited
through the inspector, we can choose the sample size to reduce
the performance impact. We can also analyze the MIE e6,
which, like e5, is caused by the indirection suffered by the
requests. However e6 is only a fraction of e5 because the
indirection is only suffered by a sample of requests, that is,
e6 =

n
N e5, where n is the sample size (determined to ensure

given confidence interval and confidence level [4]) and N is the
population size (the total number of requests performed over
the observation period).

5.1. Analytical evaluation

The Measurement Interference Error (MIE) is the difference
caused in a measured value due to the observation method used.
In measuring a parameter value, an instrument is introduced
to make the measurement. The instrument itself changes the
observed value. This error affects the architectures described
previously in various ways.

In order to analyze the MIE in each architecture, timestamps
and time intervals are defined; the response time in each
auditing architecture is calculated and is compared with
the response time of the base architecture, i.e. when the
consumer–provider interaction is performed without auditing
(see Fig. 7).
Fig. 7. The base architecture: Consumer–provider communication without
auditing.

The timestamps u1, u2, u3, u4 and the time intervals
δp, δC−P are of interest here. The interval δp represents the
request processing time spent in the provider and is calculated
as the difference between the time it answers a request and
the time it receives this request, that is, δp = u3 − u2. Since
this time is load dependent, any additional load imposed by the
auditing process will have to be carefully taken into account.
The interval δC−P represents the total round-trip network delay
between consumer and provider. Since time is measured at the
web service application level, the time interval δC−P is based
on timestamps obtained at this level. The time spent in the
protocol levels under the application level is thus contained in
the network delay.

In the base architecture, when the consumer sends a request
directly to the provider at time u1, the time at which the
consumer receives the answer is:

u4 = u1 + δp + δC−P .

We now proceed to analyze the auditing architectures
presented previously.

In the naive architecture, the timestamps are t1, t2, t3, t4 (see
Fig. 1). The time intervals are δp, δC−P , δSLI, where the interval
δSLI is the delay due to SLI instrumentation. The time at which
the consumer receives the answer to its request is:

t4 = t1 + δSLI + δp + δC−P .

The MIE e1 is thus the difference between the time spent by
the request in naive architecture and the time spent in the base.
Since t1 = u1, we have:

e1 = δSLI.

In the packet sniffing architecture, the timestamps are
t1, t2, t3, t4 (see Fig. 2) and the time intervals are δp, δC−P . The
time at which the consumer receives the answer to its request
is:

t4 = t1 + δp + δC−P .

The MIE e2 is the difference between the time spent by
the request in this architecture and the time spent in the base
architecture. So:

e2 = 0.

In the host decorator architecture, t1 to t12 are the
timestamps (see Fig. 3) and the time intervals are δp, δC−I ,
δI−I , δI−P , δ f , δr , δcrypt. The interval δcrypt is the total
time spent on the forward and reverse paths to encrypt SLI
information when there is no trust between provider and



728 A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731
consumer. The intervals δC−I , δI−I , δI−P are respectively the
total network delay between the consumer and its inspector,
both inspectors, and the provider’s inspector and the provider
itself. The interval δ f is the time spent by an inspector to
forward the request, whereas the time interval δr is the time
spent by an inspector to return the answer. Consequently, the
time at which the consumer receives the answer to its request is:

t12 = t1 + δC−I + 2δ f + 2δcrypt + δI−I + δI−P + δp + 2δr .

The delays δC−I and δI−P are the network delays (δN )

together with the time spent in the web service protocol stack
(δWS), so:

δC−I = δN (C−I ) + δWS

δI−P = δN (I−P) + δWS.

Since an inspector is located in the consumer host and
the other is in the provider host, the network delay between
an inspector and the consumer or between an inspector and
the provider located in the same host is negligible, that is,
δN (C−I ) = δN (I−P) = 0. So, the previous expression becomes:

t12 = t1 + 2δWS + 2δ f + 2δcrypt + δI−I + δp + 2δr .

The MIE e3 is the difference between the time spent by
the request in this architecture and the time spent in the base
architecture. Since the inspectors are located in consumer and
provider hosts, we consider that the network delay between the
inspectors in this architecture is similar to the network delay
between consumer and provider in the base architecture, that is,
δI−I = δC−P . We thus get:

e3 = 2δWS + 2δ f + 2δcrypt + 2δr .

In the independent inspector architecture, the timestamps
are t1, t2, t3, t4 (see Fig. 4). The time intervals are δp, δC−P , δm ,
where δm is the marginal delay, which is the increase in
processing time in the provider due to the additional requests
sent by an inspector.

The time at which the consumer receives the answer to its
request is:

t4 = t1 + δp + δC−P + δm .

The MIE e4 is the difference between the time spent by
the request in this architecture and the time spent in the base
architecture. So:

e4 = δm .

The marginal delay δm is the increase in processing time
δp due to the addition of requests sent by the inspector, that
is, it is the difference in the mean processing time in adding
an inspector. Here λc is the mean rate of requests sent by all
consumers to the provider and λi is the mean rate of requests
sent by the inspector to the provider.

δm = δp (λc + λi ) − δp (λc) .

In order to analyze the behavior of δm , we use a queuing
model in which the server represents the provider service taken
as a black box (see Fig. 8). The consumer and inspector requests
Fig. 8. Queuing model.

are the clients reaching the provider, where they queue waiting
for service. The average time δp spent by a request in the
provider is the sum of the average time spent in the queue W
and the average service time X .

Here, λc and λi are the mean rates of requests sent by
consumers and by the inspector, respectively, and are expressed
in requests per time unit. The value µ is the mean rate of
service and can also be expressed in requests per time unit.
We consider an M/G/1 queue in which the inter-arrival times
are exponentially distributed, the service times have a general
distribution and there is a single server [12], where the mean
service time is X =

1
µ

. The service times follow a distribution

with average X and second moment X2. The mean time spent
by a request in the provider δp (λ) can be calculated by the
Pollaczek–Khinchin formula:

δp (λ) = X +
λX2

2 (1 − ρ)
.

When the total rate of requests is λc, we have:

δp (λc) = X +
λc X2

2 (1 − ρc)
and ρc = λc X .

When the total rate of requests is λc + λi , we have:

δP (λc + λi ) = X +
(λc + λi ) X2

2 (1 − ρci )
and ρci = (λc + λi ) X .

Here ρc and ρci are the server utilization and vary from 0
to 1. In the particular case where service times are constants (a
close approximation to reality for transaction services), the sec-

ond moment of service time X2 is X
2

=
1
µ2 . We therefore have:

e4 = δm = δP (λc + λi ) − δP (λc)

=
(λc + λi )

2µ2 (1 − ρci )
−

λc

2µ2 (1 − ρc)
.

In the external decorator architecture, the timestamps are t1
to t8 (see Fig. 5). The time intervals are δp, δC−I , δI−P , δ f , δr .
The interval δC−I is the total network delay between the
consumer and the inspector and δI−P is the total network delay
between the inspector and the provider. The interval δ f is
the time spent by the inspector to forward the request to the
provider and is δ f = t3 − t2. The time interval δr is the time
spent by the inspector to return the answer to the consumer and
is δr = t7 − t6. The time at which the consumer receives the
answer to its request is therefore:

t8 = t1 + δ f + δp + δr + δC−I + δI−P .



A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731 729
The MIE e5 is the difference between the time spent by
the request in this architecture and the time spent in the base
architecture. So:

e5 = δ f + δr + δC−I + δI−P − δC−P .

As shown in Fig. 6, in the external decorator with bypass
architecture, the timestamps are t1 to t8 (measured during the
sample traffic of n requests) and v1, v2, v3, v4 (measured during
the traffic of the rest of the N −n requests). As we have already
shown the measurement interference error for this architecture
is:

e6 =
n

N
e5.

And hence:

e6 =
n

N

(
δ f + δr + δC−I + δI−P − δC−P

)
.

5.2. Experimental evaluation

This section makes the analytical results more concrete by
gauging the performance penalty of auditing architectures in
a real environment. We have implemented a bookstore service
that can include and exclude books from the purchase list. The
purchase list is kept in memory (we avoided a database because
its cache would increase the variability of the measurements).
Services were implemented under Globus 3.2.1 [10] deployed
on several Pentium 4s, 2.66 GHz of CPU, 640 MB of RAM.
Globus 3.2.1 was chosen as programming environment because
it offers APIs to implement both web services and grid services.

We first validate our analysis by measuring the MIE
introduced by the naive architecture and the external decorator
architecture in a 100 Mbps switched Ethernet, and comparing
the obtained values against the MIE predicted by the analysis.
We chose these architectures for the simplicity in instrumenting
them, whereas the environment was chosen for its ease of
control. Recall that we need δSLI, δ f , δr , δC−P , δC−I , and
δI−P in order to evaluate the naive architecture MIE e1 and the
external decorator architecture MIE e5. Table 2 depicts these
values (δC−P , δC−I and δI−P have the same value because
consumers, providers and inspectors were running on identical
machines connected through the same networking).

Table 3 then contrasts the measured MIE against the ex-
pected MIE. As one can observe, the differences between mea-
sured MIEs and those predicted by the analysis are negligible.

The methodology used to perform the experiments and
obtain numerical values can be summarized as follows:
• All programs were written in Java and measures obtained

with 1 µs resolution. Since Java only supports measurements
with a 1 ms resolution, time intervals were obtained by
timestamping a loop performing a particular task 1000 times
and then factoring out the loop overhead.

• To calculate the time spent in the forward (δ f ) and in
the return of the requisition (δr ) by the inspector, we
implemented an inspector service working as a provider’s
decorator. The return delay δr is slightly greater than the
forward delay δ f in this case because the SLI is calculated
immediately after of the provider method call, as part of the
return procedure.
Table 2
Measured values for the parameters needed to compute e1 and e5

Measured parameter Value (ms)

δSLI 0.007
δ f 0.477
δr 0.482
δC−P , δC−I , δI−P 5.124

Table 3
Comparing measured and predicted MIE

Architectures Response time
(ms)

Observed MIE
(ms)

Predicted MIE (ms)

0. Base 8.116 N/A N/A
1. Naive 8.120 0.004 0.007
5. External
decorator

14.300 6.184 6.083

Table 4
Measured values for δcrypt and δWS

Measured parameter Value (ms)

δcrypt 130.000
δWS 5.016

• The values obtained for each parameter are mean values
calculated from samples collected in groups of 20,
confidence level of 95%, confidence interval of 5%.

• The first four samples were consistently eliminated
throughout the experiments. The reason is that, when using
languages such as Java, class loading issues make things
slower at first; also, in general, any dynamic system exhibits
transients that should be removed when calculating long-
term averages.

Naturally, one can expect to see considerable variation of
MIE depending on computer and network speed, as well as
the service time itself. Service times affect the MIE of the
independent inspector architecture, whereas network speed
affects both external decorator and external decorator with
bypass. Likewise, the architectures that depend on sampling
(independent inspector and external decorator with bypass)
are going to be affected by the SLI variance (the greater the
variance, the greater the number of samples needed to achieve a
given confidence interval). In order to give the reader a broader
view of the possibilities, we calculated the MIE with each
of these parameters (service time, network speed, and sample
size) assuming “low” and “high” values. More precisely, we
assume a low service time X = 10 ms and a high service time
X = 1000 ms; low network delay δN = 1 ms (typical of a
LAN) and a high network delay δN = 200 ms (typical of a
WAN); and low sample size n

N = 5% and a high sample size
n
N = 30%. Also, for the independent inspector architecture, we
assumed a reasonably loaded server, with an arrival rate of half
of the service rate (λ =

µ
2 ), a typical value for servers that are

not lightly loaded but have not yet reached saturation.
Besides these assumptions and values presented in Table 2,

we also measured δcrypt and δWS to be able to compute the
MIE formula of the host decorator architecture. The result



730 A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731
Table 5
Analyzing the measurement interference error of the architectures

Architectures Small sample (5%) (ms) Large sample (30%) (ms)

1. Naive 0.007 0.007
2. Packet sniffing 0.000 0.000
3. Host decorators 271.950 271.950
4. Independent inspector Fast provider (10 ms) 0.526 4.285

Slow provider (1000 ms) 52.631 428.572
5. External decorator LAN (1 ms) 6.975 6.975

WAN (200 ms) 205.975 205.975
6. Ext decorator with bypass LAN (1 ms) 0.349 2.093

WAN (200 ms) 10.299 61.792
is presented by Table 4. To calculate the value for δcrypt, a
Globus service was implemented with and without security.
The secure service was implemented using encryption as the
Grid Security Infrastructure (GSI) security level. Response time
was measured for a client using both services and the value of
δcrypt is simply the difference between the two mean values.
In order to measure δWS, a ping web service (WS-ping) was
implemented. This is essentially the same as a ping command
but goes through web service interfaces and protocol stack.
By subtracting the time of a common ping command (network
time) from the WS-ping time, one gets the time spent in the web
services protocol stack.

Table 5 joins all results, summarizing the expected MIE
for different conditions and giving the reader an overall idea
of how the architectures behave on different points of the
design space. One can see that the MIE for the naive and
packet sniffing architectures is negligible. The host decorator
architecture presents somewhat larger MIE, which is due to
the need for two rounds of cryptography in both inspectors it
uses. The independent inspector architecture incurs the highest
overhead of the study when it demands a large sample from
a slow provider. However, if the sample size is small and
(especially) if the provider is fast, the architecture performs
well. The MIE of the external decorator architecture depends
on the proximity between the service endpoints. Therefore,
it performs much better in a LAN than in a WAN. Also as
expected, using bypass further reduces its MIE.

6. Conclusions

This paper addresses the auditing of service level agreements
for web and grid services. In particular, we focus on the case
where provider and consumer do not blindly trust each other,
which is envisioned to be the common case for large grid
deployments. We evaluated six possible architectures for the
auditing process, showing their advantages, drawbacks and
analyzing their performance.

The naive architecture was provided as a baseline, as it
does assume trust between provider and consumer. Moreover,
it requires changes in the provider and consumer code. Such
intrusive changes on the provider and consumer code can be
avoided by using the host decorator architecture, at the expense
of adding approximately 300 ms of performance penalty (on
current typical computing environments).
When there is no trust between the signing parties, the
naive architecture is not applicable. The Packet sniffing and the
host decorator architectures require the installation of special
hardware in both provider and consumer, which is likely to be a
great obstacle for wide deployment. The independent inspector
architecture is very attractive because it does not interpose
anything in the real consumer-to-provider service path. On the
other hand, it does create problems related to the additional load
imposed on the provider, side-effects on the provider database,
and possible preferential treatment given to the requests that are
used to evaluate the SLA. The external decorator architecture
is immune to all these problems, but it may impose a heavy
performance penalty depending on where (on the network)
consumer, provider and inspectors are. The external decorator
with bypass architecture attempts to address this potential
performance problem, but reintroduces (on a smaller scale) the
problems faced by the independent inspector architecture.

Therefore, there is no “best” solution for all scenarios.
However, we believe that the vast majority of service auditing
needs could be catered for by a company that deploys a
widely distributed external decorator architecture. A wide
multi-site deployment (as done, for example, by Akamai and
Google) of the external decorator architecture could allow the
auditor to place the inspector near either the consumer or
the provider, therefore minimizing the performance impact of
auditing. Since the single issue with the external decorator
architecture is performance, this approach can possibly create
a very competitive solution.

Acknowledgments

We are grateful to the OurGrid research team for the many
fruitful conversations about the issues involved in grid research
in general and management research in particular. We are also
grateful to Chico Souza and Antônio Silva, Statistics professors
who helped with the performance analysis. Our gratitude also
goes to Katia Saikoski for her helpful comments. Thanks also
to the anonymous reviewers who greatly helped to improve the
quality and presentation of the paper. This work was partially
developed in collaboration with HP-Brazil R&D and partially
funded by CNPq/Brazil grant 302317/2003-1.

References

[1] R. Al-Ali, O. Rana, D. Walker, G-QoSM: Grid service discovery using
QoS properties, in: Grid Computing, Computing and Informatics Journal
21 (5) (2002) (special issue).



A.C. Barbosa et al. / Future Generation Computer Systems 22 (2006) 721–731 731
[2] A.C. Barbosa, J. Sauvé, W. Cirne, M. Carelli, Independently auditing
service level agreements in the grid. in: Proceedings of the 11th
HP OpenView University Association Workshop, HPOVUA 2004, June
2004.

[3] C. Bourasa, M. Campanella et al., QoS and SLA aspects across multiple
management domains: The SEQUIN approach, Future Generation
Computer Systems 19 (2) (2003) 313–326.

[4] J. Devore, Probability and Statistics for Engineering and the Sciences,
fourth edn, Wadsworth Publishing Company, 1995.

[5] A. Keller, H. Ludwig, The WSLA framework: Specifying and monitoring
service level agreements for web services, in: E-Business Management,
Journal of Network and Systems Management 11 (1) (2003) (special
issue). Plenum Publishing Corporation.

[6] I. Foster, The Grid: Computing Without Bounds, Scientific American,
April 2003.

[7] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy,
A distributed resource management architecture that supports advance
reservations and co-allocation, in: International Workshop on Quality of
service, 1999.

[8] S. Gadde, J. Chase, M. Rabinovich, Web caching and content distribution:
A view from the interior, in: Proc. of the Fifth Int. Web Caching and
Content Delivery Workshop, May 2000.

[9] E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, ISBN: 0201633612, 1995.

[10] The Globus Alliance site, http://www.globus.org/.
[11] S. Khana, K.F. Li et al., Optimal Quality of service routing and admission

control using the Utility Model, Future Generation Computer Systems 19
(7) (2003) 1063–1073.

[12] L. Kleinrock, Queueing Systems, Vol I: Theory, Wiley, New York, 1975.
[13] OASIS. OASIS web services Distributed Management (WSDM)

Technical Committee web Page,
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsdm.

[14] The OurGrid site, http://www.ourgrid.org.
[15] A. Sahai, A. Durante, V. Machiraju, Towards automated SLA

management for web services, Research Report HPL-2001-310
(R.1), Hewlett-Packard (HP) Labs Palo Alto, July 26, 2002.
http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf.

[16] T. Sander, C. Tschudin, Protecting mobile agents against malicious hosts,
in: G. Vigna (Ed.), Mobile Agent Security, in: LNCS, February 1998.

[17] S. Smith, S. Weingart, Building a high-performance, programmable
secure coprocessor, IBM Research Report RC 21102, February 1998.

[18] F. Syverson, M. Goldschlag, G. Reed, Anonymous connections and onion
routing, in: Proc. IEEE Symposium on Security and Privacy, Oakland,
May 1997.

[19] B. Yee, Using secure coprocessors, Ph.D. Thesis, Carnegie Mellon
University, 1994.

[20] HP OpenView SOA Manager site,
http://www.managementsoftware.hp.com/products/soa/index.html.
Ana Carolina Barbosa holds an M.Sc. degree
in Informatics from the Universidade Federal de
Campina Grande (UFCG), Brazil. Her thesis is
concerned with auditing of service level agreements
for grid services.

She was researcher on the OurGrid Project in the
Distributed System Laboratory at the UFCG and in
the Technology and Music Group at the Universidade
Federal da Paraı́ba, Brazil.

Now, she is an information analyst for the Brazilian
Government. Her interests are in the areas of network

management, system development, computational grids, computational system
security and auditing.

Dr. Jacques Sauvé received a Ph.D. in Electrical
Engineering at the University of Waterloo, Canada.
He is a consultant in several technology fields, with
special emphasis in Computer Networks and Business-
Driven IT Management. He was Vice-President of
Development for Light-Infocon for several years.
He is currently professor in the Computer Science
Department at the Federal University of Campina
Grande, Brazil, where his efforts are concentrated in
the areas of advanced architectures for Information
Systems and IT Management. Dr Sauvé has published

10 books and many papers in international journals and conferences.

Walfredo Cirne is faculty at the Computer Science
Department of the Universidade Federal de Campina
Grande, in Brazil. Dr. Cirne holds a Ph.D. from
the University of California San Diego, in the USA.
Since 1997, his research focuses on grid Computing.
Before that, we worked on Computer Networks and
Machine Learning. Currently, Dr. Cirne leads OurGrid,
a project developed in cooperation with Hewlett
Packard that aims to provide an open, free-to-join
grid solution for bag-of-tasks applications. Further
information and publications of Dr. Cirne can be found

at http://walfredo.dsc.ufcg.edu.br/index en.html.

Mirna Carelli is a Computer Science undergraduate
student at Universidade Federal de Campina Grande.
She has been working on the OurGrid Project at the
Distributed Systems Lab since 2004 and her interest
areas include service oriented architecture, artificial
intelligence and software engineering.

http://www.globus.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.ourgrid.org
http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf
http://www.managementsoftware.hp.com/products/soa/index.html
http://walfredo.dsc.ufcg.edu.br/index%5Fen.html

	Evaluating architectures for independently auditing service level agreements
	Introduction
	Related work
	Issues concerning SLA auditing
	Architectures for independently auditing services
	Naive architecture
	Packet sniffing architecture
	Host decorator architecture
	Independent inspector architecture
	External decorator architecture
	External decorator with bypass architecture
	Summary of the qualitative evaluation

	Performance analysis
	Analytical evaluation
	Experimental evaluation

	Conclusions
	Acknowledgments
	References


