
Proceedings of

Workshop on Testing in XP
WTiXP 2002

May 27, 2002
Alghero, Sardinia, Italy

http://www.cwi.nl/wtixp2002/

Workshop in conjunction with the Third International Conference on

eXtreme Programming and Agile Processes in Software Engineering (XP2002)

WTiXP 2002 2 Workshop on Testing in XP

All papers are copyright c
�

2002 by the authors.

Edited by Leon Moonen (Leon.Moonen@cwi.nl)
Printed by CWI, the national research institute for
Mathematics and Computer Science in the Netherlands.

WTiXP 2002 3 Workshop on Testing in XP

Contents

Workshop on Testing in XP 5

1. One suite of automated tests: examining the unit/functional divide 7
by Geoffrey and Emily Bache

2. Is GUI Testing Difficult? 9
by Andrew Swan

3. Canoo WebTest White Paper 11
by Dierk König

4. Automated Acceptance and System Testing Frameworks 19
by Peter Kelley

5. Test First Design With UML / A Picture is worth a Thousand Programmers 23
by David Hussman

6. Patterns for Java Program Testing 25
by Marco Torchiano

7. Testing ideas and tips from the battlefield 31
by Piergiuliano Bossi, Giannandrea Castaldi and Alberto Quario

8. DiPS: Filling the Gap between System Software and Testing 35
by Sam Michiels, Dirk Walravens, Nico Janssens and Pierre Verbaeten

9. Web Systems Acceptance Tests and Code Generation 39
by Eduardo Aranha and Paulo Borba

10. Are Extreme Programmers writing too many Tests? 43
by Frank Westphal

11. Testing, when is it enough? 45
by Erik Bos

12. Using Restrictive Approaches for Continuous Testing: Pre-Integration Checking 49
by Martin Lippert and Stefan Roock

13. Retrofitting unit tests 51
by Steve Freeman and Paul Simmons

14. Implementing and Using Resumable TestFailures in Smalltalk 57
by Joseph Pelrine

WTiXP 2002 4 Workshop on Testing in XP

WTiXP 2002 5 Workshop on Testing in XP

Workshop on Testing in XP

Background

“If there is a technique at the heart of extreme programming (XP), it is unit testing” [1]. As part
of their programming activity, XP developers write and maintain (white box) unit tests continually.
These tests are automated, written in the same programming language as the production code, con-
sidered an explicit part of the code, and put under revision control. The XP process encourages
writing a test class for every class in the system. Methods in these test classes are used to verify
complicated functionality and unusual circumstances. Moreover, they are used to document code by
explicitly indicating what the expected results of a method should be for typical cases. Last but not
least, tests are added upon receiving a bug report to check for the bug and to check the bug fix.

On the other hand, there are a lot of issues surrounding testing that are not that well understood:
� What part of the code do you actually test? How much testing is enough? How to determine

“everything that could possibly break”?
� How can we recognize and reuse testing patterns (such as, for example, mock objects)?
� What happens to the tests when code is refactored? On the one hand, we cannot change them

since we need them to validate correctness after the changes. On the other hand, refactoring
can move functionality between classes, so we need to update our tests or they will fail.

� What about GUI testing, performance testing, and distribution testing?

And there is more than unit testing: Acceptance tests (also known as functional tests in XP terms)
are used to prove that the application works as the customer wishes. They help the customers to gain
confidence that the whole product is progressing in the right direction. Acceptance tests operate
from the customer perspective, they don’t test every possible path in the code (unit tests take care of
that), but demonstrate that the business value is present. Furthermore, they allow the programmer to
track the state of implementation in relation to the user written story cards.

This kind of testing should also be done automatically to allow short testing cycles while pro-
gramming. While programming acceptance tests for calculation parts of a software system is easy,
acceptance testing for more interactive applications or embedded systems is much harder and more
complicated to realize. The community could benefit from a discussion on the different acceptance
testing techniques and additional ideas aimed at solving the difficulties in this area. Interesting ac-
ceptance testing topics that need more discussion include:

� Programmed (automatic) acceptance tests for highly interactive applications
� Programmed (automatic) acceptance tests for graphical applications
� Programmed (automatic) acceptance tests for web applications
� Programmed (automatic) acceptance tests in the presence of embedded systems
� Acceptance tests for performance-critic applications

WTiXP 2002 6 Workshop on Testing in XP

Objectives

The purpose of this workshop is to bring together practitioners, researchers, academics, and students
to discuss the state-of-the-art of testing in extreme software development projects. The goal is to
share experience, consolidate successful techniques, collect guidelines, and identify open issues for
future work.

Topics of interest

Workshop topics include, but are not limited to:
� Bad smells in testing
� Testing patterns
� Refactoring test code
� Test first design
� Acceptance testing
� Managing your test suite
� Dealing with testing conflicts
� Experience reports

Organization

Leon Moonen (CWI, the Netherlands)
Martin Lippert (University of Hamburg & Apcon WPS, Germany)

Program Committee

Arie van Deursen (CWI, the Netherlands)
Steve Freeman (M3P, United Kingdom)
Tim Mackinnon (Connextra, United Kingdom)
Gerard Meszaros (ClearStream Consulting, Canada)
Joseph Pelrine (MetaProg, Switzerland)
Stefan Roock (University of Hamburg & Apcon WPS, Germany)
Shaun Smith (ClearStream Consulting, Canada)

References

[1] K. Beck. Embracing change with extreme programming. IEEE Computer, 32(10):70–77, Octo-
ber 1999.

One suite of automated tests:
examining the unit/functional divide

Geoffrey Bache
Carmen Systems AB

Odinsgatan 9
411 03 Göteborg, Sweden

+46 (0) 31 720 8137
geoff@carmen.se

Emily Bache
(independent)

Flunsåsliden 25
418 71 Göteborg, Sweden

+46 (0) 31 779 35 14
emily_bache@goteborg.utfors.se

ABSTRACT
Extreme Programming (XP) as written [1]
prescribes doing and automating both unit and
functional testing. Our experiences lead us to
believe that these two sorts of testing lie at two
ends of a more or less continuous scale, and that it
can be desirable to instead run a XP project with
just one test suite, occupying the middle ground
between unit and functional. We believe that this
testing approach offers most of the advantages of a
standard XP testing approach, in a simpler way.
This report explains what we have done, and our
theory as to why it works.

Keywords
XP, Automated testing, Functional testing, Unit
testing, Test First Development

1. INTRODUCTION
When we introduced XP at Carmen Systems, the
worst problem with our development process was
not our testing procedures being out of control. We
already had automated testing, though not along
the lines outlined by Beck, Jeffries et al [1, 2].
Following the advice to “Solve your worst problem
first” , we began introducing other aspects of XP,
expecting that at some point testing would become
our “worst problem” and we would start needing
separate unit and functional test suites. That never
seemed to happen - we have been doing all the
other XP practices in 2 projects for 18 months or
so, and our style of automated testing has not only
not become a problem, but in fact a great success
that seems to fit very well wit h the rest of XP.

The automated tests we have are perhaps best
explained as “pragmatic acceptance tests” - we run
the system as closely as possible to the way the
customer will run it, while being prepared to break
it into subsystems in order to allow fast, easily
automatable testing. The overall effect is that the
tests are owned by the customer, while being just
about fast enough to be run by the developer as
part of the minute by minute code-build-test cycle.

2. THE CARMEN TEST SUITE
What we have created is an application
independent automatic testing framework written
in Bourne shell and Python. The framework allows
you to create and store test cases in suites, runs
them in parallel over a network, and reports
results. For each test case the framework provides
stored input data to the tested program via options
or standard input redirects. As it runs, the tested
program produces output as text or text-convertible
files. When it has finished, the testing framework
then compares (using UNIX “di ff”) this output to
version-controlled “standard” results. Any
difference at all1 is treated as a failure. In addition,
the framework measures the performance of the
test, and if it strays outside pre-set limits, (for
example if it takes too long to execute) this is also
recorded as failure.

New tests are added by providing new input
options and running the system once to record the
standard behaviour against which future runs will
be measured. This behaviour is carefull y checked
by the customer, so that s/he has confidence the
test is correct. Once verified, the new test case (ie
input and expected results) is checked into version
control with the others.

Of course, not all differences in system behaviour
are undesirable, and it sometimes happens that a
test failure is registered even though the new
system behaviour seems as good as or better than
the old. If this happens, it is up to the developer
who made the code change that caused the test to
fail to confirm with the customer that the change is
desirable, and then check in the new standard
results of the test(s). They must also add a
comment explaining why the new behaviour is an
improvement on the old. In this way the behaviour
of the system can evolve in a full y controlled way.

1 1except for run-dependent output such as times and
process IDs, which the framework ignores.

7

We have been very successful using this technique
at Carmen Systems to test the decision making
middle layer of a larger application - that is the bit
between the user interface and the data storage.
Since we are not testing the system end to end, we
are not really doing Acceptance Testing from the
customer’s point of view. Since we are not writing
tests in the same language as the code, and are not
writing tests for individual classes, we are not
doing Unit Testing. However, we do get enough of
the advantages of both kinds of testing to support
XP.

3. STRENGTHS AND WEAKNESSES
The most important ways the testing practices
support the rest of XP are by providing developer
confidence to refactor and customer confidence in
progress being made. The testing we do provides
both of those:

� Most of the tests can be run in a matter of
minutes, (the tests run in parallel across a
network), so they can be run at nearly every build,
and can provide fast enough feedback to enable
merciless refactoring.

� Every test corresponds to real input and
customer-verified output, so the list of passing tests
is an accurate measure the customer can use to
assess progress.

This way of testing has other advantages, too.
Adding a new test is very straightforward, all it
requires is finding suitable input data then having
the customer confirm that the output is correct.
There is no application- or feature-specific code to
maintain and refactor, only the generic testing
framework itself. Another useful feature is the
abilit y to run tests in parallel, using 3rd party load
balancing software to make maximal use of the
computing resources available on the network.
This means that the speed of the test suite is only
limited by network resources and the time it takes
the longest test to run.

One criticism that has been levelled at this style of
testing is that without unit tests, Test First
Development (TFD) as such is not really possible.
Beck describes TFD as a design technique [3], and
it has been reported as such by many practitioners
of XP [4]. However, despite not doing TFD, we
have not had difficulty creating a system composed
of objects exhibiting high cohesion and loose
coupling. We have also not had difficulty evolving
the design via merciless refactoring as new user
stories are implemented. In short, our experience
suggests that TFD is not the only way to evolve a
good design within an XP project.

4. FURTHER WORK NEEDED
The applications with which we have so far used
this testing technique all operate in batch mode,
and do not need to deal with the problem of
simulating interactive input. However, we have
been able, on a trial basis, to integrate the test suite
with a third-party GUI playback testing tool
(QCReplay[5]). The playback tool simulates a user
session in a repeatable way, and in effect makes an
interactive application into a batch application. We
hope that future XP projects with a GUI-focus will
be able to build on this trial work. We also believe
that other kinds of applications can usually be
made to run in batch mode with a bit of effort and
ingenuity.`

5. CONCLUSION
In this practitioners report we have outlined our
experiences with automated testing in the middle
ground on the scale between unit and acceptance
testing. Our main conclusions are that since the
customer is far better qualified than the developers
to specify tests for the system, they should specify
the tests. On the other hand, the power of placing
testing in a very tight feedback cycle within
development is essential to enable refactoring and
agile design, so the tests must run quickly. If we
can have one suite of tests that is both customer
owned and fast to run, we have a powerful tool to
support a simpler process than XP as written - with
one type of testing rather than two.

REFERENCES
1. Beck, “Extreme Programming Explained”
2. Jeffries et al, “Extreme Programming Installed”
3. Beck, “Aim, Fire”
http://www.computer.org/software/home
page/2001/05Design/
4. Community discussion, for example
http://www.c2.com/cgi/wiki?TestDriven
Programming

5.
http://www.centerline.com/productline/qcreplay/qcrepla
y.html

8

Is GUI Testing Difficult?
Andrew Swan
andrews@owl.co.uk
It is claimed that it is difficult to test GUIs, either at all, or using test first techniques.
One argument is that the user interface changes too often and that simple changes in
the GUI can cause a large number of tests to break. This is usually based on testing
GUIs using input recorders and comparing screen grabs. Another problem can be
testing code which has been auto generated by a GUI builder tool. Often there will not
be the hooks exposed to allow testing of this code.
I would argue that GUI testing is no more difficult than testing any other code. It is
even possible to use "strict" test first, i.e. always have a failing test before changing
implementation code. This is based on my experience writing GUI applications in
Java using Swing.
I have collected 4 techniques that I believe are very helpful in testing GUI code, both
for unit testing and acceptance testing.

1. First test
How do you write a failing test to prove you need a GUI?

public void testMain() {
 assertEquals(0, Frame.getFrames().length);
 main(null);
 assertEquals(1, Frame.getFrames().length);
}

The simplest code to make the test pass is:
public static void main(String[] args) {

new Frame();
}

2. Separate model and view
Model-view-controller is often given as a pattern to simplify GUI testing. The model
referred to is usually the domain model, but for effective GUI testing you need to
remove as much code as possible from the GUI. Even the simplest of user interfaces
has a requirement for logic to control selection, focus traversal, enabling of controls,
etc. There should be a model to represent this logic so it can be tested non-visually.
Within the Swing framework there are classes to represent these elements, for
example, Action and ListSelectionModel. GUI testing should concentrate on testing
these models.

3. Name components
Some of the most frequently changing aspects of a user interface can be the layout,
and text on controls. If you have tests which rely on components being in a certain
location, or having some particular text on them, you are likely to spend a great deal
of time updating tests.
A simple solution is to associate a logical name with the control. This also provides a
good first test to prove that a control exists.

public void testConstructor() {
 JDialog d = new MyDialog();
 assertNotNull("OK button exists", findChildNamed(d, "OK"));
}

9

The simplest code to make the test pass is:
public MyDialog() {
 JButton b = new JButton();
 b.setName("OK");
 add(b);
}

The method findChildNamed recursively searches the child components of a given
container for a component with the given name.
Another major advantage of naming components is using it as the basis of acceptance
test scripts.
For example:

public void testSaveDialog() {
 findItem(findMenu(frame.getJMenuBar(), "File"), "Save").doClick();
 assertEquals(1, frame.getOwnedWindows().length);
 Dialog save = frame.getOwnedWindows()[0];
 assertTrue(save.isVisible());
 findButton(save, "OK").doClick();
 assertFalse(save.isVisible());
 assertEquals(0, frame.getOwnedWindows().length);
}

This would test that a dialog becomes visible when the Save item on the File menu is
clicked, and becomes hidden when the OK button in the dialog is clicked. Using
getOwnedWindows ensures that the dialog has the frame as its owner.

4. Modal dialogs
How do you test a modal dialog when it will block the test as soon as it’s shown?

public void testDialog() {
 MyDialog d = new MyDialog();
 try {
 d.show(); // blocks!
 assertTrue(d.isVisible());
 assertTrue(d.isModal());
 } finally {
 d.dispose();
 }
}

The assertion will never be reached until dialog is hidden, and then it will fail!
To solve this problem we can execute the show on another thread, the thread
executing the Swing event queue.

public void testDialog() {
 MyDialog d = new MyDialog();
 try {
 SwingUtilities.invokeLater(new Runnable() { public void run() {

d.show(); } });
 SwingUtilities.invokeAndWait(new NoOpRunnable());
 assertTrue(d.isVisible());
 assertTrue(d.isModal());
 } finally {
 d.dispose();
 }
}

Firstly, show is called, the invokeLater will return as soon as the show has been
queued on the event thread. Next a no-op is queued, which will only execute once the
show has been executed. This has the effect of blocking the testing thread until the
show has been called. It is then safe to make any assertions about the shown state of
the dialog.
In conclusion, GUI testing is not difficult. XP testing is focused on using a
lightweight coding framework, this can easily be extended to GUI testing. In addition
these techniques can also be used as the basis for automated acceptance tests.

10

Dierk König

Canoo Engineering AG

Kirschgartenstr. 7

CH 4051 Basel, Switzerland

Dierk.Koenig@canoo.com

WebTest Position Paper

XP2002 Testing Workshop Submission

Testing is an important part of any serious development effort. For web applications it is crucial.

Defects in your corporate website may be only annoying at one time but they can cost you real
money at other times, they can lower your market value and may even put you out of business.

Canoo WebTest helps you to reduce the defect rate of your web application.

What our customers care about

• Quality

Quality improvements are hard to achieve if you cannot see the the effects
of your measures.
Canoo WebTest measures the externally observable quality of your
application.

• Development Risk

Is the development team on track? What progress did it achieve? What
does it mean, if they say that 80% is working? Is it really?
Canoo WebTest reports the real progress in terms of running Use Cases.

• Operations Risk

Can we put our application into production safely? Will it work? Will it not
do any harm when running?
Canoo WebTest tells you whether it will work.

• Delivery

Did the development team really deliver everything they promised?
Canoo WebTest tells you what was delivered and whether it works as
expected.

• Costs

The costs for testing must not exceed its benefits.
Canoo WebTest is free of charge, tests are easy and quick to write. They
can be run countless times unsupervised and automatically. In fact it is
cheaper and faster than testing manually.

What programmers care about

11

As programmers we want to be sure that our web application works as expected. We want to
validate our work. We need some backing so that we can boldly say: "Yes, we have done it
correctly. Yes, it works. Yes, we are finished with this. No, we have not broken any old
functionality."

If we apply the full set of tests to the system every day then it is be easy to find the cause of any
reported defect, because it must be something we checked in yesterday.

If testing finds a defect, we want to solve it quickly. Therefore, we need to reproduce the
unexpected behavior. What were the steps that led to this error? What was the sequence? What
were the intermediate results? How much easier would it be to track down the error if we only had
this information!

No matter how hard we try, there will always be defects that slip through our testing. They get
reported by our users. We want to make sure that their feedback does not get lost, that the defect
really gets solved, that it never appears again in future releases. The best solution is to write an
automated test that exposes the bug. It will fail as long as the bug is unsolved. It will stay forever
in our suite of tests.

We have to read a lot of documentation every day. Bad experience made us suspicious about the
correctness of any external documentation. We don't really like writing documentation ourselves
because we know that it is only a matter of time until it is out of sync with the system and all our
effort will be wasted. If the documentation is done via automated tests, it is assured to be up to
date, making it a reliable source of information. We are much more motivated to invest our time
for this.

The same holds true for requirements specifications. It would be really convenient if we could
automatically prove that we comply with the requirements spec. Therefore the spec needs to be
formal enough to allow automated compliance tests. It must still be easy to understand so that the
customer, the requirements analyst and the development team can all easily understand the spec.
The specification language needs to be flexible enough to express page contents, workflow and
navigational structures.

You may claim that all the above would be really helpful but impossible to implement under the
constraints of real projects. We have done it ourselves and we have helped others doing it. The
effect is tremendous: to the quality of the system, to the satisfaction of the customer and to the
motivation and self-esteem of the development crew.

Testing is not for free, but it pays off.

How Canoo WebTest works

Canoo WebTest lets you specify test steps like

• get the login page

12

• validate the page title to be Login Page
• fill scott in the username text field
• fill tiger in the password field
• hit the ok button
• validate the page title to be Home Page

The example steps above make up a sequence of steps that only make sense if executed in exactly
this order and within one user session. We call this a use case or a scenario. Canoo WebTest
offers the appropriate abstraction for this. Refer to the Syntax Reference and the API Doc for a
complete list of step types.

Converting the textual description into a Canoo WebTest is easy, as you see below. Note how
close it is to the textual description.

The example as a Canoo WebTest

<target name="login" >
 <testSpec name="normal" >
 &config;
 <steps>
 <invoke stepid="get Login Page"
 url="login.jsp" />
 <verifytitle stepid="we should see the login title"
 text="Login Page" />
 <setinputfield stepid="set user name"
 name="username"
 value="scott" />
 <setinputfield stepid="set password"
 name="password"
 value="tiger" />
 <clickbutton stepid="Click the submit button"
 label="let me in" />
 <verifytitle stepid="Home Page follows if login ok"
 text="Home Page" />
 </steps>
 </testSpec>
</target>

This is XML and you will get all the support from your preferred XML editor, including syntax
highlighting and code completion based on the WebTest.dtd. Canoo WebTest leverages the
advantages of XML even further. You may have noticed the line &config;. This is an XML
entity that refers to the content of a file. The XML parser inlines the file at test execution time. It

13

is one of the possible ways to share common settings for all test steps. Here the settings for
protocol, host, port and webapp name are shared.

If you are familiar with the ANT build automation tool you will have recognized that Canoo
WebTest makes use of this. If ANT is totally new to you, we recommend having a look at the
ANT description at The Jakarta Project. Canoo WebTest exploits ANT's ability to structure a
"build" into modules that can either be called separately or as a whole. That way, you can run any
WebTest in isolation. You can also group tests into a testsuite that again can be part of a bigger
testsuite. In the end you have a tree of testsuites, where each node and subtree can be executed.

The execution of the several test steps is currently implemented by using the HttpUnit API, again
an Open Source package. Test results are reported in either plain text or in XML format for later
presentation via XSLT. Standard reporting XSLT stylesheets come with the Canoo WebTest
distribution. They can easily be adapted to your corporate style and reporting requirements.

A sidebar: Do you think that the above example is so easy that you do not need an automatic test
for this? Consider the following variations:

• Bookmark What if I try to get the Home Page directly without login?
• Other pages

We have to test that no page is shown without proper login and that we get the
requested page after proper login.

• Bad Login Bad login should keep us on the login page.

This is quite a number of scenarios to be tested. Now imagine a manual tester checking all this.
Very soon he will get bored and unobservant, not to mention that resetting his session for every
single test requires a lot of work. Is he really checking again all the possible variations at every
full test?

Pragmatic Considerations

Test automation is key to better quality. Manual checks are more flexible and less expensive to do
one time. They are more expensive and less reliable when tests need to be done over and over
again. We advise to do manual checks for everything that cannot break after it worked once.
Everything else should be automated if the automation can be done without excessive costs. We
feel that testing with Canoo WebTest reaches the break-even point for 90% of our tests after only
a few test runs.

We want to use what we already know. We don't want to learn a new language for the test
automation. We want to rely on standard formats.

Functional testing can be classified as being either data driven or record/replay. Canoo WebTest
follows the data driven approach. Record/replay is appealing at first, because you can create a lot
of tests in a short time. A proxy logs what pages you request and stores the results. It can then
replay the requests and compare the results against the stored ones. You typically have to tweak
this procedure to tell the program what parts of the page are expected to change. The actual date
and time are the most obvious examples. Every small change to your webapp causes a lot of these

14

tests to fail. These failures must be manually processed to separate the "real" failures from the
"false negatives". Doing this is almost as tedious and error prone as the manual testing and is
therefore discouraged e.g. by the Automated Testing Specialists group.

" Record/Playback is the least cost-effective method of automating test cases. "

Zambelich

Any automated test should fit snugly into your build process. If you are already using ANT for
your build automation, it is no effort to integrate Canoo WebTest. An Example of this is Canoo
WebTest itself. It contains a selftest that is written with Canoo WebTest. Every new build of
Canoo WebTest triggers that selftest. You can explore this behavior online, starting at the Build
Info link of the Canoo WebTest distribution page. Note that this is very convenient for nightly
builds and even for use with a continuous integration platform like CruiseControl.

If your build process is not ANT based, calling Canoo WebTest is still easy. It means starting a
Java Application. This can easily be done with every build script language that we know.

"Regression tests" is the concept of testing that asserts that everything that worked yesterday still
works today. To achieve this, our tests must not be dependent on random data. Also, the expected
result must be clear in advance as opposed to the "guru checks output" approach, where a
specialist validates changing results. Tests must give a thumps up indication when successful and
a detailed error indication otherwise. Well, this is pretty much like compiler messages.

Functional tests do not replace unit tests. They work together hand-in-hand. Consider the
following example: Your Webapp displays an html table that is filled with data from the database.
The maximum number of rows should be 20 and if there is more data available, a link should be
shown that points to the page that contains the next 20 entries. If there is no data, no table should
be shown, but the message "sorry, no data". We would test this with a) no data b) one row c) 5
rows d) exactly 20 rows e) 21 rows f) 40 rows g) 41 rows. A naive way of testing this would be to
manipulate the database (maybe by using an administration servlet that we can call via "invoke")
prior to calling the page. But this is not only very slow but also a little dangerous. What if two
tests run concurrently against the same test database? They will mutually destroy their test setup.
What if the test run breaks? Is the state of the test database rolled back? The whole job is difficult
to do for a functional test, but easy and quick for a unit test. A unit test can easily call the table
rendering and assert the proper "paging" without even having a database! What is left for the
functional test is to assert that the table rendering logic was called at all.

There is a lot more to say about unit testing. Refer to JUnit and the annotated references for
further information.

Canoo WebTest is an Open Source Java project and totally based on Open Source packages. If
you are not satisfied with any of the functionality, you can adapt it to your requirements. Having
the sources, you even gain the ability to start the test in the debugger, revealing everything that

15

goes on.

Canoo WebTest is free of charge. The downside is, that there is no guaranteed support. However,
you can ask Canoo for special support incidents, a support contract and on-site help for
introducing automated testing in your project.

Canoo WebTest is not restricted to any special technology on the server side. It makes no
difference if you use Servlets, JSP, ASP, CGI, PHP or whatever as long as it produces html.
Client side JavaScript will not get executed, but you can check for the expected JavaScript code to
be delivered.

Browser dependencies are the menace of web programming. One possibility is to check manually
against all the "supported browsers". Our approach is to validate our html to comply with the
specification. A full and pedantic validation is outside the scope of Canoo WebTest, but every
validation step calls the JTidy parser (part of HttpUnit) and will warn you on improper html. That
has proven to be very helpful. If your manual tests reveal that certain html constructions produce
different behavior in your supported browers (like empty table cells in IE and Netscape), you can
set up a test that checks against the usage of these constructs.

Advanced Topics

We found Canoo WebTests to be easy to understand, maintain and create even for
non-developers. We had testers, assistants, novice programmers, business-process analysts and
even managers and customers writing tests. This opens another opportunity: if the customer is
able to understand or even write the tests, than they can serve as a requirements collection. Our
preferred way of dealing with requirements is: "Whatever you write in a test, we will make it run.
We promise nothing else but this."

If we get the tests written in advance, they serve as a requirements specification. While
implementing, they give feedback how far we are. After Implementation, they document what we
have done. That documentation is always up to date, as we can prove by the click of a button. The
format of this documentation may be unfamiliar (as it is not MS-Word) but it has "the power of
plain text" (cf. The Pragmatic Programmer). It can easily be transferred into other formats, e.g. by
using XSLT.

It is good practice to care for the quality of your tests no less than you do for the quality of your
production code. The first point here is to avoid duplication. Canoo WebTest combines the
options of XML and ANT for helping you with this.

Canoo WebTest allows defining modules that can be reused in a number of tests. A common
example is a sequence of validation steps that you apply to almost every page. These steps check
against error indications like http errors, java stack traces, "sorry, we cannot...", etc. It may also
contain a check for the copyright statement that is supposed to appear on every page. The samples
that come with Canoo WebTest show how to do this.

16

Sometimes we have to test the same scenario for a number of different languages, each with
different classes of users and each of these combinations with different user settings, etc. That can
easily lead to so many test combinations that copy/paste would make the tests unmaintainable.
Canoo WebTest uses the ANT mechanics to allow calling tests with overriding parameters.
Again, the distribution contains a comprehensive example. Although all the test combinations get
tested, the test description contains the scenario only once plus the information about the variation
of calling parameters.

Canoo WebTest can be used to do automated tracking of your project. If your tests capture all the
requirements, then every test run gives you feedback on how much you have achieved so far. The
history of test reports reflects your team's productivity in terms of delivered functionality. The last
report always shows the current state of your project in the most reliable metric we know: running
and tested use cases.

Quotes and Success Stories

Canoo WebTest has been used successfully in a number of organizations ranging from small
internet startup companies up to global players, for intranet and internet sites, for portals and B2B
applications. Needless to say that we use it for our own Canoo Online Services as well.

more to come here...

Annotated References

ANT
http://jakarta.apache.org/ant
• The leading build automation tool.
• The platform independent replacement for "make".

Automated Testing Specialists
http://www.sqa-test.com/
• Points to a huge set of resources about automated testing.
• Answers a lot of questions about testing.
• Homepage of an independent consultants' community.

Canoo Online Services
http://www.canoo.net/
• The Canoo Online Services for german language exploration.
• Includes hundreds of pages with static, dynamic and mixed content.

Canoo WebTest
http://webtest.canoo.com/webtest
• The Canoo WebTest distribution.
• An Open Source tool to facilitate automatic functional testing of html-bound web applications.

17

CruiseControl
http://cruisecontrol.sourceforge.net/
• The Open Source Continuous Integration facilitator.
• The site also points to more information about continuous integration.
• CruiseControl uses ANT to trigger new builds on any repository change and reports the build
result as email and on a website using JSP, XML and XSLT.

HttpUnit
http://httpunit.sourceforge.net/
• The Open Source Web Site Testing tool for programmers.
• Captures web site testing in JUnit TestCases.

JUnit
http://www.junit.org/
• Home of the unit test community.
• Points to articles, downloads and other on-line resources.
• Unit test tools for other languages than Java are also available, including Smalltalk, C++, Perl,
Python, JavaScript and even VisualBasic.

The Jakarta Project
http://jakarta.apache.org/
• The leading Java open source software site.
• Includes the Apache web server, Tomcat, ANT, Log4J, Cactus, ORO, Struts and many more.

The Pragmatic Programmer
http://www.pragmaticprogrammer.com/
• Addison-Wesley Oct 1999 ISBN: 020161622X
• It covers topics ranging from personal responsibility and career development to architectural
techniques for keeping your code flexible, easy to adapt and reuse.

XML
http://www.w3.org/xml
• Extensible Markup Language

XSLT
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xsl/
• XSL Transformations
• Uses the Extensible Stylesheet Language (XSL) for transformations of XML trees into other tree
structures like html, formatting objects (that can be serialized as PDF) or XML again.

18

Automated Acceptance and System Testing Frameworks
Peter Kelley

Project Architect
Sentillion, Inc.

Abstract

This paper describes a mechanism for automating acceptance (functional) and
system level testing in a distributed computing system. In addition to automating tests,
the frameworks provide an easy to use mechanism for developers to create functional
and system level tests for features they are implementing.

The system under test consists of a cluster of network appliances (Vaults). The
Vaults incorporate Context Managers that coordinate the context of a number of
disparate applications working on a single computing device. The Context Managers
implement interfaces specified by the Health Level Seven (HL7) CCOW standard for
context management. The Vaults provide load balancing, configuration replication and
fail over capabilities. They are administered through a web interface. A fully CCOW
compliant desktop version of the Vault with limited system capabilities is also provided.

 Two frameworks have been created to automate the testing of this system. The
Functional test framework uses JUnit to manipulate simulated applications that interact
with each other and which exercise the Context Manager interfaces. The second
framework, System test, uses HttpUnit to perform administrative functions on the Vaults.
It also uses a distributed system of Functional test frameworks to verify the proper
operation of the system capabilities.

CCOW

The CCOW standard establishes the basis for ensuring consistent access to
patient information from heterogeneous sources by coordinating applications. CCOW-
compliant applications coordinate by communicating with a Context Manager using a
defined transaction for setting the context. They also implement a Context Participant
interface to receive asynchronous notifications from the Context Manager.

Simplified System Diagram

Web
Server

Web
Browser

http

http

CCOW Compliant Desktop

Web
Browser

Http
Application

COM
Application

Com
Adapter

COM

Context Vault(s)

Vault
Administrator

Configuration

Context
Manager

19

Functional Test Framework

The Functional Test framework was designed to verify the external behavior of
the Context Manager. A test interface was defined that abstracts the Context Manager
interface to provide a means of exercising its full range of normal and abnormal
behavior. Two test applications that implement the test interface were created in Java,
one using the Http interface to the Context Manager directly, the other using the COM
interface to the COM Adapter, which in turn communicates to the Context Manager.
Each application maintains its own state and implements the Context Participant
interface for communications originating from the Context Manager.

The test interface provides a method for each Context Manager interface
method, but instead of providing fixed values for parameters, e.g. couponValue,
booleans are supplied that instruct the applications to behave correctly or incorrectly,
e.g. useInvalidCoupon. All Context Manager exceptions are caught and transposed into
test application exceptions.

System Test Framework

The System Test framework was designed to verify the correct behavior of a
complete context system. It consists of a system controller and a set of distributed
slaves running on the various clients supported by the system (Win 9X, NT 2K). The
controller communicates with the Vault Administrator using HttpUnit to verify the correct
behavior of the system administrative functions (adding and removing Vaults, updating
configurations, etc).

The controller then orchestrates a series of tests to verify system functionality in
response to the administrative changes. It does this by manipulating the test
environment, e.g. turning off a port on a programmable hub, and then coordinating the
activity of the slaves. The slaves make use of the Functional Test framework to
instantiate and operate various test applications. Communication between the master
and slaves is accomplished using the same Http based protocol that the Context
Manager uses.

Test Development

Functional and system tests are written in Java using JUnit. The functional tests
instantiate applications to exercise the Context Manager. In addition, a GUI was created
that interacts with the test applications to provide troubleshooting. System
administrative tests are written in HttpUnit, which are controlled by the JUnit tests. Both
frameworks provide a base class that extends junit.framework.TestCase to provide
common functionality and template methods for all tests.

Test reporting

 The system test framework provides test-reporting capabilities. A test summary
class was created that encapsulates a collection of test result classes. These classes
extend junit.framework.TestResult and provide additional detail including: build number,
as well as pre and post-test system configuration. Test results are logged to files by
build number and date of execution.

20

Test Execution

 Functional tests may be run on any developer’s workstation running against
either a networked Vault or a Desktop Vault. Run time for the functional test suite is less
than 10 minutes. It provides complete coverage of the Context Manager interface.

The functional tests are also incorporated into the nightly build process and are
run against the Desktop Vault. Results are emailed to the build coordinator. The build
process can be run manually at any time. It performs a clean build, refreshed from
source control and runs the functional tests as a regression suite. This process takes
less than an hour.

The automated system tests are launched manually. Currently we have
automated 15% of these tests. The original manual system test procedure was in
excess of 400 pages and required an engineer month to execute. The system tests that
we currently have automated execute in 30 minutes.

Conclusion

 Our efforts to date in automating functional and system testing have been very
successful. Both the system and functional tests save substantial amounts of testing
time, while empowering the organization in the practices of agile software development.

 Furthermore, both frameworks have proven to be very usable by developers for
creating new tests. During a recent code drop that incorporated changes to several
subsystems (web server, database, JVM) the lead developer used the automated
system tests to verify the changes, and he easily wrote new tests using the framework.
Developers refactoring existing sections of code routinely use the functional test
framework. And, it has proven easy to use for creating tests for new functionality. A
typical test is less than 10 lines of code, while complex tests run to 20 lines of code.

21

Test First Design With UM L / “ A Picture is Worth a Thousand
Programmers”

David Hussman
Edison Ed Inc.

4327 Garfield Ave South
Minneapolis, Minnesota 55409 USA

01-612-743-4923
david@edisoned.net

ABSTRACT
As a developer and a coach, I am continually surprised by
the number of developers stil l trying to solve problems with
an endless stream of words. Why is it still rare that
developers use UML to communicate design? Is it not self
evident that when a good tool exists, and is simple to use,
we should use it? Also, why do so many developers and
managers carry the misguided notion that XP and other
agile processes are mutually exclusive with the use of UML
diagrams? I have starting incorporating 1) a story or task
for a story, 2) one or more hand written sequence diagrams,
and 3) a collection of test classes and methods together into
a process I informally call “sequence testing.” I do not
present this process as new or of my design. Like XP, it is a
conglomeration of best practices and tools into a simple
process that can be used to help teams embrace test first
design.

1 INTRO DUCTION

Too often I find junior and senior developers gathered
around a 21st century software Rosetta stone, speaking in
tongues, and not communicating in the least. As soon as
someone in the group draws a picture, even if i t is a bad
picture, people start talking, and the problem definition
starts to materialize. Once all parties are speaking the same
language, and a common discussion vehicle exists,
solutions begin to surface.

As a coach, I still hear developers refer to the notion that
doing XP means not doing designs. I am not sure how this
notion came to exist, but I do not agree, nor is this how I
see XP and other agile methodologies evolving. I have
struggled with pedagogies that help teams truly embrace
test first design. Sure, there are those developers that
simply take to test first because, in most cases, it is a
formalization of the way in which they visualize problem
solving and implementation issues. On the same team, there
may be many programmers that either do not understand
test first design, do not like the experience, believe test first
to be unnecessary, or believe that test first is slowing
progress.

Similar to the struggle to help developers truly embrace test
first, I, and many others, have struggled to explain real OO
design in a meaningful way, showing developers simple
skill s that can be put to use immediately, as well as skills
that help create code that can be easil y refactored. The
collection of practices and tools that incorporate unit
testing, simple sequence diagramming, and good OO
design practices that I call sequence testing are the outcome
of my struggles.

2 SEQUENCE TESTING

While working on XP projects, I find that quickly creating
s simple sequence diagram (5- 10 minutes) helps provide a
visual road map for a programming pair. Often times we
are either displaying and processing data before or after it is
persisted or fed to an external system or sub-system. To
ensure that the source or destination at the right side of the
sequence diagram is a known quantity (or can be correctly
emulated), I have taken to teaching developers to
implement these sequence diagrams from right to left.

As a vehicle to discuss sequence testing, let’s use the
following sequence diagram.

UpdateUserAccessIdCmd UserDAOFactory

getUserDAO()

updateUserAccessId(userAccessId:long)

new(userId:long, newAccessId:long)

UserDAO

TestUserDAOTestUserDAOFactoryTestUpdateUserAccessCmd

execute()

execute()

getUser(userId:long)

validateInputs()

newUpdateCmd() getUser()

updateUserAccessId()

getPersonDAO()

23

While coaching XP teams, I now use sequence testing to
help teams learn and discuss test first design:
1) Any pair starting on a story or a task creates a simple,

hand written sequence diagram. Acting as a road map
to the pair, the non-driver uses the diagram to help
steer the team (as well as using it as a reference for
how much the team deviates from the defined path
while implementing one or more classes shown on the
diagram).

2) Starting from the right side of the diagram, the pair
creates the first test case for the class farthest to the
right.

3) The team then continues moving to the left, always
performing the following mantra after each interface
for any class has one or more working tests: (U)pdate
from CVS, (B)uild all, (E)xecute all unit tests, and
(C)ommit.

4) This process is continued until there are one or more
test methods for each public method exposed for each
class method in the sequence diagram.

Quick and Dirty
The diagram(s) are hand written and flexible; they are
meant to be a vehicle to discuss which classes are to be
involved and the responsibility of the classes in this
sequence of events. I find that they help developers
visualize the design by contract idea that is so much a part
of test first design. If at any point the diagram becomes
obsolete or messy, rip it up and quickly create a new
version. If the diagram has become so complex that if takes
more than ten minutes to recreate, check the air for bad
design smells (or smells that indicate the team has strayed
to far from that which is the simplest).

Once I have a pair following these steps, I ask them to
examine the relationship between the test code in a test
class and the code in the class immediately to the left of the
test class (in the upper portion of our example sequence
diagram – I do not promote adding test classes while
sequence testing, but I sometimes draw these diagrams as a
teaching tool). Because the test class and method combine
to emulate a calling client, that client being the class to the
left of the test class, a majority (if not all) of the code for
the client already exists in the test class in a form that is
understood by both members of the pair.

A Real World Experience
In one coaching situation with a team of 15 developers,
there was the usual fear that pairing and test first would
“make us go slower.” This situation being the rule and not
the exception with teams new to XP, management also
feared that the team progress would slow and resources
would “be wasted.”
As the developers started seeing that while moving from
right to left, code could be moved from test classes to

sequence classes, they began to realize that only a small
effort reall y was for testing only. Also, as the unit testing
moved from an unnatural scripting experience, to an
enjoyable development experience, the tests became a
common topic of discussion. The tests being a de-facto
documentation of the code, the team was now engaging in
daily design discussions.

Another benefit (known to the test first community) was
the ability to fearless rip into problematic and bloated
classes. When a team embraces the metric of one or more
test methods for each public method, design smells often
reveal themselves earlier if the developers feel the need to
write a large number of tests for any one method or class.

Why Save a Picture of Dorian Gray?
On my current project, we now staple the sequence
diagrams to the stories. At times, when a pair does some
development that the team deems significant (as defined
during a standup meeting) it is captured electronicall y and
stored in CVS as a snapshot of our design at a point in time.
We have agreed that we will not go back to update any
pictures, but we have decided that we do like the idea of
having some history to reference, even if i t may become a
faded view of the current code.

3 CONCLUSION

I think that most developers that have gravitated toward test
first design, have done so because it matched (or
formalized) their development habits. I was fortunate
enough to start developing with a small group that most
often went to pictures before typing.

I believe that test first design does not mean pairs should or
cannot use diagrams to communicate problems and
solutions. Granted, there are development efforts that
simply do not need a diagram. Indeed a simple list of tasks
can provide the same road map that a sequence diagram
does. I have found that pictures most often illici t more
dialog than lists, so I have moved in that direction while
coaching as well as developing.

I am intrigued as to what level of discussion around
diagramming as it relates to test first design and agile
methodologies in general. I look forward to hearing what
level of diagrams other XP practitioners are using. I trust
that the common sense nature of the agile movement will
not (and has not) rejected communicating with pictures. I
hope to see a bit more discussion around this topic in the
community.

24

Patterns for Java Program Testing
Marco Torchiano

Department of Computer and Information Science (IDI), Norwegian University of Science and Technology (NTNU),
N-7491 Trondheim, Norway.

Tel. +47 735 94489, Fax +47 735 94466, Email: Marco.Torchiano@idi.ntnu.no

1111 IntroductionIntroductionIntroductionIntroduction
The NIH (Not Invented Here) syndrome often appears in software development; it makes people keep
reinventing the wheel all the time. Fortunately the recent trend is to reuse existing solutions either as
software component or as known designs. Patterns fall into this latter category. Patterns are reusable solution
to known problems in a well-defined context [2].
There are three main types of patterns [3]: idioms, design patterns, and architectural patterns. Idioms
leverage language specific features and are fairly low level. Design patterns deal with more complex
structures, such as groups of classes and associations. Architectural patterns address system-level issues.
Historically, patterns have been used as a tool to build systems. Recently their use has been extended to
comprehension and testing. For instance they can be used to describe typical bugs and possible solutions [4].
There are several basic Java testing techniques, which are in common use among the programmers. This
paper proposes to use patterns to describe such techniques and to arrange the patterns in a pattern language.
We are concerned with class-level and package-level tests. We focus on idioms and basic design patterns.

2222 A pattern languageA pattern languageA pattern languageA pattern language
Extreme programming (XP) [1] advocates writing tests first. When focusing on Java unit testing, we identify
two possible levels of detail: class and package.
A class-level test is a test design to check the feature of a single class; i.e. to checking the semantics of a
class. Unfortunately, often the behavior of a class depends on several other classes, so the next step is a test
of a group of classes lying in the same package.
We describe some of the most common techniques used to write test code at the class and package level. in
the form of patterns.

The most common pattern is the main method idiom. It addresses the problem of where to write the code that
initiates and drives the test. Each class can have a public static void main(String [] args)
method, being invoked when the argument of the Java virtual machine is the class that contains such a
method. Therefore we can provide each class with such a method that enables us to test it.

When we need to test the combined functionality of several classes, we have to decide where to put the test
code. Following the separation of concepts principle, a new class should be created to host this code. Two
possible patterns are based on this idea: the internal class design pattern and the external class design
pattern.
In the former the class is inside the package that contains the classes to be tested. In the latter it is external.
The pros and cons of these two solutions are based on the observation that an internal class has access to the
package details while an external one does not.
On the one hand, the internal class pattern provides more insight into the classes to be tested, but is can make
use of features that are not available to a “normal” client of the package. On the other hand, the external class
pattern plays the role of a typical client of the packages thus providing a more realistic scenario. Both
patterns can make use of the main method idiom to have a starting point.

When it comes to checking the results of a test there are different techniques.
The most naïve is the toString method idiom. The method public String toString() is defined in
the base class Object. It can be redefined to provide a customized representation of an object. The
customized toString method can be used both at the end of a test and during it, in order to observe the
status and contents of objects involved in the test.

25

A somewhat more sophisticated way of checking the outcome of a test, is comparing the result objects to
other objects that represent the expected result. In this case the equals method idiom can be applied. The
method public boolean equals(Object) is defined in the base class Object; it can be refined to
customize the comparison between objects.

The patterns described so far can be combined and used together. There are several possible combinations
that can be represented in a pattern language. Figure 1 describes a pattern language based on the use
relationship between patterns.

main method

public static void main(String[] args){
SomeClass result;
// perform the test…

System.out.print()
}

toString method
class SomeClass {

//…
public String toString(){

// custom representation
}

}

result.toString();

equals method
class SomeClass {

//…
public boolean equals(Object o){

// custom comparison
}

}

expectedResult = //…
result.equals(expectedRestult);or

Internal tester class
package theOne;

public class InternalTestClass {
//…

}

External tester class
package anotherOne;

public class ExternalTestClass {
//…

}

use use

use use

Figure 1: Java testing pattern-language.

3333 ConclusionsConclusionsConclusionsConclusions
The patterns here described represent just an excerpt from the many that can be used to run tests. Their usage
context can range from home made testing to intensive extreme programming. The testing patterns can be
used to improve the use of testing suite frameworks such as JUnit [5]. We plan to collect test patterns from
real world projects, and arrange them in a more complete pattern language.

4444 ReferencesReferencesReferencesReferences
[1] K. Beck. “Embracing change with extreme programming”. IEEE Computer, 32(10):70-77, October

1999.
[2] E. Gamma, et al. “Design Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley,

Reading, MA, 1995.
[3] J. O. Coplien "Software Design Patterns: Common Questions and Answers", in: Rising L., (Ed.), The

Patterns Handbook: Techniques, Strategies, and Applications, Cambridge University Press, New York,
January 1998.

[4] Eric E. Allen “Bug patterns: An introduction” available at:
 http://www-106.ibm.com/developerworks/java/library/j-diag1.html, February 2001.

[5] JUnit home page, at http://www.junit.org/index.htm, last visited on April 17, 2002.

26

Detailed Description of Patterns
Here we present the java test patterns in detail. We adopt the description of pattern propose by Coplien in
[3]. Patterns are described in terms of:

• name,
• context,
• problem,
• forces,
• solution,
• examples,
• forces resolution, and
• design rationale.

Name

main method

Context A Java class.
Problem Where to write the code that drives and initiates the test for a class.
Forces or
tradeoffs

Test must be easy to run.
Code must be able to access all required features.

Solution Put the code in the public static void main(String[] args) method of
the class.

Examples

public static void main(String[] args){
SomeClass result;
// perform the test…
System.out.print(“result is..”);

}

Force
resolution

The test code can be easily invoked.
The method has access to all the features of the class under test.

Design
rationale

Each class can have a public static void main(String[] args)
method, it is invoked when the argument of the java virtual machine is the class
that contains such a method.

Name

toString method

Context A Java class that represent the result of a computation.
Problem How to check if the final and intermediate results of a test are the expected ones.
Forces or
tradeoffs

Result of the test is represented by the internal state of an object
Such a state must be checked.

Solution
Use the toString method to provide a customized representation of a class, such
representation can be printed (and checked manually) or compared against an
expected result.

Examples

class SomeClass {
//…
public String toString(){

// custom representation
}

}

Force
resolution

The internal state is represented as a String

Design
rationale

The method public String toString() is defined in the base class
Object. It can be redefined to provide a customized representation of an object.

27

Name

equals method

Context A Java class that represent the result of a computation.
Problem How to check if the final and intermediate results of a test are the expected ones.
Forces or
tradeoffs

Result of the test is represented by the internal state of an object
Such a state must be checked.

Solution Define the equals method to be able to compare the actual result against the
expected result.

Examples

class SomeClass {
//…
public boolean equals(Object o){

// custom comparison
}

}

Force
resolution

The result remains in the internal state but it is compare to the expected one.

Design
rationale

The method public boolean equals(Object) is defined in the base class
Object; it can be refined to customize the comparison between objects.

Name

internal tester class

Context A Java package.
Problem Where to place the code to test the classes of the package.

Forces or
tradeoffs

Separate test code from operation code.
Code must be able to access the required features of the classes.
Play the role of a package client.

Solution Add a new class in the same package where the classes to be tested are. This class
contains all the code to perform the tests.

Examples

package theOne;
public class InternalTestClass {

//…

}

Force
resolution

All the test code is inside a class separate from the rest of the code.
Being in the same package the class can access most of the classes’ members.
It’s not a real client since it has visibility on far more elements than an usual client.

Design
rationale

The separation of concerns is achieved by confining the test code in a specific
class. It is inside the package, therefore it has access to all the details of the classes
that are to be tested. Because of this it cannot represent if a realistic way a typical
client of the package.

28

Name

external tester class

Context A Java package.
Problem Where to place the code to test the classes of the package.

Forces or
tradeoffs

Separate test code from operation code.
Code must be able to access the required features of the classes.
Play the role of a package client.

Solution Add a new class in the same package where the classes to be tested are. This class
contains all the code to perform the tests.

Examples

package anotherOne;
public class ExternalTestClass {

//…

}

Force
resolution

All the test code is inside a class separate from the rest of the code.
It has a limited access to the classes since it’s outside the package.
It has the same visibility on package elements as an usual client.

Design
rationale

The separation of concerns is achieved by confining the test code in a specific
class. It is outside the package, therefore it has not access to all the details of the
classes that are to be tested. For this reason it represents in a realistic way a typical
client of the package.

29

Testing ideas and tips from the battlefield
WTiXP 2002 Position Paper

Piergiuliano Bossi, Giannandrea Castaldi, Alberto Quario
Quinary S.p.A.

http://www.quinary.com
+39 – 02 – 30901535
p.bossi@quinary.com

Introduction
This paper provides some testing ideas and tips based on the experience that we have
gained during our last projects. We will discuss how to avoid some problems that arise
with acceptance testing, patterns and techniques related to mock objects usage and we
will report about testing GUIs.

Acceptance Testing

Avoid BTUF
We have noticed that it is possible to make a certain kind of mistake related to acceptance
tests we have called BTUF (Big Test Up Front). Developers bump into BTUF when,
beginning to work on a story-card, they try to accomplish the acceptance test as the first
thing. By doing so, they avoid tackling the several user-story complexities step by step,
but they head for the green bar in a whole piggy mess. This means that development is no
longer guided by many small unit tests but by a unique big acceptance test.
The origin of BTUF does not depend on the lack of specific XP practices, but rather on
the absence of incrementality in the whole process. Indeed, if we observe the way
programmers fall into BTUF, we notice a test first approach: the story-card
implementation starts from the acceptance test followed by coding and refactoring.
Moreover, at the beginning of the story-card no up-front design is carried out. But that’s
not the whole story.
The above process falls into hacking because it produces the following issues:
• Long refactoring: since the aim was just to pass the acceptance test, you have messed up the code a lot

and now you are left with many bad smells to get rid of. The code may be difficult to manipulate and it is
hard to discover recurring logics.

• Time consuming and rare integrations: since you don’t carry out small increments, you need to refactor
the code in many places – therefore during integration you have to solve many conflicts; besides,
developers integrate less often because they are stuck with red bars.

• No continuous efforts: the XP heartbeat (small test, small code, small refactoring) is broken by the need
to write and immediately pass the acceptance test.

• Fear: working by big steps leaves the system in a non-consistent status for a long time and brings
developers to fear changing the code.

• More debugging: since there aren’t enough unit tests to cover functionalities required by the card, when
the system doesn’t work you may need to debug for many hours.

Evolutionary approach to Acceptance Testing
Instead of writing the acceptance test, getting the red bar, putting it away and forgetting
about it, we prefer to approach its implementation in an evolutionary way. What we do is
to follow the test-first technique focusing each time on business value delivering. To do

31

so we need to proceed test by test with little increments, writing each time the smallest
test that delivers value to the customer.
At each step the developers are about to write a test, they must ask themselves which is
the minimum functionality to be added in that particular moment. As each step is small,
after some time you will have a convergent succession of many unit tests that cover the
requested functionality. So your system will be ready for satisfying the acceptance test,
and this will manifest itself as a natural consequence of the tests set.
However, the acceptance test is not always the last step towards the user-story
fulfillment: it may happen that one or more unit tests are worked out after implementing
the acceptance test. Sometimes the acceptance test itself suggests tests the developers had
not identified before.
In this way, there is no real contraposition between unit and acceptance test: developers
write many small tests we can define functional, because necessary to discover a path that
brings to user-story accomplishment.

Testing patterns

Programmable mock object
Whenever we feel the need to test a class in isolation, that is working with mock objects,
we have found ourselves implementing a similar pattern each time. Suppose you have to
test a class A that collaborates with a class B:
• We extract the interface from class B;
• We create a mock implementation of class B, say MockB, having all the public

methods doing nothing or returning nulls;
• Each time we have to write a test for class A we extend the behaviour of MockB

adding 3 different kind of methods:
o simulate<action>: at the beginning of the test it permits to program the

expected object behaviour (i.e. simulateClickOnCloseButton() on a GUI
mock object);

o last<data>, is<propertySet>: at the end of the test it permits to verify
what A has done which has an expected impact on B;

o <interface method>: basic and required class B behaviour.
Doing this way we have seen several advantages:
• Mock objects grow up incrementally based on test demands;
• Tests are more readable.
This is an example of a GUI mock object in which we are testing that the controller reads
a string from the GUI and it executes a search on the mock search engine:

public testSearchOnClickButton()
{
 MockGui mockGui = new MockGui();
 MockSearchEngine mockEngine = new MockSearchEngine();
 Controller controller = new Controller(mockGui, mockEngine);

 mockGui.simulateSearchFor(“john white”);

 assertEquals(“last search on engine”, “john white”,

32

 mockEngine.lastSubmittedSearchString());
}

Test first design

Adding new features test-first
Every time we are adding new features to a system we start unit testing from a specific
object: we write one test, the code that makes it work and so on. Doing this way, we may
modify an existing object or we may need to add new methods on the other objects that
collaborate with it. As we often isolate the tested object with mock objects, we only add
such methods on the mock object. Therefore, our message is: “When you are testing an
object and you need to modify its collaborators, modify the mock objects first”.
When we get the green bar we have two possibilities:
1. Pass to add the methods that were only on the mock object on the real object;
2. Remain on the object we are working on and continue to add methods on the mock

objects that play the role of the real ones.
Considering the context we choose a way rather than the other:
1. We choose the first approach when we see a special value in working through vertical

slices of our system, that is when we want to see immediately the consequences of
adding new whole features;

2. We choose the latter when we see that the object we are working on must change a lot
and then we prefer to stay focused on it. Doing this way, we can easily modify the
mock objects and we can propagate the modifications to the real implementations
later.

Experience reports: testing GUI
Testing GUIs is difficult, as you must face a paradigm crossing. In our last project we
tried some slippery roads and finally settled on a three level structure inspired by the
MVC paradigm:

Controller � Presentation � GUI
Our intent was to separate the business logic from the actual GUI representation (i.e. a
Java Swing frame).

The Controller has the business logic and send/receive information to the Presentation
(i.e. inserting some data in a grid or handling a button press in a window).
The Presentation provides to the Controller an abstraction of the real GUI through some
services that map Controller actions onto graphic widgets; it provides also some hooks to
allow the Controller to register on selected events.
What differentiates our design from MVC is the fact that we haven’t applied the
Observer/Observable relation: data Model is handled directly by Controller, which
manages the updates too. We have never needed to implement several notified Views
reacting to a modification in the same Model portion.
We have also introduced the Presentation abstraction because it allows testing Controller
in isolation with a mock Presentation that is not interfaced with real GUI widgets. This
approach has several advantages: tests are faster, we don’t need many complex GUI-
testing tools, orthogonal issues emerge more clearly, etc.

33

Using mock Presentation objects to test the dynamic behaviour of Controllers, GUI
testing is reduced to verifying positions and properties. We have developed some utility
objects to ease the testing burden.
ComponentsPositionComparator offers services for positional testing:
• Alignment

• public boolean areBottomAligned(JComponent aComponent, JComponent
anotherComponent)

• public boolean areLeftAligned(JComponent aComponent, JComponent
anotherComponent)

• ...

• Positions
• public boolean isNextToTheBottomBorderOf(JComponent aComponent,

Container aContainer)
• public boolean isNextToTheRightBorderOf(JComponent aComponent,

Container aContainer)
• ...
• public boolean isToTheEastOf(JComponent aVerifyingComponent,

JComponent aTargetComponent)
• public boolean isToTheSouthOf(JComponent aVerifyingComponent,

JComponent aTargetComponent)
• ...

We have also developed a more high level object named
AsserterPositionComparator, that uses ComponentsPositionComparator to
minimize the effort required to code assertions in tests. AsserterPositionComparator
automatically composes the message and logs useful information in case of assert failure.
Some of its methods are:
• public void assertAreBottomAligned(JComponent aComponent, JComponent

anotherComponent)
• public void assertIsNextToTheRightBorderOf(JComponent aComponent,

Container aContainer)
• ...

Although these utility objects, iteration after iteration we have reached a point where we
doubt that test-first design could be fully applied to GUI development with profit. At the
beginning we have developed all our GUIs test-first and this has caused several problems
due to volatility of customer requests. Every time that we have submitted to the customer
a new GUI version based on his requests he has gained more inspirations and
consequently he has had more suggestions for us. These modifications were easy to code,
but updating the corresponding tests was expensive. As time goes by we have recognized
that we were writing regression tests with a test-first approach: this is definitively not the
intent of the test-first technique and it should be avoided. There is such a little value in
developing these tests before the actual code.
For this reason the last GUIs have been implemented following a different process: firstly
we have developed the code coming to a point where the customer was satisfied by the
result, and then we have written the corresponding tests. Our intent for the future is to
automate the development of these tests updating them after each visible GUI
modification.

34

DiPS: Filling the Gap between System Software and Testing

Sam Michiels, Dirk Walravens, Nico Janssens, Pierre Verbaeten
DistriNet, Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium,

+32 16 327640
{Sam.Michiels, Dirk.Walravens}@cs.kuleuven.ac.be

ABSTRACT
Testing system software (such as protocol stacks or file
systems) often is a tedious and error-prone process. The
reason for this is that such software is very complex and
often not designed to be tested. This paper presents DiPS, a
component framework, which forces to develop testable
software, and DiPSUnit, a JUnit extension, to test DiPS
units in a uniform way. Although non-trivial test support is
provided, using DiPSUnit keeps testing simple and intuitive
thanks to the DiPS approach.

Keywords
Testing, framework, component software engineering

1 INTRODUCTION
Testing system software, such as a protocol stack or a file
system, is a complex, tedious and error-prone task. The
basic problem is that, for performance reasons, system
software is often designed as a monolithic block of multi-
threaded software. This prevents such software from being
tested properly because of two reasons: first, it is very
difficult to isolate the basic building blocks as stand-alone
units that are independent from each other. Second,
concurrency code, which is introduced in such multi-
threaded system software, often crosscuts the code [4].

This paper presents DiPS (Distrinet Protocol Stack) [6], a
component framework we have built to support protocol
stack development. DiPS forces to deploy four design
principles, which are important prerequisites to develop
adaptable and testable software. As proof of concept, we
have developed the DiPSUnit test framework, which is an
extension of JUnit [3], specifically to test DiPS units.

The rest of this paper is organised as follows. Section 2
presents four essential chararcteristics of testable software.
Sections 3 and 4 present DiPS and DiPSUnit, two
frameworks we have developed to proof our ideas about
software development and testing. Conclusions and some
open points of discussion are formulated in section 5.

2 DESIGN FOR TESTING
XP could be the victim of its own success: testing complex
(system) software in XP could lead to test hell, where test
code becomes so complex and unmanageable that it needs
testing… One way to deal with this is to design testable
software, i.e. software that is designed such that it can be
tested easily. We distinguish four essential characteristics

of so-called testable software:

• Modularity: it is important that the design reflects fine-
grained (singular) units as separate entities, to allow
unit testing in isolation [5]. A collection of units can be
grouped together into a composed unit, which is treated
the same way as a singular unit.

• Independent units: to allow transparent substitution of
units and to reduce the risk of unexpected side effects
(when units are replaced) during acceptance testing, it
is essential that units are independent from each other.

• Separation of concurrency from functionality:
traditional system software is difficult to develop,
understand, maintain, adapt or test. One of the major
reasons is that concurrency code crosscuts the
functional code [4]. Separating concurrency from the
rest of the code facilitates development and testing
because programmers can concentrate on one aspect at
a time. A protocol stack developer should concentrate
on creating a header parser or a packet fragmenter
without being distracted by non-functional aspects
such as concurrency (parallellism). Because of this
separation, unit tests can be done first in a single-
threaded context, and multi-threading can be added
later, without changing any unit code.

• Uniform unit interface: reduce the unit’ s interface and
share the same interface type as much as possible. This
facilitates reuse and raises the software’s level of
abstraction. This feature, combined with modularity
(i.e. composed unit is again a unit), allows a uniform
testing approach for both singular units and composed
units.

3 THE DIPS FRAMEWORK
DiPS is a Java component framework based on units that
are connected as a pipe-and-filter architecture. The
framework supports the development of system software
such as protocol stacks or file systems. Communication
between DiPS units is intercepted by the framework. This
forces units to communicate anonymously (independent
units), since they have no explici t notion of other units in
the system.

A DiPS unit is an object-oriented entity with a very specific
(fine-grained) responsibil ity (modularity), such as a packet

35

Consistent test approach in DiPSUnit: a singular DiPS unit, a composed unit with internal concurrency and a
composed unit which sends (and receives) control events

PacketForwarder

PacketReceiver

Unit

DiPSUnit

Composed

unit

DiPSUnit

Composed

unit

Policy

Event

Catcher

DiPSUnit

A

B

C

F

E

D

A

B

C

F

E

D

active

fragmenter or a header parser. DiPS units can be grouped
together into composed units (such as a protocol layer in a
protocol stack). A distinction has been made between
purely functional units and concurrency units. This
separation allows the concurrency model to change,
independent from the functionality in the system.

All DiPS units process (only) packets, which are delivered
via a uniform unit interface. These packets can enter and
leave a DiPS unit through one or more entry and exit
points. A singular DiPS unit (such as a fragmenter or an
encryption unit) with one entry and one exit
(PacketReceiver and PacketForwarder) is shown
in detail i n the left figure. Next to the data (packet) flow
there is a control flow that allows anonymous inter-unit
control communication via DiPS events.

4 PROOF OF CONCEPT: DIPS UNIT TESTING
Thanks to DiPS, the DiPSUnit framework can provide a
uniform way to test singular units as well as composed
units (see figure). This keeps testing very intuitive and
simple. However, the provided support for testing units in
isolation in the presence of concurrent behavior and
external control events is not trivial.

The concurrency (active) unit in the middle figure has an
internal thread and a buffer to store incoming packets. This
decouples the packet flow in two parallel flows. When such
a unit is present within a composed unit, a test must be
suspended until all packets have arrived or until a timeout
occurs (to avoid being suspended forever in case of an
error). DiPSUnit offers a monitor that blocks until all
packets are processed (even in the context of internal
packet removal/creation).

DiPS units can exchange control information by using
DiPS events (right figure). To test a unit in isolation, all
control flows must be intercepted. Although the stub
mechanism is simple, transparently introducing stubs is not
always trivial. DiPSUnit offers support to uniformly deal
with external events. A test developer can describe how to
respond to a given event by creating a Policy (which acts as
a stub). The substitution of control flow functionalit y is
transparent for the code under test. This reduces the risk of

introducing errors when stubs are replaced by the actual
functionality during acceptance testing.

For a detailed description of DiPSUnit we refer to [7] [8].

5 CONCLUSIONS
The combination of JUnit, DiPS and DiPSUnit seems very
promising. JUnit offers the basic infrastructure to develop
test cases and test suites. DiPS facilitates unit testing
because it forces to create modularized architectures and
because it allows units to be replaced without changing any
code. Thanks to this support, DiPSUnit can consistently test
DiPS units, from fine-grained to composed unit level.
However, developing test cases is still intuitiv e and simple.

Relevant points of discussion are:

• Software engineering techniques, such as design
patterns [2] and refactoring [1], do help in creating
‘good’ software, and the xUnit test framework helps in
testing software. However, we claim that infrastructure
support is required (such as a component framework)
to force design techniques to be applied.

• What other software design principles facilitate or
hinder testing?

ACKNOWLEDGEMENTS
This research has been carried out in order of Al catel Bell
with financial support of IWT (project SCAN #010319).

REFERENCES
1. M. Fowler. Refactoring: Improving the Design of

Existing Code, Addison-Wesley, 1999.

2. E. Gamma, e.a., Design patterns: elements of Reusable
Object-Oriented Software, Addison-Wesley, 1994.

3. E. Gamma, K. Beck, Test infected: Programmers love
writing tests, http://www.junit.org/, 1998.

4. G. Kiczales, e.a., Aspect-Oriented Programming, In
proceedings of ECOOP’97, 1997.

5. T. Mackinnon, e.a., Endo-Testing: Unit Testing with
Mock Objects, XP2000, June 2000.

36

6. F. Matthijs, Component Framework Technology for
Protocol Stacks, Ph.D. thesis, K.U.Leuven, 1999.
(Available at http://www.cs.kuleuven.ac.be/~samm/netwg/dips/)

7. S. Michiels, D. Walravens, e.a., DiPSUnit: an
Extension of the Junit Test Framework for DiPS, Tech.
Report CW-333, K.U.Leuven, Dept. Comp. Science,
2002.

8. S. Michiels, D. Walravens, e.a., DiPSUnit: A JUnit
Extension for the DiPS Framework, To appear as
experience report in XP2002. K.U.Leuven, Dept.
Comp. Science, 2002.

37

Web Systems Acceptance Tests and Code Generation

Eduardo Aranha 1 and Paulo Borba 2
Informatics Center

Federal University of Pernambuco
Recife, Brazil

Introduction

In Extreme Programming (XP) [2], acceptance tests are used to prove that the application works as
the customer wishes. The available test languages offer low level of abstraction and legibility,
because they are based in languages like Visual Basic and XML. GUI capture and playback tools
facilitate the creation of test cases, though they have many limitations to program and maintain the
test cases [1].

Acceptance tests interact with the GUI (Graphical User Interface) of the system, simulating
the actions of users and verifying the information content presented. In Web systems, for example,
the GUI is composed of Web pages and its components, like frames, links and images. In that way,
the information about the GUI structure and behavior of a system can be found and extracted from
its acceptance test cases, making possible the generation of part of the GUI code.

This paper presents a language and an environment to program Web Systems acceptance
test cases. Code generators are presented to improve productivity and to motivate the XP practice
of creation of these tests before the implementation of the proper system.

The WSat Language

The language we defined, WSat (Web System Acceptance Test), aims at a high level of
abstraction and reuse, explicitly expressing aspects related to the GUI structure of the tested
systems like, for example, Web pages, forms, links and texts. This is done by defining types that
represent web components. In the Figure 1, we can see the initial and response page of a simple
search system of Web documents.

Fig. 1 – Initial and response pages of a search system.

1 Supported in part by IPAD. Electronic mail: ehsa@cin.ufpe.br.
2 Supported in part by CNPq, grant 521994/96-9. Electronic mail: phmb@cin.ufpe.br.

39

To test this system, we initially define the type InitialPage to represents Web pages with title
“Search System” and an HTML form as defined by the type SearchForm :

 static WebPage InitialPage {
 title = “Search System”;

 SearchForm searchForm;
 ...
 }
 WebForm SearchForm {
 name = "searchForm";
 method = "POST";
 EditBox {
 name = "keywords";
 value = "";
 } keywords;

 ...
 }

WSat have predefined types like WebPage, WebLink and WebForm. The WebPage type, for
example, represents all possible Web pages. The defined type InitialPage represents all
possible Web pages that satisfy its defined properties. To test the response page of the system,
we define the type ResponsePage , as shown bellow.

 WebPage ResponsePage {
 title = “Search System Response”;
 }

As we can see, we do not use the WSat keyword static in the definition of the type
ResponsePage . This keyword indicates Web pages that are not generated dynamically by
technologies like Servlets or JSP. This and others information not shown here are used only for
code generation purpose. To verify the dynamic content of Web page and the system behavior, we
create test cases as shown bellow.

 testCase testSearchSystem {
 String url = “http://www.searchsystem.com”;
 InitialPage page = [InitialPage] getWebPage(url);
 SearchForm form = page.searchForm;
 form.keywords.value = “ufpe”;
 ResponsePage resp = [ResponsePage] form.submit();
 WebLink link = resp.findWebLinkByURL(“http://www.ufpe.br”);
 }

The test case testSearchSystem requests the page at URL "http://
www.searchsystem.com", verifying if it conforms to the initial system page ([InitialPage]
operator). Then, the test simulates the form submission with the “ufpe” keyword by calling the
submit service defined in the WebForm type. To verify if the system give the correct answer, we
look for the link “http://www.ufpe.br” in the response page.

As we can see, properties defined in WSat types are used to test the components of Web
systems. In order to simulate the users actions, we can use the services of the WSat predefined
types. Some of these services are used to test dynamic content of Web pages. We can use, for
example, services like findWebImageByName, findTextByRegExp and findWebLinkByURL
to retrieve components that represent images, texts and links with the given properties.

In order to validate WSat, we created an execution environment for it by compiling WSat
programs to Java code.

40

Code Generators

In order to reduce development efforts with tests, we implemented two code generators. The first
one is a test code generator, which generates WSat code from HTML prototypes used to validate
the requirements. WSat types are generated to represent the components found like Web pages,
frames, forms and links. As we can see, a lot of code to test GUI structure is generated. However,
the code to test the system behavior could not be generated yet by this test code generator.
 WSat types contain information about the GUI structure of the tested system. From this
information, we can generate part of the GUI code using a system code generator. For example,
considering GUIs implemented with Servlets, we can generate one Servlet for each Web page
tested by a WSat type in the test code. The generated Servlets could be associated to response
templates based in the HTML prototypes. Unit test classes for the Servlets and other types of code
are generated, too.
 The system code to be generated is dependent of the development environment used. For
this reason, the system code generator was build following the Visitor design pattern [3]. Each
visitor manipulates the syntactic tree of WSat programs and it has a specific functionality, like to
generate Servlets or to generate JSP files. In this way, we can specialize the code generator to
new development environment building new visitors.

Development Methodology

Aiming an efficient use of WSat and the code generators, some activities need to be added to XP
methodology. In Figure 2, we can see the proposed changes in the XP flow.

Fig. 2 – Changes in the XP flow chart.

HTML prototypes are created from the requirements found in the user stories. Then, the test code
generator is used to generate part of the acceptance test code. The test programmer completes
the WSat code needed in the actual iteration. The generated WSat types are complemented and
new types could be created to test more complex information. The test cases are written at this
time, too.

From the WSat types created in the actual iteration, we generate the part of the GUI code
to be developed using the system code generator. The generated code is afterwards used by the
programmer to start the system development for that iteration. With few adjustments, the code
generated for the system could be executed just like the HTML prototype. The programmer is
responsible now for implement the system functionalities basically writing the code under the GUI
layer.

Conclusions

Through experiments, we evidence that the type definitions written in WSat code has a high level
of abstraction and readability, facilitating the test programming. The use of types to represent Web
components becomes the test activity more interesting and partially similar to modeling activities,
eliminating part of the traditional tedium existent in writing test cases.

Programs written in WSat could check the components and the behavior of Web systems
GUI, given the supporting needed to do acceptance tests. To support other types of tests, like
performance and stress tests, programs WSat could have embedded Java code. However, this
type of code compromises the abstraction level of code.

With the developed code generators, it is possible to generate automatically part of the test
and system code, improving development productivity and motivating the creation of acceptance
tests before the Web system implementation.

HTML
Prototype User Stories

Acceptance
Tests Iteration

Generated System
Code

Generated Test
Code Requirements

41

 In one experiment done, more than 30% of test code was constituted by the declaration of
WSat types (GUI structure description). The test code generator could generate a good part of that
code, reducing the initial effort to program the tests. And with relation to the system code, more
than 4% of it was automatically generated. The time saved by the generators, in this case, was
sufficient to program simple test cases. However, it is probably not possible when we have a
substantial number of test cases.
 We can explore in future works the association between Web pages, like links and form
actions. These associations could permit the generation of other types of code, different from the
actually generated. For example, may be could be possible to generate part of the acceptance test
cases.

Referências

[1] M. Finsterwalder. Automating Acceptance Tests for GUI Applications in an Extreme

Programming Environment. In XP2001, Sardinia, Italy.

[2] Kent Beck. Extreme Programming Explained: Embrace Change . Addison-Wesley,
1999.

[3] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software .
Addison-Wesley, 1994.

42

Are Extreme Programmers writing too many
Tests?

Position Paper for XP2002 Workshop on Testing in XP

Frank Westphal
Am Brunnenhof 33

22767 Hamburg
Germany

+49-177-2343664
westphal@acm.org

Testing guru Brian Marick is of the opinion that XP’ers write too many tests (and that’s not
something he says often). Actually, Extreme Programming has successfully put into practice what
the testing people have teached for decades already. But then, there is some appeal in Brian
Marick’s statement. The costs and benefits of tests have to be balanced very carefully on every
project. As much as XP will change the role of the traditional tester, the responsibility of
comprehensively testing our own code has also changed the required skill-set for most software
developers. And most of us have only begun to learn how to test in an effective and economic way.

This paper summarizes a couple of related questions and ideas about testing in Extreme
Programming that I’d like to see discussed and explored during the workshop.

The next maintenance hurdle

XP teams generate as much or even more test code than functional code. In my experience, it’s not
uncommon to end up with a 1:1 ratio in total, and a ratio of 2:1 to 4:1 for individual parts of the
software (which either implies that there are untested corners in the system, or that there is indirect
testing going on to some degree).

The danger here is that the sheer amount of test code hinders exactly what it set out to support: the
mobility of the code. While many non-XP teams have not been able to maintain their design
documentation (if any), the same risks still stick with the design documentation in XP: the unit
tests. We have already seen the first signs of XP teams complain about slowing down because of
the fragile nature of their test suite. How can we help those teams?

On the surface, the solution to this dilemma might be trivial. The same quality standards apply for
test and functional code. This suggests we just eliminate any code duplication cropping up in the
tests and write only tests that reveal their intention. But there is more. There is a fine balance to
writing tests that give enough confidence in the fitness of the program and at the same time keeping
these tests as soft as possible to ease future refactoring moves. What are the recurring patterns here,
what are the anti-patterns?

Using and abusing mock objects

Mock objects have become tragically hip since their presentation at XP2000. While they are indeed
a big step towards isolation testing, they also have become the hammer in search of a nail on some
projects that I know. People on these projects decided for some reason to test each and every class

43

independently of their collaborators. While this approach is fine for many hard testing problems, it
quickly leads to a large number of interfaces and mock classes to be maintained.

While the opposite approach of testing classes in small units of closely collaborating classes can
easily lead to the problems of micro-integration testing, in practice, we most often have to strike the
right balance between the two extremes. What are the boundary conditions of when to use and
when to avoid mock objects?

Related to the maintenance issue, generated mock objects in particular tend to specify the behaviour
of the unit under test in too much detail. My experience is that the smaller the unit under test, the
more details will typically be hard-wired into the tests which makes it almost impossible to refactor
the code without breaking a test. After some personal experience of overusing mock objects myself,
I suggest to test classes in small clusters as long as possible. What are other experiences?

Setting the quality bar

In XP, it’s a business decision and therefore the customer’s call to set the quality bar. From there,
it’s the developers’ call to balance the costs and benefits of tests through constant reflection about
their practices. However, in most conventional project settings, there is almost no way and also no
person to set the quality bar. Therefore, more often than not, different team members end up with a
different understanding of their testing priorities. There is no vision for the desired software quality
in such teams which can be a big problem.

To my surprise, I learned the other day that setting the bar on an XP project goes almost unnoticed.
First of all, the desired quality is encoded in the criteria of the acceptance tests provided by the
customer role. And even if bugs slip through, it’s the customer’s call which bug will be fixed at
what point in time through the scheduling mechanism of iteration planning. The problem still
persists for teams who have adopted only XP’s testing strategy, though.

I believe that every project needs some quality management of one kind or the other. One of the
management tools used foremostly on XP projects are big visible charts. What kinds of charts have
you found useful to communicate quality related issues to the (i) customer team, (ii) development
team, and (iii) management team?

Untested corners

Almost any XP team I know has come to some point where they faced an edge of their software
which was particularly hard to test. While some of these teams have tackled the testing challenge
with more or less perseverance, others have left this corner untested ... and regretted this in almost
all cases. Some of these teams have gone back and retrofitted their program so that they could
eventually automate the testing process in this area at least to some degree.

In my opinion, the automation of acceptance tests falls in this category in many places. Every now
and then, XP practitioners have been careless about the practice of automated acceptance testing on
their first XP project only to push it much more so on their next one. I certainly did.

Most of the teams that overcame the challenge of untested corners experienced some profound
design insight. Typically, triumphing over these testing challenges makes for a good story at the
campfire. If you have been on one of those teams, what has been this insight?

44

Testing, when is it enough?

-Erik Bos

Introduction

Kent Beck stated in the acknowledgements of his book [Beck02]: “suggesting
you type in the expected output tape from a real input tape, then code until
the actual results matched the expected result”. In a Programmers
Handbook of 1976 [Volmac+76] programming starts with the following
phases: “Problem definition, planning, main diagram, detailed diagram,
construction of a small test set, desk checking, code”. The test set consists
of the input cards and expected output cards. Desk Checking involves going
through the flowcharts with the specified test input and calculating by hand
the results. The result are then checked against the expected output. You
can imagine desk checking is quite a job when you want to check more than a
small test set. Although tests can be automated in the modern era the
primary “test before you code” practise from the infancy of computer
science still is a very basic and required step in developing software.
However, modern software is often very complex and writing, coding and
executing tests for all imaginable cases would only lead to asymptotic
development. In this paper I propose checking the code coverage of your
predetermined test set and adding tests until you touched all important
parts of your code.

Coverage Experiences

My experience is with writing code and unit tests especially for infra
structural (embedded) software. Since the infrastructure software is used
by all other software modules in the system, it is essential the software is
very stable and extensively tested. For one of the modules I wrote test code
for, I decided to check the coverage of my tests with the Generic Coverage
Tool [Marick95]. I was surprised by the low percentage of code covered.
Some parts of the code, especially the parts that needed Multicondition
Coverage1, took some effort to cover with a test. GCT also shows Relational
Coverage2 also called Boundary Condition Testing [Kernighan+99]. This tends
to find of-by-one errors and turned out to be a very effective way of finding
bugs. I ended up with as much test code as production code. Other modules
1 if (A && B) requires test cases of A and B true, A true and B false, A false and B irrelevant
2 if (A<5) requires a test case where A = 5 to verify whether the ‘<‘ shouldn’t be a ‘<=’

45

even needed far more test code as production code to cover essential parts
of the code. The parts I didn’t manage to cover were reviewed with care.

Another good way to increase coverage is to generate random (valid) input
and Stress Testing [Kernighan+99] a module. Large volumes of test input
tends to test modules on buffer management and robustness against
overflows. Also people tend to create normal test input, whereas computer
generated test input covers the whole range of possible inputs.

Threading problems also tend to show up under Stress Testing. Especially
when using multiple processors the chance of catching a threading problem
increases significantly because the usage of shared resources is increased.

All these tests were programmed by hand, which is a lot of work. Another
approach is generating additional test code. Using State Based Testing
[Turner+93] this was performed for some modules in our system. It involved
listing all states the modules could be in and generating tables of state
transitions. The downside of this way of testing is that the modules
contained so many states that the number of tests tend to explode. It also
doesn’t give you the insight of how to use the software because there are so
many tests, which makes reading the test code hard.

Conclusions

Just writing tests and guessing you have enough tests written to test your
module or system is not enough. What you need are tools telling you what you
have tested and which part of your code is not touched by your tests. You
should keep adding tests until all essential parts of your code is touched by
the tests3.

From a more philosophical viewpoint one may argue that about 80% of the
code is there to handle “non-normal” program flow, i.e. errors and exceptions
are therefore by nature hard to test. One may opt to dedicate less effort to
this (large) part of the code and only select the critical parts of it. “Critical”
is here defined as: “As long as the customer doesn’t go ballistic when this or
that part of the “robustness” code doesn’t function”.

I opt for writing all tests by hand. Although it is a lot of work and generates

3 In XP projects code which can’t be easily covered, would be candidate for refactoring since it is
probably too complex.

46

extra effort to keep in sync with changing requirements, it weights up
against the advantage of showing readers of the tests how your software is
to be used and how it is structured.

Generating test code might be a solution for getting a good coverage of your
code, but doesn’t communicate very well because of the number of tests.
Generating test input and Stress Testing does add more coverage with
limited effort.

References

[Beck02] K. Beck. Test-Driven Development by Example, to be published.
[Kernighan+99] B. Kernighan, R. Pike, The Practice of Programming, Reading,

Ma., Addison-Wesley, 1999.
[Marick95] B. Marick. The Craft of Software Testing, Englewood Cliffs, New

Jersey, Prentice Hall, 1995.
[Turner+93] C. Turner, D. Robson, State Based Testing and Inheritance,

Durhan, England, 1993.
[Volmac+76] Various Authors, Handboek Automatisering, Programmering,

Utrecht, The Netherlands, Automation Centre Volmac, 1976.

Acknowledgements

Many thanks to Frank Pijpers and Dave Karetnyk for their comments and
suggestions for this paper.

About the Author

Erik Bos can be reached at Erik@ErikBos.net.

47

Using Restrictive Approaches for Continuous Testing:
Pre-Integration Checking

Martin Lippert Stefan Roock
Apcon Workplace Solutions & Apcon Workplace Solutions

University of Hamburg
Vogt-Kölln-Str. 30 Friedrich-Ebert-Damm 143
Hamburg, Germany Hamburg, Germany

lippert@jwam.de roock@jwam.de

MOTIVATION
When doing Continuous Integration the correctness of the
code repository is crucial. Since correctness is very hard to
prove, XP uses unit tests to approximate it.

If the code in the repository is broken, all developers in the
team are harmed in a short period of time.

To achieve a full working common code base every
developer should run the complete test suite of the system
on her machine before the integration. Only a green bar
signals the developer to integrate the changes into the
common code base.

Generall y this is done at the Integration machine. While
using CVS or some other kind of source control system the
situation is slightly different. The developer should
download the complete code of the project again after the
integration to see whether all tests are still green on the
common code base.

INTEGRATION CHECKING
To ease this handling of CVS systems as well as ensure the
test are green on the common repository some tools are
available. They perform the tests on the common code base
automatically on every integration. One of these tools is for
example CruiseControl.

Nearly all of the tools do post-integration checking. This
way problems with the code in the repository are detected.
But they are detected after integration which means the
repository is already broken. Again all the developers in
the team may be harmed by the problem.

PRE-INTEGRATION CHECKING
We have followed another – more restrictive - path with a
small tool for the integration process: the CVS-Checker.
The CVS-Checker is a small plug-in for CVS executing an
arbitrary ANT script before checking code into the CVS
code base.

The ANT script simply merges the CVS code with the
code to be checked in and compiles and tests it. Only if

both operations were successful, the code is reall y checked
into the common code base. Otherwise the integration got
rejected. This way it is guaranteed that the code in the
CVS system always is compileable and all test are green
on the common code base.

EXPERIENCES
From the first view the pre-integration checking facility
seems to slow down the integration process because the
integration now needs more than a few seconds to finish.
The additional delay is about 5 minutes for 2000 classes.
Therefore for most projects the delay shouldn’t be a
problem. If it becomes a problem it could be a hint to split
up the project into sub projects with a own CVS each.

Using the Pre-Checking facilit y developers tend to do
smaller refactorings and integrate more often since this
minimizes the risk of creating merge conflicts and being
rejected by the CVS-Checker.

We think the described approach is especiall y useful for
developers which still learn XP. Often they tend to be
sloppy with test execution and the green (or red) bar.

But experienced XP developers also like the tool since it
takes a bit of responsibilit y from their shoulders. Aside of
that the pre-integration checker ensures a always running
common code base which makes the work within the team
as smooth as possible.

OPEN RELATED QUESTIONS FOR DISCUSSION
• What happens if tests last longer than a few minutes?

Is it useful to define a subset of the unit tests as
integration tests? Can be simply use the acceptance
tests as integration tests?

• What about tests which need a proper configured
infrastructure like DB or application server?

• Do other restrictive approaches exist which may be
helpful for XP training?

49

• Does the restrictive approach restrict the flexibility of
the XP team too much? In which contexts?

50

Retrofitting unit tests

Steve Freeman Paul Simmons
M3P Independent

12 Montagu Square 6 Copse Close, Pattens Lane
London Rochester, Kent

W1H 2LD, UK ME1 2RS, U.K
+44 (0) 797 179 4105 +44 (0) 7967 966203

steve@m3p.co.uk pas@pobox.com

“You can’t get there from here.” Punch line to old joke.

“I f you do not start adding unit tests today then one year
from now you wil l still not have a good unit test suite.”
Don Wells1

ABSTRACT
In this paper we describe techniques that we have found
helpful for adding unit tests to existing code that has been
written without tests. The paper presents some common
coding practices that make unit tests hard to retrofit, and
why. For each practice we suggest minimal refactorings to
open up the code for testing.

Keywords
Refactoring, Unit Testing, Legacy Code, Retrofitting

1 INTRODUCTION
Unit tests can be hard to retrofit to legacy code, but not as
hard as many developers believe; for our purposes,
“legacy” i s working code that must be maintained but that
has been written without unit tests. We believe that it is
worth attempting to improve the internal quality of any
system that matters and that unit testing is a key technique
for doing so.

Relentless unit testing is a core practice in Extreme
Programming (XP) [1]. It gives the developers the
confidence to make changes as new requirements arise or
new refactorings are discovered. Furthermore, when written
before the code, unit tests are a powerful design tool that
act as executable specifications; they concentrate the
programmer’s mind on what is really needed and help to
drive the code towards good coding practice [2].

Many projects, however, convert to XP after starting with
another methodology, which usually means that there is an
existing code base that does not have a thorough unit test
suite. The dilemma for the team is that they need a testing
safety net to support the agile development practices they

1 http://c2.com/cgi/wiki?UnitTestingLegacyCode

want to adopt but cannot write unit tests for the entire code
base for two reasons. First, retrofitting unit tests is
expensive, full coverage can easil y take as much effort to
write as did the original system without adding any visible
functionality. Second, there is an obvious deadlock in that
legacy code often needs some refactoring to make it
testable, but refactoring should not be undertaken without
tests in place to prove that it’ s safe.

Both problems must be addressed by a combination of skill
and compromise. First, unit tests can be added
incrementally, perhaps before changing a component for
the first time during subsequent development. Combined
with some judicious functional testing, the team can give
themselves enough confidence to make progress, although
at less than full speed, whilst improving the quality of the
code. Second, our experience is that carefull y fixing a few
“code smells” without unit tests can give the developer
enough leverage to bootstrap the writing of a full test suite.
As the test suite builds up, the developers should look for
opportunities to improve it as suggested by [3].

In this paper we concentrate on those careful fixes. We
describe some common code smells that we have found
inhibit the retrofitting of unit tests, and suggest tactical
refactorings to make such code more accessible. Most of
the smells we have identified are concerned with the
difficult y of isolating the code we wish to test from the rest
of the system, a key requirement for effective unit testing.
Our experience is that changing code to make it testable
usually improves its quality, with a clearer and more
flexible structure. When we retrofit unit tests, we can also
try to retrofit the design benefits that come with test-first
programming.

Our experience is mainly based on Java, but we believe that
most of these patterns apply to other object-oriented
languages. We assume that the reader is familiar with test-
first development, the JUnit framework [4], and refactoring
as described by Fowler [5]; we annotate patterns and
refactorings from Fowler using [F].

51

2 CODE SMELLS
This section describes some common code smells that
make unit tests difficult to add to legacy software.

Singleton
The Singleton is perhaps the most widely used and
misunderstood pattern in Gamma et al [6], and is often
found in legacy code. A common use of Singleton is to
encapsulate external resources such as databases or files.
Since it provides a single access point, call s to a singleton
are often scattered throughout the code.

The issues for unit testing are: first, sometimes the
singleton object cannot be changed because, for example, it
is set up in a static initializer (see below). This makes it
impossible to isolate the tested code from its environment
by substituting a mock implementation [7] of the singleton.
Second, even where the singletons can be replaced, the
tests for objects that refer to many singletons wil l be
tedious and error-prone to set up. Finally, many uses of a
singleton wil l repeat behaviour that must be tested
separately for each case, increasing the testing effort.

One solution is to add a setter method to the singleton class
to overwrite its static instance. This weakens the
encapsulation of the singleton itself but may be suitable for
cross-application features such as a logging interface. The
test suite can use the setter to assign a mock
implementation and the application can continue to use the
singleton as before. Rainsberger [8] suggests aggregating
singletons in a Toolbox so that their lifetimes can be
managed by the application. An alternative approach that
does not alter the singleton class is to Pass singletons
through.

Complex construction
Sometimes most of the implementation of a class is
concerned with setting up its initial state and is not used
again after instantiation. For example, a class to represent a
financial yield curve requires complex calculations to work
out its initial values, but only simple lookups when in use.
Similarly, a class that represents a user may refer to an
external directory service only during initialization.

The issues for unit testing are: first, it is cumbersome to
create instances of the class when testing both the class
itself and classes that interact with it; for example, it may
be too hard to create every state that needs testing via the
public constructors. Second, construction that relies on
external resources is an unnecessary dependency when
managing unit test suites. Third, the test suite for class
instances wil l be less readable because it will be swamped
with tests for construction rather than tests for use. These
are all symptoms of a poor separation of concerns.

A first step would be to add a simple constructor to the
class and to write separate test suites for construction and
use. A better approach is to refactor using Separate
construction from use.

Data class
Data class, which consists mainly of fields and their getters
and setters, is described in Fowler. Data classes are often
found with utilit y classes to support common operations on
them.

The issue for unit testing is that data classes often imply
that some related behaviour has been scattered around the
clients of the class, so related test code has to be repeated
or gathered into helper code. Furthermore, code that passes
data objects around tends to have Long methods (see
below) that are hard to test.

Even where data classes are required, perhaps for use in a
reflective framework, it is often possible to move
responsibility to the data class by combination of
extraction, encapsulation and moving, as described in
Fowler.

Static initialization
Many developers use static initialization, code that is run
when a class is loaded, to set its initial state; common
examples are initializing singletons, starting loggers, and
loading property values from files. Whilst this technique is
useful for reducing the intellectual load on the programmer
and for ensuring the internal consistency of a component
before it is used, there are maintenance costs if the static
code is complex or refers to external resources.

The issues for unit testing are: first, it can be difficult to run
repeated tests over such code. To do so requires repeated
reloading of the class, it may be hard to set up conditions to
test failures, and errors may be hard to trap for test results.
Second, such classes are hard to instantiate outside their
framework when they are required for testing other classes,
especiall y when the source code is not available. For
example, one of the authors got stuck trying to create a
parameter object from an application server because a static
initialization in a super type was faili ng silently.

The solution is to Remove complex static initializers.

Bleeding across layers
It is quite common to see business domain code use
framework classes, such as Servlets, so that package
dependencies “bleed” across the layers of an application.
Examples include passing a Servlet request as a parameter
to a domain class, or throwing a Servlet exception from
within a domain class. This risk may be higher on Extreme
Programming projects, where the programmers aspire to
“Do The Simplest Thing That Could Possibly Work.”

The issue for unit testing is that bleeding across layers
introduces unnecessary dependencies between components
and, hence, between tests. First, anyone reading or writing
a test for the business class must understand both layers and
the tests are less likely to read well . Second, if classes from
the framework layer change, this may require business
layer tests to be changed. Finally, test setup may be

52

difficult if , for example, some framework classes do not
have constructors that are accessible outside the
framework.

The solution is to refactor at the places where the layers
touch and Weaken dependencies between layers.

Classes as parameters
In Java, it is worth specifying the parameter and return
types of a method (its signature) in terms of interfaces
rather than classes, if those classes are at all complex.

The issue for unit testing is that, for parameters that are
defined as classes, a mock or stub implementation can only
be substituted by subclassing, which has two limitations.
First, it cannot also inherit from common mock or stub
implementation classes, nor can it take advantage of Java
proxies, as with EasyMock [9]. Second, if the parameter
class, or one of its ancestors, changes or adds a method, the
stub class wil l no longer override all the real methods and
the test case might pick up the wrong implementation. Such
bugs in the test environment can be difficult to find when
the test unexpectedly fail s (or, worse, passes). Similar
issues arise with return types; when the class itself is
stubbed out for testing other classes in the code base, it may
be easier to return a simple stub than an instance of the real
type.

The solution is to Replace class with interface in the
signature. If this solution is too difficult to apply at first,
perhaps because the parameter class is used in many places,
then first create the stub implementation as a subclass of
the parameter class and later refactor both the stub and
original classes to extract an interface.

Imprecise exceptions
Java supports checked exceptions, where the compiler will
validate that all the exceptions that might be thrown from
within a method are either handled or declared as part of
the signature. Some developers avoid checked exceptions
by catching and dropping exceptions they don’t know how
to handle (that is, by ignoring the signal), or by declaring
the method to throw the generic type Exception. An
equivalent to the latter is to always throw unchecked
exceptions.

The issue for unit testing is that exception handling must
also be tested. First, it may be hard to detect a result that
will confirm that an exception has been thrown if the target
code drops it. For example, if the beginning of a method
drops an exception, its unit tests ought to be run twice, once
with the exception thrown and once without. Second, where
exception checking is ignored, it can take some time to
work out and unit test all the possible exception paths
through the code.

The solution is to be precise when managing checked
exceptions. Dropped exceptions should be encapsulated by
Extract Method [F], which wil l often suggest a further

Extract Class [F] to reify the interaction with the
component that throws the exception. Checked exception
lists should be narrowed to just those exceptions that a
method can throw, this can be propagated incrementally
from where the code touches external libraries. Our
experience is that a littl e rigour applied to indistinct Java
exception management can greatly simplify the code and,
hence, the unit tests to drive it.

Long method
Long method is described in Fowler. The additional issue
for retrofitting unit tests is that such methods are also
painful to test. Typically this involves writing a long series
of tests, each of which progresses a little further through
the method before forcing the next exit condition. Setting
up enough state in a test to get through the entire method is,
at best, complicated.

If the method is too long to test as it stands, one solution is
to test and refactor incrementally. Long methods often
contain several logical sections, for example: check the
inputs, perform operations, and assemble the result. Test a
section at a time and extract helper methods to isolate it. If
possible, extract a section and its tests as a class, perhaps as
a policy object. Subsequently, the new object can be
replaced with a Mock Object and the tests for the method
simplified.

In the best case, a long method collapses either to a class in
its own right, or to a collaboration between a set of smaller
objects, that can be tested separately. The tests for the
refactored method need only exercise the routing between
those objects.

3 REFACTORINGS
Pass singletons through
Objects that are neither ubiquitous, such as loggers, nor
constant values should be passed through as method
parameters, rather than retrieved as singletons; a common
example is a database connection. This can be done
incrementally by first adding the parameter to low-level
methods (in this case DBConnection) and passing in the
instance from the singleton, then later propagating the new
parameter up the call stack. There is a risk that parameter
lists will become too long as more singletons are removed,
but in practice we have found that ex-singletons, such as
external connections, are usually local to a sub-system or
package. Furthermore, passing singletons through as
parameters often leads to Introducing Parameter Objects
[F] which, in turn, suggest useful refactorings.

The advantage for unit testing is that a parameter,
particularly if it is an interface, is easier than a singleton to
replace with a mock implementation, thus isolating the test
from the rest of the application.

Separate construction from use
Where most of the implementation of a class is taken up
with constructing an instance, such as calculating the yield

53

curve on a financial instrument, consider separating the
construction aspects into a factory object—our mental
image for this is the way that booster sections are jettisoned
during the launch of a space rocket.

This technique is most likely to apply when the
construction phase uses different resources or libraries from
the use of the object. The benefit for unit testing is that the
two classes should have more focused responsibilities and
so be easier both to test and to stub out.

Remove complex static initializers
A first step is to move static initialization code into static
methods so it can be referred to by name and parameters
and results passed through. Techniques such as lazy
initialization allow such methods to be called explicitly , for
testing, or automaticall y when in production.

It may be, however, that code of any complexity should not
be run implicitly , but should be made visible and called
directly from the application startup sequence. This makes
error handling easier to manage and ensures that failures
occur at the right time. One of the authors used this
technique when porting a component between two
frameworks that used different error reporting. The move
revealed a failure in initializing the logging library that had
previously been hidden by an incorrect startup sequence.

Weaken dependencies between layers
To reduce class dependencies between layers of an
application, there are three cases to consider: First, where
explici t creation occurs across the boundary, such as
creating a new Customer object from a servlet, consider
Replace Constructor with Factory Method [F]. Thus the
servlet might now use a CustomerFactory to create a
Customer, rather than instantiating one directly. When unit
testing we can substitute a mock CustomerFactory that
instantiates a mock Customer.

Second, where several values are passed across a boundary,
consider Introduce Parameter Object [F]. For example,
when passing start and end dates from a user’s http request
to an Account object, we might bundle these into a
DateRange type. This clarifies the relationship between the
layers and we are likely to be able to move behaviour to the
new parameter object, which can then be tested in isolation.

Third, where a framework layer needs to interrogate its
client layer, it should define a callback interface that the
client layer can implement. For example, where an Account
object needs to extract session values from an http request,
define an AccountSession interface that makes explicit
what an Account needs to know about its context, then
implement an HttpAccountSession class for use with
servlets. We can now unit test separately the extraction of
the values from the http session and the use of those values
in the Account. For the Account class, we can create a
MockAccountSession to isolate its tests from the servlet
framework.

Replace class with interface
In Java, where the input parameters or return value of a
method are typed as classes that are at all complex,
consider changing those types to interfaces and renaming
the classes. Types based on interfaces are easier to
substitute with stub or mock implementations, so it
becomes easier to test a class in isolation from the rest of
the system. The overhead of maintaining the extra type is
mitigated by modern development environments and by the
flexibilit y it adds to the code. One implication of this
technique is that the coding standard should not use type
names to distinguish interfaces or classes, such as with a
leading or trailing ‘I’ , as this hinders refactoring between
the two.

With some care, the same technique can be applied in C++
by using abstract classes as interfaces and multiple
inheritance to bind them to implementation classes.

4 RELATED WORK AND OTHER TECHNIQUES
There is a growing body of experience with test-first
development: Fowler [5] catalogues the core code smells
and refactorings, and there are links to papers and
discussions from the JUnit site [4] and on the C2 wiki [10].
This paper focuses on code smells and refactorings related
to retrofitting unit tests.

There have been some interesting discussions about the use
of Aspect Oriented Programming [11] for unit testing. The
idea is to intercept the calls the target code makes to other
objects in the application. One idea is to use this technique
to implement Mock Objects, tracking calls and returning
preloaded results [12]. An alternative is to log important
values when running functional-level tests and check that
these don’t change during refactoring. In our view, these
are valuable intermediate techniques to help with opening
up opaque code, but we are wary that they change the
actual code under test.

5 CONCLUSIONS
In this paper, we have identified some coding practices that
make the retrofitting of unit tests difficult. We have
identified some related refactorings that we have found
allow us to “chip away” at the code enough to start adding
unit tests. These tests then give us the confidence to
refactor, add new functionality, or fix bugs using test-first
programming.

Those of us who practice test-first programming do so
because we believe that it is more effective and drives us to
writing better code. Many of us, however, also have to
work with existing code that we cannot break, but need to
change. The authors have found that retrofitting unit tests
helps to support programmers when making changes and to
guide the code to a better design through refactoring.

How much time to spend on retrofitting unit tests, or
whether to do so at all, is outside the scope of this paper; it
can be an expensive exercise. For those who chose to do so,

54

we hope that this paper embodies some useful experience.
Before starting to refactor for testing, we also recommend
that the developers write some functional tests that touch
the components concerned to catch any gross errors that
they might introduce.

Finally, the real point of this paper is that, given the will
and enough slack in the immediate schedule, it is possible
to add unit tests to almost any existing code base—and for
a team that wants to be agile, it is essential.

ACKNOWLEDGEMENTS
Thanks to Michael Feathers, Tim Mackinnon, Duncan
McGregor, and Rachel Davies for their comments on early
versions, and to the members of the Extreme Tuesday Club
for being part of the community.

REFERENCES
1. Beck, K, Extreme programming explained:

embrace change. Addison-Wesley, 1999.

2. http://c2.com/cgi/wiki?UnitInUnitTestIsntTheUnit
YouAreThinkingOf

3. van Deursen, A., Moonen L, can den Bergh, A,
Kok G, Refactoring Test Code, XP2001, Sardinia,
2001.

4. The JUnit web site. http://www.junit.org

5. Fowler M., Refactoring: improving the design of
existing code, Addison-Wesley, 1999.

6. Gamma E, Helm, R, Johnson, R, Vli ssides, J.
Design Patterns, Addison-Wesley, 1995.

7. Mackinnon T., Freeman S., Craig P., Endotesting:
unit testing with Mock Objects, in Extreme
Programming Examined, Addison-Wesley, 2000.

8. Rainsberger, J. Use your singletons wisely,
http://www-106.ibm.com/developerworks/compon
ents/library/co-single.html

9. EasyMock http://www.easymock.org/

10. http://c2.com/cgi/wiki?UnitTestingLegacyCode

11. http://www.aspectj.org

12. http://groups.yahoo.com/group/extremeprogrammi
ng/message/37004

55

Implementing and Using Resumable
TestFailures in Smalltalk

Joseph Pelrine
MetaProg GmbH

Position paper for

Workshop on Testing in XP (WTiXP 2002)
XP 2002, Alghero, Sardinia

The high performance aspect of extreme Programming derives in part from the
rapid feedback cycles in unit testing. Collection testing and validation, however,
can be very time-intensive, and can slow down the development process to the
point where the advantages of test-driven programming are lost. Through the
implementation of "resumable" test failures, though, this deficit can be
compensated for. The ResumableTestFailure (to be introduced in SUnit 3.1) offers
a flexible implementation of this in Smalltalk.

The new SUnit release 3.1 adds more functionality at little cost to both
Smalltalk’s and extreme Programming’s premier testing framework. In addition to
the assert:description: family of methods (well-known from JUnit), which allow
you to attach arbitrary description strings to assertions, the major change is the
introduction of a resumable TestFailure.

Why would you need a resumable TestFailure? Take a look at this example from a
typical test case method:

aCollection do: [:each | self assert: each isFoo]

In this case, as soon as the first element of the collection isn't Foo, the test stops
and returns a failure. Although this information is necessary for test-driven
development, it normally isn’t sufficient. In most cases, we would like to
continue, and see both how many elements and which elements aren't Foo. It
would also be nice to log this information. You can do this in this way:

57

aCollection do: [:each |
 self
 assert: each isFoo
 description: each printString, 'is not Foo'
 resumable: true]

This will print out a message on the Transcript for each element that fails. It
doesn't cumulate failures, i.e., if the assertion fail 10 times in your test method,
you'll still only see one failure.

Implementation
As a result of SUnit being extremely lightweight, it required only minimal effort
to implement the functionality required to support ResumableTestFailures.

1. The class ResumableTestFailure was created as a subclass of TestFailure,
which itself is defined in the SUnitPreload package. (This package contains
all dialect-specific Classes and Methods for SUnit, and makes it possible
for the core SUnit package to be dialect-independent).

2. The method Exception>>#isResumable was overwritten to return true.

3. The method Exception>>#sunitExitWith: , which normally returns from
the exception, was overwritten to resume execution.

While running the test cases, it was noticed that the SUnit framework had a
conceptual inconsistency which was overlooked in the original implementation.
The method TestResult>>#failures, which returns the collection of failures for a
test run, was implemented to be an OrderedCollection. This led to each triggering
of a ResumableTestFailure adding yet another failure to the collection. The
implementation was changed to be a Set, based on the fact that a test case
method is a failure regardless of how many assertions in the method are false.
Also, implementing the failure collection as a Set reflects the fact that test cases
should be non-deterministic, i.e., the order in which the test cases are executed is
irrelevant.

The change in TestResult>>#failures led to a slight change in
TestResult>>#defects, which was dependent on the failures being contained in an
OrderedCollection. This change was minor, and will not be discussed further.

The implementation also required a method for triggering both regular and
resumable TestFailures. The basic method,
TestCase>>#assert:description:resumable: is illustrated below:

assert: aBoolean description: aString resumable:
resumableBoolean

 | exception |
 aBoolean ifFalse: [
 self logFailure: aString.
 exception := resumableBoolean
 ifTrue: [ResumableTestFailure]
 ifFalse: [TestResult failure].
 exception sunitSignalWith: aString]

58

Once again, the implementation of SUnit has proven to be very efficient and
flexible when it comes to adding or extending behavior without changing the
base packages. Of course, being in Smalltalk helps too – YMMV.

Joseph Pelrine wrote the reference implementation of SUnit 3.0. He is (together
with Sames Shuster and Jeff Odell) maintainer of the SUnit distribution on
Sourceforge.

He can be reached at:

Joseph Pelrine
MetaProg GmbH
Bachlettenstrasse 41
CH-4054 Basel
Switzerland
Email: jpelrine@metaprog.com

59

