Proceedings of

Workshop on Testing in XP
WTIXP 2002

May 27, 2002
Alghero, Sardinia, Italy

http://ww. cw . nl/wixp2002/

Workshop in conjunction with the Third International Conference on
eXtreme Programming and Agile Processes in Software Engineering (XP2002)

WTiXP 2002 2 Workshop on Testing in XP

All papers are copyright (©) 2002 by the authors.

Edited by Leon Moonen (Leon.Moonen@cwi.nl)
Printed by CWI, the national research institute for
Mathematics and Computer Science in the Netherlands.

WTiXP 2002 3 Workshop on Testing in XP

Contents

Workshop on Testing in XP 5

1. One suite of automated tests: examining the unit/functional divide
by Geoffrey and Emily Bache

2. Is GUI Testing Difficult? 9
by Andrew Swan

3. Canoo WebTest White Paper 11
by Dierk Konig

4. Automated Acceptance and System Testing Frameworks 19
by Peter Kelley

5. Test First Design With UML / A Picture is worth a Thousand Programmers 23
by David Hussman

6. Patterns for Java Program Testing 25
by Marco Torchiano

7. Testing ideas and tips from the battlefield 31
by Piergiuliano Bossi, Giannandrea Castaldi and Alberto Quario

8. DiPS: Filling the Gap between System Software and Testing 35
by Sam Michiels, Dirk Walravens, Nico Janssens and Pierre Verbaeten

9. Web Systems Acceptance Tests and Code Generation 39
by Eduardo Aranha and Paulo Borba

10. Are Extreme Programmers writing too many Tests? 43
by Frank Westphal
11. Testing, when is it enough? 45

by Erik Bos

12. Using Restrictive Approaches for Continuous Testing: Pre-Integration Checking 49
by Martin Lippert and Stefan Roock

13. Retrofitting unit tests 51
by Steve Freeman and Paul Simmons

14. Implementing and Using Resumable TestFailures in Smalltalk 57
by Joseph Pelrine

WTIiXP 2002 4 Workshop on Testing in XP

WTiXP 2002 5 Workshop on Testing in XP

Wor kshop on Testingin XP

Background

“If there is a technique at the heart of extreme programming (XP), it is unit testing’ [1]. As part
of their programming activity, XP developers write and maintain (white box) unit tests continually.
These tests are automated, written in the same programming language as the production code, con-
sidered an explicit part of the code, and put under revision control. The XP process encourages
writing a test class for every class in the system. Methods in these test classes are used to verify
complicated functionality and unusual circumstances. Moreover, they are used to document code by
explicitly indicating what the expected results of a method should be for typical cases. Last but not
least, tests are added upon receiving a bug report to check for the bug and to check the bug fix.

On the other hand, there are a lot of issues surrounding testing that are not that well understood:

e What part of the code do you actually test? How much testing is enough? How to determine
“everything that could possibly break™?

e How can we recognize and reuse testing patterns (such as, for example, mock objects)?

e What happens to the tests when code is refactored? On the one hand, we cannot change them
since we need them to validate correctness after the changes. On the other hand, refactoring
can move functionality between classes, so we need to update our tests or they will fail.

e What about GUI testing, performance testing, and distribution testing?

And there is more than unit testing: Acceptance tests (also known as functional tests in XP terms)
are used to prove that the application works as the customer wishes. They help the customers to gain
confidence that the whole product is progressing in the right direction. Acceptance tests operate
from the customer perspective, they don’t test every possible path in the code (unit tests take care of
that), but demonstrate that the business value is present. Furthermore, they allow the programmer to
track the state of implementation in relation to the user written story cards.

This kind of testing should also be done automatically to allow short testing cycles while pro-
gramming. While programming acceptance tests for calculation parts of a software system is easy,
acceptance testing for more interactive applications or embedded systems is much harder and more
complicated to realize. The community could benefit from a discussion on the different acceptance
testing techniques and additional ideas aimed at solving the difficulties in this area. Interesting ac-
ceptance testing topics that need more discussion include:

e Programmed (automatic) acceptance tests for highly interactive applications

e Programmed (automatic) acceptance tests for graphical applications

e Programmed (automatic) acceptance tests for web applications

e Programmed (automatic) acceptance tests in the presence of embedded systems
e Acceptance tests for performance-critic applications

WTiXP 2002 6 Workshop on Testing in XP

Objectives

The purpose of this workshop is to bring together practitioners, researchers, academics, and students
to discuss the state-of-the-art of testing in extreme software development projects. The goal is to
share experience, consolidate successful techniques, collect guidelines, and identify open issues for
future work.

Topicsof interest

Workshop topics include, but are not limited to:
e Bad smells in testing
e Testing patterns

Refactoring test code

Test first design

Acceptance testing

Managing your test suite

o Dealing with testing conflicts

Experience reports

Organization

Leon Moonen (CWI, the Netherlands)
Martin Lippert (University of Hamburg & Apcon WPS, Germany)

Program Committee

Avrie van Deursen (CWI, the Netherlands)

Steve Freeman (M3P, United Kingdom)

Tim Mackinnon (Connextra, United Kingdom)

Gerard Meszaros (ClearStream Consulting, Canada)

Joseph Pelrine (MetaProg, Switzerland)

Stefan Roock (University of Hamburg & Apcon WPS, Germany)
Shaun Smith (ClearStream Consulting, Canada)

References

[1] K. Beck. Embracing change with extreme programming. IEEE Computer, 32(10):70-77, Octo-
ber 1999.

One suite of automated tests:
examining the unit/functional divide

Geoffrey Bache
Carmen Systers AB
Odinsgata 9
411 03 GoteborgSweden
+46 (0 31 720 8137
gedf@carmen.se

ABSTRACT

Extreme Progranming (XP) as written [1]
prescribs doirg and automting both unt and
functiond testing Ou experierces lea us to
bdieve thd the® two sors d teding lie & two
ends d a moe a less cotinuows scaleard tha it
can be desirabled instea run a XP propd with
just one tes suite ocaupying the middle ground
between unt and fundional. We bdieve tha this
teding approah dfers mos of the advantaged a
standad XP tesing approachin a smpler way.
This repot explains wha we have doneard our
theory as to why it works.

Keywords
XP, Automatel tesging, Fundiond testing Unit
teding, Teg First Development

1. INTRODUCTION

When we intraduced XP & Carmen Systemsthe
worg problem with our developmehprocess was
na our teging pracedures beirg ou of control We
alread had automated téimg, thaugh nd along
thelines oulined by Beck Jdfries d al [1, 2].
Fdlowing the advice ¢ “Solve you worg problem
first”, we bega intraducing othe aspects d XP,
expeding tha at sone poirt testirg would kecome
our “worst problent and we woul stat needing
separat urit and fundiond test suitesTha never
seemd to hgppen - we have bee doing dl the
othe XP pratices in 2 progcts for 18 montts or
sq ard ou style d automate tesging ha nd only
na becone a problem bu in fad a grea swceess
tha seens o fit very wel with the res of XP.

The automate tess we have are perhapest
explaing as “pragmaic acceptance testswe run
the systen & closey as possibt 0 the way the
custome will run it, while beirg preparedd break
it into subsystemin orde to dlow fast eadly
automatal# tesing. The overdl effed is tha the
tess ae ownel by the customerwhil e beirg just
abou fast enagh to be run by the developeas
part of the minute by minute code-bild-teg cycle.

Emily Bache
(independent)
Flunsasiden 25
418 71 GoteborgSweden
+46 (0 31779 35 14
emily_bache@goteborg.utfors.se

2. THE CARMEN TEST SUITE

Wha we have creatkis an goplication
independenautomatt tesing framework witten
in Bourre shd and Python The framewok alows
you to creae ard stoe tes cass in sutes runs
them in pardlel over a network ard reports
resuts. Fa ead ted ca® the framewdt provides
stored inpu data © the testd progran via ogions
or standad inpu redirects Asit runs the tested
progran praduces ouput as tex or text-convetible
files. When it has finished the tesing framework
then compare (usirg UNIX “diff") this ouput to
version-contried “standard resuts. Any
difference 4 all* is treatd as a falure. In addition,
the framewok measurs the performancefahe
test ard if it strays outsie pre-stlimits, (for
exampe if it takes 0o lorg to executd this is also
recordel &s falure.

New tess ae aldal by providing new input
options ard running the systen orce b recod the
standad behaviou agains which future rurs will
be measuredrhis behaviouis careflly checked
by the customers tha s/he ha confidere the
teg is carect Orce verified the nev ted ca® (ie
input ard expectel resuts) is checked into version
contrd with the others.

Of course na all differences in systen behaviour
are undesirableand it sometims hapers thd a
teg failure is registerd even thauigh the new
systen behaviou seens as god as a beter than
the old If this hgpensit isup the developer
who mack the code change theausd the tes to
fail to confirm with the custometha the change is
desirable ard then ched in the nev standard
resuts d the test(s) They mug al add a
commert explaining why the nev behaviou is an
improvemer on the old In this way the behaviour
of the systen can evolve in a fuly contrdled way.

1 1except for run-dependent output such as times and
process IDs, which the framework ignores.

We have bae vely suwccessfu using this tednique
at Carmen Systers to ted the decisio making
middle laye of a large application - tha is the kit
between the use interface aml the dat storage.
Since we are niatestirg the systen erd to end we
are nd really doing Acceptaige Tesing from the
customers poirt of view. Since we are nowriting
tesk in the same laguage & the code ard are not
writing tess far individud classeswe are not
doing Unit Testing However, ve d ga enaugh of
the advantaged both kinds d teging to support
XP.

3. STRENGTHS AND WEAKNESSES

The mo$ important wag the tesing pradices
suppot the res of XP ae by providing developer
confiderce b refactod and custome confiderce in
progress beilg made The tesing we d provides
both o those:

* Mogt of the tess car be run ina mater of
minutes (the tess run in pardlel acress a
network) s they can be run & neary every hiid,
and can provide fas enaugh feedbak to enable
merdlessrefactoring.

* Everyteg carespond o red input and
customer-verifid output 0 thelist of passirg tests
is an accurak measure the customesn use to
assess progress.

This way of teging has othe advantagegoo.
Adding a nev ted is vel straightforward dl it
requires is finding sutable input data thaer having
the customeconfirm that tke ouput is carect.
There is o gpplication- or feature-spcific code to
maintan ard refactor only the generic tagg
framewok itself. Anothe usefu feature is the
ahlity to run tess in pardlel, usirg 3rd pary load
balancirg softwae o male maxmal use d the
compuing resouces avdlable a the network.
This means thahe sped d the te$ suite is only
limited by netwok resouces ard thetime it takes
the longestest b run.

One ciiticism that ha been levdled a this styke of
teding is tha without unit testsTeg First
Developmen (TFD) as sut is nd really pcssible.
Bed describe THD as a desig technique [3], and
it has been reporte as sut by many pratitioners
of XP [4]. However, despe nd doing TFD, we
hawe nd had difficulty creaing a systen composed
of objects exhiliting high cohesion ath loose
cougding. We have als nd had difficulty evolving
the desig via merdess refactorig & nev user
stories ae implementedin short our experierce
suggest tha TFD is nd the only way © evole a
goad design within an XP progct.

4. FURTHER WORK NEEDED

The gplications with which we have s far used
this tesing technique dl operat in batch mode,
and do na need to ded with the problem of
simulating interative input. However, v have
been able on a trid basis to integrae the tessuite
with a third-pary GUI playbad teging tool
(QCReplay[9). The playbak tod simulatesa user
sessian in a repeatalel way ard in dfed makes an
interative gplication into a batt goplication. We
hope tha future XP progct with a GU-focus will
be able ¢ buld on this trid work. We al® bdieve
tha othe kinds d applications can usudly be
mack to run in batch mod with a kit of effort and
ingentty.”

5. CONCLUSION

In this pratitioners repot we have otlined our
experierces with automate teging in the middle
grourd on the scale betweeunit and acceptance
teging. Our main conclusios ae tha since the
custome is far beter qudified than the developers
to specify test far the systemthey shoud specify
the testsOn the othe hand the powe of placing
teging in a vew tight feedbak cycle within
developmenis essetial to enabé refactorig and
agle designso the tess mus run quickly. If we
can hae one site d tess thd isboth customer
ownel and fasto run we havea powerflitod to
suppot a smpler pracess tha XP & written - with
one type dteding rathe than two.

REFERENCES

1. Beck “Extreme Pogranming Explained”

2. Jdfries ¢ al, “Extreme Pogranming Instdled”

3. Beck “Aim, Fire”

http://ww. conput er. or g/ soft war e/ hone
page/ 2001/ 05Desi gn/

4. Community discssion for example
http://ww. c2. confcgi/wi ki ?TestDriven

Pr ogr anm ng

5.
http:/mww.centeline.com/praudline/qcreplay/qcrepla
y.html

Is GUI Testing Difficult?

Andrew Swan
andrews@owl.co.uk

It is claimed that it is difficult to test GUISs, either at all, or using test first techniques.
One argument is that the user interface changes too often and that simple changes in
the GUI can cause a large number of tests to break. This is usually based on testing
GUISs using input recorders and comparing screen grabs. Another problem can be
testing code which has been auto generated by a GUI builder tool. Often there will not
be the hooks exposed to allow testing of this code.

I would argue that GUI testing is no more difficult than testing any other code. It is
even possible to use "strict" test first, i.e. always have a failing test before changing
implementation code. This is based on my experience writing GUI applications in
Java using Swing.

I have collected 4 techniques that I believe are very helpful in testing GUI code, both
for unit testing and acceptance testing.

1. First test

How do you write a failing test to prove you need a GUI?
public void testMain() {

assertEquals(0, Frame.getFrames().length);
main(null);
assertEquals(1, Frame.getFrames () .length);

}
The simplest code to make the test pass is:

public static void main(String[] args) {
new Frame () ;

}

2. Separate model and view

Model-view-controller is often given as a pattern to simplify GUI testing. The model
referred to is usually the domain model, but for effective GUI testing you need to
remove as much code as possible from the GUI. Even the simplest of user interfaces
has a requirement for logic to control selection, focus traversal, enabling of controls,
etc. There should be a model to represent this logic so it can be tested non-visually.

Within the Swing framework there are classes to represent these elements, for
example, Action and ListSelectionModel. GUI testing should concentrate on testing
these models.

3. Name components

Some of the most frequently changing aspects of a user interface can be the layout,
and text on controls. If you have tests which rely on components being in a certain
location, or having some particular text on them, you are likely to spend a great deal
of time updating tests.

A simple solution is to associate a logical name with the control. This also provides a

good first test to prove that a control exists.
public void testConstructor () {
JDhialog d = new MyDialog();
assertNotNull ("OK button exists", findChildNamed(d, "OK"));

10

The simplest code to make the test pass is:
public MyDialog () {

}

JButton b = new JButton();
b.setName ("OK");

add ()7

The method findChildNamed recursively searches the child components of a given
container for a component with the given name.

Another major advantage of naming components is using it as the basis of acceptance

test scripts.
For example:

public void testSaveDialog() {

}

This would test that a dialog becomes visible when the Save item on the File menu is

findItem(findMenu(frame.getJMenuBar (), "File")
assertEquals(1, frame.getOwnedWindows () .length)
Dialog save = frame.getOwnedWindows () [O 1;

assertTrue(save.isVisible ());

findButton (save, "OK").doClick():;

assertFalse(save.isVisible());
assertEquals(0, frame.getOwnedWindows () .length);

, "Save").doClick();

clicked, and becomes hidden when the OK button in the dialog is clicked. Using
getOwnedWindows ensures that the dialog has the frame as its owner.

4. Modal dialogs

How do you test a modal dialog when it will block the test as soon as it’s shown?
public void testDialog() {

}

MyDialog d = new MyDialog();

try {
d.show(); // blocks!
assertTrue(d.isVisible());
assertTrue(d.isModal());

} finally {

}

d.dispose();

The assertion will never be reached until dialog is hidden, and then it will fail!

To solve this problem we can execute the show on another thread, the thread

executing the Swing event queue.
public void testDialog() {
MyDialog d = new MyDialog();

}

public void run()

try {
SwingUtilities.invokelLater (new Runnable () {
d.show(); } })i
SwingUtilities.invokeAndWait (new NoOpRunnable());
assertTrue(d.isVisible ());
assertTrue(d.isModal());
} finally {

}

d.dispose();

Firstly, show is called, the invokeLater will return as soon as the show has been

queued on the event thread. Next a no-op is queued, which will only execute once the

show has been executed. This has the effect of blocking the testing thread until the

show has been called. It is then safe to make any assertions about the shown state of

the dialog.

In conclusion, GUI testing is not difficult. XP testing is focused on using a

lightweight coding framework, this can easily be extended to GUI testing. In addition

these techniques can also be used as the basis for automated acceptance tests.

{

11

Dierk Konig
Canoo Engineering AG
Kirschgartenstr. 7
CH 4051 Basdl, Switzerland

Dierk.K oenig@canoo.com

WebTest Position Paper
XP2002 Testing Workshop Submission

Testing is an important part of any serious development effort. For web applicationsit is crucial.

Defects in your corporate website may be only annoying at one time but they can cost you real
money at other times, they can lower your market value and may even put you out of business.

Canoo WebTest helps you to reduce the defect rate of your web application.

What our customer s car e about

* Quality

» Development Risk

* Operations Risk

* Delivery

e Costs

Quality improvements are hard to achieve if you cannot see the the effects
of your measures.

Canoo WebTest measures the externally observable quality of your
application.

I's the development team on track? What progress did it achieve? What
doesit mean, if they say that 80% isworking? Isit really?

Canoo WebTest reports the real progress in terms of running Use Cases.
Can we put our application into production safely? Will it work? Will it not
do any harm when running?

Canoo WebTest tells you whether it will work.

Did the development team really deliver everything they promised?
Canoo WebTest tells you what was delivered and whether it works as
expected.

The costs for testing must not exceed its benefits.

Canoo WebTest isfree of charge, tests are easy and quick to write. They
can be run countless times unsupervised and automatically. Infact it is
cheaper and faster than testing manually.

What programmers car e about

12

As programmers we want to be sure that our web application works as expected. We want to
validate our work. We need some backing so that we can boldly say: "Y es, we have done it
correctly. Yes, it works. Y es, we are finished with this. No, we have not broken any old
functionality."

If we apply the full set of teststo the system every day then it is be easy to find the cause of any
reported defect, because it must be something we checked in yesterday.

If testing finds a defect, we want to solve it quickly. Therefore, we need to reproduce the
unexpected behavior. What were the steps that led to this error? What was the sequence? What
were the intermediate results? How much easier would it be to track down the error if we only had
this information!

No matter how hard we try, there will always be defects that slip through our testing. They get
reported by our users. We want to make sure that their feedback does not get lost, that the defect
really gets solved, that it never appears again in future releases. The best solution isto write an
automated test that exposes the bug. It will fail aslong as the bug is unsolved. It will stay forever
in our suite of tests.

We have to read alot of documentation every day. Bad experience made us suspicious about the
correctness of any external documentation. We don't really like writing documentation ourselves
because we know that it is only a matter of time until it is out of sync with the system and all our
effort will be wasted. If the documentation is done via automated tests, it is assured to be up to
date, making it areliable source of information. We are much more motivated to invest our time
for this.

The same holds true for requirements specifications. It would be really convenient if we could
automatically prove that we comply with the requirements spec. Therefore the spec needsto be
formal enough to allow automated compliance tests. It must still be easy to understand so that the
customer, the requirements analyst and the devel opment team can all easily understand the spec.
The specification language needs to be flexible enough to express page contents, workflow and
navigational structures.

Y ou may claim that all the above would be really helpful but impossible to implement under the
constraints of real projects. We have done it ourselves and we have helped others doing it. The
effect istremendous: to the quality of the system, to the satisfaction of the customer and to the
motivation and self-esteem of the development crew.

Testing is not for free, but it pays off.

How Canoo WebTest works

Canoo WebTest lets you specify test steps like
» get thelogin page

13

» validate the pagetitleto be Logi n Page
e fill scott intheusernametext field

o fill ti ger inthe password field

 hit the ok button

» vadlidate the page title to be Home Page

The exampl e steps above make up a sequence of steps that only make sense if executed in exactly
this order and within one user session. We call thisause case or a scenario. Canoo WebTest

offers the appropriate abstraction for this. Refer to the Syntax Reference and the API Doc for a
complete list of step types.

Converting the textual description into a Canoo WebTest is easy, as you see below. Note how
closeit isto the textual description.

The example asa Canoo WebTest

<target name="login" >
<testSpec name="normal" >
&config;
<steps>
<invoke stepid="get Login Page"
url="login.jsp" />
<verifytitle stepid="we should see the login title"
text="Login Page" />
<setinputfield stepid="set user name"
name="username"
value="scott" />
<setinputfield stepid="set password"
name="password"
value="tiger" />
<clickbutton stepid="Click the submit button"
label="let mein" />
<verifytitle stepid="Home Page follows if login ok"
text="Home Page" />
</steps>
</testSpec>
</target>

Thisis XML and you will get all the support from your preferred XML editor, including syntax
highlighting and code compl etion based on the WvebTest . dt d. Canoo WebTest leverages the
advantages of XML even further. Y ou may have noticed theline &onfi g; . Thisisan XML
entity that refersto the content of afile. The XML parser inlines the file at test execution time. It

14

is one of the possible ways to share common settings for all test steps. Here the settings for
protocol, host, port and webapp name are shared.

If you are familiar with the ANT build automation tool you will have recognized that Canoo
WebTest makes use of this. If ANT istotally new to you, we recommend having alook at the
ANT description at The Jakarta Project. Canoo WebTest exploits ANT's ability to structure a

"build" into modules that can either be called separately or as awhole. That way, you can run any
WebTest in isolation. Y ou can also group tests into a testsuite that again can be part of a bigger
testsuite. In the end you have atree of testsuites, where each node and subtree can be executed.

The execution of the several test stepsis currently implemented by using the HttpUnit API, again
an Open Source package. Test results are reported in either plain text or in XML format for later
presentation via XSLT. Standard reporting XSLT stylesheets come with the Canoo WebTest
distribution. They can easily be adapted to your corporate style and reporting requirements.

A sidebar: Do you think that the above exampleis so easy that you do not need an automatic test
for this? Consider the following variations:

* Bookmark What if | try to get the Home Page directly without login?

 Other pages We have to test that no page is shown without proper login and that we get the
requested page after proper login.

«Bad Login Bad login should keep us on the login page.

Thisis quite a number of scenarios to be tested. Now imagine a manual tester checking all this.
Very soon he will get bored and unobservant, not to mention that resetting his session for every
single test requires alot of work. Is he really checking again all the possible variations at every
full test?

Pragmatic Considerations

Test automation is key to better quality. Manual checks are more flexible and less expensive to do
one time. They are more expensive and less reliable when tests need to be done over and over
again. We advise to do manual checks for everything that cannot break after it worked once.
Everything else should be automated if the automation can be done without excessive costs. We
fed that testing with Canoo WebTest reaches the break-even point for 90% of our tests after only

afew test runs.

We want to use what we aready know. We don't want to learn a new language for the test
automation. We want to rely on standard formats.

Functional testing can be classified as being either data driven or record/replay. Canoo WebTest
follows the data driven approach. Record/replay is appealing at first, because you can create alot
of testsin ashort time. A proxy logs what pages you request and stores the results. It can then
replay the requests and compare the results against the stored ones. Y ou typically have to tweak
this procedure to tell the program what parts of the page are expected to change. The actual date
and time are the most obvious examples. Every small change to your webapp causes alot of these

15

teststo fail. These failures must be manually processed to separate the "real” failures from the
"false negatives'. Doing thisis amost as tedious and error prone as the manual testing and is
therefore discouraged e.g. by the Automated Testing Specialists group.

" Record/Playback is the least cost-effective method of automating test cases. "
Zambelich

Any automated test should fit snugly into your build process. If you are already using ANT for
your build automation, it is no effort to integrate Canoo WebTest. An Example of thisis Canoo
WebTest itself. It contains a selftest that iswritten with Canoo WebTest. Every new build of
Canoo WebTest triggers that selftest. Y ou can explore this behavior online, starting at the Build
Info link of the Canoo WebTest distribution page. Note that thisis very convenient for nightly
builds and even for use with a continuous integration platform like CruiseControl.

If your build processis not ANT based, calling Canoo WebTest isstill easy. It means starting a
Java Application. This can easily be done with every build script language that we know.

"Regression tests' isthe concept of testing that asserts that everything that worked yesterday still
works today. To achieve this, our tests must not be dependent on random data. Also, the expected
result must be clear in advance as opposed to the "guru checks output” approach, where a
specialist validates changing results. Tests must give athumps up indication when successful and
adetailed error indication otherwise. Well, thisis pretty much like compiler messages.

Functional tests do not replace unit tests. They work together hand-in-hand. Consider the
following example: Y our Webapp displays an html table that isfilled with data from the database.
The maximum number of rows should be 20 and if there is more data available, alink should be
shown that points to the page that contains the next 20 entries. If there is no data, no table should
be shown, but the message "sorry, no data". We would test this with @) no datab) onerow c) 5
rows d) exactly 20 rows €) 21 rowsf) 40 rows g) 41 rows. A naive way of testing this would be to
manipulate the database (maybe by using an administration servlet that we can call via"invoke")
prior to calling the page. But thisis not only very slow but also alittle dangerous. What if two
tests run concurrently against the same test database? They will mutually destroy their test setup.
What if the test run breaks? | s the state of the test database rolled back? The whole job is difficult
to do for afunctional test, but easy and quick for aunit test. A unit test can easily call the table
rendering and assert the proper "paging" without even having a database! What is left for the
functional test isto assert that the table rendering logic was called at all.

Thereisalot more to say about unit testing. Refer to JUnit and the annotated references for
further information.

Canoo WebTest is an Open Source Java project and totally based on Open Source packages. If

you are not satisfied with any of the functionality, you can adapt it to your requirements. Having
the sources, you even gain the ability to start the test in the debugger, revealing everything that

16

goes on.

Canoo WebTest isfree of charge. The downside is, that there is no guaranteed support. However,
you can ask Canoo for specia support incidents, a support contract and on-site help for
introducing automated testing in your project.

Canoo WebTest is not restricted to any special technology on the server side. It makes no
differenceif you use Servlets, JSP, ASP, CGI, PHP or whatever aslong asit produces html.
Client side JavaScript will not get executed, but you can check for the expected JavaScript code to
be delivered.

Browser dependencies are the menace of web programming. One possibility isto check manually
against all the "supported browsers". Our approach is to validate our html to comply with the
specification. A full and pedantic validation is outside the scope of Canoo WebTest, but every
validation step callsthe JTidy parser (part of HttpUnit) and will warn you on improper html. That
has proven to be very helpful. If your manual tests reveal that certain html constructions produce
different behavior in your supported browers (like empty table cellsin |E and Netscape), you can
set up atest that checks against the usage of these constructs.

Advanced Topics

We found Canoo WebTests to be easy to understand, maintain and create even for
non-developers. We had testers, assistants, novice programmers, business-process analysts and
even managers and customers writing tests. This opens another opportunity: if the customer is
able to understand or even write the tests, than they can serve as a requirements collection. Our
preferred way of dealing with requirementsis. "Whatever you write in atest, we will makeit run.
We promise nothing else but this."

If we get the tests written in advance, they serve as a requirements specification. While
implementing, they give feedback how far we are. After Implementation, they document what we
have done. That documentation is always up to date, as we can prove by the click of a button. The
format of this documentation may be unfamiliar (asit isnot MS-Word) but it has "the power of
plain text" (cf. The Pragmatic Programmer). It can easily be transferred into other formats, e.g. by

using XSLT.

It isgood practice to care for the quality of your tests no less than you do for the quality of your
production code. Thefirst point here isto avoid duplication. Canoo WebTest combines the

options of XML and ANT for helping you with this.

Canoo WebTest allows defining modules that can be reused in a number of tests. A common
example is a sequence of validation steps that you apply to ailmost every page. These steps check
against error indications like http errors, java stack traces, "sorry, we cannot...", etc. It may also
contain acheck for the copyright statement that is supposed to appear on every page. The samples
that come with Canoo WebTest show how to do this.

17

Sometimes we have to test the same scenario for anumber of different languages, each with
different classes of users and each of these combinations with different user settings, etc. That can
easily lead to so many test combinations that copy/paste would make the tests unmaintainabl e.
Canoo WebTest usesthe ANT mechanics to allow calling tests with overriding parameters.
Again, the distribution contains a comprehensive example. Although al the test combinations get
tested, the test description contains the scenario only once plus the information about the variation
of calling parameters.

Canoo WebTest can be used to do automated tracking of your project. If your tests capture all the
reguirements, then every test run gives you feedback on how much you have achieved so far. The
history of test reports reflects your team's productivity in terms of delivered functionality. The last
report always shows the current state of your project in the most reliable metric we know: running
and tested use cases.

Quotes and Success Stories

Canoo WebTest has been used successfully in a number of organizations ranging from small
internet startup companies up to global players, for intranet and internet sites, for portals and B2B
applications. Needless to say that we use it for our own Canoo Online Services as well.

more to come here...
Annotated References

ANT
http://jakarta.apache.org/ant

* The leading build automation tool.
* The platform independent replacement for "make".

Automated Testing Specialists

http://www.sga-test.com/

* Points to a huge set of resources about automated testing.
» Answers alot of questions about testing.

» Homepage of an independent consultants’ community.

Canoo Online Services

http://www.canoo.net/

* The Canoo Online Services for german language exploration.

» Includes hundreds of pages with static, dynamic and mixed content.

Canoo WebTest

http://webtest.canoo.com/webtest

» The Canoo WebTest distribution.

» An Open Sourcetool to facilitate automatic functional testing of html-bound web applications.

18

CruiseControl

http://cruisecontrol .sourceforge.net/

* The Open Source Continuous I ntegration facilitator.

* The site also points to more information about continuous integration.

* CruiseControl uses ANT to trigger new builds on any repository change and reports the build
result as email and on awebsite using JSP, XML and XSLT.

HttpUnit
http://httpunit.sourceforge.net/

* The Open Source Web Site Testing tool for programmers.
* Captures web site testing in JUnit TestCases.

JUnit

http://www.junit.org/

» Home of the unit test community.

« Points to articles, downloads and other on-line resources.

* Unit test tools for other languages than Java are also available, including Smalltalk, C++, Perl,
Python, JavaScript and even VisuaBasic.

The Jakarta Project

http://jakarta.apache.org/

* The leading Java open source software site.

* Includes the Apache web server, Tomcat, ANT, Log4J, Cactus, ORO, Struts and many more.

The Pragmatic Programmer

http://www.pragmaticprogrammer.com/

 Addison-Wesley Oct 1999 ISBN: 020161622X

* |t covers topics ranging from personal responsibility and career development to architectural
techniques for keeping your code flexible, easy to adapt and reuse.

XML
http://www.w3.org/xml
* Extensible Markup Language

XSLT

http://www.w3.0rg/TR/xslt

http://www.w3.0rg/TR/xsl/

* XSL Transformations

* Uses the Extensible Stylesheet Language (XSL) for transformations of XML treesinto other tree
structures like html, formatting objects (that can be serialized as PDF) or XML again.

19

Automated Acceptance and System Testing Frameworks

Peter Kelley
Project Architect
Sentillion, Inc.

Abstract

This paper describes a mechanism for automating acceptance (functional) and
system level testing in a distributed computing system. In addition to automating tests,
the frameworks provide an easy to use mechanism for developers to create functional
and system level tests for features they are implementing.

The system under test consists of a cluster of network appliances (Vaults). The
Vaults incorporate Context Managers that coordinate the context of a number of
disparate applications working on a single computing device. The Context Managers
implement interfaces specified by the Health Level Seven (HL7) CCOW standard for
context management. The Vaults provide load balancing, configuration replication and
fail over capabilities. They are administered through a web interface. A fully CCOW
compliant desktop version of the Vault with limited system capabilities is also provided.

Two frameworks have been created to automate the testing of this system. The
Functional test framework uses JUnit to manipulate simulated applications that interact
with each other and which exercise the Context Manager interfaces. The second
framework, System test, uses HttpUnit to perform administrative functions on the Vaults.
It also uses a distributed system of Functional test framewaorks to verify the proper
operation of the system capabilities.

ccow

The CCOW standard establishes the basis for ensuring consistent access to
patient information from heterogeneous sources by coordinating applications. CCOW-
compliant applications coordinate by communicating with a Context Manager using a
defined transaction for setting the context. They also implement a Context Participant
interface to receive asynchronous notifications from the Context Manager.

Simplified System Diagram

| Web Context
CCOW Compliant Desktop Server Manager

Web T
Browser
Http http Configuration
Application

Vault
Administrator

COM Com [
Application Adapter - Web http
Browser Context Vault(s) [

20

Functional Test Framework

The Functional Test framework was designed to verify the external behavior of
the Context Manager. A test interface was defined that abstracts the Context Manager
interface to provide a means of exercising its full range of normal and abnormal
behavior. Two test applications that implement the test interface were created in Java,
one using the Http interface to the Context Manager directly, the other using the COM
interface to the COM Adapter, which in turn communicates to the Context Manager.
Each application maintains its own state and implements the Context Participant
interface for communications originating from the Context Manager.

The test interface provides a method for each Context Manager interface
method, but instead of providing fixed values for parameters, e.g. couponValue,
booleans are supplied that instruct the applications to behave correctly or incorrectly,
e.g. uselnvalidCoupon. All Context Manager exceptions are caught and transposed into
test application exceptions.

System Test Framework

The System Test framework was designed to verify the correct behavior of a
complete context system. It consists of a system controller and a set of distributed
slaves running on the various clients supported by the system (Win 9X, NT 2K). The
controller communicates with the Vault Administrator using HttpUnit to verify the correct
behavior of the system administrative functions (adding and removing Vaults, updating
configurations, etc).

The controller then orchestrates a series of tests to verify system functionality in
response to the administrative changes. It does this by manipulating the test
environment, e.g. turning off a port on a programmable hub, and then coordinating the
activity of the slaves. The slaves make use of the Functional Test framework to
instantiate and operate various test applications. Communication between the master
and slaves is accomplished using the same Http based protocol that the Context
Manager uses.

Test Development

Functional and system tests are written in Java using JUnit. The functional tests
instantiate applications to exercise the Context Manager. In addition, a GUI was created
that interacts with the test applications to provide troubleshooting. System
administrative tests are written in HttpUnit, which are controlled by the JUnit tests. Both
frameworks provide a base class that extends junit.framework.TestCase to provide
common functionality and template methods for all tests.

Test reporting

The system test framework provides test-reporting capabilities. A test summary
class was created that encapsulates a collection of test result classes. These classes
extend junit.framework.TestResult and provide additional detail including: build number,
as well as pre and post-test system configuration. Test results are logged to files by
build number and date of execution.

21

Test Execution

Functional tests may be run on any developer’s workstation running against
either a networked Vault or a Desktop Vault. Run time for the functional test suite is less
than 10 minutes. It provides complete coverage of the Context Manager interface.

The functional tests are also incorporated into the nightly build process and are
run against the Desktop Vault. Results are emailed to the build coordinator. The build
process can be run manually at any time. It performs a clean build, refreshed from
source control and runs the functional tests as a regression suite. This process takes
less than an hour.

The automated system tests are launched manually. Currently we have
automated 15% of these tests. The original manual system test procedure was in
excess of 400 pages and required an engineer month to execute. The system tests that
we currently have automated execute in 30 minutes.

Conclusion

Our efforts to date in automating functional and system testing have been very
successful. Both the system and functional tests save substantial amounts of testing
time, while empowering the organization in the practices of agile software development.

Furthermore, both frameworks have proven to be very usable by developers for
creating new tests. During a recent code drop that incorporated changes to several
subsystems (web server, database, JVM) the lead developer used the automated
system tests to verify the changes, and he easily wrote new tests using the framework.
Developers refactoring existing sections of code routinely use the functional test
framework. And, it has proven easy to use for creating tests for new functionality. A
typical test is less than 10 lines of code, while complex tests run to 20 lines of code.

23

Ted First Design With UM L / * A Picture is Worth a Thousand
Programmers”

David Hussman
Ediso Ed Inc.

4327 Garfield Ae South
Minneapdis, Minnesoa 554 USA
01-612-743-4923

david@edisoned.net

ABSTRACT

Asa developeanda coachl am conthudly surprise by
the numbe of developes dill trying to solve problens with
an endlss strem o words Why is it still rare that
developes u® UML to canmunicae desig? Is it na self
evidert tha when a goad tod exists and is simpk © use,
we shoull ugit? Alsq why do so mag developes and
manages carry the miguided naion tha XP ard other
agile processeae mutudly exclusive with the use BUML
diagram®1 hawe stating incorpording 1) a stoy or task
for a story 2) one @ more hard written sejuerce diagrams,
and 3) a cdledion o ted classes ard method togetheinto
a praessl informally cal “sequerce testing.l do not
presenthis praess as n& or of my design Like XP, itis a
conglomeréon o beg practces ard tools into a simple
process thacan be use to help teara embrae tesfirst
design.

1 INTRODUCTION

Too often | find junior and senio developes gathered
arourd a214 centuy softwae Roséta stonespeakng in
tonguesard nd communic#éng in the least As on as
someom in the graup drave a picture even if it isa bad
picture peope stat talking ard the problem definition
stars 0 materialize Ornce al patties ae speakig the same
languageand a canma discissian vehick exists,
soluions begn to surface.

Asa coachl still hea developes refe to the ndion that
doing XP mears nd doing designsl am nd sure haw this
nation cane o exist bu | do na agree na is this hav |
see XP and othe agile methodologig evolving | have
strugglel with pedagogie tha hep teans truly embrae
teq first design Sure there ae thog developes that
simply take © teg first becausein mog casesit is a
formalizaion o the way in which they visudize problem
solving and implementatin issuesOn the sane teamthere
may be mary programmes tha eithe do nd understand
ted first design do nd like the experierce bdieve tes first
to be unrecessary or bdieve thd teg first is slowing
progress.

Similar to the struggé © hep developes truly embrae test
first, I, ard mary others hawe stuggled to eplain red OO
desgn in a meanhgful way, showirg developes smple

skill s tha can be pu to ue immediatelyas wdl as skils
tha help creaé code thiacan be eadly refactored The
cdledion d pradices axd ools tha incorporage unit

testing simpk seuerce diagrammingard goa OO

desgn pratices thd | call sequerce testig are the outcome
of my struggles.

2 SEQUENCE TESTING

While working on XP progcts | find tha quickly creding
s smple segjuerce diagran (5 10 minute$ helps provide a
visud road ma for a programnmg pair. Often times we
are eithe displayirg ard pracessing dat before o afte it is
persistd a fed to an externasysten ar sub-systemTo
ensue thd the souce @ destinéion & the right side d the
sequene diagran isa known quartity (or can be caredly
emulated)| hawe take to teachng developes to
implemer the® sejuerce diagrars fram right to left.

Asa vehick o disciss sguerce tesing, let's ue the
following sejuerce diagram.

UserDAOFactory UserDAO

UpdateUserAccessldCmd

new(userld:long, newAccessld:long) } !

—

—validatelnputs()

getUser(userld:long)

i
|
|
|
|
|
|
|

getUserDAO() !
|
|
|

execute() } } i
> l |
updateUserAccessld(userAccessld:long)

. i

T 2

TestUserDAO

TestUpdateUserAccessCmd TestUserDAOFactory

;newUpdaleCmd()\ getPersonDAO() ; getUser()
| ! I

i I
| execute() }
— |

I

A\ updateUserAccessld()
L
I I
I
I

24

While coachig XP teamsl now use sejuerce testig to

help teans lean ard disciss tesfirst design:

1) Any par startng o a stoy or a tak creatsa simple,
hard written sejuerce diagramActing asa roal map
to the pair the non-drive uses the diagran to help
stea the tean (es wdl as usng it asa referece for
how mud the tean deviate from the definel path
while implementig ore a more clesses showm o the
diagram).

2) Stating from the right side d the diagramthe pair
creats the firg ted ca® fo the cless farthesto the
right.

3) The tean then continus noving to tre left, always
performig the fdlowing manta afte ead interface
for ary class has oa a more working tests (U)pdate
from CVS (B)uild all, (E)xecut al unit tests and
(C)ommit.

4) This praess is continue unti there ae ore a more
tes method far eat pulic mettod exposel for each
class methd in the sguerce diagram.

Quick and Dirty

The diagram(sare hand written and flexiblpthey are
meart to be a vehick © disciss whid classes ae be
involved and the responsibity of the classes in this
sequere d events| find tha they help developers
visudize the desig by contrat idea thais © mud a part
of teg first design If at any point the diagran becomes
obsolee a messyrip it up ard quickly creae anew
version If the diagran has tecone © comple tha if takes
more tha tenminutes © recreateched the ar for bad
desgn smels (a smelk thd indicak the team has strayed
to far from tha which is the smplest).

Oncel haw a par following theg stepsl ak them to
examire the relationsipi betwee the te$ coce in a test
class anl the cock in the class immediatsl to the let of the
teg class (n theuppe portion o our exampé sejuerce
diagran — | do nd promot addiry tes classe while
sequene testingbu | sometime drav the diagrars as a
teachirg tool). Becaus the tes class ad methd combine
to emulaé a callhg client tha dient being the class b the
left of the te$ class a majoity (if not all) of the code for
the dient alread exiss in the tes clas in a form that is
undersbod by both membes d the pair.

A Real World Experience

In ore coachig stuation with a tean o 15 developers,
there was the usubfea tha pairing ard teg first would
“make s @ slower” This stuation beirg the rule anl not
the excefion with teans nev to XP, managemeralso
fearal tha the tean progress woudl slov and resouces
would “be wasted.”

As the developes startd seirg thet while moving from
right to left, coce coutl be movel from teg classes to

sequene clasesthey began to realiz thd only a small
effort redly was far testng only. Also, & the uni testing
moval from an unnaturbscripting experiene to an
enjoyabe developmenexperierce the tess kecane a
comman topic o discussion The tess beirg a de-facto
documenttion o the code the tean was naw engagirg in
daily desig discissions.

Anothea beneft (known to the tes first community was
the abilty to fearless rp into probleméc ard bloated
classes When a tean embraes the metrc o one a more
tes method far ead pulic mettod, design smelf often
reved themselvs ealier if the developes fed the ned to
write alarge numbe of tess far any one methd o class.

Why Save a Picture of Dorian Gray?

On my currert project we nav stapk the seuerce
diagrans to the stories At times when a pai does some
developmentha the tean deens significart (as defined
during a stamup meetig) it is capturd electronicdly and
stored in CVS asa snapshioof our desig & a poirt in ime.
We have agrekthd we will not go badk to updae any
pictures bu we have decidetha we b like the idea of
having sone histoy to refereme, even if it may becone a
faded view of the curren code.

3 CONCLUSION

| think that mog developes tha hawe gravitatd towad test
first design hawe done s becausit matchel (or
formalized ther developmenhalits. | was fortunate
enaigh b stat developirg with a smal group tha most
often wert to pictures befoe typing.

| believe tha teg first design does nd mean pairs shoutl or
canna use diagrams to canmuntcat problens and
soluions Granted, ther ae developmenefforts that
simply do nd need a diagramIndeed a sSmple list of tasks
can provide the sara roal map thaa sejuerce diagram
does | hawe fourd tha pictures mos often illicit more
dialog than lists, 0 | hawe noved in tha diredion while
coaching & wdl as developing.

| am intrigued & 10 wha levd of discussian around
diagramming &s it relates 1o ted first design and agile
methodologis in generall look forward b hearirg what
levd of diagrans othe XP pratitioners ae usig. | trust
that the canmm sene natue d the agie novemen will
na (ard has no) rejectedl canmunicaing with pictures|
hope 1o sea bit more discissian around this topt in the
community.

25

Patterns for Java Program Testing

Marco Torchiano
Department of Computer and Information Science (IDI), Norwegian University of Science and Technology (NTNU),
N-7491 Trondheim, Norway.
Tel. +47 735 94489, Fax +47 735 94466, Email: Marco.Torchiano@idi.ntnu.no

1 Introduction

The NIH (Not Invented Here) syndrome often appears in software development; it makes people keep
reinventing the wheel all the time. Fortunately the recent trend is to reuse existing solutions either as
software component or as known designs. Patterns fall into this latter category. Patterns are reusable solution
to known problems in a well-defined context [2].

There are three main types of patterns [3]: idioms, design patterns, and architectural patterns. Idioms
leverage language specific features and are fairly low level. Design patterns deal with more complex
structures, such as groups of classes and associations. Architectural patterns address system-level issues.
Historically, patterns have been used as a tool to build systems. Recently their use has been extended to
comprehension and testing. For instance they can be used to describe typical bugs and possible solutions [4].
There are several basic Java testing techniques, which are in common use among the programmers. This
paper proposes to use patterns to describe such techniques and to arrange the patterns in a pattern language.
We are concerned with class-level and package-level tests. We focus on idioms and basic design patterns.

2 A pattern language

Extreme programming (XP) [1] advocates writing tests first. When focusing on Java unit testing, we identify
two possible levels of detail: class and package.

A class-level test is a test design to check the feature of a single class; i.e. to checking the semantics of a
class. Unfortunately, often the behavior of a class depends on several other classes, so the next step is a test
of a group of classes lying in the same package.

We describe some of the most common techniques used to write test code at the class and package level. in
the form of patterns.

The most common pattern is the main method idiom. It addresses the problem of where to write the code that
initiates and drives the test. Each class can have apublic static void main(String [] args)
method, being invoked when the argument of the Java virtual machine is the class that contains such a
method. Therefore we can provide each class with such a method that enables us to test it.

When we need to test the combined functionality of several classes, we have to decide where to put the test
code. Following the separation of concepts principle, a new class should be created to host this code. Two
possible patterns are based on this idea: the internal class design pattern and the external class design
pattern.

In the former the class is inside the package that contains the classes to be tested. In the latter it is external.
The pros and cons of these two solutions are based on the observation that an internal class has access to the
package details while an external one does not.

On the one hand, the internal class pattern provides more insight into the classes to be tested, but is can make
use of features that are not available to a “normal” client of the package. On the other hand, the external class
pattern plays the role of a typical client of the packages thus providing a more realistic scenario. Both
patterns can make use of the main method idiom to have a starting point.

When it comes to checking the results of a test there are different techniques.

The most naive is the toString method idiom. The method public String toString() is defined in
the base class Obj ect . It can be redefined to provide a customized representation of an object. The
customized t oSt r i ng method can be used both at the end of a test and during it, in order to observe the
status and contents of objects involved in the test.

26

A somewhat more sophisticated way of checking the outcome of a test, is comparing the result objects to
other objects that represent the expected result. In this case the equals method idiom can be applied. The
method publ i ¢ bool ean equal s(Obj ect) is defined in the base class Object; it can be refined to
customize the comparison between objects.

The patterns described so far can be combined and used together. There are several possible combinations
that can be represented in a pattern language. Figure 1 describes a pattern language based on the use
relationship between patterns.

Internal tester class External tester class
package theOne; package anot her One;
public class Internal Testd ass { public class External Testd ass {

Il ... Il ...
® []

USN US%

main method

public static void main(String[] args){
SonmeCl ass result;

// performthe test...
Systemout.print(g)

N

\}\
US‘% \usﬁe
toString method equals method
class SomeC ass { cl ass Sonmed ass {
/... /1.
public String toString(){ public bool ean equal s(Cbj ect 0){
/| customrepresentation /'l custom conparison
} }
} }
expect edRe =
oS TRI ™ o —Parlt syl (g AT
”

Figure 1: Java testing pattern-language.

3 Conclusions

The patterns here described represent just an excerpt from the many that can be used to run tests. Their usage
context can range from home made testing to intensive extreme programming. The testing patterns can be
used to improve the use of testing suite frameworks such as JUnit [5]. We plan to collect test patterns from
real world projects, and arrange them in a more complete pattern language.

4 References

[1] K. Beck. “Embracing change with extreme programming”. IEEE Computer, 32(10):70-77, October
1999.

[2] E. Gamma, et al. “Design Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley,
Reading, MA, 1995.

[3] J. O. Coplien "Software Design Patterns: Common Questions and Answers", in: Rising L., (Ed.), The
Patterns Handbook: Techniques, Strategies, and Applications, Cambridge University Press, New York,
January 1998.

[4] Eric E. Allen “Bug patterns: An introduction” available at:
http://www-106.ibm.com/developerworks/java/library/j-diagl.html, February 2001.

[5] JUnit home page, at http://www.junit.org/index.htm, last visited on April 17, 2002.

27

Detailed Description of Patterns

Here we present the java test patterns in detail. We adopt the description of pattern propose by Coplien in
[3]. Patterns are described in terms of:

* name,
e context,

e problem,
« forces,

e solution,
e examples,

« forces resolution, and
e design rationale.

Name main method

Context A Java class.
Problem Where to write the code that drives and initiates the test for a class.
Forces or Test must be easy to run.
tradeoffs Code must be able to access all required features.
Put the code in the publicstatic void main(String[] args) method of
the class.
public static void main(String[] args){
Soned ass result;
Examples Il performthe test...
Systemout.print(“result is..”);

Solution

}
Force The test code can be easily invoked.

resolution | The method has access to all the features of the class under test.

Each class can have a public static void main(String[] args)

Des_lgn method, it is invoked when the argument of the java virtual machine is the class
rationale .
that contains such a method.
Name toString method
Context A Java class that represent the result of a computation.
Problem How to check if the final and intermediate results of a test are the expected ones.

Forces or | Result of the test is represented by the internal state of an object
tradeoffs Such a state must be checked.
Use the toString method to provide a customized representation of a class, such
Solution representation can be printed (and checked manually) or compared against an
expected result.
class Soned ass {

/...

public String toString(){

Examples /] customrepresentation
}
}
Force The internal state is represented as a String
resolution
Design The method public String toString() is defined in the base class

rationale Obiject. It can be redefined to provide a customized representation of an object.

28

Name equals method
Context A Java class that represent the result of a computation.
Problem How to check if the final and intermediate results of a test are the expected ones.
Forces or | Result of the test is represented by the internal state of an object
tradeoffs Such a state must be checked.
: Define the equals method to be able to compare the actual result against the

Solution

expected result.

class Sonmed ass {

1.
Examples publ i c bool ean equgl s(nject 0){
/1 custom compari son
}

}
Force The result remains in the internal state but it is compare to the expected one.
resolution
Design The method publ i ¢ bool ean equal s(Obj ect) is defined in the base class
rationale Object; it can be refined to customize the comparison between objects.
Name internal tester class
Context A Java package.
Problem Where to place the code to test the classes of the package.

Separate test code from operation code.
Forces or .

Code must be able to access the required features of the classes.
tradeoffs .

Play the role of a package client.

: Add a new class in the same package where the classes to be tested are. This class

Solution .

contains all the code to perform the tests.

package t heOne;

public class Internal Testd ass {
Examples /...

}

All the test code is inside a class separate from the rest of the code.
Force L ;

. Being in the same package the class can access most of the classes’” members.

resolution , . S L .

It’s not a real client since it has visibility on far more elements than an usual client.

The separation of concerns is achieved by confining the test code in a specific
Design class. It is inside the package, therefore it has access to all the details of the classes
rationale that are to be tested. Because of this it cannot represent if a realistic way a typical

client of the package.

29

Name external tester class
Context A Java package.
Problem Where to place the code to test the classes of the package.
Separate test code from operation code.
Forces or .
Code must be able to access the required features of the classes.
tradeoffs .
Play the role of a package client.
Solution Add a new class in the same package where the classes to be tested are. This class
contains all the code to perform the tests.
package anot her One;
public class External TestC ass {
Examples 1.
}
All the test code is inside a class separate from the rest of the code.
Force . . ., .
. It has a limited access to the classes since it’s outside the package.
resolution S)
It has the same visibility on package elements as an usual client.
The separation of concerns is achieved by confining the test code in a specific
Design class. It is outside the package, therefore it has not access to all the details of the
rationale classes that are to be tested. For this reason it represents in a realistic way a typical

client of the package.

31

Testing ideas and tips from the battlefield
WTiXP 2002 Position Paper

Piergiuliano Bossi, Giannandrea Castaldi, Alberto Quario
Quinary S.p.A.
http://www.quinary.com
+39 - 02 —30901535
p.bossi@quinary.com

Introduction

This paper provides some testing ideas and tips based on the experience that we have
gained during our last projects. We will discuss how to avoid some problems that arise
with acceptance testing, patterns and techniques related to mock objects usage and we
will report about testing GUIs.

Acceptance Testing

Avoid BTUF

We have noticed that it is possible to make a certain kind of mistake related to acceptance
tests we have called BTUF (Big Test Up Front). Developers bump into BTUF when,
beginning to work on a story-card, they try to accomplish the acceptance test as the first
thing. By doing so, they avoid tackling the several user-story complexities step by step,
but they head for the green bar in a whole piggy mess. This means that development is no
longer guided by many small unit tests but by a unique big acceptance test.

The origin of BTUF does not depend on the lack of specific XP practices, but rather on
the absence of incrementality in the whole process. Indeed, if we observe the way
programmers fall into BTUF, we notice a test first approach: the story-card
implementation starts from the acceptance test followed by coding and refactoring.
Moreover, at the beginning of the story-card no up-front design is carried out. But that’s
not the whole story.

The above process falls into hacking because it produces the following issues:

» Long refactoring: since the aim was just to pass the acceptance test, you have messed up the code a lot
and now you are left with many bad smells to get rid of. The code may be difficult to manipulate and it is
hard to discover recurring logics.

» Time consuming and rare integrations: since you don’t carry out small increments, you need to refactor
the code in many places — therefore during integration you have to solve many conflicts; besides,
developers integrate less often because they are stuck with red bars.

» No continuous efforts: the XP heartbeat (small test, small code, small refactoring) is broken by the need
to write and immediately pass the acceptance test.

» Fear: working by big steps leaves the system in a non-consistent status for a long time and brings
developers to fear changing the code.

» More debugging: since there aren’t enough unit tests to cover functionalities required by the card, when
the system doesn’t work you may need to debug for many hours.

Evolutionary approach to Acceptance Testing

Instead of writing the acceptance test, getting the red bar, putting it away and forgetting
about it, we prefer to approach its implementation in an evolutionary way. What we do is
to follow the test-first technique focusing each time on business value delivering. To do

32

so we need to proceed test by test with little increments, writing each time the smallest
test that delivers value to the customer.

At each step the developers are about to write a test, they must ask themselves which is
the minimum functionality to be added in that particular moment. As each step is small,
after some time you will have a convergent succession of many unit tests that cover the
requested functionality. So your system will be ready for satisfying the acceptance test,
and this will manifest itself as a natural consequence of the tests set.

However, the acceptance test is not always the last step towards the user-story
fulfillment: it may happen that one or more unit tests are worked out after implementing
the acceptance test. Sometimes the acceptance test itself suggests tests the developers had
not identified before.

In this way, there is no real contraposition between unit and acceptance test: developers
write many small tests we can define functional, because necessary to discover a path that
brings to user-story accomplishment.

Testing patterns

Programmable mock object

Whenever we feel the need to test a class in isolation, that is working with mock objects,

we have found ourselves implementing a similar pattern each time. Suppose you have to

test a class A that collaborates with a class B:

e We extract the interface from class B;

e We create a mock implementation of class B, say MockB, having all the public
methods doing nothing or returning nulls;

e FEach time we have to write a test for class A we extend the behaviour of MockB
adding 3 different kind of methods:

O simulate<actions: at the beginning of the test it permits to program the
expected object behaviour (i.e. simulateClickOnCloseButton () on a GUI
mock object);

O last<datas, is<propertySets: at the end of the test it permits to verify
what A has done which has an expected impact on B;

O <interface methods: basic and required class B behaviour.

Doing this way we have seen several advantages:

e Mock objects grow up incrementally based on test demands;

e Tests are more readable.

This is an example of a GUI mock object in which we are testing that the controller reads
a string from the GUI and it executes a search on the mock search engine:

public testSearchOnClickButton ()

{

MockGui mockGui = new MockGui () ;
MockSearchEngine mockEngine = new MockSearchEngine () ;
Controller controller = new Controller (mockGui, mockEngine) ;

mockGui.simulateSearchFor (*john white”) ;

assertEquals (“last search on engine”, “john white”,

33

mockEngine.lastSubmittedSearchString()) ;

}
Test first design

Adding new features test-first

Every time we are adding new features to a system we start unit testing from a specific
object: we write one test, the code that makes it work and so on. Doing this way, we may
modify an existing object or we may need to add new methods on the other objects that
collaborate with it. As we often isolate the tested object with mock objects, we only add
such methods on the mock object. Therefore, our message is: “When you are testing an
object and you need to modify its collaborators, modify the mock objects first”.

When we get the green bar we have two possibilities:

1. Pass to add the methods that were only on the mock object on the real object;

2. Remain on the object we are working on and continue to add methods on the mock
objects that play the role of the real ones.

Considering the context we choose a way rather than the other:

1. We choose the first approach when we see a special value in working through vertical
slices of our system, that is when we want to see immediately the consequences of
adding new whole features;

2. We choose the latter when we see that the object we are working on must change a lot
and then we prefer to stay focused on it. Doing this way, we can easily modify the
mock objects and we can propagate the modifications to the real implementations
later.

Experience reports: testing GUI

Testing GUISs is difficult, as you must face a paradigm crossing. In our last project we
tried some slippery roads and finally settled on a three level structure inspired by the
MVC paradigm:

Controller 2 Presentation 2 GUI
Our intent was to separate the business logic from the actual GUI representation (i.e. a
Java Swing frame).

The Controller has the business logic and send/receive information to the Presentation
(i.e. inserting some data in a grid or handling a button press in a window).

The Presentation provides to the Controller an abstraction of the real GUI through some
services that map Controller actions onto graphic widgets; it provides also some hooks to
allow the Controller to register on selected events.

What differentiates our design from MVC is the fact that we haven’t applied the
Observer/Observable relation: data Model is handled directly by Controller, which
manages the updates too. We have never needed to implement several notified Views
reacting to a modification in the same Model portion.

We have also introduced the Presentation abstraction because it allows testing Controller
in isolation with a mock Presentation that is not interfaced with real GUI widgets. This
approach has several advantages: tests are faster, we don’t need many complex GUI-
testing tools, orthogonal issues emerge more clearly, etc.

34

Using mock Presentation objects to test the dynamic behaviour of Controllers, GUI
testing is reduced to verifying positions and properties. We have developed some utility
objects to ease the testing burden.

ComponentsPositionComparator offers services for positional testing:

e Alignment

e public boolean areBottomAligned (JComponent aComponent, JComponent
anotherComponent)

e public boolean arelLeftAligned (JComponent aComponent, JComponent
anotherComponent)
[]
e Positions

e public boolean isNextToTheBottomBorderOf (JComponent aComponent,
Container aContainer)

e public boolean isNextToTheRightBorderOf (JComponent aComponent,
Container aContainer)

e public boolean isToTheEastOf (JComponent aVerifyingComponent,
JComponent aTargetComponent)

e public boolean isToTheSouthOf (JComponent aVerifyingComponent,
JComponent aTargetComponent)

L4 .
We have also developed a more high level object named
AsserterPositionComparator, that uses ComponentsPositionComparator to
minimize the effort required to code assertions in tests. AsserterPositionComparator
automatically composes the message and logs useful information in case of assert failure.
Some of its methods are:

e public void assertAreBottomAligned (JComponent aComponent, JComponent
anotherComponent)

e public void assertIsNextToTheRightBorderOf (JComponent aComponent,
Container aContainer)

Although these utility objects, iteration after iteration we have reached a point where we
doubt that test-first design could be fully applied to GUI development with profit. At the
beginning we have developed all our GUIs test-first and this has caused several problems
due to volatility of customer requests. Every time that we have submitted to the customer
a new GUI version based on his requests he has gained more inspirations and
consequently he has had more suggestions for us. These modifications were easy to code,
but updating the corresponding tests was expensive. As time goes by we have recognized
that we were writing regression tests with a test-first approach: this is definitively not the
intent of the test-first technique and it should be avoided. There is such a little value in
developing these tests before the actual code.

For this reason the last GUIs have been implemented following a different process: firstly
we have developed the code coming to a point where the customer was satisfied by the
result, and then we have written the corresponding tests. Our intent for the future is to
automate the development of these tests updating them after each visible GUI
modification.

35

DiPS: Filling the Gap between System Softwar e and Testing

Sam Michiels, Dirk Walravens, Nico Janssens, Pierre Verbaeten
DistriNet, Dept. 6 Compute ScienceK.U.Leuven
Celegijnenlaan 200A, B3001 Leuve, Belgium,
+32 16 327640
{Sam.Michiek, Dirk.Walravens}@cs.kuleuvert.be

ABSTRACT

Teding systen softwae (sut as protocod stacks a file

systemy often is a tedous ard aror-prore proces The
reasm for this is tha suct softwae is vely complex and
often na designd to ke testedThis pape preserg DiPS a
componen framework which forces © developtestable

software ard DiPSUrt, a JUrit extension to tes DiPS
units in a unifom way: Although non-trivial te¢ sippott is

provided usirg DiPSUnt keeps testhg simpe ard intutive

thanks o the DiPS gproach.

Keywords
Teding, framework, corponern softwae engineerig

1 INTRODUCTION

Teding systen software sud as a protoco stadk or a file
system is a complex tedbus ard eror-prore task The
bast problem is that for performace reasns system
softwae is often designd as a mondithic blodk of multi-
threadel software This prevents sucsoftwae from being
testal propery becaus d two reasons first, it is very
difficult to isolae the basic buildip blocks as stand-alone
units thda are independean from ead other Second,
concurengy code which is intodwed in sud multi-
threadel systen software often crasscus the wde [4].

This pape preserg DiPS (Distring Protocol Sack) [6], a
componen framewok we have bull to suppor protocol
stack development DiPS forces o deply four design
principles which are inportant prerequisite © develop
adaptat® arl testable software As pioof of corcept we
hawe devebpel the DiPSUiit teg framework which is an
extensio of JUnit [3], specifically to tes DiPS units.

The res of this pape is organisd s fdlows. Sedion 2
presers fou essetial chararcteristis o testable software.
Sedions 3 ard 4 preseh DIPS arm DiPSUrt, two
frameworls we have develped to prod our idess eout
softwae developmenard testng. Conclusios ard some
open points d discussio are formulate in ®dion 5.

2 DESIGN FOR TESTING

XP coutl be the victin of its own swccess testirg complex
(systenm softwae in XP coud lead totest hell, whee test
code becomeso comple ard unmanagabk thd it needs
testing.. One way to ded with this is b desig testable
software i.e. softwae tha is designd sud the it can be
testal easily We distinguit four essetial chamacterigics

of so-cdled testable software:

Modularity: it is importart tha the desig reflects fine-
graina (singula) units & separa enities, to dlow
unit testirg in isolaion [5]. A colledion of units can be
groupel togethe into a composed unit, which is treated
the sane way asa singula uni.

* Independent units: to dlow transparensubstitutio of
units ard to redee the rik of unexpectal sicke dfects
(when urits ae replaceyl during acceptane testing, it
is essetial that units ae independerfrom ead other.

e Separation of concurrency from functionality:
tradtional systen softwae is difficult to develop,
understandmaintain adap or test. One d the major
reasos is tha concureng/ code cresscus the
functiond code [4]. Separting concurengy from the
res of the cmde fadlitates developmenard testing
becaus progranmers can corcentraé an ore aspetat
a time A protocd stack devebpe shoull concentrate
on creding a heade parser ora packé fragmenter
without being distacted by non-functiond aspects
such & concureng (pardlellism). Becaus d this
separéion, unt tess can be dore first in a single-
threadel context ard muti-threadng can be alded
later, withou changimg ary unit code.

* Uniform unit interface: redice theunit’s interbice and
shae the sane interface typ as mud &s possible This
fadlitates reuge am raises the softwares levé of
abstadion. This feature combin& with modularity
(i.e. conposeal unt is agamn a urnt), dlows a uniform
testng gproac for both singula units ard composed
units.

3 THE DIPSFRAMEWORK

DiPS is a Java comonent framewok base on urits that
are conectel a a pipe-andifter archtecture The
framewok syppors the developmenof systan software
suth & protocd stacks a file systems Communication
betwea DiPS urits is inteceptal by the framework This
forces units 6 canmunicat anonymousl (independent
units), since thg have o exgicit notion of other units in
the system.

A DiPS unit is an object-oriente entity with a vel specific
(fine-grained regponsihblity (modularity), sud as a packet

36

DiPSUrit E

L2

[Packet Recei ver]

‘ Uni t ’

[Packet For war der]

Conposec

/unit

Conmposec
/unit

4

Even

¥
H

Catche g g

Consistent test approach in DiPSUnit: a singular DiPS unit, a composed unit with internal concurrency and a
composed unit which sends (and receives) control events

fragmente or a heade parser DiPS units can be grouped
togethe into composd urits (sud & a protocd layer in a
protocd stack). A distinction has been mac between
purely functional units ard concurrency units. This
separation alows the concureney modd to change,
independenfrom the fundionality in the system.

All DIPS urts pracess (only packets which ae ddivered
via auniform unit interface. The® packet can ente and
leawe a DIiFS urnt through ore a more enty ard exit
points A singula DIiPS urnt (such as a fragmente or an
encrygion urit) with ore enty ard ore eit
(Packet Recei ver ard Packet For war der) is shown
in detdl in the left figure. Next to the data (packgtflow
there is a contrd flow tha allows aronymots inter-unit
contrd communicéion via DiPS events.

4 PROOF OF CONCEPT: DIPSUNIT TESTING
Thanks o DiPS the DiPSUit framewok can provice a
uniform way to tes$ singula units & wdl as composed
units (ee figure) This keeps tesing vew intuitive and
simple However, te providel suppor for teging units in
isolaion in the presence foconcurent behavie and
extern&control evers is nd trivial.

The concureng (active) unit in the middle figure ha an
internd thread anda buffer to stoe incomirg packets This
decouples the packeflow in two pardlel flows. When such
a unit is presehwithin a conposeal urit, a te$¢ mud be
suspende urtil all packes hawe arived or until a timeout
occurs (b avoid bemg suspende foreve in cag d an
error). DiPSUrnt offers a moritor tha blocks urtil all

packes ae procssal (even in the contex of internal
packed removal/cedion).

DIiPS units can exchang contré information by using
DiPS evens (ight figure). To ted a unit in isoldion, dl
contrd flows mus be intercepted Although the stub
mechanisn is simple transparenyl introducirg subs is not
always trivial. DiPSUrit offers syppott to uniformly deal
with externhevents A tes devebpe can descrile hav to
reppord toa given even by creaing a Pdicy (which ack as
a stub) The substution of contrd flow functiondity is
transparenfor the amde unde test This redwees the risk of

introducng erors when stuts ae replacd by the actual
functionality duringacceptane testing.

For a detdled descrption of DiPSUrit we refe to [7] [8].

5 CONCLUSIONS

The combinéion of JUnit, DiPS ard DiPSUnt seens very
promising JUrit offers the basic infrastructureotdevelop
ted cass aml ted suites DIPS facilitates urit testing
becaus it forces b creae nodularzed archiectures and
becaus it allows urits © be replacd without changng any
code Thanks 1 this sypport DiPSUrit can consistentl test
DiPS units from fine-grainel to composedunit level.
However devebping tes$ case is dill intuitive ard simple.

Relevan points o discussio are:

* Softwae engineerig techniques suh a desgn
paterrs [2] and refactorhg [1], do help h creaing
‘good software ard the xUrit test framewdk helps in
testng software However we clam tha infrastructure
syppott is requirel (sud as a conponer framework)
to force desgn techniquse © be gplied.

« Wha othe softwae desig principles fadlitate or
hinde testing?

ACKNOWLEDGEMENTS
This regart has bea caried ou in orde of Alcatd Bell
with financid suppott of IWT (projed¢ SCAN #010319).

REFERENCES
1. M. Fowler. Refactoring: Improving the Design of
Existing Code, Addison-Wesley1999.

2. E. Gammae.a, Design patterns: elements of Reusable
Object-Oriented Software, Addison-Wesley1994.

3. E. Gamma, K. Bck Test infected: Programmerslove
writing tests, http://www.junit.org/, 1998.

4. G. Kiczales e.a, Aspect-Oriented Programming, In
proceedngs d ECOOPY97, 1997.

5. T. Mackinnon e.a, Endo-Testing: Unit Testing with
Mock Objects, XP200Q June 2000.

37

6. F. Matthijs, Component Framework Technology for

Protocol Stacks, Ph.D. thesis, K.U.Leuven, 1999.
(Available at http://www.cs.kuleuven.ac.be/~samm/netwg/dips/)

7. S. Michiels, D. Walravens, e.a., DiPSUnit: an
Extension of the Junit Test Framework for DiPS, Tech.
Report CW-333, K.U.Leuven, Dept. Comp. Science,
2002.

8. S. Michiels, D. Walravens, e.a., DiPSUnit: A JUnit
Extension for the DiPS Framework, To appear as
experience report in XP2002. K.U.Leuven, Dept.
Comp. Science, 2002.

39

Web Systems Acceptance Tests and Code Generation
Eduardo Aranha * and Paulo Borba 2
Informatics Center
Federal University of Pernambuco
Recife, Brazil

Introduction

In Extreme Programming (XP) [2], acceptance tests are used to prove that the application works as
the customer wishes. The available test languages offer low level of abstraction and legibility,
because they are based in languages like Visual Basic and XML. GUI capture and playback tools
facilitate the creation of test cases, though they have many limitations to program and maintain the
test cases [1].

Acceptance tests interact with the GUI (Graphical User Interface) of the system, simulating
the actions of users and verifying the information content presented. In Web systems, for example,
the GUI is composed of Web pages and its components, like frames, links and images. In that way,
the information about the GUI structure and behavior of a system can be found and extracted from
its acceptance test cases, making possible the generation of part of the GUI code.

This paper presents a language and an environment to program Web Systems acceptance
test cases. Code generators are presented to improve productivity and to motivate the XP practice
of creation of these tests before the implementation of the proper system.

The WSat Language

The language we defined, WSat (Web System Acceptance Test), aims at a high level of
abstraction and reuse, explicitly expressing aspects related to the GUI structure of the tested
systems like, for example, Web pages, forms, links and texts. This is done by defining types that
represent web components. In the Figure 1, we can see the initial and response page of a simple
search system of Web documents.

Search System - Mic S5 [l 3| W ‘38 Search System Respor =10l x|
J File Edit Wiew Favorikes Tools - * J File Edit ~ Wiew Favorites Tools He
J GBack ~ = - @ 8 4 | Qsearch 2| || 4=Back - = - @) [2] & | ‘@ search i
= =4
Search for: Search System
Riéswotds I We found 2 decuments.
|%ere: || warld = | 1. Cin-TUFPE
Subimit
e 2 TUFPE

3. Pernambuco
= =
&] Done I_I_ Local intranet | |&] Dawnloading Fll_l_I Local intranet 4

Fig. 1 — Initial and response pages of a search system.

! Supported in part by IPAD. Electronic mail: ehsa@cin.ufpe.br.
2 Supported in part by CNPq, grant 521994/96-9. Electronic mail: phmb@cin.ufpe.br.

40

To test this system, we initially define the type InitialPage to represents Web pages with title
“Search System” and an HTML form as defined by the type SearchForm

static WebPage InitialPage {
title = “Search System”;
SearchForm searchForm;

}

WebForm SearchForm {
name = "searchForm";
method = "POST";
EditBox {

name = "keywords";

value =",
} keywords;

}

WSat have predefined types like WebPage WebLink and WebForm The WebPage type, for
example, represents all possible Web pages. The defined type InitialPage represents all
possible Web pages that satisfy its defined properties. To test the response page of the system,
we define the type ResponsePage , as shown bellow.

WebPage ResponsePage {
title = “Search System Response”;
}

As we can see, we do not use the WSat keyword static in the definition of the type
ResponsePage . This keyword indicates Web pages that are not generated dynamically by
technologies like Servlets or JSP. This and others information not shown here are used only for
code generation purpose. To verify the dynamic content of Web page and the system behavior, we
create test cases as shown bellow.

testCase testSearchSystem {
String url = “http://www.searchsystem.com?”;

InitialPage page = [InitialPage] getWebPage(url);
SearchForm form = page.searchForm;
form.keywords.value = “ufpe”;
ResponsePage resp = [ResponsePage] form.submit();
WebLink link = resp.findWebLinkByURL(*http://www.ufpe.br”);
}
The test case testSearchSystem requests the page at URL “http://
www.searchsystem.com”, verifying if it conforms to the initial system page ([InitialPage]

operator). Then, the test simulates the form submission with the “ufpe” keyword by calling the
submit service defined in the WebFormtype. To verify if the system give the correct answer, we
look for the link “http://www.ufpe.br” in the response page.

As we can see, properties defined in WSat types are used to test the components of Web
systems. In order to simulate the users actions, we can use the services of the WSat predefined
types. Some of these services are used to test dynamic content of Web pages. We can use, for
example, services like findWeblmageByName, findTextByRegEXxp and findWebLinkByURL
to retrieve components that represent images, texts and links with the given properties.

In order to validate WSat, we created an execution environment for it by compiling WSat
programs to Java code.

41

Code Generators

In order to reduce development efforts with tests, we implemented two code generators. The first
one is a test code generator, which generates WSat code from HTML prototypes used to validate
the requirements. WSat types are generated to represent the components found like Web pages,
frames, forms and links. As we can see, a lot of code to test GUI structure is generated. However,
the code to test the system behavior could not be generated yet by this test code generator.

WSat types contain information about the GUI structure of the tested system. From this
information, we can generate part of the GUI code using a system code generator. For example,
considering GUIs implemented with Servlets, we can generate one Servlet for each Web page
tested by a WSat type in the test code. The generated Servlets could be associated to response
templates based in the HTML prototypes. Unit test classes for the Servlets and other types of code
are generated, too.

The system code to be generated is dependent of the development environment used. For
this reason, the system code generator was build following the Visitor design pattern [3]. Each
visitor manipulates the syntactic tree of WSat programs and it has a specific functionality, like to
generate Servlets or to generate JSP files. In this way, we can specialize the code generator to
new development environment building new visitors.

Development Methodology

Aiming an efficient use of WSat and the code generators, some activities need to be added to XP
methodology. In Figure 2, we can see the proposed changes in the XP flow.

Generated Test Generated Syste

U Stori Requirements HTML Code Acceptanci Code .
ser Storie Prototype Tests Iteration

Fig. 2 — Changes in the XP flow chart.

HTML prototypes are created from the requirements found in the user stories. Then, the test code
generator is used to generate part of the acceptance test code. The test programmer completes
the WSat code needed in the actual iteration. The generated WSat types are complemented and
new types could be created to test more complex information. The test cases are written at this
time, too.

From the WSat types created in the actual iteration, we generate the part of the GUI code
to be developed using the system code generator. The generated code is afterwards used by the
programmer to start the system development for that iteration. With few adjustments, the code
generated for the system could be executed just like the HTML prototype. The programmer is
responsible now for implement the system functionalities basically writing the code under the GUI
layer.

Conclusions

Through experiments, we evidence that the type definitions written in WSat code has a high level
of abstraction and readability, facilitating the test programming. The use of types to represent Web
components becomes the test activity more interesting and partially similar to modeling activities,
eliminating part of the traditional tedium existent in writing test cases.

Programs written in WSat could check the components and the behavior of Web systems
GUI, given the supporting needed to do acceptance tests. To support other types of tests, like
performance and stress tests, programs WSat could have embedded Java code. However, this
type of code compromises the abstraction level of code.

With the developed code generators, it is possible to generate automatically part of the test
and system code, improving development productivity and motivating the creation of acceptance
tests before the Web system implementation.

42

In one experiment done, more than 30% of test code was constituted by the declaration of
WSat types (GUI structure description). The test code generator could generate a good part of that
code, reducing the initial effort to program the tests. And with relation to the system code, more
than 4% of it was automatically generated. The time saved by the generators, in this case, was
sufficient to program simple test cases. However, it is probably not possible when we have a
substantial number of test cases.

We can explore in future works the association between Web pages, like links and form
actions. These associations could permit the generation of other types of code, different from the

actually generated. For example, may be could be possible to generate part of the acceptance test
cases.

Referéncias

[1] M. Finsterwalder. Automating Acceptance Tests for GUI Applications in an Extreme
Programming Environment. In XP2001, Sardinia, ltaly.

[2] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

[3] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software .

Addison-Wesley, 1994.

43

Are Extreme Programmerswriting too many
Tests?

Position Paper for XP2002 Workshop on Testingin XP

Frank Westphal
Am Brunnenhof 33
22767 Hamburg
Germany
+49-177-2343664
westphal @acm.org

Testing guru Brian Marick is of the opinion that X P ers write too many tests (and that’ s not
something he says often). Actually, Extreme Programming has successfully put into practice what
the testing people have teached for decades aready. But then, there is some appeal in Brian
Marick’s statement. The costs and benefits of tests have to be balanced very carefully on every
project. As much as XP will change the role of the traditional tester, the responsibility of
comprehensively testing our own code has aso changed the required skill-set for most software
developers. And most of us have only begun to learn how to test in an effective and economic way.

This paper summarizes a couple of related questions and ideas about testing in Extreme
Programming that I’ d like to see discussed and explored during the workshop.

The next maintenance hurdle

XP teams generate as much or even more test code than functional code. In my experience, it’s not
uncommon to end up with a1:1 ratio in total, and aratio of 2:1 to 4:1 for individual parts of the
software (which either implies that there are untested cornersin the system, or that thereisindirect
testing going on to some degree).

The danger here is that the sheer amount of test code hinders exactly what it set out to support: the
mobility of the code. While many non-XP teams have not been able to maintain their design
documentation (if any), the same risks till stick with the design documentation in XP: the unit
tests. We have already seen the first signs of X P teams complain about slowing down because of
the fragile nature of their test suite. How can we help those teams?

On the surface, the solution to this dilemma might be trivial. The same quality standards apply for
test and functional code. This suggests we just eliminate any code duplication cropping up in the
tests and write only tests that reveal their intention. But there is more. Thereis afine balance to
writing tests that give enough confidence in the fithess of the program and at the same time keeping
these tests as soft as possible to ease future refactoring moves. What are the recurring patterns here,
what are the anti-patterns?

Using and abusing mock objects

Mock objects have become tragically hip since their presentation at X P2000. While they are indeed
abig step towards isolation testing, they aso have become the hammer in search of anail on some
projects that | know. People on these projects decided for some reason to test each and every class

44

independently of their collaborators. While this approach is fine for many hard testing problems, it
quickly leads to a large number of interfaces and mock classes to be maintained.

While the opposite approach of testing classes in small units of closely collaborating classes can
easily lead to the problems of micro-integration testing, in practice, we most often have to strike the
right balance between the two extremes. What are the boundary conditions of when to use and
when to avoid mock objects?

Related to the maintenance issue, generated mock objects in particular tend to specify the behaviour
of the unit under test in too much detail. My experience is that the smaller the unit under test, the
more details will typically be hard-wired into the tests which makes it almost impossible to refactor
the code without breaking atest. After some personal experience of overusing mock objects myself,
| suggest to test classesin small clusters aslong as possible. What are other experiences?

Setting the quality bar

In XP, it's a business decision and therefore the customer’s call to set the quality bar. From there,
it'sthe developers' call to balance the costs and benefits of tests through constant reflection about
their practices. However, in most conventional project settings, there is amost no way and aso no
person to set the quality bar. Therefore, more often than not, different team members end up with a
different understanding of their testing priorities. Thereisno vision for the desired software quality
in such teams which can be abig problem.

To my surprise, | learned the other day that setting the bar on an XP project goes almost unnoticed.
First of all, the desired quality is encoded in the criteria of the acceptance tests provided by the
customer role. And even if bugs dlip through, it’s the customer’s call which bug will be fixed at
what point in time through the scheduling mechanism of iteration planning. The problem still
persists for teams who have adopted only XP' stesting strategy, though.

| believe that every project needs some quality management of one kind or the other. One of the
management tools used foremostly on XP projects are big visible charts. What kinds of charts have
you found useful to communicate quality related issuesto the (i) customer team, (ii) devel opment
team, and (iii) management team?

Untested corners

Almost any XP team | know has come to some point where they faced an edge of their software
which was particularly hard to test. While some of these teams have tackled the testing challenge
with more or less perseverance, others have left this corner untested ... and regretted this in almost
all cases. Some of these teams have gone back and retrofitted their program so that they could
eventually automate the testing processin this area at least to some degree.

In my opinion, the automation of acceptance tests falsin this category in many places. Every now
and then, XP practitioners have been careless about the practice of automated acceptance testing on
their first XP project only to push it much more so on their next one. | certainly did.

Most of the teams that overcame the challenge of untested corners experienced some profound
design insight. Typically, triumphing over these testing challenges makes for a good story at the
campfire. If you have been on one of those teams, what has been thisinsight?

45

Testing, when is it enough?
-Erik Bos

Introduction

Kent Beck stated in the acknowledgements of his book [Beck02]: “suggesting
you type in the expected output tape from a real input tape, then code until
the actual results matched the expected result”. In a Programmers
Handbook of 1976 [Volmac+76] programming starts with the following
phases: “Problem definition, planning, main diagram, detailed diagram,
construction of a small test set, desk checking, code”. The test set consists
of the input cards and expected output cards. Desk Checking involves going
through the flowcharts with the specified test input and calculating by hand
the results. The result are then checked against the expected output. You
can imagine desk checking is quite a job when you want to check more than a
small test set. Although tests can be automated in the modern era the
primary “test before you code” practise from the infancy of computer
science still is a very basic and required step in developing software.
However, modern software is often very complex and writing, coding and
executing tests for all imaginable cases would only lead to asymptotic
development. In this paper | propose checking the code coverage of your
predetermined test set and adding tests until you touched all important
parts of your code.

Coverage Experiences

My experience is with writing code and unit tests especially for infra
structural (embedded) software. Since the infrastructure software is used
by all other software modules in the system, it is essential the software is
very stable and extensively tested. For one of the modules | wrote test code
for, | decided to check the coverage of my tests with the Generic Coverage
Tool [Marick95]. | was surprised by the low percentage of code covered.
Some parts of the code, especially the parts that needed Multicondition
Coverage’, took some effort to cover with a test. GCT also shows Relational

Coverage®also called Boundary Condition Testing [Kernighan+99]. This tends

to find of-by-one errors and turned out to be a very effective way of finding
bugs. | ended up with as much test code as production code. Other modules

'if (A && B) requires test cases of A and B true, A true and B false, A false and B irrelevant
2 if (A<b) requires a test case where A =5 to verify whether the ‘<’ shouldn’t be a ‘<=’

46

even needed far more test code as production code to cover essential parts
of the code. The parts | didn’t manage to cover were reviewed with care.

Another good way to increase coverage is to generate random (valid) input
and Stress Testing [Kernighan+99] a module. Large volumes of test input
tends to test modules on buffer management and robustness against
overflows. Also people tend to create normal test input, whereas computer
generated test input covers the whole range of possible inputs.

Threading problems also tend to show up under Stress Testing. Especially
when using multiple processors the chance of catching a threading problem
increases significantly because the usage of shared resources is increased.

All these tests were programmed by hand, which is a lot of work. Another
approach is generating additional test code. Using State Based Testing
[Turner+93] this was performed for some modules in our system. It involved
listing all states the modules could be in and generating tables of state
transitions. The downside of this way of testing is that the modules
contained so many states that the number of tests tend to explode. It also
doesn’t give you the insight of how to use the software because there are so
many tests, which makes reading the test code hard.

Conclusions

Just writing tests and guessing you have enough tests written to test your
module or system is not enough. What you need are tools telling you what you
have tested and which part of your code is not touched by your tests. You
should keep adding tests until all essential parts of your code is touched by
the tests’.

From a more philosophical viewpoint one may argue that about 80% of the
code is there to handle “non-normal” program flow, i.e. errors and exceptions
are therefore by nature hard to test. One may opt to dedicate less effort to
this (large) part of the code and only select the critical parts of it. “Critical”
is here defined as: “As long as the customer doesn’t go ballistic when this or
that part of the “robustness” code doesn’t function”.

| opt for writing all tests by hand. Although it is a lot of work and generates

®In XP projects code which can’t be easily covered, would be candidate for refactoring since it is
probably too complex.

47

extra effort to keep in sync with changing requirements, it weights up
against the advantage of showing readers of the tests how your software is
to be used and how it is structured.

Generating test code might be a solution for getting a good coverage of your
code, but doesn’t communicate very well because of the number of tests.
Generating test input and Stress Testing does add more coverage with
limited effort.

References

[Beck02] K. Beck. Test-Driven Development by Example, to be published.

[Kernighan+99] B. Kernighan, R. Pike, The Practice of Programming, Reading,
Ma., Addison-Wesley, 1999.

[Marick95] B. Marick. The Craft of Software Testing, Englewood Cliffs, New
Jersey, Prentice Hall, 1995.

[Turner+93] C. Turner, D. Robson, State Based Testing and Inheritance,
Durhan, England, 1993.

[Volmac+76] Various Authors, Handboek Automatisering, Programmering,
Utrecht, The Netherlands, Automation Centre Volmac, 1976.
Acknowledgements

Many thanks to Frank Pijpers and Dave Karetnyk for their comments and
suggestions for this paper.

About the Author

Erik Bos can be reached at Erik@ErikBos.net.

49

Using Restrictive Approaches for Continuous Testing:
Pre-Integration Checking

Martin Lippert
Apcon Workplace Solutioa &
University of Hamburg
Vogt-Kaolln-Str. 30
Hamburg Germany

lippert@jwam.de

MOTIVATION

When doirng Cortinuows Integréion the carectnes d the
coce repogory is crucial Since corectness 5 vely had to
prove, XP use urit tess o goproXxmate it.

If the codem the repogory is broken dl developes in the
team are harmd in a shot perial o time.

To achiee a ful working canman code base every
develope shoull run the complete téssuite d the system
on he machire before the integtimn. Only a green bar

signak the develope to integraé the change into the

comman cock base.

Generdly this is dor & the Integrdion machine While

using CVS a sone othe kind o source contrb system the
stuation is dightly different The develope should
downloal the comple¢ code bthe projet agan afte the
integraion to e whethe all tests ae gill green on the
comman coce base.

INTEGRATION CHECKING

To eag this handing o CVS systera as w# as ensue the
tes are gre@ on tke canman repogory some ols are
avdlable. They perfom the tess an the conman cock base
automaically on evey integradion. Ore d the tols is for
exampé CruiseControl.

Nearl al of the ols d post-integrdon checking This
way problens with the code m the repogory are detected.
But they are detectd after integrdion which meas the
repostory is alreag broken Again dl the developes in
the tean may be harme by the problem.

PRE-INTEGRATION CHECKING

We have flowed anothe — mor restritive - pat with a
smdl tod for the integraéion pracess the CVS-Checker.
The CVS-Checkeisa smél plug-in for CVS execuding an
arlitrary ANT script before checking cock into the CVS
cock base.

The ANT scrigg simply merge the CVS coc with the
coce © ke checkd in ard comples ard test it. Only if

Stefan Roock
Apcon Workplace Solutions

Friedrich-Ebert-Denm 143
Hamburg Germany

roock@jwam.de

both opergions wee succssful, the code $ redly checked
into the canman cock base Otherwig the integréon got
rejected This wey it is guaraneel tha the code m the
CVS systen alway is comgleable ard dl test ae green
on the canman cock base.

EXPERIENCES

From the firg view the pre-integridon checking fadlity

seens 0 slov down the integrdéion pracess kecaus the
integraion nav needs moe than a fewv second t© finish.
The aditional delay is eou 5 minutes far 2000 clases.
Therefoe fa mog projecs the dely shouldnt be a
problem If it become a poblem it could be a hirt to sgit

up the projet into sub progcs with a own CVS each.

Using the Pre-Checkig fadlity developes terd to do
smdler refactoring ard integraé more ofte sirce this
minimizes the rik of creding merg conficts ard being
rejecta by the CVS-Checker.

We thirk the describd approahb is esgcidly usefu for
developes which dill learn XP. Often they terd to be
sloppy with tes execttion ard the grea (o red bar.

But experierced XP developes al® like the bd since it
takes a hit of responsibity from ther shoulders Aside of
thet the pre-integréion checke ensurs a alwayg running
commam cock base whic make the work within the team
as snooth as possible.

OPEN RELATED QUESTIONS FOR DISCUSSION

Wha hapers if test las longe than a few minutes?
Is it usefu to defire a subsk of the urit tess as
integraion test® Can be smply ue the acceptance
tessk as integrtion tests?

e Wha abou tess which need a prope configured
infrastructue like DB or agpplication server?

* Do othe restricive gproachs exis which may be
helpfu for XP training?

50

¢ Does the redtrictive approach restrict the flexibility of
the XP team too much? In which contexts?

51

Retrofitting unit tests

Steve Freeman
M3P
12 Montgu Square
London
W1H 2LD, UK
+44 (0) 79717 4105
steve@m3p.co.uk

“Y ou cant ge there from here.”Pund lineto old joke.

“I f you donat start adding unit tess bday then ore year
from now you will still not hawe a goad unit teg suite”
Don Wells*

ABSTRACT

In this pape we describe techques tha we have found
helpfu for addirg uni tess © existing coé tha has been
written without tests The pape preserd sone canmon
coding pradices tha male unt test had to retroft, and
why. Fa eath practce we sgges minimal refactoring to
open w the code fo testing.

Keywords
Refactoring Unit Testing Legay Code Retroftting

1 INTRODUCTION

Unit tess can be had to retroft to legacy code bu not as
had & mary developes bdieve, for ow purposes,
“legacy’ is working coce tha mug be maintaind bu that
has teen written withou unit tests We bdieve tha it is
worth attemping to improe the intern& quality of any
systen tha méters and tha unit testirg is a key technique
for doing so.

Relertless uni testing is a core practe n Extreme
Prograntming (XP) [1]. It gives the developes the
confiderce b male changs @& nev requiremens ari® or
new refactoring ae discoveredFurthermore, whewritten
before the codeunit tess ae apowerfu desigqh tod that
ad as executabé specificions they corcentrag the
progranmer’s mind on whd is realy neede ard hep to
drive the code towasdgood codirg pradice [2].

Many projects however convet to XP afte startng with

anothe methodologywhich usudly mears tha there is an
existing cock base thtadoes nd hawe a thoraigh unt test
sute. The dlemma fa the tean is thd they nedl a testing
safey ne to suppot the agie developmenpractces they

! http7/c2.com/cgiiwiki?UnitTesngLegacyCode

Paul Simmons
Independent
6 Cope Close Pattes Lane
RochesterKent
ME1 2RS U.K
+44 (0) 7967966203
pas@pobr.com

want to adop but canna write unt tess far the entie code
bag for two reasons First retroftting uni test is
expensive full coverag can eady take & mud effort to
write & dd the origind systen withou adding ary visible
fundionality. Secondthere is an obvious deadlok in that
legacy code often needs sone refactorig to male it
testable bu refactorng shoull nd be undertake without
tess in place D prowe thd it’s safe.

Both problens mus be addresel by a combinatia o skill
and comprenise First uni tess can be added
incrementally perhag befoe changig a componen for
the firg time durirg subsequentevelopment Combined
with sore judiciows fundiond testing, the tean can give
themselve enaigh confiderte © male pogress although
at less tha full speed whilst improving the quaity of the
code Second our experierce is tha carefdly fixing a few
“code smds” without unit tess can give the developer
enaigh leverag o bootstra the writing d a full ted sute.
As the tes suite bulds up, the developes shoudl look for
opportunities o improw it as suggestd by [3].

In this pape we concentrate rothog carefli fixes. We
descrie some comman coce smds tha we hae found
inhibit the retroftting o unit tests ard sugges tactical
refactoring o male sub coce moe accesible Mog of
the smés we hae identifiel are concerné with the
difficulty of isolating the code v wish to tes from the rest
of the systema key requiremen for effedive unit testing.
Our experierce s tha changirg cote b male it testable
usudly improves its quaity, with a cleare and more
flexible structure When we retroft unit tests we can also
try to retrofit the desig beneits tha come with test-first
progranming.

Our experierce s mainy base an Java bu we bdieve that

most of thee pdternrs gply to othe object-oriented
languagesWe @ssune thd the readeis famliar with test-
first developmentthe JUnt framewok [4], and refactoring
as describd by Fowla [5]; we annotate pattesnand

refactoring fran Fowleg ushg[F].

52

2 CODE SMELLS
This sdion describse sone canmm cocke smdls that
male unt tess difficult to add to legag software.

Singleton

The Singleta is perhap the mos$ widely usel and
misunderstod patten in Gamna et al [6], ard is often
found in legay code A comma ue d Singletm is to
encapsula externhresouces sub & databasesrdiles.
Since t provides a singe acces point cdls © a shgleton
are often scdtered throughotithe code.

The issus far unit testng are first, sometims the
singleta objed cannot ke change becausefor example it

is s& up in a statc initializer (see below) This maks it

impassibe © isolak the testd coce fram its environment
by subsituting a mok implementatia [7] of the singleton.
Second even whee the sngletors can be replaced the
tess for objecs tha refe to mary singletors will be

tediows ard error-proe o sé up. Findly, mary use d a

singleto will repea behavion tha mug be tested
separatel for eat caseincreasiig the testimg effort.

One solutia is b adda séter methal to the singleto class
to overwite its staic instance This weakes the
encapsulatio o the sngleta itsef but may be sutable for
cross-gplicaion featurs sut & a logging interface The
tes suit camn uwe the sde to assigp a mock
implementatia ard the apgication can contine © ue the
singleto as before Rainsberge [8] suggest aggregatig
singletors in a Toolbox so tha ther lifetimes can be
managed Ly the gplication. An dternative approale that
does nd alte the singleta class is b Pass singletons
through.

Complex construction

Someimes mo$ of the implementatio o a class is
concernal with seting upits intial stae ard is nd used
agan afte instaniation. Fa examplea class b represena
financid yield cune require comple& calculatiors o work
out its intial values bu only smple lookups when in use.
Similarly, a cless tha represert a use may refa to an
externadirectory service ony during initialization.

The issus far unit testhg are first, it is cumbersom to
creae instance d the class whe testig boh the class
itself and classes thd interad¢ with it; for example it may
be too had to creat evey stat tha need testng via the
pulic constructors Second constrution tha relies on
extern& resouces is a1 unrecessay dependenc when
managng unt teg suites Third, the te$ suite for class
instarces will be less readalel becausé will be swamped
with tess far constructio rathe than tess for use These
are al symptons d a poor separatin o concerns.

A first step would & © adda simple constructoto the
class anl to write separat tes suites far construton and
use A better approab is O refacto usng Separate
construction from use.

Data class

Data class, which consiss mainy of fields ard ther getters
and settersis describé in Fowler Dat classe ae often
found with uility classes o suppott canman operatios on
them.

The isste for unit testhg is tha dag classe often imply

tha sorre relatel behaviou has teen scatterd arourd the

clients d the cless <0 relatel tes coce ha © be repeated
or gatherd into helpe code Furthermorecoce tha passes
dat objecs aound tend t hawe Long methods (see

below) tha are had to test.

Even whee dat classe ae reuired perhag far ue in a

refledive framework it is oftsn pasibe t© move
responsibity to the data clas ly combinatiom of

extragion, encapsuldon ard moving a describd in

Fowler.

Static initialization

Many developes u® stdic initialization, coce tha is run

when a cless 5 loaded to sé its initial state; conmon

example ae initializing sihgletons startirg loggers and
loading propery values fram files. Whilst this techngue is

usefd for reducing the intellectu&load on the programmer
and for ensurirg the intern consisteng of a component
before it is used there ae maintenace coss if the staic

coce is comple or refers o externresouces.

The issus far unit testng are first, it can be difficult to run
repeatd tess over sud code To do so require repeated
reloadng d the class it may be had to seé up conditiors to
ted failures and erros mg be had to trap fo teg results.
Second sudh clesses ae had to instantiag¢ outside their
framewok when they are required for testirg othe classes,
especily when the source codesind available For
example ore d the authos gd studk trying to creaé a
parameteobjed from an appi caion serve becaus a stdic
initialization in a supe type wes faling silertly.

The soldion is b Remove complex static initializers.

Bleeding across layers

It is qute conman to e busings domai codck use
framewok classes suh a Serviets 9 tha package
dependenck “bleed acrcss tre layes d an application.
Examples include passirg a Servie reques as a parameter
to a doman class or throwing a Servié excegion from

within a doman class This risk may be highe on Extreme
Progranming projects whee the programmes aspie to

“Do The Simples Thing Tha Could Pessibly Work.”

The isste far unit testng is tha bleedirg acrss layers
introduces unnecessay dependencie betwea components
and herce betwea tests First anyore readiig o writing
a tes for the busines clas mus understad bot layess and
the tess ae less likely to read w. Second if classes from
the framewok layea change this ma require busines
layer tess o be chaged Findly, tes seup mg be

53

difficult if, for example sone framewok classes d not
haw constructs thda are accssibe outside the
framework.

The soldion is © refacto a the place whee the layers
toudh ard Weaken dependencies between layers.

Classes as parameters

In Java it is worh specifying the parameteand return
types d a methd (ts signaturg in terns d interfaces
rathe than classesif thos classe ae & all complex.

The isste far unit testng is that for parametes thda are
defined &s classesa mok or stub implementatia can only
be substuted by subclasing which ha two limitations.
First, it cannd al® inhert from canman modk or stub
implementatio classes na can it take advantag d Java
proxies as with EasyMok [9]. Second if the parameter
class or one d its arcestorschangs a adds a methodthe
stuwb class will no longe overrice al the reh method and
the tes ca® migtt pick up the wrorg implementation Such
bugs in the te$ environmenh can be difficult to find when
the te$ unepectedy fails (or, worse, pases) Similar
issus ari® with retun types when the class itself is
stubbel ou for testirg othe classes in the coak baseit may
be easieto retun a simpk st thax an instane d the real

type.

The soldion is © Replace class with interface in the
signature If this soldion is o difficult to appy at first,
perhas kecaus the parameteclass s usé in mary places,
then first creae the st implementatio as a subclas of
the parameteclass anl late refacto both the stbb and
origind classes extrat an interfece.

I mpr ecise exceptions

Jawa support checked exceptions, where the compile will

validate thd all the excefions tha might ke thrown from
within a methd ar eithe handlel o declarel as pat of
the signature Sorre developes avoid checkal exceptions
by catchhg and drgoping exceptions the/ don't know how
to handé (tha is, by ignoring the signal) or by declaring
the methd to throw the generic typ Excepion. An
equivalen to the latte is to alway thrav unchecked
exceptions.

The isste far unit testhg is thda excegtion handing must
alo ke testedFirst, it may be had to deéd a resul that
will confirm tha an exception has keen thrown f the target
code drop it. For example if the beghning o a method
drops a exceqtion, its urit tess ough to be run twice, once
with the excetion thrown ard orce without Second where
exception checking is ignored it can take some tire to
work out and unit teg all the passibe excefion paths
through the code.

The soldion is © be precise whe managig checked
excepions Droppeal exceptions shoutl be encapsulateby
Extract Method [F], which will often sugges a further

Extract Class [F] to reify the interation with the

componen tha throws the excegion. Checkal exception

lists shoutl be narrowe to jug thos excepions thda a

methal can throw this can be propagaté incrementty

from whee the code touche externh libraries Our

experierce is tha a little rigour applied to indistind Java
excefion managemedncan gredly smplify the code and,
herce, the unit tessto drive it.

L ong method

Long method is describd in Fowler The addition&issue
for retroftting unt tess is tha sudcn method ae also
painfu to test Typically this involves witing a lorng series
of tests eatr o which progresses a little furthe through
the methd befoe forcing the nex exit condition Setting

up enough statin a tes to ge throudh the entie methd is,

at best complicated.

If the methd is o lorg to tes as it standsonre soldion is
to tes and refacto incremently. Long method often
contan severh logical sdions for example chedk the
inputs perfom operdéions ard assembd the result Teg a
sedion & a time and extrat helpe method isolae it If
possible extrat a setion ard its tess @& a cless perhag as
a pdicy object Subsquertly, the nev objed can be
repleced with a Modk Objed ard the tess far the method
simplified.

In the bes casea Iong methd cdlapses eithe to a class in
its own right or to a cdlaboration betveen a seé of smdler
objects tha can be testd separately The tess far the
refactorel method eel only exercig the routirg between
those objects.

3 REFACTORINGS

Pass singletons through

Objects tha are nether ubiqutous sud as loggers nor
constan values shoull be pase throudr as method
parametersrathe than retrievel as shgletons a canmon
exampe is a databas connetion. This can be done
incrementaly by first adding the parameteto low-level
method (in this cag DBConnetion) and pasirg in the
instarce fran the singleton then late propagéing the new
paramete up the cal stack Thee is a rik tha parameter
lists will becorre ta long & moe sngletors ae removed,
but in practce we have fouh tha ex-singletonssud as
extern& conredions are usualy locd to a sub-systa or
package Furthermore passng singletos throudn as
parametes often leads o Introducing Parameter Objects
[F] which, in turn suggesusefu refactorings.

The advantag far unit testig is tha a parameter,
particularl if it is an interface is easiethan a singleto to

replace with a mok implementationthus isolatirg the test
from the res of the aptication.

Separ ate construction from use
Where mos of the implementatio o a cless 5 take up
with constructing & instarce, sud as calculatirg the yield

54

curve m a financid instrument conside separéing the
constructio asgcts intb a factoy object—ou mental
image foar this is the way tha booste sedions ae jetisoned
during the laund o a spae rocket.

This tednique is mos likely to gply when the
constructio phag uss different resouces a libraries from
the use bthe object The benet for unit testirg is tha the
two clesses shoull have moe focusd responsitiities and
so be easieboth to tes and o stub out.

Remove complex static initializers

A first stg is © mowe stdic initialization coce int stdic
method © it can be refered to by name aad parameters
and resuls passe through Tedhniques sut & lazy
initialization dlow sud method o be cdled expicitly, for
testing or automéicdly when in praludion.

It may be however tha code d any complexty shoutl not
be run implicitly, bu shoutl be made visitld ard called
diredly from the apflicaion startip sequece This makes
erra handing easie to manag ard ensurs tha failures
occu a the right time Ore d the authos useé this
technige when porthg a componen between two
frameworls tha usel differert erra repoting. The nove
revealel a falure in initializing the logging library tha had
previousy been hidden by an incorred startp sejuerce.

Weaken dependencies between layers

To raduce clas dependende betveen layes d an
application thele are thee case o consider First, where
exdicit credgion occurs across th boundary sud as
creding a nev Custome objed from a servlet consider
Replace Constructor with Factory Method [F]. Thus the
servlé might nov use a CustomerFactgrto creaé a
Customer rathe than instantiatng ore direcly. When unit
testig we can subsitute a mod& CustomerFacter that
instantiatea mod& Customer.

Secondwhere severbvalues ae pasel acresaboundary,
conside Introduce Parameter Object [F]. Fa example,
when passirg stat and erd date fram a users htp request
to an Accourt object we might bunde these ird a
DateRang type This clarifies tke reldionshp betvween the
layers ard we aelikely to be abk o mowe behaviouto the
new parameteobject which can then be testd in isoldion.

Third, where aframewok layer need © interrogat its
client layer, it shoutl defire a cdlbadk interface tha the
client laye can implement Fa examplewhere an Account
objed needs 0 extrat sessio values fran an http request,
define an AccountSesia interface tha makes explicit
what an Accourt needs to knowv abou its context then
implemen an HitpAccountSesion class fo use with
servlets We can nav unit test separatglthe extration of
the valus fram the Hhtp session ard the use bthose values
in the Account Fa the Accoun class we can creae a
MockAccountSesian to isolak its tess fram the servlet
framework.

Replace class with interface

In Java where the inpu parametes a retun valle d a
metha are typal as classes thiaare & all complex,
conside changng thog types 1 interfaces ard renammg
the classes Types basd on interfoces ae easie to
subgitute with sttbb a modk implementations 0 it
becomes easieto tes a class h isolaion from the res of
the system The overhed o maintainng the exta type is
mitigated by moden developmehenvironmend and by the
flexibility it adds to the code Ore implicgion o this
techniqe is thd the codirg standad shoutl nd use type
name o diginguish interfeces a classes suh & with a
leadirg o trailing ‘I', as this hinders refactorin between
the two.

With sone care the sane tetinique can be gplied in C++
by using abstrat classes as interfaes aaxd mutiple
inheritarce D bind them to implementatio classes.

4 RELATED WORK AND OTHER TECHNIQUES
There is a growirg body of experierce wth test-first
development Fowle [5] catalgues the core cod smds
and refactorings and thee are linls o papes ad
discussiors from the JUnt site [4 and on the @ wiki [10].
This pape focuseson coce smdls ard refactoring related
to retroftting unt tests.

There hawe bea sone interestig discissiors eou the use
of Asped Oriental Programmmg [11] for unit testing The
idea is 10 intercept the calk the targé code maks © other
objects in the appticaion. Ore idea $ b u® this echnique
to implement Mock Objects trackirg calls ard returning
preloade resuls [12]. An dternative is o log important
values when runnirg fundional-leve tess and chedk that
these dont chang during refactoring In our view, these
are valuable intermediattechniques o hep with opening
up opaqe code bu we ae way tha they change the
actua code unde test.

5 CONCLUSIONS

In this paperwe have idetified sone codirg practces that
malke the retrafting d unit tess dificult. We have
idertified sone relatel refactoring tha we have found
alow us o “chip away at the coat enaigh to stat adding
unit tests Thee tess then give us the confidence to
refactor adl nev fundionality, or fix bugs usirg test-first
progranming.

Those d us who pratice test-firs programmmng d so
becaus we béeve tha it is moe dfective ard drives us to
writing beter code Marny of us, however alo hae to
work with existhg code tha we cannobreak bu neal to
change The authos haw fourd tha retrofitting unt tests
helps o suppot programmes when makirg change ard to
guide the coc a beter desig throudn refactomg.

How mud time © spend b retroftting unit tests or
whethe to do so &aall, is outsie the scope bthis paper it
can be an expensie exerciseFa thoe who chog o do so,

55

we hoge tha this pape embodies sone usefli experierce.
Before startiny to refacto for testing we al® recanmend
tha the developes write some funtiond test thd touch
the componerst corcerna to cath ary gross erros that
they might introduce

Finally, the red point d this pape is thaf given the will
and enoudy slak in the immedia¢ schedulgit is passible
to add unti tess to almog any existing coce base—aah for
a tean that wans © be adle, it is essential.

ACKNOWLEDGEMENTS

Thanks to Michad Feathers Tim Mackinnon Duncan
McGregor and RachkDavies far ther comments o early
versions ard to the membes d the Extrene Tuesdg Club
for being pat of the canmunity.

REFERENCES
1. Beck K, Extreme programming explained:
embrace change. AddisonWesley 1999.

2. http://c2.com/cgi/wiki?UnitinUnitTestIsntTheUnit
YouAreThinkingOf

3. van Deursen A., Moonen L, can den Bergh A,
Kok G, Refactoring Test Code, XP2001, Sardinia,
2001.

The JUnt web dte. http//mwww.junit.org

Fowle M., Refactoring: improving the design of
exigting code, AddisonWesley 1999.

6. Gamma E Hdm, R Johnson R, Vlissides J.
Design Patterns, AddisonWesley 1995.

7. Mackinna T, Freema S, Crag P, Endotesting:
unit testing with Mock Objects, in Extreme
Programming Examined, AddisonWesley 2000.

8. Rainsberger J. Use your singletons wisely,
http://www-106.ibm.caon/developerworks/compon
entslibrary/co-single.hinl

9. EasyMod http://www.easymock.org/
10. http://c2.com/cgi/wiki?UnitTestingLegacyCode

11. http://www.asctj.org

12. http://graups.yatwo.can/graup/extremepogranmi

ngmessage/3004

57

Implementing and Using Resumable
TestFailures in Smalltalk

Joseph Pelrine
MetaProg GmbH

Position paper for
Workshop on Testing in XP (WTiXP 2002)
XP 2002, Alghero, Sardinia

The high performance aspect of extreme Programming derives in part from the
rapid feedback cycles in unit testing. Collection testing and validation, however,
can be very time-intensive, and can slow down the development process to the
point where the advantages of test-driven programming are lost. Through the
implementation of "resumable” test failures, though, this deficit can be
compensated for. The ResumableTestFailure (to be introduced in SUnit 3.1) offers
a flexible implementation of this in Smalltalk.

The new SUnit release 3.1 adds more functionality at little cost to both
Smalltalk’s and extreme Programming’s premier testing framework. In addition to
the assert:description: family of methods (well-known from JUnit), which allow
you to attach arbitrary description strings to assertions, the major change is the
introduction of a resumable TestFailure.

Why would you need a resumable TestFailure? Take a look at this example from a
typical test case method:

aCollection do: [:each | self assert: each isFoo]

In this case, as soon as the first element of the collection isn't Foo, the test stops
and returns a failure. Although this information is necessary for test-driven
development, it normally isn’t sufficient. In most cases, we would like to
continue, and see both how many elements and which elements aren't Foo. It
would also be nice to log this information. You can do this in this way:

58

aCollection do: [:each |
self
assert: each isFoo
description: each printString, "is not Foo*
resumable: true]

This will print out a message on the Transcript for each element that fails. It
doesn't cumulate failures, i.e., if the assertion fail 10 times in your test method,
you'll still only see one failure.

Implementation

As a result of SUnit being extremely lightweight, it required only minimal effort
to implement the functionality required to support ResumableTestFailures.

1. The class ResumableTestFailure was created as a subclass of TestFailure,
which itself is defined in the SUnitPreload package. (This package contains
all dialect-specific Classes and Methods for SUnit, and makes it possible
for the core SUnit package to be dialect-independent).

2. The method Exception>>#isResumable was overwritten to return true.

3. The method Exception>>#sunitExitWith: , which normally returns from
the exception, was overwritten to resume execution.

While running the test cases, it was noticed that the SUnit framework had a
conceptual inconsistency which was overlooked in the original implementation.
The method TestResult>>#failures, which returns the collection of failures for a
test run, was implemented to be an OrderedCollection. This led to each triggering
of a ResumableTestFailure adding yet another failure to the collection. The
implementation was changed to be a Set, based on the fact that a test case
method is a failure regardless of how many assertions in the method are false.
Also, implementing the failure collection as a Set reflects the fact that test cases
should be non-deterministic, i.e., the order in which the test cases are executed is
irrelevant.

The change in TestResult>>#failures led to a slight change in
TestResult>>#defects, which was dependent on the failures being contained in an
OrderedCollection. This change was minor, and will not be discussed further.

The implementation also required a method for triggering both regular and
resumable TestFailures. The basic method,
TestCase>>#assert:description:resumable: is illustrated below:

assert: aBoolean description: aString resumable:
resumableBoolean

| exception |
aBoolean ifFalse: [
self logFailure: aString.
exception := resumableBoolean
ifTrue: [ResumableTestFailure]
ifFalse: [TestResult failure].
exception sunitSignalWith: aString]

59

Once again, the implementation of SUnit has proven to be very efficient and
flexible when it comes to adding or extending behavior without changing the
base packages. Of course, being in Smalltalk helps too — YMMV.

Joseph Pelrine wrote the reference implementation of SUnit 3.0. He is (together
with Sames Shuster and Jeff Odell) maintainer of the SUnit distribution on
Sourceforge.

He can be reached at:

Joseph Pelrine

MetaProg GmbH
Bachlettenstrasse 41

CH-4054 Basel

Switzerland

Email: jpelrine@metaprog.com

