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At the International Conference on the History of Computing held in Los Alamos in 1976, R.W.
Hamming placed his proposed agenda in the title of his paper: "We Would Know What They
Thought When They Did It."1 He pleaded for a history of computing that pursued the contextual
development of ideas, rather than merely listing names, dates, and places of "firsts".  Moreover,
he exhorted historians to go beyond the documents to "informed speculation" about the results of
undocumented practice. What people actually did and what they thought they were doing may
well not be accurately reflected in what they wrote and what they said they were thinking.  His
own experience had taught him that.   

  Historians of science recognize in Hamming's point  what they learned from Thomas
Kuhn's  Structure of Scientific Revolutions   some time ago, namely that the practice of science
and the literature of science do not necessarily coincide.  Paradigms (or, if you prefer with Kuhn,
disciplinary matrices) direct not so much what scientists say as what  they do.  Hence, to determine
the paradigms of past science historians must watch scientists at work practicing their science. 
We have to reconstruct what they thought from the evidence of what they did, and that work of
reconstruction in the history of science has often involved a certain amount of speculation
informed by historians' own experience of science.  That is all the more the case in the history of
technology, where up to the present century the inventor and engineer have \*-as Derek Price
once put it\*- "thought with their fingertips", leaving the record of their thinking in the artefacts
they have designed rather than in texts they have written. 

  Yet, on two counts, Hamming's point has special force for the history of computing. 
First, whatever the theoretical content of the subject, the main object of computing has been to do
something, or rather to make the computer do something.  Successful practice has been the prime
measure of effective theory.  Second, the computer embodies a historically unique relation of
thinking and doing.  It is the first machine for doing thinking.  In the years following its creation
and its introduction into the worlds of science, industry, and business, both the device and the
activities involved in its use were new. 

  It is tempting to say they were unprecedented, were that not to beg the question at hand. 
Precedents are what people find in their past  experience to guide their present act ion.   Conversely,
actions usually reflect the guidance of experience.  Nothing is really unprecedented.  Faced with a
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3Peter Naur, Brian Randell, J.N. Buxton (eds.),  Software Engineering: Concepts and Techniques   (NY:
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new situation, people liken it to familiar ones and shape their response on the basis of the
perceived similarities. In the case of the computer, what  was new  was the reliable electronic
circuitry that made its underlying theoretical structure realizable in practice.  At heart, it was a
Turing Machine that operated within the constraints of real time and space.  That much was
unprecedented.  Beyond that, precedent shaped the computer.  The Turing Machine was an open
schema for a potentially infinite range of particular applications.  How the computer was going to
be used depended on the experience and expectations of the people who were going to use it or
were going to design it for others to use. 

  As part of a history of the development of the computer industry from 1950 to 1970
focusing on the origins of the "software crisis", I am currently trying to determine what  people
had in mind when they first began to talk about "software engineering".  Although one writer has
suggested that the term originated in 1965,2  it first came into common currency in 1967 when the
Study Group on Computer Science of the NATO Science Committee called for an international
conference on the subject .  As Brian Randell and Peter Naur point out in the introduction to their
edition of the proceedings, "The phrase 'software engineering' was deliberately chosen as being
provocative, in implying the need for software manufacture to be [based] on the types of
theoretical foundations and practical disciplines[,] that are traditional in the established branches
of engineering."3  

  It is not entirely clear just what the Study Group meant to provoke, since that statement
opens several areas of potential disagreement.  Just  what are the "types of theoret ical foundat ions
and practical disciplines that are traditional in the established branches of engineering"?  What
would their counterparts look like for software engineering?  What role does engineering play in
manufacture?  Could one assign such a role to software engineering?  Can software be
manufactured?  Clearly, the Study Group thought the answer to the last question was yes, but it
offered no definitive answers to the others, and the proceedings of the conference, along with the
literature since, reveal a range of interpretations among the practitioners who were to become
software engineers.   

  Their differences extended beyond the realm of software to the nature of engineering
itself.  What some viewed as applied science, others took to be a body of techniques of design,
while still others thought in terms of organization and management.  Each point of view
encompassed its own models and touchstones, in most cases implicitly and perhaps even
unconsciously.  Small wonder that conferences and symposia on software engineering through the
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'70s and into the '80s regularly began with keynotes addressed to defining the subject and to
answering the question, Are we there yet?  It depended on where one thought "there" was.   

  If one could not define "software engineering" at the time, neither could one point to its
practice.  It was not coined to characterize an ongoing activity but rather to express a desire for
one.  By 1967, when the computer industry was less than twenty years old, people felt the need
for software engineering, even if they were not sure what it was.  A brief look at the origins of
computing may help to explain such apparently strange behavior. 

  The electronic digital stored-program computer marks the convergence of two essentially
independent lines of development tracing back to the early nineteenth-century, namely the design
of mechanical calculators  capable of automatic operation and the development of mathematical
logic. In outline, at least, those stories are reasonably well known and need no repetition here.4 
Viewing them as convergent rather than coincident emphasizes that the  computer emerged as the
joint product of electrical engineering and  theoretical mathematics and was shared by those two
groups of  practitioners, whose expertise intersected in the machine and overlapped on the
instruction set .  Both groups apparently looked upon programming as incidental to their
respective concerns.   Working with the model of the Turing machine, mathematical logicians
concerned themselves with questions of computability considered independently of any particular
device, while electrical engineers concentrated on the synthesis and opt imization of switching
circuits for specific inputs and outputs.5  Numerical analysts embraced the machine as part of their
subject and hence took programming it as part of their task.6  B.V. Bowden of Ferranti, Ltd.,
editor of  Faster than Thought,  was unusual in even raising the question.  As the number of
computers in use in England in 1953 reached 150, he pointed to the growing difficulties and
inefficiencies of programming and wondered where the programmers would come from. 

We have yet to analyse, for we have almost ignored them, the restrictions on
machine performance which are due to the difficulties experienced by the operators
who have to prepare programmes for them.  It is significant that many machines
have spent half their working lives in checking programmes and finding mistakes in
them and only perhaps a third of the time in straightforward computation.  One can
deduce from this the startling conclusion that had the machines been a thousand
times as fast as they are, their total output would not have been increased by more
than about fifty per cent; in the last analysis the correction of programming errors
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depends almost entirely on the skill and speed of a mathematician, and there is no
doubt that it is a very difficult and laborious operation to get a long programme
right.7  

 As long as the computer remained essentially a scientific instrument, Bowden's concern found
little echo; programming remained relatively unproblematic. 

  But  the computer went commercial in the early '50s.  Why and how is another story.8 
With commercialization came rapid strides in hardware -- faster processors, larger memories,
more efficient peripherals-- together with equally rapid expansion of the imaginations of
marketing departments.  To sell the computer, they spoke not only of high-speed accounting, but
of computer-based management.  Again, at  first  few if any seemed concerned about who would
write the programs needed to make it useful. IBM, for example, did not recognize "programmer"
as a job category nor create a career track for it until the late 1950s. 

  Companies soon learned that they had reduced the size of their accounting departments
only to create ever-growing data processing divisions, or to retain computer service organizat ions
which themselves needed ever more programmers.   The process got underway in the late '50s, and
by 1968 some 500 companies were producing software.  They and businesses dependent on them
were employing some 100,000 programmers and advertising the need for 50,000 more.  By 1970,
the figure stood around 175,000. In this process, programs became "software" in two senses. 
First, a body of programs took shape (assemblers, monitors, compilers, operating systems, etc.)
that transformed the raw machine into a tool for producing useful applications, such as data
processing.  Second, programs became the objects of production by people who were not
scientists, mathematicians,  or electrical engineers. 

  The increasing size of software projects introduced two new elements into programming:
separation of design from implementation and management of programmers.  The first raised the
need for techniques for designing programs \*-often quite large programs\*- without writing them
and for communicating designs to the programmers; the second, the need for means of measuring
and controlling the quality of programmers' work.9  For all the successes of the '60s, practitioners
and managers generally agreed that those needs were not being met.  Everyone had his favorite
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horror story.  Frederick Brooks published his later as  The Mythical Man-Month   (1975), while
C.A.R. Hoare saved his for his Turing Award Lecture, "The Emperor's Old Clothes" in 1980.10 
Underlying the anecdotes was a consensus that, as F.L. Bauer put it in his report on "Software
Engineering" at IFIP 71, 

What have been the complaints?  Typically, they were:
Existing software production is done by amateurs (regardless whether at
universities, software houses or manufacturers), 
Existing software development is done by tinkering (at the universities) or
by the human wave ("million monkey") approach at the manufacturer's, 
Existing software is unreliable and needs permanent "maintenance", the
word maintenance being misused to denote fallacies which are expected
from the very beginning by the producer,
Existing software is messy, lacks transparency, prevents improvement or
building on (or at least requires too high a price to be paid for this). 

Last, but not least, the common complaint is: 
Existing software comes too late and at  higher costs than expected, and
does not fulfill the promises made for it. 

 Certainly, more points could be added to this list.11

  As an abstract of his paper, Bauer half-jokingly observed that "'Software engineering'
seems to be well understood today, if not the subject, then at least  the term.  As a working
definition, it is the part of computer science that is too difficult for the computer scientists."
Among the things he seems to have had in mind are precisely the organizational and managerial
tasks that one generally associates with engineering rather than science, for he also defined
software engineering in all seriousness as "the establishment and use of sound engineering
principles to obtain economically software that is reliable and works efficiently on real machines"
and proposed to proceed for the moment on the model of industrial engineering.  Quite apart from
lacking an adequate theory of programming, as forcefully brought out by John McCarthy and
others in the early 1960s, computer science (whatever it was in the '60s) encompassed nothing
akin to project management.  Nor did it include the empirical study of programmers and
programming projects to determine the laws by which they behaved. 

  Traditionally, these had been the concern of engineers, rather than of scientists.   That
was especially true of American engineers, whose training since the turn of the century had
included preparation for managerial responsibilities  and who since the turn of the century had
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been laying claim to superior insight into the organization of efficient production.12  As Edwin T.
Layton showed in The Revolt of the Engineers, the claim stemmed from the specific heritage of
mechanical engineering and the advances in machine-based industry associated with mass
production and the assembly line.  One hears beneath much American thinking about software
engineering the images and language of the machine shop. 

  For example, when M.D.  McIlroy urged upon fellow participants at Garmisch that they
strive toward "Mass-produced software", he was drawing on a repertory of models both for
engineering and for management.  Seeing software sitting somewhere on the other side of the
Industrial Revolution, he proposed to vault it into the modern era. 

We undoubtedly produce software by backward techniques.  We undoubtedly get
the short end of the stick in confrontations with hardware people because they are
the industrialists and we are the crofters.  Software production today appears in the
scale of industrialization somewhere below the more backward construction
industries. I think its proper place is considerably higher, and would like to
investigate the prospects for mass-production techniques in software. 

 He left no doubt of whose lead to follow.  He continued, .

In the phrase 'mass production techniques', my emphasis is on 'techniques'  and not
on mass production plain. Of course mass production, in the sense of limitless
replication of prototype, is trivial for software. But certain ideas from industrial
technique I claim are relevant. The idea of subassemblies carries over directly and
is well exploited. The idea of interchangeable parts corresponds roughly to our
term 'modularity', and is fitfully respected. The idea of machine tools has an
analogue in assembly programs and compilers. Yet this fragile analogy is belied
when we seek for analogues of other tangible symbols of mass production. There
do not exist manufacturers of standard parts, much less catalogues of standard
parts.  One may not order parts to individual specifications or size, ruggedness,
speed, capacity, precision or character set. 

 As recent studies of the American machine-tool industry during the 19th and early 20th century
have shown, McIlroy could hardly have chosen a more potent model.  Between roughly 1820 and
1880, developments in machine-tool technology had increased routine shop precision from .01" to
.0001".  More importantly, in a process characterized by the economist Nathan Rosenberg as
"convergence", machine-tool manufacturers learned how to translate new techniques developed
for specific customers into generic tools of their own.  So, for example, the need to machine
percussion locks led to the development of the vertical turret lathe, which in turn lent itself to the
production of screws and small precision parts, which in turn led to the automatic turret lathe. 
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  Moreover, with each advance in precision and automatic operation, machine tools made
ever tighter management possible by relocating the machinist's skill into the design of the machine. 
Increasingly toward the end of the 19th century, workers could be held to close, prefixed
standards, because those standards were built into the tools of production.  That trend culminated
in Ford's machines of production, which automatically produced parts to the tolerances requisite
to interchangeability. 

  As McIlroy knew, mass production was as much a matter of management as of
technique.  It  was not only the sophistication of the individual machines, but also the system by
which they were linked and ordered, that transformed American industry.  Two figures loomed
large in that transformation: Frederick W. Taylor and Henry Ford.  The first was associated with
"scientific management", the forerunner of modern management science, the latter with the
assembly line. 

  Yet, viewed more closely in light of what  was revealed at Garmisch, Taylor's basic
principles themselves cast doubt on the applicability of his model to the production of software. 
The primary obligat ion of management according to Taylor was to determine the scientific basis
of the task to be accomplished.  That came down to four main duties: 

First.   They develop a science for each element of a man's work, which replaces
the old rule-of-thumb method. 
Second.  They scientifically select and then train, teach, and develop the workman,
whereas in the past he chose his own work and trained himself as best he could.
Third.   They heartily cooperate with the men so as to insure all of the work [is]
being done in accordance with the principle of the science which has been
developed. 
Fourth.  There is an almost equal division of the work and the responsibility
between the management and the workmen.  The management take over all work
for which they are better fitted than the workmen, while in the past almost all of
the work and the greater part of the responsibility were thrown upon the men.13  

  To what extent computer science could replace rule of thumb in the production of
software was precisely the point at issue at the NATO conferences.  Even the optimists agreed
that progress had been slow.  Unable, then, to fulfil the first duty, programming managers were
hardly in a position to carry out the third.  Everyone bemoaned the lack of standards for the
quality of software.  As far as the fourth was concerned, few ventured to say who was best suited
to do what in large-scale programming project.14   
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decided how to organize the actual writing of external specifications for OS/360.  The manager of architecture, the
manager of control program implementation , and I were threshing [!] out the plan , schedule,  and division of
responsibilities.   The architecture manager had 10 good men.  He asserted that they could write the specifications
and do it right.  It would take ten months, three more than the schedule allowed.

"The control program manager had 150 men.  He asserted that they could prepare the specifications, with
the architecture team coordinating; it would be well done and practical, and he could do it on schedule. 
Furthermore, if the archi tecture team did it,  his 150 men would sit twiddling their  thumbs for ten months.

"To this the architecture manager responded that if I gave the control program team the responsibility, the
result would not in fact be on time, but would also be three months late, and of much lower quantity.  I did, and it
was.  He was right on both counts.  Moreover, the lack of conceptual integrity made the system far more costly to
build and change, and I would estimate that it added a year to debugging time." (47-48)

15Dick H. Brandon, "The Economics of Computer Programming", in George F. Weinwurm (ed.),  On the
Management of Computer Programming   (Princeton: Auerbach , 1970), Chap.1.  Brandon evidently viewed
management through Taylorist eyes, but he was clear-sighted enough to see that computer programming failed to
meet the prerequisites for scientific management.  For an analysis of why testing was so unreliable, see R.N.
Reinstedt, "Results of a Programmer Performance Prediction Study",  IEEE Trans. Engineering Management  
(12/67), 183-87,  and Gerald M.  Weinberg's  The Psychology of Computer Programming   (NY, 1971), Chap.9.

16Taylor had also laid particular emphasis on wage structures that encourage full product ion.  The essence
of his "different ial piece ra te" offered the worker  a choice to produce a t the optimal rate or not; it  was a choice
about the pace at which to work, Taylor's or the worker 's.  Brandon poin ted out  that the anarchic nature of
programming meant that management had to depend on the workers to determine the pace of a project and that the
insatiable market for programmers meant that management h ad littl e control at  all over the wage structure.

  By 1969 the failure of management to establish standards for the selection and training of
programmers was legend. As Dick H. Brandon, the head of one of the more successful software
houses, pointed out, the industry at large scarcely agreed on the most general specifications of the
programmer's task, managers seeking to hire people without programming experience (as the
pressing need for programmers required) had only one quite dubious aptitude test at their
disposal, and no one knew for certain how to train those people once they were hired.15  

  Taylor had insisted that productivity was a 50/50 proposition.  Management had to play
its part through selection, training, and supply of materials and tools.  But in the 1960s the science
of management (whatever that might be) could not supply what the science of computing (if such
there be) had so far failed to establish, namely a scientific basis of software production.16  

  What could not be organized by Taylor's methods a fortiori lay beyond the reach of the
other major American model of productivity: Ford's assembly line.  The essential feature of Ford's
methods is the relocation of skill from the worker to the machines of production, which the
workers merely attended.  Ford's worker had no control over the quality or the quantity of the
work he produced.  The machines of production determined both. To Fordize software
production would mean providing the computer analogue of automat ic machinery.  It  would
therefore mean that one would have to design software systems that generate software to meet set
standards of reliability.  When McIlroy spoke of "mass-produced software", he was speaking the
language of Ford's model. 
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  As noted earlier, quality control was another feature of Ford's system.   His machines
guaranteed accuracy to within 0.0001" for complete interchangeability of parts. The analogue in
computing that McIlroy was espousing thus brings the quest ion of production back around to  the
question of the nature of computer science.  Some of those at NATO thought of software design
in terms of experimentation: write the program, put it on the computer, and start debugging (as
Ford put it, "Let's turn it over and see why it won't start.").  Programming then looks like
experimental science or engineering in viewing the reliability of software in terms of tolerances. 
But Edsger W. Dijkstra vehemently advocated a quite different  notion.  "Program testing can be
used to reveal the presence of errors," he argued, "but  never to show their absence!"(or even, he
might have added, convergence on their absence).17  Programming should aspire to mathematics,
that is, it should seek means of verifying the correctness of programs mathematically.  Rather than
accepting the inevitability of bugs and devising elaborate tests to find them, one should prove that
programs will work properly.  Dijkstra was calling the means of such proof "structured
programming" and was seeking to build its structure into programming languages and their
compilers. It was the mathematically oriented computer scientists who seem to have been
responding to questions of productivity with an eye toward Ford's methods. 

  A survey of the software engineering literature of the past decade reveals three salient
features of the field.  First,  the problems that spawned software engineering remain largely
unresolved.  Ten years after the NATO Conference, R.W. Floyd in his Turing Award Lecture of
1978 quoted Robert Balzer to the effect that

It is well known that software is in a depressed state.  It is unreliable, delivered
late, unresponsive to change, inefficient, and expensive.  Furthermore, since it is
currently labor intensive, the situation will further deteriorate as demand increases
and labor costs rise.18  

 To this Floyd could only add: 

If this sounds like the famous 'software crisis' of a decade or so ago, the fact that
we have been in the same state for ten or fifteen years suggests that 'software
depression' is a more apt term. 

 One does not have to look hard or far for similar expressions in the current software literature. 

  Indeed, it suffices to read any issue of ACM's Software Engineering Notes, with its list of
new items describing the failures of software systems, including the lost of life, limb, property,
money and time suffered by users of improperly functioning programs. The disclaimers of liability
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that routinely accompany software bear witness to how far software engineering lies from the
"established branches of engineering." 

  Thus, despite the hallmarks of an established discipline -- societies, journals, curricula,
research institutions-- software engineering remains a relatively soft concept.  The definition has
not changed much; a recent version speaks of "the disciplined application of engineering,
scientific, and mathematical principles and methods to the economical production of quality
software."19  The meaning of the definit ion depends on how its central terms are interpreted, in
particular what principles and methods from engineering, science, and mathematics are applied to
software. 

  Hence, behind the discussions of software engineering lie models drawn from other
realms of engineering, often without much reflection on their applicability.  In most cases, they are
the same models that informed people's thinking when software engineering was a new idea.  For
example, McIlroy's notion of assembling components became modular programming and then
object-oriented programming, but the underlying model remained that  of production by
interchangeable parts.  Automatic programming has shifted meaning as its scope has broadened
from compiling to implementation of design, but it continues to rest on the model of automat ic
machine tools.  Software engineering has not progressed far beyond its roots.   Perhaps its roots
are the reason. 


