THE ROOTS OF SOFTWARE ENGINEERING®

Michael S. Mahoney
Princeton University

(CWI Quarterly 3,4(1990), 325-334)

At the International Conference on the History of Computing held in Los Alamos in 1976, RW.
Hamming placed his proposed agenda inthe title of his paper: "We Would Know What They
Thought When They Did It."* He pleaded for a history of computing that pursued the contextual
development of ideas, rather than merely listing names, dates, and places of "firsts". Moreover,
he exhorted historiansto go beyond the documerts to "informed speculation' about the results of
undocumented practice. What people actually did and what they thought they were doing may
well not be accurately reflected in what they wrote and what they said they werethinking. His
own experience had taught him that.

Historians of science recognize in Hamming'spoint what they learned from Thomes
Kuhn's Structure of Scientific Revolutions some time ago, namely that the practice of science
and the literature of science do not necessarily coincide. Paradigms (or, if you prefer with Kuhn,
disciplinary matrices) direct not so much what scientists say as what they do. Hence, to determine
the paradigms of past science historians must watch sciertists at work practicing their science.
We haveto reconstruct what they thought fromthe evidence of wha they did, and that work of
reconstructioninthe higory of science has often involved a certainamount of speculaion
informed by higorians own experience of saence. That isall the more the caseinthe higory of
technology, where up to the present century the inventor and enginear have *-as Derek Price
onceput it* - "thought with their fingertips", leaving the record of their thinking in the artefacts
they have desgred rather than in texts they have written.

Y et, on two counts, Hamming's point has goecial force for thehigory of computing.
First, whatever the theoretical content of the subject, the man object of computing hasbeen to do
something, or rather to make the computer do something. Successful practice has been the prime
measure of effective theory. Second, the computer enbodies a higorically unique relation of
thinking and doing. It is thefirst machine for doing thinking. Inthe yearsfollowing its creation
and itsintroduction into the worlds of science, industry, and business, both the device and the
activitiesinvolved inits use were new.

It istemptingto say they were unprecedented, were that not to beg the question at hand.
Precedents are what peoplefind in their past experienceto guide their present action. Conver sy,
actions usualy reflect the guidance of experience. Nothing isreally unprecedented. Faced with a

*An expanded version of alecture presented at CWI on 1 February 1990. It is based on r esearch
generoudy supported by the Alfred P. Sloan Foundation.

'Published in N. Metropolis J. Howlett, G-C. Raa (eds.), A History of Computing in the Twentieth
Century: A Collection of Essays (N.Y.: Academic Press, 1980), 3-9.

M.S. Mahoney Roots of Software Engineering page 2

new sSituation, people liken it to familiar ones and shape their response on the basis of the
perceived smilarities. I nthe case of the computer, what was new wastherdiable eectronic
circuitry that made its underlying theoretical structure realizable inpractice. At heart, it was a
Turing Machine that operated within the constraints of real time and space. That muchwas
unprecedented. Beyond that, precedent shaped the computer. The Turing Machine was an open
schema for a potentially infinite range of particular applications How the computer was going to
be used depended on the experience and expectations of the peoplewho were going to use it or
were going to design it for othersto use

As part of a higory of the development of the computer industry from 1950 to 1970
focusing on the origins of the "software crigs’, |1 am currently trying to determine what people
had in mind when they first began to talk about "software engineering”. Although one writer has
suggested that the term originated in 1965,% it first came into common currency in 1967 when the
Study Group on Computer Science of the NATO Science Committee called for an international
conference on the subject. As Brian Randdl and Peter Naur point out in theintroduction to their
edition of the proceedings, "T he phrase 'software engineering' was deliberat ely chosen as being
provocative, in implying the need for software manufacture to be [based] on thetypes of
theoretical foundations and practical disciplined[,] that are traditional inthe established branches
of engineering."®

Itisnot entirely clear just what the Study Group meant to provoke, since that stat ement
opens several areas of potential disagreement. Just what are the "types of theoretical foundations
and practical disciplires that are traditional in the established branches of engineering"? What
would ther counterpartslook like for software engineering? What role does engineering play in
manufacture? Could one assign such a role to software engineering? Can software be
manufactured? Clearly, the Study Group thought the answer to the last question was yes, but it
offered no definitive answers to the others, and the proceedings of the conference, aong with the
liter ature since, reveal arange of interpretations among the practitioners who wereto become
software engineers.

Their differences extended beyond the realm of softwareto the nature of engineering
itself. What some viewed as applied science, otherstook to be abody of techniques of design,
while still others thought in terms of organization and managemert. Each point of view
encompassed its own models and touchstones, in most cases implicitly and perhaps even
unconscioudy. Small wonder that conferences and symposia on software engineering through the

Brian Randell (" Software Engineaiing in 1968", Prof. 4th Intern. Conf. on Software Engineering
[Munich, 1979], 1) ascribesit to J.P. Eckert a the Fall Joint Computer Conference in 1965, but the transcript of
the one pand discussion in which Eckert partidpated shows no evidenceof theterm "softwareengineering”. D.T.
Ross claims the term was used in courses he was teaching at MIT in the late '50s; cf. "Interview: Douglas Ross
Talks About Strudured Analysis*, Computer (July 1985), 80-88.

3Peter Naur, Brian Randell, J.N. Buxton (eds), Software Engineering: Concepts and Techniques (NY:
Petrocelli/Charter, 1976, hereafta NRB).

M.S. Mahoney Roots of Software Engineering page 3

"70s and into the '80s regularly beganwith keynotes addressed to defining the subject and to
answering the quegion, Are we thereyet? It depended on where one thought "there" was.

If one could not define "software eng neering"” at thetime, neither could onepoint to its
practice. It was not coined to characterize anongoing activity but rather to express a desire for
one. By 1967, when the computer industry was less than twenty years old, people felt the need
for oftware engineering, evenif they were not surewhat it waes. A brief look at theorigins of
computing may help to explain such apparertly strange behavior.

The dectronic digita stored-program computer marks the convergence of two essentially
independent lines of development tracing badk to the early nineteenth-century, namely thedesign
of mechanical calculators capable of automatic operation and the development of mathematical
logic. In outline, at least, those stories are reasonably well known and need no repetition here.*
Viewing them as conver gent rather than coincident emphasizes that the computer emerged as the
joint product of electrical engineering and theoretical mathematics and was shared by those two
groups of practitioners, whose expertise intersected in the machine and overlapped on the
ingruction sst. Both groups gpparently looked upon programming asincidentd to ther
respective concerns. Working with the mode of the Turing machine, mathematical logicians
concerned themselves with quedions of computability considered independently of any particular
device, while dectrical engineers concentrated on the synthesis and optimization of switching
circuits for specific inputs and outputs.® Numerical andysts embraced the machine as part of their
subject and hence took programming it as part of their task.® B.V. Bowdenof Ferranti, Ltd.,
editor of Faster than Thought, wasunusual ineven raising the question. As the number of
computersin use in England in 1953 reached 150, he pointed to the growing difficulties and
ingfficiencies of programming and wondered where the progranmers would come from.

We haveye to andyse, for we have almost ignored them the restrictions on
machine performance which are dueto the difficulties experienced by the operators
who have to prepare programmes for them. It is significant that many machines
have spent hdf ther working lives in checking programmes and finding mistakesin
them and only perhaps a third of the time in straightforward computation. One can
deduce from this the startling concluson that had the machines been a thousand
times as fast as they are, their total output would not have been increased by more
than about fifty per cent; in the last analysis the correction of programming errors

“See, for example Michael R Williams, A History of Computing Technology (Englewoad Cliffs, NJ:
Prentice-Hall, 1986).

°M.S. Mahoney, "Computers and mathematics: The search for a disdpline of computer science’, to
appear in the proceedings of the International Sympaosium on Strudures in Mathematical Thearies, San
Sebastian-Donostia, Spain, September 1990.

In areal sense, numerical analysiscame into being with the computer. The te'm itself is of postwar
coinage.

M.S. Mahoney Roots of Software Engineering page 4

depends aimost entirely on the skill and speed of a mathematician, and there isno
doubt that it isavery difficult and laborious operation to get along programme

right.

Aslong asthe computer remained essentiadly a scientific instrument, Bowden's concern found
little echo; programming remeained relativdy unproblematic.

But the computer went commercid in the early '50s. Why and how isanother story.®
With commercialization came rapid strides in hardware -- faster processors, larger memories,
more efficient peripherds- together with equally rapid expangon of the imaginations of
marketing departments. To sell the computer, they spoke not only of high-speed accounting, but
of computer-based management. Again, a firg few if any seemed concerned about who would
write the programsneeded to make it useful. IBM, for example, did not recognize " programmer™
as a job category nor create acareer track for it until the late 1950s.

Companies soon learned that they had reduced thesize of their acoounting departments
only to create ever-growing data processing divisons, or to retain computer service organizations
which themselves needed ever more programmers. The process got underway in the late '50s, and
by 1968 some 500 companies were producing software. They and businesses dependent on them
were employing some 100,000 programmers and advertising the need for 50,000 more. By 1970,
the figure stood around 175,000. Inthisprocess, programs became " software" in two senses.
Fird, abody of programstook shape (assembers monitors, compilers operating sygems, etc.)
that trandormed the raw machine into a tool for producing useful applications, such asdata
processing. Second, programsbecamethe objeds of production by people who were not
scientigs, mathematiciarns, or electrical engineers.

The increadgng size of software projects introduced two new elements into programming:
separ ation of design from implementation and management of programmers. The first raised the
need for techniques for designing programs *-often quite large programs* - without writing them
and for communicating designsto the programmers, the second, the need for means of measuring
and controlling the quality of programmers work.? For all the successesof the '60s, practitioners
and managers generally agreed that those needswerenot being met. Everyone had hisfavorite

’B.V. Bowden (ed.) Faster That Thought: A Symposum on Digital Computing Machines (New Y ork,
1953), 96-97.

8See in partiaular Bashe, Charles J. et al., IBM's Early Computers (Cambridge, MA: MIT Press, 1986)
and Kenneth Flamm, Creating the Computer (Washington, DC: Brodkings Institution, 1988), for American
devdopmentsand John Hendry, Innovating for Failure. Government Policy and the Early British Computer
Industry (Cambridge MA: MIT Press, 1989) for contrasting effortsin Britain.

*Programming languages were ariginally aimed at extending access to the computer beyond the
professonal programmer, who through most of the '60s worked in assembler or machinelanguage. Only in the
later '60s, in the course of the developing“criss" did programming languagestake on theroleof disaplining
programmers, and duri ng most of the "70s unsuccessfull y so.

M.S. Mahoney Roots of Software Engineering page 5

horror story. Frederick Brooks published his later as The Mythical Man-Month (1975), while
C.A.R. Hoare saved his for his Turing Award Lecture, "The Emperor's Old Clothes" in1980.%
Underlying the anecdotes was a consensusthat, as F.L. Bauer put it in his report on " Software
Engineering” at IHP 71,

What have been the complaints? Typically, they were:
Existing software production is done by amateurs (regardless whether at
universities, oftware houses or manufacturers),
Existing software devel opmert isdone by tinkering (& the universities) or
by the human wave ("million monkey") approach at the manufacturer's,
Existing software is unreliable and needs permanent " maintenance”, the
word maintenance being misused to denote fall acies which are expected
fromthe very beginning by the producer,
Existing software is messy, |acks trangparercy, preventsimprovemert or
building on (or at least requires too high a price to be paid for this).
Last, but not least, the common complaint is:
Existing software comestoo late and a higher costs than expected, and
does not fulfill the promises made for it.

Certanly, more points could beadded to this lig.*

As an abdract of his paper, Bauer half-jokingly observed that "' Software engineering'
seemsto be well understood today, if not the subject, then at least theterm. Asaworking
definition, it is the part of computer science that is too difficult for the computer scientigs.”
Among the things he seems to have had inmind are precisely the organizational and managerial
tasks that one generally associates with engineering rather than science, for he also defined
software engineering in all seriousness as " the establishment and use of sound engineering
principles to obtain economically software that is relialde and works efficiently on real machines”
and proposed to proceed for the moment on themodd of industrial engineering. Quite apat from
lacking an adequat e theory of programming, as forcefully brought out by John McCarthy and
others in the early 1960s, computer science (wWhatever it wasin the '60s) encompassed nothing
akin to project management. Nor did it include the empirical study of programmers and
programming projectsto determine the laws by which they behaved.

Traditionally, these had been the concern of engineers, rather than of scientists. That
was especially true of American engineers, whose training since the turn of the century had
included preparation for managerial regponsibilities and who since the turn of the century had

CACM 24,2(1981), 75-83; repr. in BYTE 6,10(1981), 414- 425.

Y nformation Processing 71 (Amsterdam: North-Holland Publishing Co, 1972), I, 530-538; at 530.

M.S. Mahoney Roots of Software Engineering page 6

been laying claim to superior insight into the organization of efficient production.> As Edwin T.
Layton showed in The Revolt of the Engineers, the daim semmed from the specific heritage of
mechanical engineering and the advances in machine-based industry associated with mass
production and the assembly line. One hearsbeneath much American thinking about software
engineering the images and language of the machine shop.

For example, when M.D. Mcllroy urged upon fellow participants at Garmisch that they
strive toward "Mass-produced oftware”, he wasdrawing on a repertory of models bothfor
engineering and for management. Seeing softwar e Sitting somewhere on the other side of the
Industrial Revolution, he proposed to vault it into the modern era.

We undoubtedly produce software by backward technques. We undoubtedly get
the short end of the gick in confrontationswith hardware people becausethey ae
the industridists and we are the crofters. Software production today appearsin the
scale of indudridization somewhere below the more backward construction
indudries. | think its proper place is considerably higher, and would like to
investigae the prospeds for mass-production techniques in software.

He It no douht of whoselead to follow. He continued, .

In the phrase 'mass production techniques, my emphasis is on techniques and not
on mass production plain. Of course mass production, in the sense of limitless
replication of prototype, istrivial for software. But certain ideas from industrial
technique | claim are relevant. The idea of subassemblies carries over directly and
iswell exploited. The idea of interchangeable parts corresponds roughly to our
term 'modularity’, and is fitfully respected. The ideaof machine tools has an
analogue in assembly programs and compilers. Y et this fragile analogy is belied
when we seek for analogues of other tangible symbolsof mass production. There
do not exist manufacture's of standard parts, much less catalogues of g¢andard
parts. One may not order partsto individual specifications or size, ruggedness,
speed, capacity, precision or character set.

As recent studies of the American machine-tool industry during the 19th and early 20th century
have shown, MclIroy could hardly have chosen a more potent model. Between roughly 1820 and
1880, developmentsin machine-tool technology had increased routine shop precision from.01" to
.0001". More importantly, in a process characterized by the economist Nathan Rosenberg as
"convergence”, machine-tool manufacturers learned how to translate new techniques devel oped
for specific customersinto generic tools of their own. So, for example, the need to machine
percussion lock s led to the development of the vertica turret lathe, which in turn lent itself to the
production of screws and small predsion parts, whichin turnled to the automatic turret lathe.

Indeed, at the expense of what Tony Hoare cited as the indispen sable common ground of established
professional engineering: engineering drawing.

M.S. Mahoney Roots of Software Engineering page 7

Moreover, with each advance in precision and automatic operation, machine tools made
ever tighter management possible by rd ocating the machinig's skill into the design of the machire.
Increasingly toward the end of the 19th certury, workers could be held to close, prefixed
standards, because those standards were built into the tools of production. That trend culminated
in Fords machines of production, which automatically produced partsto thetolerancesrequidte
to interchangeahlity.

As Mcllroy knew, mass production was as much a mater of management as of
technique. It was not only the sophistication of the individua machines, but also the system by
whichthey were linked and ordered, that transformed American industry. Two figures loomed
large in that transformation: Frederick W. Taylor and Herry Ford. The fird wasassociated with
"scientific management”, the forerunner of modern management science, the latter with the
assembly line.

Yet, viewed more closdy in light of what was reveded a Garmisch, Taylor'sbasic
principles themsel ves cast doult on the applicahlity of his model to the production of software.
The primary obligation of management according to Taylor was to determine the scientific basis
of the task to be acconplished. That came down to four main duties

First. They develop a science for each element of a man's work, which replaces
the old ru e-of-thumb method.

Second. They scientifically select and then train, teach, and develop the workman,
whereas inthe past he chose his own work and trained himself as best he could.
Third. They heartily cooperat e with the men so asto insure all of the work [ig]
being donein accordance with the principle of the science which has been
developed.

Fourth. Thereisanamog equd divison of the work and the responshility
between the management and the workmen. The management take ove all work
for which they are better fitted than the workmen, while in thepast dmost all of
the work and the greater part of the responsibility were thrown upon the men.™

To wha extent computer science could replace rule of thumbinthe production of
software was precisely the point at issue at the NATO conferences Even the optimists agreed
that progresshad been slow. Unable, then, to fulfil the first duty, programmng managers were
hardly in a position to carry out the third. Everyone bemoaned the lack of standards for the
quality of software. Asfar as the fourth was concerned, few vertured to say who was best suited
to do what in large-scd e programming project.*

BFrederick Winslow Taylar, The Principles of Scientific Management (1911, repr. N.Y.: Norton, 1967),
36-37

¥n The Mythical Man-Month: Essays in Software Engineering (Reading, MA, 1975), Frederick P.
Brodks, J., manager of IBM's OS'360 project, recounted his own failuresin this regard: "It isa very humbling
experience to make amul timillion-doll ar mistake, but it is also very memorable. | vividly recal the night we

M.S. Mahoney Roots of Software Engineering page 8

By 1969 the falure of management to establish sandards for the selection and training of
programmers was legend. As Didk H. Brandon, the head of one of the more successful software
houses, pointed out, the industry at large scarcely agreed on the most general specifications of the
programmer’s task, managers seeking to hire people without programming experience (asthe
pressng need for programmers required) had only one quite dubious gptitude test at ther
disposal, and no one knew for certain how to train those people oncethey were hired.*

Taylor had insisted that productivity was a 50/50 proposition. Management had to play
its part through selection, training, and supply of materials and tools. But in the 1960s the science
of management (whatever that might be) could not supply what the scienceof computing (if such
there be) had so far failed to establish, namely ascientific basis of software production.™®

What could not be organized by Taylor's methods a fortiori lay beyond the reach of the
other mgjor American model of productivity: Ford's assembly line. The essentia feature of Ford's
methods is the relocation of skill from the worker to the machines of production, which the
workers merely attended. Ford's worker had no control over the quality or the quantity of the
work he produced. The machines of production determined both. To Fordize software
production would mean providing the computer analogue of automatic machinery. It would
therefore mean that one would have to design software systems that generate software to meet set
standards of reiability. When Mcllroy spoke of "mass-produced software”, he was speaking the
language of Ford's model.

dedded how to arganizethe adual writing of external edfications far OS/360. Themanage of architecture the
manager of control program impl ementation, and | were threshing [!] out the plan, schedule, and divisi on of
respansihilities. Thearchitecturemanage had 10 gpod men. He asserted that they coud write the specifications
and do it right. It would take ten months, three more than the schedule allowed.

"The control program manager had 150 men. He asserted that they could prepare the specifications, with
the architecture team coordinating; it would be well doneand practical, and he coud do it on schedule
Furthermore, if the archi tecture team did it, his 150 men would sit twiddli ng their thumbs for ten months.

"To this thearchitecturemanage responded that if | gavethe contrd program team the responsihility, the
result would not in fact beon time, but would also be three months late, and of much lower quantity. | did, and it
was. Hewas right on bath counts. Moreover, the lack of conceptual integrity made the system far more castly to
build and change, and | would estimate that it added a year to debugging time." (47-48)

Dick H. Brandon, "The Economics of Computer Programming", in George F. Weinwurm (ed.), On the
Management of Computer Programming (Princeton: Auerbach, 1970), Chap.1. Brandon evidently viewed
management through Taylorist eyes, but he was clear-sighted enough to see that computer programming failed to
meet the prerequisites for scientific management. For an analysis of why testing was so unreliable, seeR.N.
Reinstedt, "Results of a Programmer Perfarmance Predidion Study’, 1EEE Trans. Engineering Management
(12/67), 183-87, and Gerald M. Weinberg's The Psychology of Computer Programming (NY, 1971), Chap.9.

BTaylor had aso laid particular emphasis on wage structures that encourage full production. The essence
of his"differential piece rate" offered the worker a choice to produce at the optimal rate or not; it was a choice
about the pace at which to work, Taylor's or the worker's. Brandon pointed out that the anarchic nature of
programming meant that management hadto dgpend on the worke's to determine the pace of a project and that the
insati able mark et for programmers meant that management had littl e control at al over the wage structure.

M.S. Mahoney Roots of Software Engineering page 9

As noted earlier, quality control was another feature of Ford's system. His machines
guaranteed accuracy to within 0.0001" for complete interchangeability of parts. Theandoguein
computing that Mcllroy was espousing thus brings the question of production back around to the
question of the nature of computer science. Some of those at NATO thought of software design
in terms of experimentation: write the program, put it on the computer, and start debugging (as
Ford put it, "Let's turn it over and see why it won't start."). Programming then looks like
experimental science or engineering inviewing the reliahlity of software interms of tolerances.
But Edsger W. Dijkstra vehemently advocat ed a quite different notion. "Program testing can be
used to reved the presence of errors,”" he argued, "but never to show their absence!” (or even, he
might have added, convergence on their absence).’” Programming should aspire to mathematics,
that is, it should seek means of verifying the correctness of programs mathenmetically. Rather than
accepting the inevitahility of bugs and devising elaborate tests to find them, one should prove that
programs will work properly. Dijkstrawas calling the means of such proof "gructured
programming” and was seeking to build its sructure into programming languages and ther
compilers. It was the mathematically oriented computer scientists who seemto have been
responding to questions of productivity with an eye toward Ford's methods.

A survey of the software engineering literat ure of the past decade reveds three sdient
features of thefidd. Firg, the problemsthat spawned software engineering remain largely
unresolved. Tenyears ater the NATO Conference, RW. Hoyd in his Turing Award Lecture of
1978 quoted Robert Balzer to the effect that

It iswell known that software isin a depressed state. It is unreliable, delivered
late, unrespongve to change, inefficient, and expensive. Furthermore, since it is
currently labor intensive, the situation will further deteriorate as demand increases
and labor costsrise.’®

To this Floyd could only add:
If this soundslike the famous 'software crisis' of a decade or so ago, the fact that
we have beenin the same state for ten or fifteen yearssuggeststhat 'software
depresson'is a nore apt term.
One doesnot haveto look hard or far for similar expressions in the current software literature.
Indeed, it suffices to read any issue of ACM's Software Engineering Notes, with its lig of

new items describing the fallures of software systems, including the lost of life, limb, property,
money and time suffered by users of improperly functioning programs Thedisclaimers of liabil ity

Yn "Structured Programming", his contribution to the Rome NATO conference, 1969; NRB, 223.

®Robert Bal zer, "Imprecise Program Secification”, Report 1S/RR-75-36, Information Science Institute,
Dec.1975; quoted by Robert W. Floyd, "TheParadigms of Programming”, CACM 22,8(1978), 455-460; at 456.

M.S. Mahoney Roots of Software Engineering page 10

that routinely accompany software bear witnessto how far software engineering lies from the
"established branches of engineering.”

Thus, despite the hallmarks of an established disapline -- societies, journals, curricula,
research institutions-- software engineering remains a relatively soft concept. The definition has
not changed much; arecent version speaks of "the disciplined application of engineering,
scientific, and mathematical principles and methods to the economical production of quality
software."™ The meaning of the definition depends on how itscentrd terms are interpreted, in
particular what principles and methods from eng neering, science, and mathematics areapplied to
software.

Hence, behind the discusdons of software engineering lie models drawn from other
realms of engineering, often without much reflection on their applicallity. 1n mog cases, they are
the ssmemodd sthat informed peopl €'s thinking when software engineering was a new idea. For
example, Mcllroy's notion of assembling components became modular programming and then
object-oriented programming, but the underlying model remained that of production by
interchangeable parts. Automatic programming has shifted meaning as its scope has broadened
from compiling to implementation of design, but it continues to rest on the mode of automatic
meachine tods Software engineering has not progressed far beyond its roots Perhapsitsroots
are the reason.

®“WattsHumphrey, " The Software Engineering Process: Definition and Soope', in Representing and
Enacting the Software Process: Proceedings of the 4th International Software Process Workshop (New Y ork:
ACM Press, 1989), 82.

