
CCCrrrooossssssrrroooaaadddsss NNNeeewwwsss
AA MMoonntthhllyy PPuubblliiccaattiioonn ffoorr
SSooffttwwaarree aanndd CCMM PPrrooffeessssiioonnaallss

ABCs of a Branching and Merging Strategy

by Mario Moreira – November 2003

Branching is both simple and complex. For many, it is challenging to know where to begin. This article
hopes to provide a starting point, by highlighting branching concepts, providing reasons for branching, and
suggesting an approach to establish a branching and merging strategy.

When establishing a branching and merging strategy and corresponding model, it is important to involve
project management since this strategy directly impacts application development. They should be part of
the branching strategy decision process, understand the pros and cons to branching, and have knowledge
of the effort involved in branching and not branching. This ensures project expectations are set from the
beginning.

It is also important to note that the CM tool being used plays a key role in branching and merging. Some
CM tools are better at branching and merging than others. It is important to select and use a CM tool that
can support the strategy for application development.

Key Concepts
What is a ‘branch’? A branch is an isolated instance of an existing development baseline. Within a
branching model, the ‘root’ development baseline may be known as the ‘trunk’ and sometimes referred to
as the ‘main branch’. A new branch can be based on the trunk or another branch. When a new branch is
created from the trunk or another branch, the trunk or branch is known as the ‘parent’ of the new branch.

The items within a branch (whether physical or virtual) are initially identical with the parent. But over time,
the items in a branch will evolve and become different to the parent due to the modification, creation, or
deletion of the items within the branch.

The reason why the terms ‘branch’ and ‘trunk’ are used is that they mirror the look of a tree when shown
graphically. The figure below illustrates this:

Branch A.1

Branch B

Branch A
Trunk
(main

Figure 1

Each branch should have a unique name (e.g., ‘Branch A.1’) to differentiate it from other branches. The
overall branch path should include the trunk name, any parent branch name(s), and the unique branch
name (e.g., ‘/Trunk/Branch A/Branch A.1’) for clear identification. This not only uniquely identifies the
branch, but provides the ancestry of the branch back to the trunk. This information will be beneficial in
understanding the relationship amongst branches particularly when items within a branch are to merge with
items from another ancestor branch.

What is a ‘merge’? A merge is an action that combines an item on one branch with the same named item
that resides on another branch. In order for the merge to occur properly, the branches in which the items

Crossroads News © 2003 CM Crossroads Page 1 of 6

To subscribe to Crossroads News visit - www.cmcrossroads.com

CCCrrrooossssssrrroooaaadddsss NNNeeewwwsss
AA MMoonntthhllyy PPuubblliiccaattiioonn ffoorr
SSooffttwwaarree aanndd CCMM PPrrooffeessssiioonnaallss

live, must have a common ancestor. For example, foo.c resides on Branch A.1 and has been modified.
The same foo.c file also resides in Branch A, and has also been modified. Because both versions reside on
branches with the same ancestor (in this case, Branch A is the parent branch for Branch A.1), then merging
may occur.

What is a ‘label’? A label is a tag that affixes itself to specific versions of items within a branch. A branch
by itself is generally dynamic meaning that items can change within it. Applying a label to the items within a
branch provides a static identification of the baseline at a point in time. Typically, labels are placed on items
within a branch that represents a milestone however small. This may include a successfully completed
engineering integration build, a package for test, or release deliverables targeted for production.

Reasons for Branching
Should you Branch? In a nutshell, the primary reason to branch is if concurrent or parallel development
must occur. This is described as the need to perform two or more isolated lines of development on the
same baseline of code but for different purposes.

If there is a need for branching, a project release branch may be used to isolate the project work from the
main line which may represent what is in production (therefore, you would not want to corrupt production
with less than production-ready code). This is branching in its most simple form. However, there are more
complex reasons for branching.

Reasons for parallel development at a project level may include (but not limited too):

• Working on two or more project releases (this may include major releases, minor release, customer
specials, prototypes, platform conversions, etc.)

• Working on a project release and on bugfixes/patches for a previous release(s)

Reasons for parallel development within a project may include (but not limited too):

• Working with other sites (site specific branch)

• Working with several colleagues at the same site (shared branch)

• within a private workspaces (user specific private branch)

There is no limit to the number of branches that can exist. However, a branch and merge strategy should
be designed prior to creating branches to first ensure that branching is needed and secondly to ensure that
the branch structure under consideration will work for the project. Too many branches may make
development too complex to follow and too few branches may constrain development.

Many project teams perform development from the trunk or main branch because they follow the serial
development approach. However, some project teams end up performing some level of parallel
development on the trunk or main branch and this is where problems may begin. The important point is to
recognize the need for branching before and prepare a strategy for it. Conversely, many project managers
make a decision to perform parallel development, but are not sufficiently informed of the complexity and
effort. It is the job of the SCM professional to raise this awareness so they can understand the appropriate
reasons for branching (or not branching).

Types of Branches
There can be various types of branches. As mentioned in the previous section, the branch structure starts
with the trunk or main branch. Beyond this, the branch type should depend on the need. Some branch
types may include (but not limited too):

• Project Branch – if the project is large, then this branch may be used to merge stable pieces of
code. If the project is small, than this branch may be used as the integration branch for all

Crossroads News © 2003 CM Crossroads Page 2 of 6

To subscribe to Crossroads News visit - www.cmcrossroads.com

CCCrrrooossssssrrroooaaadddsss NNNeeewwwsss
AA MMoonntthhllyy PPuubblliiccaattiioonn ffoorr
SSooffttwwaarree aanndd CCMM PPrrooffeessssiioonnaallss

development changes. This branch type may be used when stability is needed and would be used
in conjunction with an integration branch. It is typically backed by the trunk.

• Integration Branch – may be used as the active development line to integrate development
changes. This line of development may not be stable depending on the amount of merging
occurring into it. It is usually backed by a project branch.

• Shared branch – similar to an integration branch but used by a subset of developers working on a
more volatile set of code such as performing prototyping so it does not impact others until it is
sufficiently tested. It may be backed by an integration branch.

• Site Branch – similar to a shared branch, it may be used when there are other sites involved in
development. This isolates their work but still allows for merging to the integration or project
branch. It is usually backed by an integration or project branch.

• Private Branch – may be used to isolate individual developer’s changes from each other. This may
be backed by a site branch, shared branch, integration branch, or project branch. In fact some of
the private branches may be backed by a shared branch and others may be backed by an
integration branch.

• BugFix/Patch Branch – a branch that is used to perform bugfixes or patches to an existing release.
Any changes in this branch should not only be merged ‘in’ to the trunk (presumably for production),
but they should be merged ‘out’ to any new project development (via the project branch, integration
branch, site branch, or private branch) so that the fix is included in the new release so regression in
functionality and stability does not occur.

Below is an example of a branching and merging model which uses some of the branch types listed above.

1.0

Project
BranchBugfix

Branch
Private
Branch

1.0.1

Integration
Branch

1.1

Trunk/Main Branch

Figure 2

Establishing a Branching and Merging Strategy
When considering a branching and merging strategy, you must first understand that the application
branching requirements will evolve and what is adequate today, will not necessarily meet the branching
needs in the future. Therefore, it is important to think about the application’s short-term and long-term
branching needs when defining a branching strategy. This involves considering three aspects: complexity
over time, effort, and risk to stability. Once these aspects are considered, a branching and merging model
may be created that can support the application.

Crossroads News © 2003 CM Crossroads Page 3 of 6

To subscribe to Crossroads News visit - www.cmcrossroads.com

CCCrrrooossssssrrroooaaadddsss NNNeeewwwsss
AA MMoonntthhllyy PPuubblliiccaattiioonn ffoorr
SSooffttwwaarree aanndd CCMM PPrrooffeessssiioonnaallss

Complexity over Time
How complex is the application development and how complex might it become in the future? Some key
components to complexity are (and not limited too):

• The number of users involved.

• The type of users that may be involved (developers, testers, build/release engineers, etc.)

• The amount of parallel development that may occur (# of releases occurring in parallel, bugfixes
occurring on past releases, whether other sites are involved, and how much prototyping is
occurring).

With the complexity in mind, consider how the complexity will change over time. For example:

• Within the first 6 months, “project release 1” may include only 5 developers, no parallel
development, and only 1 site involved in development.

• After 1 year, “project release 2” may include 15 developers with parallel development to manage
Release 2, bugfixes for Release 1, and a prototype for Release 3, and includes 2 sites involved in
development.

Clearly, there will be a need for a more advanced strategy needed for the second scenario. This is why
capturing complexity over time is important. The complexity will drive the branching needed and thinking
ahead will ensure what is in place today can be easily extended to support the application needs tomorrow.

Effort
As parallel development is introduced, the level of branching complexity increases. As complexity
increases, the amount of effort to manage change within a more complex branching environment increases.
This should be an expectation that project management understands and plans. If they do not, ensure you
advise them of this fact.

This is the trade-off of going to a parallel development model. While it may enable faster-time-to market, it
may also increase the amount of effort and coordination in certain stages of the project and in particular
adds merging and testing tasks to the project plan. Keep in mind that merging typically requires retesting to
ensure that the code merged is tested appropriately, particularly where logical lines of conflict have to be
reconciled.

Another aspect to considering effort is the project management strategy as it relates to the delegation of
development work. If specific chunks of work are allocated to specific groups, then less merging and
testing is likely to occur. However if the project manager is indiscriminate in the way the work is being
dolled out then a significant amount of merging may occur increasing the amount of effort and quite possibly
the project schedule. Even if no branching is used this latter scenarios (e.g., indiscriminately allocating
work) will significantly increase the amount of testing that will be needed, therefore impacting the project
schedule.

If there is a need to work on several lines of code at the same time, then 1 line of code may force a level of
serial development and mostly likely cause significant testing, therefore impacting the release schedule.
This may also cause many developers to work outside of the CM system in order to isolate themselves from
others. On the other hand, if there is little need for parallel development, then too many branches may be
confusing and causes more effort in merging than is needed.

The balance is to consider the level of complexity and identify several branching options to support the
complexity. Then a level of effort can be considered per option to determine what may be acceptable.

Crossroads News © 2003 CM Crossroads Page 4 of 6

To subscribe to Crossroads News visit - www.cmcrossroads.com

CCCrrrooossssssrrroooaaadddsss NNNeeewwwsss
AA MMoonntthhllyy PPuubblliiccaattiioonn ffoorr
SSooffttwwaarree aanndd CCMM PPrrooffeessssiioonnaallss

Risk to Stability
As the complexity (as described above) of application development increases, so does the risk of negatively
impacting stability on the project if it is not managed effectively. At this point, you understand the
complexity of the application development in the short-term and long-term and you understand the effort as
they relate to the branching options. Now review the branching options and determine how much risk to
stability you are willing to accept. Risk to stability may have a direct impact on the project schedule it is
important to involve project management in this decision.

A low risk tolerance to impacting project stability suggests that an integration branch should exist to support
a stable project branch. While all changes are placed into the integration branch, only those that have
passed certain milestone builds and tests should go into the project branch. Also, low risk suggests that if
you are working with other sites, then separate site branches should be considered so that each site can be
isolated from the local site. But what comes with a low risk tolerance is a potentially higher level of effort.

A high risk tolerance to impacting project stability does not mean you have to abandon branching, it just
means that you will accept the risk associated with having more people work on less branches. For
example, a high risk tolerance may allow remote sites to merge directly to the integration branch or even
the project branch. Also, this scenario may have developer’s private workspaces back directly to the
project branch.

The End of the Beginning
Overall, the question is, do you want to control the changes or do you want the changes to control you. By
constraining yourself to 1 line of code (working off of the main branch or trunk) or creating too many lines of
code can significantly impact the amount of effort involved in branching and merging and the amount of
testing that is needed to manage changes. Finding the balance is the key.

To summarize the approach specified in this article for preparing a branching and merging strategy,
consider the following steps:

• Understand the terminology. Either borrow terminology from existing materials or create a
consistent branching and merging terminology for your organization, application, or project.

• Understand the reasons for branching. Ensure they are legitimate and can be explained to others.

• Determine the complexity of the application development as it relates to branching and merging to
help determine the types of branches that may be needed and when merging should occur.
Establish several branching options.

• Assess the levels of effort for the potential branching options.

• Decide the level of risk you are willing to accept as it relates to the stability of the various branches
you are using.

• Prepare a branching model (similar to the one in Figure 2) so that those you support can visually
understand the branching and merging strategy and where they are working. Walk-through a
scenario using this model.

With this information, a branching model may be designed with the type of branches needed and how they
are positioned. This provides project personnel with an understanding of the branch structure and the
merge tasks (and associated testing). Having a long-term branching strategy in place can help you
manage change now and into the future.

Crossroads News © 2003 CM Crossroads Page 5 of 6

To subscribe to Crossroads News visit - www.cmcrossroads.com

CCCrrrooossssssrrroooaaadddsss NNNeeewwwsss
AA MMoonntthhllyy PPuubblliiccaattiioonn ffoorr
SSooffttwwaarree aanndd CCMM PPrrooffeessssiioonnaallss

References

• “Software Configuration Management Patterns: Effective Teamwork, Practical Integration” by
Stephen P. Berczuk with Brad Appleton, 2003, Addison Wesley.

• “Software Release Methodology” by Michael E. Bays, 1999 Prentice Hall PTR.

C

Mario Moreira is a contributing editor for Crossroads News and Director/Architect of Technology for
Fidelity Investments Systems Company and has worked in the SCM field since 1986. He has
experience with numerous SCM technologies and processes and has implemented SCM on over 75
applications/products that include establishing global SCM infrastructures. He has an MA in Mass
Communication with an emphasis on communication technologies. Mario also brings years of
Project Management, Software Quality Assurance, Requirement Management, facilitation, and team
building skills and experience.

You may reach Mr. Moreira by email at Mario.Moreira@cmcrossroads.com
rossroads News © 2003 CM Crossroads Page 6 of 6

To subscribe to Crossroads News visit - www.cmcrossroads.com

mailto:Mario.Moreira@cmcrossroads.com

	Key Concepts
	Reasons for Branching
	Types of Branches
	Establishing a Branching and Merging Strategy
	Complexity over Time
	Effort
	Risk to Stability

	The End of the Beginning
	References

