
85 Devonshire Street, 5th Floor, Boston, MA 02109 • Phone 617.742.5200 • Fax 617.742.1028 • www.psgroup.com

Patricia Seybold Group
S t r a t e g i c T e c h n o l o g i e s , B e s t P r a c t i c e s , B u s i n e s s S o l u t i o n s

Enterprise JavaBeans

Technology
Server Component Model for the
Java™ Platform

By Anne Thomas
Revised December 1998

Prepared for Sun Microsystems, Inc.

Patricia Seybold Group © 1998 1

Table of Contents

Introduction... 1

Scenario ... 2

Enterprise Java™ Platform... 3

Component-Based Computing... 6

Multitier Application Architecture ... 6

Overview of Components... 8

Server Components .. 9

Enterprise JavaBeans Component Model.. 10

Overview of Enterprise JavaBeans Technology ... 10

Architectural Details... 13

The Big Picture .. 13

Distribution Services .. 16

State Management.. 17

Persistence Management .. 17

Transaction Management... 18

Security .. 20

Enterprise JavaBeans Deployment .. 20

Industry Support .. 21

EJB Competition ... 22

Benefits and Conclusions.. 23

Illustrations and Table

Illustration 1. Money Makers Account Management System.................................... 4

Illustration 2. Enterprise JavaBeans Container .. 14

Table. Enterprise Java APIs .. 5

Sun, Sun Microsystems, Enterprise JavaBeans, JavaBeans, “Write Once, Run Anywhere,” JDBC, Enterprise
Java, and JDK are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

Patricia Seybold Group © 1998 1

Enterprise JavaBeans Technology
Server Component Model for the Java™ Platform

By Anne Thomas, Patricia Seybold Group
Revised December 1998

Prepared for Sun Microsystems, Inc.

Introduction

Enterprise JavaBeans™ (EJB) technology defines a model for the development and
deployment of reusable Java™ server components. Components are pre-developed
pieces of application code that can be assembled into working application systems.
Java technology currently has a component model called JavaBeans™, which
supports reusable development components. The EJB architecture logically extends
the JavaBeans component model to support server components.

Server components are application components that run in an application server. EJB
technology is part of Sun’s Enterprise Java platform, a robust Java technology
environment that can support the rigorous demands of large-scale, distributed,
mission-critical application systems. EJB technology supports application
development based on a multitier, distributed object architecture in which most of an
application’s logic is moved from the client to the server. The application logic is
partitioned into one or more business objects that are deployed in an application
server.

A Java application server provides an optimized execution environment for server-side
Java application components. By combining traditional OLTP technologies with new
distributed object technologies, a Java application server delivers a high-performance,
highly scalable, robust execution environment specifically suited to support Internet-
enabled application systems.

The Enterprise JavaBeans architecture defines a standard model for Java application
servers to support “Write Once, Run Anywhere™” (WORA) portability. WORA is
one of the primary tenets of Java technology. The Java virtual machine (JVM) allows
a Java application to run on any operating system. But server components require
additional services that are not supplied directly by the JVM. These services are
supplied either by an application server or by a distributed object infrastructure, such
as CORBA or DCOM. Traditionally, each application server supplied a set of
proprietary programming interfaces to access these services, and server components

Enterprise
JavaBeans
Technology

Server Components

Java Application
Servers

WORA

Enterprise JavaBeans Technology

2 Patricia Seybold Group © 1998

have not been not portable from one application server to another. For example, a
server component designed to run in BEA Tuxedo could not execute in IBM
TXSeries without significant modification. The EJB server component model defines
a set of standard vendor-independent interfaces for all Java application servers.

Enterprise JavaBeans technology takes the WORA concept to a new level. Not only
can these components run on any platform, but they are also completely portable
across any vendor’s EJB-compliant application server. The EJB environment
automatically maps the component to the underlying vendor-specific infrastructure
services.

 Scenario
 For example, Money Makers, a large brokerage house, is using Enterprise JavaBeans
technology to implement an application system to manage stock fund accounts.
Money Makers wants to provide clients with a self-service electronic trading system.
To effectively support both broker and client users, the application is implemented
using a thin-client, distributed object architecture. The architecture of the application
is depicted in Illustration 1.

 The stock fund application can support a variety of client devices, including desktop
workstations, Web browsers, telephones, kiosks, smartcards, or other Internet-
enabled appliances.

Client applications can communicate with the stock fund application using a variety
of protocols. Java technology clients invoke the application using the native Java
Remote Method Invocation (RMI) interface. RMI requests currently are transferred
using the Java Remote Method Protocol (JRMP). In the future, RMI will be
extended to support the industry-standard Internet InterORB Protocol (IIOP).
Native language clients can invoke the application using CORBA IDL running over
IIOP or a COM/CORBA internetworking service running over IIOP. The RMI
client proxy could also be rendered as an ActiveX control to provide easy integration
with any Windows application. Browsers can invoke the application through a servlet
running on the HTTP server. The browser communicates with the servlet using
HTTP, and the servlet communicates with the application using RMI.

 Money Makers has millions of clients and expects that the transaction volume on this
system will be very high. Therefore, the company selected an EJB-compliant server
from Big Guns System Software deployed on a fault-tolerant cluster of high-speed
multiprocessors. The Big Guns system is based on an enterprise-class transaction
processing (TP) monitor noted for its efficient use of resources. Big Guns supports
transparent distribution and replication of application components.

 Rather than building the entire application from scratch, Money Makers purchased
from Portfolio Incorporated, an application software vendor, a stock fund account

Component
Portability

 Stock Fund Account

 Multiple Client
Support

 Communication
Protocols

 Server Execution
Environment

 Purchased
Application

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 3

management system that is implemented as a set of Enterprise JavaBeans
components. Portfolio developed and tested the application using an EJB
environment provided by a database vendor.

 The Portfolio application provides the functionality to manage client accounts and
organize portfolios. However, it does not use up-to-the-minute stock prices to
calculate the current account value, nor does it support online trading.

 Money Makers customized the stock component to make it retrieve the most recent
stock price from a live data feed. The company used an EJB-compliant stock feed
component from Garage Enterprises, a startup company that operates on a fairly tight
budget. The component was developed and tested using an EJB-compliant
application server from the public domain.

Money Makers elected to implement the online trading function by encapsulating
the existing trading system and integrating it with the Portfolio system using
CORBA.

Enterprise Java™ Platform

The portability characteristics of EJB components are made possible by the Enterprise
Java platform. The Enterprise Java platform consists of several standard Java
application programming interfaces (APIs) that provide access to a core set of
enterprise-class infrastructure services. (See the accompanying table for a description
of the Enterprise Java APIs.) The term “enterprise” implies highly scalable, highly
available, highly reliable, highly secure, transactional, distributed applications.
Enterprise applications require access to a variety of infrastructure services, such as
distributed communication services, naming and directory services, transaction
services, messaging services, data access and persistence services, and resource-sharing
services. These infrastructure services are frequently implemented on different
platforms using different products and technologies, making it difficult to build
portable enterprise-class application systems. The Enterprise Java APIs provide a
common interface to the underlying infrastructure services, regardless of the actual
implementation.

Sun could have defined a new set of infrastructure services especially to support the
Enterprise Java platform. It’s been fairly standard practice in the past for standards
organizations to define new services to support new environments. For example,
X/Open defined the Distributed Transaction Processing (DTP) model and the XA
standard, OSF defined the Distributed Computing Environment (DCE) services,
and OMG defined the CORBA Object Services (COS, also known as
CORBAservices). Microsoft has defined a set of integrated NT services to support
DCOM. Meanwhile, every TP Monitor and application server vendor generally
provides its own proprietary set of infrastructure services. Many of these
infrastructure services perform similar but non-interoperable functions.

 Customization and
Enhancement

Enabling Portability

Existing
Infrastructure
Integration

Enterprise JavaBeans Technology

4 Patricia Seybold Group © 1998

 Money Makers Account Management System

T e l e p h o n y

W eb
Serve r

K iosk

A p p l e t

S m a r t c a r d
R e a d e r

S m a r t c a r d

B ig G u n s T P M o n i t o r

Po r t fo l i o

A c c o u n t

S t o c k

G a r a g e E n t

T r a d e

S t o c k
F e e d

E x i s t i ng T rad ing Sys t em

R M I / I IOP

R M I/JRM P

R M I/ I IOP

C O M / C O R B A / I I O P

R M I / I IOP

R M I/JRM P

H T T P

C O R B A / I I O P

 Illustration 1. The Money Makers account management system combines applications from two vendors and
integrates with an existing application system. The application supports a variety of client devices through a
variety of protocols.

Rather than re-inventing the wheel, Sun took a different route. The Enterprise Java
platform defines a set of standard Java APIs that provide access to existing
infrastructure services. Using these Java technology APIs, a developer can implement
an application system that makes use of whatever enterprise services happen to exist
on the platform in use. For example, an application that uses IBM TXSeries, DCE
services, and Oracle on one system could be moved to a different system and
automatically use BEA Systems M3, LDAP, and Sybase instead. No porting effort
would be required.

The Enterprise Java APIs are completely platform- and vendor-neutral. The APIs are
designed to layer on multivendor heterogeneous infrastructure services. Each API
provides a common programming interface to a generic type of infrastructure service.
If each vendor that supplies this type of service implements this API, then an
application could access any service provider through the common interface.

The Enterprise Java APIs take Microsoft’s ODBC metaphor—one common interface
to all relational databases—and apply it to all infrastructure services. For example, the
Java Naming and Directory Interface (JNDI) provides a standard interface to naming
and directory services. The JNDI API could be used to access any vendor’s directory

Platform- and
Vendor-Neutral

ODBC Metaphor

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 5

service, such as Microsoft Active Directory, Novell NDS, Sun NIS+, or any LDAP
directory.

Enterprise Java APIs

API Description

EJB The Enterprise JavaBeans API defines a server component model that provides portability across
application servers and implements automatic services on behalf of the application components.

JNDI The Java Naming and Directory Interface API provides access to naming and directory services,
such as DNS, NDS, NIS+, LDAP, and COS Naming.

RMI The Remote Method Invocation API creates remote interfaces for distributed computing on the
Java platform.

Java IDL The Java Interface Definition Language API creates remote interfaces to support CORBA
communication in the Java platform. Java IDL includes an IDL compiler and a lightweight,
replaceable ORB that supports IIOP.

Servlets
and JSP

The Java Servlets and Java Server Pages APIs support dynamic HTML generation and session
management for browser clients.

JMS The Java Messaging Service API supports asynchronous communications through various
messaging systems, such as reliable queuing and publish-and-subscribe services.

JTA The Java Transaction API provides a transaction demarcation API.

JTS The Java Transaction Service API defines a distributed transaction management service based
on CORBA Object Transaction Service.

JDBC™ The JDBC Database Access API provides uniform access to relational databases, such as DB2,
Informix, Oracle, SQL Server, and Sybase.

Table. The Enterprise Java APIs.

In order to be successful, this approach requires widespread buy-in from the vendor
community. The APIs will be useless if the infrastructure vendors don’t implement
support for the APIs in their existing infrastructure products. Sun was quite diligent
to ensure that the Enterprise Java platform conforms to the most prevalent de jure
and de facto standards. Sun also recruited expertise from the most elite players in
each area of infrastructure services to ensure that the Enterprise Java APIs are suitable
for high-volume, mission-critical application development. Industry leaders in
transaction management (IBM, Compaq/Tandem, BEA Systems, etc.), persistence
management (Oracle, Sybase, Informix, etc.), and directory services (HP, IBM,
Novell, etc.) participated in the development of the Enterprise Java APIs. According

Industry Acceptance

Enterprise JavaBeans Technology

6 Patricia Seybold Group © 1998

to early indications, the industry has embraced Enterprise Java technology with as
much gusto as it embraces Java technology itself. A staggering number of vendors
have announced their intent to support the Enterprise Java APIs, and many vendors
have already delivered compatible products.

Component-Based Computing

Multitier Application Architecture
The Enterprise Java platform has been designed to provide an environment that is
suitable for the development and deployment of fully portable Java technology-based
enterprise-class application systems. The true measure of an enterprise application
system often comes down to system scalability and total throughput. How many users
can concurrently use the system? How many objects can be instantiated in a given
time frame? How many transactions can be processed per second?

Enterprise application systems support high scalability by using a multitier,
distributed application architecture. A multitier application is an application that has
been partitioned into multiple application components. Multitier applications
provide a number of significant advantages over traditional client/server architectures,
including improvements in scalability, performance, reliability, manageability,
reusability, and flexibility.

In a traditional client/server application, the client application contains presentation
logic (window and control manipulation), business logic (algorithms and business
rules), and data manipulation logic (database connections and SQL queries)—a “fat
client.” The server is generally a relational database management system (which is
actually not a part of the application.) In a multitier architecture, the client
application contains only presentation logic—a “thin client.” The business logic and
data access logic are partitioned into separate components and deployed on one or
more servers.

Moving the business and data manipulation logic to a server allows an application to
take advantage of the power of multithreaded and multiprocessing systems. Server
components can pool and share scarce resources, such as processes, threads, database
connections, and network sessions. As system demands increase, highly active
components can be replicated and distributed across multiple systems. Although
modern client/server systems can easily support hundreds of concurrent users, their
scalability has limits. Multitier systems can be built with essentially no scalability
limits. If the design is efficient, more or bigger servers can be added to the
environment to boost performance and to support additional users. Multitier systems
can scale to support hundreds of thousands or millions of concurrent users.

Scalability

Next-Generation
Client/Server

Application
Partitioning

Increased Scalability
and Performance

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 7

A multitier environment can also support many levels of redundancy. Through
replication and distribution, a multitier architecture eliminates any bottlenecks or
single points of failure. The multitier approach supports high reliability and
consistent system availability to support critical business operations.

A thin-client application is easier to manage than traditional client/server applications.
Very little code is actually deployed on the client systems. Most of the application
logic is deployed, managed, and maintained on the servers. Fixes, upgrades, new
versions, and extensions can all be administered through a centralized management
environment.

The multitier application architecture supports extremely flexible application systems.
The majority of the application logic is implemented in small modular components.
The actual business logic in the components is encapsulated behind an abstract, well-
defined interface. The code within an individual component can be modified without
requiring a change to the interface. Therefore, a component can be changed without
impacting the other components within the application. Multitier applications can
easily adapt to reflect changing business requirements.

By the nature of its interface, a server component is a reusable software building
block. Each component performs a specific set of functions that are published and
accessible to any other application through the interface. A particular business
function can be implemented once and then reused in another application that
requires the function. If an organization maintains a comprehensive library of
components, application development becomes a matter of assembling the proper
components into a configuration that performs the required application functions.

Any number of client environments can access the same server component through its
interface. A single multitier application system can support a variety of client devices,
including traditional desktop workstations, Web clients, or more esoteric clients, such
as information appliances, smartcards, or personal data assistants.

Although server components and multitier concepts have been around for nearly a
decade, relatively few organizations have put them to use. Until recently, most
organizations did not feel the scalability pressures that required a multitier
architecture. But the impetus of Web-based computing is driving a growing interest
in the multitier approach. Web-based business applications require a thin-client
application architecture to support massive scalability and to support browser-based
clients and rapid applet downloads.

Unfortunately, building multitier applications isn’t quite as easy as building
client/server. Multitier applications have to interact with a variety of middleware
services. In order to attain the scalability, performance, and reliability characteristics
of multitier computing, the applications must support multithreading, resource
sharing, replication, and load balancing.

Increased Reliability

Increased
Manageability

Increased Flexibility

Reusability and
Integration

Multi-Client Support

Multitier Impetus

More Difficult
Development

Enterprise JavaBeans Technology

8 Patricia Seybold Group © 1998

An application server automates some of the more complex features of multitier
computing. An application server manages and recycles scarce system resources, such
as processes, threads, memory, database connections, and network sessions on behalf
of the applications. Some of the more sophisticated application servers offer load-
balancing services that can distribute application processing across multiple systems.
An application server also provides access to infrastructure services, such as naming,
directory, transactions, persistence, and security. Until recently, though, every
application server used a proprietary set of interfaces. Each enterprise application had
to be implemented with a specific runtime environment in mind, and applications
were not portable across application serversnot even Java applications.

The Enterprise JavaBeans specification defines a standard model for a Java application
server that supports complete portability. Any vendor can use the model to
implement support for Enterprise JavaBeans components. Systems, such as TP
monitors, CORBA runtime systems, COM runtime systems, database systems, Web
server systems, or other server-based runtime systems can be adapted to support
portable Enterprise JavaBeans components.

Overview of Components
A component is a reusable software building block: a pre-built piece of encapsulated
application code that can be combined with other components and with handwritten
code to rapidly produce a custom application.

Components execute within a construct called a container. A container provides an
application context for one or more components and provides management and
control services for the components. In practical terms, a container provides an
operating system process or thread in which to execute the component. Client
components normally execute within some type of visual container, such as a form, a
compound document, or a Web page. Server components are non-visual and execute
within a container that is provided by an application server, such as a TP monitor, a
Web server, or a database system.

A component model defines the basic architecture of a component, specifying the
structure of its interfaces and the mechanisms by which it interacts with its container
and with other components. The component model provides guidelines to create and
implement components that can work together to form a larger application.
Application builders can combine components from different developers or different
vendors to construct an application.

Components come in a variety of shapes and sizes. A component can be very small,
such as a simple GUI widget (e.g., a button), or it can implement a complex
application service, such as an account management function.

Application Servers

Enterprise
JavaBeans
Specification

Components

Containers

Component Model

Granularity

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 9

In order to qualify as a component, the application code must provide a standard
interface that enables other parts of the application to invoke its functions and to
access and manipulate the data within the component. The structure of the interface
is defined by the component model.

An application developer should be able to make full use of the component without
requiring access to its source code. Components can be customized to suit the specific
requirements of an application through a set of external property values. For example,
the button component has a property that specifies the name that should appear on
the button. The account management component has a property that specifies the
location of the account database. Properties can be used to support powerful
customization services. For example, the account management component might
allow a user to add a special approval process for withdrawals over a certain dollar
amount. One property would be used to indicate that special approval functions are
enabled, a second property would identify the conditions that require special
approvals, and a third property would indicate the name of the approval process
component that should be called when the condition exists.

One of the promises of component technology is a world in which customized
business solutions can be assembled from a set of off-the-shelf business objects.
Software vendors could produce numerous specialized business components, and
organizations could select the appropriate components to match their business needs.
Thus far, there is a fairly rich supply of off-the-shelf, third-party, client-side
development components. For the moment, the market for server-side components is
still very young. As more and more organizations adopt the server component
architecture, the market is likely to mature rapidly. Application software companies
are already beginning to implement applications using server components. Some e-
commerce vendors are beginning to supply individual application functions, such as a
shopping cart and a credit validation service, as customizable components.

Server Components
In order to achieve the most benefit from the multitier architecture, server
components should be implemented as shared servers. But building a shared server is
harder than building a single-user application function. Highly scalable shared servers
need to support concurrent users, and they need to efficiently share scarce system
resources, such as threads, processes, memory, database connections, and network
connections. For business operations, shared servers must participate in transactions.
In many cases, a shared server needs to enforce security policies.

A component builder doesn’t especially want to implement multithreading,
concurrency control, resource-pooling, security, and transaction management in every
component. If these services were implemented in each component, achieving true
plug-and-play application assembly would be very difficult. A component model

Standard Interface

Customization
without Source
Code

Component
Marketplace

Shared Servers

Plug-and-Play
Assembly

Enterprise JavaBeans Technology

10 Patricia Seybold Group © 1998

standardizes and automates the use of these services, thereby enabling easy application
development.

An application server provides a container to manage the execution of a component.
When a client invokes a server component, the container automatically allocates a
process thread and initiates the component. The container manages all resources on
behalf of the component and manages all interactions between the component and
the external systems.

There are many different types of application servers in common use today, and each
provides a container for some type of server-based request. For example:

• A TP monitor contains transactions and manages shared resources on behalf of a
transaction. Multiple transactions can work together and rely on the TP monitor
to coordinate the extended transaction.

• A database management system (DBMS) contains database requests. Multiple
database clients can submit requests to the database concurrently and rely on the
DBMS to coordinate locks and transactions.

• A Web server contains Web page requests. Multiple Web clients can submit
concurrent page requests to the Web server. The Web server serves up HTML
pages or invokes server extensions or servlets in response to requests.

The operations and behaviors of a container are defined by its component model.
Unfortunately, each container implements its own set of services with its own service
interfaces. As a result, components developed for one type of environment are usually
not portable to any other type of environment. The Enterprise JavaBeans component
model, however, is designed to deliver a portability layer for these container systems.

Enterprise JavaBeans Component Model

Overview of Enterprise JavaBeans Technology
The Enterprise JavaBeans component model logically extends the JavaBeans
component model. The JavaBeans component model defines a standard mechanism
to develop portable, reusable Java technology development components, such as
widgets or controls. JavaBeans technology can be used in any visual Java technology
integrated development environment (IDE), such as IBM Visual Age, Inprise
JBuilder, Sybase PowerJ, and Symantec Visual Café. Java developers use a visual Java
IDE to build Java classes, Java applets, Java applications, or Java technology
components. A JavaBeans component (a bean) is a specialized Java class that can be
added to an application development project and then manipulated by the Java IDE.
A bean provides special hooks that allow a visual Java development tool to examine
and customize the contents and behavior of the bean without requiring access to the

Container

Example Application
Servers

Portability across
Containers

JavaBeans
Development
Components

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 11

source code. Multiple beans can be combined and interrelated to build Java applets
or applications or to create new, more comprehensive, or specialized JavaBeans
components.

The Enterprise JavaBeans component model logically extends the JavaBeans
component model to support server components. Server components are reusable,
prepackaged pieces of application functionality that are designed to run in an
application server. They can be combined with other components to create
customized application systems. Server components are similar to development
components, but they are generally larger grained and more complete than
development components. Enterprise JavaBeans components (enterprise beans)
cannot be manipulated by a visual Java IDE in the same way that JavaBeans
components can. Instead, they can be assembled and customized at deployment time
using tools provided by an EJB-compliant Java application server.

The Enterprise JavaBeans architecture provides an integrated application framework
that dramatically simplifies the process of developing enterprise-class application
systems. An EJB server automatically manages a number of tricky middleware services
on behalf of the application components. EJB component-builders can concentrate
on writing business logic rather than complex middleware. The results are that
applications get developed more quickly and the code is of better quality.

The EJB model supports a number of implicit services, including lifecycle, state
management, security, transactions, and persistence.

• Lifecycle. Individual enterprise beans do not need to explicitly manage process
allocation, thread management, object activation, or object destruction. The EJB
container automatically manages the object lifecycle on behalf of the enterprise
bean.

• State Management. Individual enterprise beans do not need to explicitly save or
restore conversational object state between method calls. The EJB container
automatically manages object state on behalf of the enterprise bean.

• Security. Individual enterprise beans do not need to explicitly authenticate users
or check authorization levels. The EJB container automatically performs all
security checking on behalf of the enterprise bean.

• Transactions. Individual enterprise beans do not need to explicitly specify
transaction demarcation code to participate in distributed transactions. The EJB
container can automatically manage the start, enrollment, commitment, and
rollback of transactions on behalf of the enterprise bean.

• Persistence. Individual enterprise beans do not need to explicitly retrieve or store
persistent object data from a database. The EJB container can automatically
manage persistent data on behalf of the enterprise bean.

Enterprise
JavaBeans
Component Model

Simplifying
Development

Implicit Services

Enterprise JavaBeans Technology

12 Patricia Seybold Group © 1998

The Enterprise JavaBeans model defines the interrelationship between an enterprise
bean component and an enterprise bean container. Enterprise JavaBeans components
do not require the use of any specific container system. A vendor can adapt any
application server to support Enterprise JavaBeans technology by adding support for
the services defined in the specification. The services define a contract between an
enterprise bean and the container, effectively implementing a portability layer. Any
enterprise bean can run in any application server that supports the Enterprise
JavaBeans contracts.

An Enterprise JavaBeans-compliant application server, called an EJB server, must
provide a standard set of services to support enterprise bean components. Enterprise
JavaBeans components are transactional; therefore, an EJB server must provide access
to a distributed transaction management service. The EJB server must also provide a
container for the enterprise beans, which is called an EJB container. The EJB
container implements the management and control services for one or more classes of
Enterprise JavaBean objects. The EJB container also provides lifecycle management,
implicit transaction control, persistence management, transparent distribution
services, and security services on behalf of the enterprise bean. In most circumstances,
a single vendor would provide both an EJB server and an associated EJB container,
although the specification allows the separation of these services. For example, a
third-party vendor may provide an add-on container that implements persistence
through object/relational mapping.

The exact natures of process management, thread-pooling, concurrency control, and
resource management are not defined within the scope of the Enterprise JavaBeans
specification. Individual vendors can differentiate their products based on the
simplicity or sophistication of the services. A software vendor might elect to develop a
new application server specifically to support Enterprise JavaBeans components. It is
more likely, however, that vendors will simply adapt their existing systems. A number
of application servers are currently available, and any of these systems could be
extended to support a container for Enterprise JavaBeans components. An impressive
number of vendors are extending a wide variety of products, including:

• TP monitors, such as IBM TXSeries and IBM CICS/390

• Component transaction servers, such as Sybase Jaguar CTS

• CORBA systems, such as BEA Systems M3, IBM WebSphere Advanced Edition,
and Inprise VisiBroker/ITS

• Relational database systems, such as IBM DB2, Informix, Oracle, and Sybase

• Object database systems, such as GemStone GemStone/J

• Object/relational caching systems, such as Persistence PowerTier and Secant
Extreme

Portability Layer

Execution Services

Potential Enterprise
JavaBeans Systems

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 13

• Web application servers, such as BEA WebLogic, Bluestone Sapphire, IBM
WebSphere, Netscape Application Server, Oracle Application Server, Progress
Apptivity, SilverStream Application Server, and Sun NetDynamics.

The Enterprise JavaBeans model enables a much higher level of integration and
interoperability than ever existed before. Enterprise JavaBeans applications can be
developed using any Enterprise JavaBeans technology-compliant environment, and
users can deploy the applications in any other environment. As requirements for
higher performance, increased scalability, or tighter security arise, users can move the
applications to an environment with more comprehensive and sophisticated services.

 Architectural Details

 The Big Picture
 The EJB server provides an environment that supports the execution of applications
developed using Enterprise JavaBeans technology. It manages and coordinates the
allocation of resources to the applications.

Illustration 2 shows a representation of an EJB container. The EJB server must
provide one or more EJB containers, which provide homes for the enterprise beans.
An EJB container manages the enterprise beans contained within it. For each
enterprise bean, the container is responsible for registering the object, providing a
remote interface for the object, creating and destroying object instances, checking
security for the object, managing the active state for the object, and coordinating
distributed transactions. Optionally, the container can also manage all persistent data
within the object.

Any number of EJB classes can be installed in a single EJB container. A particular
class of enterprise bean is assigned to one and only one EJB container, but a container
may not necessarily represent a physical location. The physical manifestation of an
EJB container is not defined in the Enterprise JavaBeans specification. An EJB
container could be implemented as a physical entity, such as a multithreaded process
within an EJB server. It also could be implemented as a logical entity that can be
replicated and distributed across any number of systems and processes.

Enterprise JavaBeans technology supports both transient and persistent objects. A
transient object is called a session bean, and a persistent object is called an entity bean.

SESSION BEANS. A session bean is created by a client and in most cases exists only
for the duration of a single client/server session. A session bean performs operations
on behalf of the client, such as accessing a database or performing calculations.
Session beans can be transactional, but (normally) they are not recoverable following
a system crash. Session beans can be stateless, or they can maintain conversational
state across methods and transactions. The container manages the conversational state

 Versatility

 Enterprise
JavaBeans Server

 EJB Container

Installing Enterprise
Beans in an EJB
Container

 Transient and
Persistent Objects

Enterprise JavaBeans Technology

14 Patricia Seybold Group © 1998

of a session bean if it needs to be evicted from memory. A session bean must manage
its own persistent data.

Enterprise JavaBeans Container

Client

EJB Object
(client view)

EJB Home
(bean identifier)

Enterprise Bean

The EJB Object interface intercepts all method calls
and implements transactions, state management,
persistence, and security services for the bean
based on deployment descriptor settings.

methods

create
find
remove Environment

Deployment
Descriptors

The EJB Home interface is accessible
through JNDI and implements all
lifecycle services for the bean.

 Illustration 2. Enterprise beans are deployed in an EJB container within an EJB server. The EJB container acts as
a liaison between the client and the enterprise bean. At deployment time, the container automatically generates an
EJB Home interface to represent the enterprise bean class and an EJB Object interface for each enterprise bean
instance. The EJB Home interface identifies the enterprise bean class and is used to create, find, and remove
enterprise bean instances. The EJB Object interface provides access to the business methods within the bean. All
client requests directed at the EJB Home or EJB Object interfaces are intercepted by the EJB container to insert
lifecycle, transaction, state, security, and persistence rules on all operations.

ENTITY BEANS. An entity bean is an object representation of persistent data that are
maintained in a permanent data store, such as a database. A primary key identifies
each instance of an entity bean. Entity beans can be created either by inserting data
directly into the database or by creating an object (using an object factory Create
method). Entity beans are transactional, and they are recoverable following a system
crash.

Entity beans can manage their own persistence, or they can delegate persistence
services to their container. If the bean delegates persistence to the container, then the
container automatically performs all data retrieval and storage operations on behalf of
the bean.

Container-Managed
Persistence

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 15

In Release 1.0 of the Enterprise JavaBeans specification, support for session beans is
required, but support for entity beans and container-managed persistence is optional.
Mandatory support for these features will be required in a future version of the
specification.

An enterprise bean can be deployed in any EJB server, even though different servers
implement their services in different ways. The EJB model ensures portability across
different EJB servers using a set of standard contracts between the EJB container and
the enterprise bean. Each enterprise bean is required to implement a specific set of
interfaces that allows the EJB container to manage and control the object. The EJB
container is required to invoke these interfaces at particular stages of execution.

 An EJB container manages the enterprise beans that are deployed within it. Client
applications do not directly interact with an enterprise bean. Instead, the client
application interacts with the enterprise bean through two wrapper interfaces that are
generated by the container: the EJB Home interface and the EJB Object interface. As
the client invokes operations using the wrapper interfaces, the container intercepts
each method call and inserts the management services.

 The EJB Home interface provides access to the bean’s lifecycle services. Clients can
use the Home interface to create or destroy bean instances. For entity beans, the
Home interface also provides one or more finder methods that allow a client to find
an existing bean instance and retrieve it from its persistent data store.

 For each class installed in a container, the container automatically registers the EJB
Home interface in a directory using the Java Naming and Directory Interface (JNDI)
API. Using JNDI, any client can locate the EJB Home interface to create a new bean
instance or to find an existing entity bean instance. When a client creates or finds a
bean, the container returns an EJB Object interface.

 The EJB Object interface provides access to the business methods within the
enterprise bean. An EJB Object represents a client view of the enterprise bean. The
EJB Object exposes all of the application-related interfaces for the object, but not the
interfaces that allow the EJB container to manage and control the object. The EJB
Object wrapper allows the EJB container to intercept all operations made on the
enterprise bean. Each time a client invokes a method on the EJB Object, the request
goes through the EJB container before being delegated to the enterprise bean. The
EJB container implements state management, transaction control, security, and
persistence services transparently to both the client and the enterprise bean.

 The rules associated with the enterprise bean governing lifecycle, transactions,
security, and persistence are defined in an associated Deployment Descriptor object.
These rules are defined declaratively at deployment time rather than
programmatically at development time. At runtime, the EJB container automatically

Entity Objects Are
Optional

 Standard Contracts

 Wrapping and
Interception

EJB Home

 Naming and
Registration

EJB Object

 Declarative
Attributes

Enterprise JavaBeans Technology

16 Patricia Seybold Group © 1998

performs the services according to the values specified in the deployment descriptor
object associated with the enterprise bean.

 For each active enterprise bean instance, the EJB container generates an instance
context object to maintain information about the management rules and the current
state of the instance. A session bean uses a SessionContext object, and an entity bean
uses an EntityContext object. The context object is used by both the enterprise bean
and the EJB container to coordinate transactions, security, persistence, and other
system services. Also associated with each enterprise bean is a properties table called
the Environment object. The Environment object contains the customized property
values set during the application assembly process or the enterprise bean deployment
process.

 Distribution Services
 Enterprise JavaBeans technology uses the Java Remote Method Invocation API to
provide access to enterprise beans. An enterprise bean developer must define an RMI
Remote interface for each enterprise bean. The container generates the EJB Object
interface from the Remote interface definitions.

 RMI is a high-level programming interface that makes the location of the server
transparent to the client. The RMI compiler generates a stub object for each remote
interface. The stub object is installed on the client system (or can be downloaded at
runtime) and provides a local proxy object for the client. The stub implements all the
remote interfaces and transparently delegates all method calls across the network to
the remote object.

 The Enterprise JavaBeans specification asserts no requirements for a specific
distributed object protocol. RMI can support multiple communications protocols.
The Java Remote Method Protocol is the RMI native protocol. It supports all
functions within RMI. The next release of RMI will add support for communications
using the CORBA standard communications protocol, Internet InterORB Protocol.
IIOP supports almost all functions within RMI. Enterprise beans that rely only on
the RMI/IIOP subset of RMI are portable across both protocols. Third-party
implementations of RMI support other protocols, such as Secure Sockets Layer
(SSL).

 By using IIOP, enterprise beans can interoperate with native language clients and
servers. IIOP allows easy integration between CORBA systems and EJB systems.
Enterprise beans can access CORBA servers, and CORBA clients can access
enterprise beans. Using a COM/CORBA Internetworking service, ActiveX clients
can also access enterprise beans and enterprise beans can access COM servers.
Potentially, there could also be a DCOM implementation of Enterprise JavaBeans
technology.

Context Object

 Remote Method
Invocation

 Location
Transparency

 Protocols

 Native Language
Integration

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 17

 State Management
Individual EJB server systems can implement different policies to manage scarce
resources, such as memory and threads. Some EJB servers might maintain all active
objects in memory, while others might evict every object after every method call.
Some EJB servers might use a least-recently-used (LRU) policy to evict objects when
resources get tight. Regardless of the policies used, each EJB server must provide state
management for objects.

A session bean represents work being performed by an individual client. In some
cases, that work can be performed entirely within a single method call. In other cases,
the work may span multiple method requests. If the work spans multiple methods,
the object must maintain the user’s object state between method calls. For example,
in an e-commerce application, the CheckCreditAuthorization method performs an
entire unit of work and requires no maintained state. The ShoppingCart object, on
the other hand, must keep track of all the items selected while the customer is
browsing until the customer is ready to buy the items. The state management options
for a session bean are defined in the StateManagementType attribute in the
Deployment Descriptor object. All entity beans are inherently stateful.

If an object is stateless, the container automatically resets the state within an object
instance after each method call. If the object is stateful, the container automatically
maintains the object conversational state until the session object is destroyed, even if
the object is temporarily evicted from memory. The Enterprise JavaBeans
architecture provides a simple programming model to allow developers to perform
specific functions whenever objects are loaded or evicted from memory. The
Enterprise JavaBeans model isolates these functions in the ejbLoad, ejbStore,
ejbActivate, and ejbPassivate methods in each enterprise bean class.

Stateless servers use fewer resources and can be more easily recycled than stateful
servers. Since each instance of a stateless object class is identical, the instances can be
pooled and reused repeatedly. Therefore, many transaction processing experts claim
that stateless servers scale better and are more appropriate for high-volume transaction
systems. But if application requirements dictate an extended, multi-method
conversation, it may be more efficient to use stateful servers.

 Persistence Management
An entity bean represents persistent data. An entity object generally exists for an
extended period of time, and it can be used by many clients.

 Enterprise JavaBeans technology provides a simple programming model for managing
object persistence. Persistence functions must be performed whenever objects are
created or destroyed or whenever objects are loaded or evicted from memory. The
Enterprise JavaBeans model isolates these functions in the ejbCreate, ejbPostCreate,

 Resource
Optimization

Stateful Session
Beans

Automatic State
Management

Stateless vs.
Stateful Servers

 Persistent Objects

 Persistence
Programming Model

Enterprise JavaBeans Technology

18 Patricia Seybold Group © 1998

ejbRemove, ejbLoad, ejbStore, ejbActivate, and ejbPassivate methods in each
enterprise bean class.

 An entity object can manage its own persistence, or it can delegate its persistence to
its container. The persistence options for an entity bean are defined in the
ContainerManagedFields attribute in the deployment descriptor object.

If the entity object manages its own persistence, then the enterprise bean developer
must implement persistence operations (e.g., JDBC or embedded SQL calls) directly
in the enterprise bean class methods.

If the entity object delegates persistence services, the EJB container transparently and
implicitly manages the persistent state. The enterprise bean developer does not need
to code any database access functions within the enterprise bean class methods. The
first release of the Enterprise JavaBeans specification does not define how the EJB
container must manage object persistence. A vendor may implement a basic
persistence service in the EJB container that simply serializes the enterprise bean’s
state and stores it in some persistent storage. Alternatively, a vendor may implement a
more sophisticated persistence service that, for example, transparently maps the
object’s persistent fields to columns in an underlying relational database. A vendor
may also implement persistence using an embedded object database.

Session objects, by definition, are not persistent, although they may contain
information that needs to be persisted. As with bean-managed entity objects, session
objects can implement persistence operations directly in the methods in the enterprise
bean. Session objects also often maintain a cache of database information that must
be synchronized with the database when transactions are started, committed, or
aborted. An enterprise bean developer can implement transaction synchronization
methods directly in the enterprise bean class using the optional
SessionSynchronization interface. The afterBegin, beforeCompletion, and
afterCompletion notifications signal transaction demarcation points, allowing the
object to read or write data to the database as needed.

 Transaction Management
 Although Enterprise JavaBeans technology can certainly be used to implement
nontransactional systems, the model was designed to support distributed transactions.
Enterprise JavaBeans technology requires the use of a distributed transaction
management system that supports two-phase commit protocols for flat transactions.

 The Enterprise JavaBeans specification suggests but does not require transactions
based on the Java Transaction Service (JTS) API. JTS is the Java technology binding
of the CORBA Object Transaction Service (OTS). JTS supports distributed
transactions that can span multiple databases on multiple systems coordinated by

Entity Object
Persistence

Bean-Managed
Persistence

Container-Managed
Persistence

Session Object
Persistence

 Distributed
Transactions

JTS

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 19

multiple transaction managers. By using JTS, an Enterprise JavaBeans Server ensures
that its transactions can span multiple Enterprise JavaBeans servers.

Enterprise JavaBeans applications communicate with a transaction service using the
Java Transaction API (JTA). JTA provides a programming interface to start
transactions, join existing transactions, commit transactions, and roll-back
transactions.

 Although transaction demarcation in a centralized application is fairly
straightforward, it gets a lot trickier when an application consists of a variable number
of autonomous application components that call back and forth to each other.
Enterprise JavaBeans technology dramatically simplifies application development by
automating the use of distributed transactions. All transaction functions can be
performed implicitly by the EJB container and the EJB server. Individual enterprise
beans need not make any transaction demarcation statements within their code. Since
no transaction code is required within the application logic, the enterprise beans are
simpler to write and are portable across different transaction managers.

 The transaction semantics for an enterprise bean are defined declaratively rather than
programmatically. At runtime, the EJB container automatically implements
transaction services according to the TransactionAttribute attribute specified in the
deployment descriptor object.

 The Enterprise JavaBeans model supports six different transaction rules:

• TX_BEAN_MANAGED. The TX_BEAN_MANAGED setting indicates that
the enterprise bean manually manages its own transaction control. EJB supports
manual transaction demarcation using the Java Transaction API.

• TX_NOT_SUPPORTED. The TX_NOT_SUPPORTED setting indicates that
the enterprise bean cannot execute within the context of a transaction. If a client
(i.e., whatever called the methodeither a remote client or another enterprise
bean) has a transaction when it calls the enterprise bean, the container suspends
the transaction for the duration of the method call.

• TX_SUPPORTS. The TX_SUPPORTS setting indicates that the enterprise
bean can run with or without a transaction context. If a client has a transaction
when it calls the enterprise bean, the method will join the client’s transaction
context. If the client does not have a transaction, the method will run without a
transaction.

• TX_REQUIRED. The TX_REQUIRED setting indicates that the enterprise
bean must execute within the context of a transaction. If a client has a transaction
when it calls the enterprise bean, the method will join the client’s transaction
context. If the client does not have a transaction, the container automatically
starts a new transaction for the method.

JTA

 Simplicity

 Declarative
Transaction Rules

 Transaction
Attributes

Enterprise JavaBeans Technology

20 Patricia Seybold Group © 1998

• TX_REQUIRES_NEW. The TX_REQUIRES_NEW setting indicates that the
enterprise bean must execute within the context of a new transaction. The
container always starts a new transaction for the method. If the client has a
transaction when it calls the enterprise bean, the container suspends the client’s
transaction for the duration of the method call.

• TX_MANDATORY. The TX_MANDATORY setting indicates that the
enterprise bean must always execute within the context of the client’s transaction.
If the client does not have a transaction when it calls the enterprise bean, the
container throws the TransactionRequired exception and the request fails.

 Security
 The Enterprise JavaBeans model utilizes the Java security services supported in Java
Development Kit (JDK™) 1.1.x. Java platform security supports authentication and
authorization services to restrict access to secure objects and methods.

 Enterprise JavaBeans technology automates the use of Java platform security so that
enterprise beans do not need to explicitly code Java security routines. The security
rules for each enterprise bean are defined declaratively in a set of AccessControlEntry
objects within the deployment descriptor object. An AccessControlEntry object
associates a method with a list of users that have rights to invoke the method. The
EJB container uses the AccessControlEntry to automatically perform all security
checking on behalf of the enterprise bean.

 Enterprise JavaBeans Deployment
 Enterprise JavaBeans components can be packaged as individual enterprise beans, as a
collection of enterprise beans, or as a complete application system. Enterprise
JavaBeans components are distributed in a Java Archive File called an ejb-jar file. The
ejb-jar file contains a manifest file outlining the contents of the file, plus the
enterprise bean class files, the Deployment Descriptor objects, and, optionally, the
Environment Properties objects.

 The Deployment Descriptor objects are used to establish the runtime service settings
for an enterprise bean. These settings tell the EJB container how to manage and
control the enterprise bean. The settings can be set at application assembly or
application deployment time.

The DeploymentDescriptor object specifies how to create and maintain an Enterprise
Bean object. This object defines, among other things, the enterprise bean class name,
the JNDI namespace that represents the container, the Home interface name, the
Remote interface name, and the Environment Properties object name. The
DeploymentDescriptor object contains an array of ControlDescriptor objects, which
specify the transaction semantics that should be applied to the enterprise bean, and an

 Java Security

 Enterprise
JavaBeans Security

 Packaging

 Deployment
Descriptors

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 21

array of AccessControlEntry objects, which specify the security rules that should be
applied to the enterprise bean.

Session beans and entity beans have slightly different requirements; therefore, there
are two different types of deployment descriptors.

• The SessionDescriptor object extends the DeploymentDescriptor object and adds
attributes to indicate whether or not a session bean is stateless or stateful.

• The EntityDescriptor object extends the DeploymentDescriptor object and adds
attributes to indicate which fields within the object should be persisted
automatically by the container.

 An enterprise bean developer can provide an Environment Properties object to allow
the application developer to customize the bean to suit the needs of the application.
For example, a property might be used to specify the location of a database or to
specify a default language.

Industry Support

 The industry has shown tremendous support for the Enterprise JavaBeans technology
initiative. Most major vendors—including IBM, Oracle, Sybase, Netscape, and BEA
Systems—have participated in the definition of the Enterprise JavaBeans
specification. These vendors are in the process of implementing support for
Enterprise JavaBeans technology in their products.

The first EJB-compliant application servers began to appear in August 1998.
Products that are shipping or in beta as of this writing include:

• BEA WebLogic Tengah
• Bluestone Sapphire/Web
• GemStone GemStone/J
• IBM WebSphere Advanced Edition
• Novera jBusiness
• Oracle8i
• Oracle Application Server
• OrchidSoft Vanda
• Persistence PowerTier
• Progress Apptivity
• Secant Extreme
• Valto Ejipt

Additional EJB-compliant application servers should be available in early 1999 from
vendors, such as Forte, Fujitsu, Haht, Inprise, Informix, Netscape, Sun, Sybase, and
Vision.

 Environment
Properties

 Tremendous Buy-In

EJB Servers

Enterprise JavaBeans Technology

22 Patricia Seybold Group © 1998

Application software vendors have also expressed their support for Enterprise
JavaBeans technology. The model increases the versatility of packaged application
solutions. Applications implemented using Enterprise JavaBeans components can be
deployed on a much broader array of systems. In addition, they support easier
customization and integration with existing application systems. EJB-compliant
applications and components are available or in development from the following
companies:

• Athena Design Integer (a collaborative spreadsheet)
• Digital Harbor personal productivity application components
• EC-Cubed electronic commerce components
• IBI EDA components (to provide integration with host data and applications)
• IBM San Francisco Frameworks (General Ledger, Order Management, etc.)
• NovaSoft Novation (an Electronic Document Management System)
• Oracle Applications (ERP)
• Seven Mountains personal productivity application components
• TradeEx procurement components

EJB Competition
 The primary hold-out against Enterprise JavaBeans technology is Microsoft.
Although Microsoft Transaction Server (MTS) could be adapted to support
Enterprise JavaBeans components, Microsoft is not likely to make the effort. The Java
portability message would undermine Microsoft’s message of tight integration based
on the NT platform. Microsoft is pushing developers to build component-based
application systems based on the COM component model. MTS provides a container
system for COM server components, providing transactional and security services
similar to those provided in Enterprise JavaBeans servers. COM+, the next generation
of MTS, will provide a few additional capabilities, such as dynamic load-balancing
and queued request-processing.

 Although COM components provide many of the same benefits as Enterprise
JavaBeans components, there are some significant differences.

• Platform Limitations. COM components rely on a COM runtime system and
the DCOM communication protocol. Although COM and DCOM have
recently been ported to Solaris and other Unix platforms, COM container
systems are not available on these platforms. COM server components can
realistically be deployed only on Windows 95 or NT. Enterprise JavaBeans
components are platform independent.

• Vendor Limitations. Very few vendors provide container systems for COM and
DCOM components. At the moment, COM containers are available from only
two vendors: Microsoft and Sybase. The COM model does not extend far
enough to support interoperability and transparent portability across these two
environments. Any number of container systems can be adapted to support

 Application Vendors

 Microsoft Hold-Out

 MTS Limitations

Enterprise JavaBeans Technology

Patricia Seybold Group © 1998 23

Enterprise JavaBeans components, and many vendors have announced their
intentions to support the model, including BEA Systems, Fujitsu, IBM, Oracle,
Sybase, and Netscape. The Enterprise JavaBeans model ensures interoperability
and portability across all of these environments.

• Client Limitations. COM and DCOM services are generally not available on
non-Windows clients, such as network computers, information appliances, or
smartcards. Enterprise JavaBeans components can support any Internet-enabled
client device.

• Limited State and Persistence Management. MTS does not support a
distinction between transient and persistent objects. All MTS components are the
equivalent of stateless session objects. MTS automatically flushes all object state at
the end of every transaction, and developers are responsible for managing all
conversational state. MTS does not support automatic persistent objects.
Developers are responsible for managing all persistent data. Enterprise JavaBeans
technology supports stateless and stateful transient objects and persistent objects.

• More Restrictive Transaction Management. Although MTS supports
declarative transaction management, COM components must still implement
some transaction demarcation code within the application logic. Even so, MTS
applications don’t have as much flexibility to override the automatic MTS
transaction services. Enterprise JavaBeans technology requires no transaction
demarcation code within the application logic, but, if a developer chooses, the
enterprise bean can completely control its transaction behavior.

 Benefits and Conclusions

 The Enterprise JavaBeans architecture provides a simple and elegant server
component container model. The model ensures that Java platform server
components can be developed once and deployed anywhere, in any vendor’s
container system. Even though the container systems implement their runtime
services differently, the Enterprise JavaBeans interfaces ensure that an enterprise bean
can rely on the underlying system to provide consistent lifecycle, persistence,
transaction, distribution, and security services.

The Enterprise JavaBeans architecture is completely independent from any specific
platform, protocol, or middleware infrastructure. Applications that are developed for
one platform can be picked up, moved, and redeployed to another platform. EJB
applications can scale from a small single-processor, Intel-based Novell environment
to a large multiprocessor, UltraSPARC™ environment to a massive Sysplex IBM
mainframe environment—all without modification.

 The Enterprise JavaBeans architecture improves the productivity of application
developers. The Enterprise JavaBeans environment automates the use of complex

 Component
Portability

Architecture
Independence

 Developer
Productivity

Enterprise JavaBeans Technology

24 Patricia Seybold Group © 1998

infrastructure services, such as transactions, thread management, and security
checking. Component developers and application builders do not need to implement
complex service functions within the application programming logic.

 Enterprise JavaBeans applications are highly customizable. The underlying
component model supports customization without requiring access to source code.
Application behaviors and runtime settings are defined through a set of attributes that
can be changed at deployment time.

The Enterprise JavaBeans architecture is an extremely compatible evolutionary
environment. The Enterprise Java services layer over existing infrastructure services.
Organizations are not required to implement yet another incompatible set of
middleware technologies. Enterprise JavaBeans technology enhances, enables, and
simplifies popular systems, such as CORBA or DCOM.

The Enterprise JavaBeans model is based on an extremely versatile and powerful
multitier, distributed object architecture that relies on industry-standard protocols.
The model is appropriate for small-scale applications or large-scale business
transactions. As application requirements grow, applications can migrate to
progressively more powerful operating environments. The environment inherently
supports Web-based applications and a variety of other Internet-enabled client
devices. Additional client systems can be added at any time without modification of
the core application systems. Enterprise JavaBeans technology provides an
environment that is designed to grow with the industry to support new technologies
as they emerge.

 Highly Customizable

Wrap and Embrace

Versatility and
Scalability

In business since 1978, the Patricia Seybold Group provides strategic guidance and tactical advice for organizations seeking
business advantage through the application of information technology. The Group has built an international reputation for
excellence and objectivity in its research and analysis, and for the provision of consulting services which identify strategies and
tools best suited to the development of the client's unique business and technology needs. The company office is located at 85
Devonshire St, 5th floor, Boston, MA 02109. For further information about our publications and research services, please
visit our web site (www.psgroup.com). For information about consulting services, please contact an Account Executive at
617.742.5200.

