
1

University of Toronto Department of Computer Science

© Steve Easterbrook 2003

Requirements Engineering:
Modelling the User’s Needs

Prof. Steve Easterbrook

Dept of Computer Science
University of Toronto

http://www.cs.toronto.edu/~sme

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 2

The “essential” software process
Source: Adapted from Blum, 1992, p32

see also: van Vliet p11

Problem
Statement

Implementation
Statement

System

Co
rr

es
po

nd
en

ce

Co
rr

ec
tn

es
s

Va
lid

at
io
n

Ve
ri
fi
ca

ti
on

Real World



2

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 3

Design changes the world…

real world

abstract
model of worldimplementation

statement

problem
statement

change

System

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 4

Discovering Requirements
‹ Starting point
ƒ Some notion that there is a “problem” that needs solving
ÿ e.g. dissatisfaction with the current state of affairs
ÿ e.g. a new business opportunity
ÿ e.g. a potential saving of cost, time, resource usage, etc.

ƒ A Requirements Engineer is an agent of change

‹ The requirements engineer must:
ƒ identify the “problem”/”opportunity”
ÿ Which problem needs to be solved? (identify problem Boundaries)
ÿ Where is the problem? (understand the Context/Problem Domain)
ÿ Whose problem is it? (identify Stakeholders)
ÿ Why does it need solving? (identify the stakeholders’ Goals)
ÿ How might a software system help? (collect some Scenarios)
ÿ When does it need solving? (identify Development Constraints)
ÿ What might prevent us solving it? (identify Feasibility and Risk)

ƒ and become an expert in the problem domain
ÿ although ignorance is important too -- “the intelligent ignoramus”



3

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 5

Difficulties of Elicitation
‹ Thin spread of domain knowledge

ƒ The knowledge might be distributed across many sources
ÿ It is rarely available in an explicit form (I.e. not written down)

ƒ There will be conflicts between knowledge from different sources
ÿ People have conflicting goals
ÿ People have different understandings of the problem

‹ Tacit knowledge (The “say-do” problem)
ƒ People find it hard to describe knowledge they regularly use

ÿ Descriptions may be inaccurate rationalizations of expert behaviour

‹ Limited Observability
ƒ The problem owners might be too busy coping with the existing system
ƒ Presence of an observer may change the problem

ÿ E.g. the Probe Effect and the Hawthorne Effect

‹ Bias
ƒ People may not be free to tell you what you need to know

ÿ Political climate & organisational factors matter
ƒ People may not want to tell you what you need to know

ÿ The outcome will affect them, so they may try to influence you (hidden agendas)

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 6

Requirements Growth
‹Davis’s model:
ƒUser needs evolve continuously
ÿ Imagine a graph showing growth

of needs over time
ÿMay not be linear or continuous

(hence no scale shown)
ƒTraditional development always
lags behind needs growth
ÿ first release implements only

part of the original requirements
ÿ functional enhancement adds new

functionality
ÿ eventually, further enhancement

becomes too costly, and a
replacement is planned
ÿ the replacement also only

implements part of its
requirements,
ÿ and so on...

Time

Fu
nc

ti
on

al
it

y

User needs

ide
nti

fy 
req

uir
em

en
ts

fir
st 

rel
ea

se

en
ha

nce
men

t p
ha

se

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
en

t d
eli

ver
ed

en
ha

nce
men

t p
ha

se

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455



4

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 7

What does correctness mean?

‹ Some distinctions:
ƒ Domain Properties are things in the application domain that are true whether or not we

ever build the proposed system
ƒ Requirements are things in the application domain that we wish to be made true by

delivering the proposed system
ƒ A specification is a description of the behaviours the program must have in order to

meet the requirements

‹ Two correctness criteria:
ƒ The Program running on a particular Computer satisfies the Specification
ƒ The Specification, in the context of the given domain properties, satisfies the

requirements

‹ Two validation criteria:
ƒ We discovered all the important requirements
ƒ We discovered all the relevant domain properties

Application Domain Machine Domain

Source: Adapted from Jackson, 1995, p170-171

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 8

Validation Example
‹ Requirement R:

ƒ “Reverse thrust shall only be enabled when the aircraft is moving on the
runway”

‹ Domain Properties D:
ƒWheel pulses on if and only if wheels turning
ƒWheels turning if and only if moving on runway

‹ Specification S:
ƒ Reverse thrust enabled if and only if wheel pulses on

‹ S + D imply R
ƒ But what if the domain assumptions are wrong?

Source: Adapted from Jackson, 1995, p172



5

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 9

Another Example
‹ Requirement R:

ƒ “The database shall only be accessible by authorized personnel”

‹ Domain Properties D:
ƒ Authorized personnel have passwords
ƒ Passwords are never shared with non-authorized personnel

‹ Specification S:
ƒ Access to the database shall only be granted after the user types an

authorized password

‹ S + D imply R
ƒ But what if the domain assumptions are wrong?

Source: Adapted from Jackson, 1995, p172

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 10

software
Monitored

 Variables

Environ-
ment

System

input

data data

output Controlled

 Variables

Setting the Boundaries
‹ How will the software interact with the world?

‹ E.g. the four variable model:
ƒ Fixes the input/output devices
ƒ Uses I/O data items as proxies for the monitored and controlled variables

Environ-
ment

Input
devices

Output
devices

S - Specification of software in
terms of inputs & outputs

R - Requirements: what control actions the system must take in which circumstances.
D - Domain Properties that constrain how the environment can behave



6

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 11

Three different models??

D:
a model of the
environment

S:
a model of
the software 
behaviour

R:
a model 

of the
requirements

is
satisfied

by

co
ns

tr
ai

ns

ac
ts

 u
po

n

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 12

Modeling…
‹ Modeling can guide elicitation:

ƒ Does the modeling process help you figure out what questions to ask?
ƒ Does the modeling process help to surface hidden requirements?

ÿ i.e. does it help you ask the right questions?

‹ Modeling can provide a measure of progress:
ƒ Does completeness of the model imply completeness of the elicitation?

ÿ i.e. if we’ve filled in all the pieces of the model, are we done?

‹ Modeling can help to uncover problems
ƒ Does inconsistency in the model reveal interesting things…?

ÿ e.g. inconsistency could correspond to conflicting or infeasible requirements
ÿ e.g. inconsistency could mean confusion over terminology, scope, etc
ÿ e.g. inconsistency could reveal disagreements between stakeholders

‹ Modeling can help us check our understanding
ƒ Can we test that the model has the properties we expect?
ƒ Can we reason over the model to understand its consequences?
ƒ Can we animate the model to help us visualize/validate the requirements?



7

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 13

What models might we build?
‹ (1) What kinds of information are we dealing with?
ƒWhat objects (classes of objects) are we dealing with?
ƒWhat are the relationships between those objects?
ƒWhat constraints are there on those relationships?

‹ Example:

:car
VIN(vehicle Id Number)
YearMade
Mileage

:person
Name
Address
DriversLicenceNumber
PermittedVehicles

0..* 1owns
owner

:title
yearbought
initialMileage
PricePaid
LicencePlate#

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 14

(2) How should objects interact?
ATM Model A

:user :ATM :bank

Insert Card

Prompt for PIN#

Type PIN#
Req Validation

Display Menu
Confirm Valid

Request Cash

Prompt for amount

Enter amount
Sufficient funds?

Confirm funds
Dispense Cash

Display Menu

End Transaction

Withdraw funds

Return Card

ATM Model B

:ATM :Bank

Insert Card

Prompt for PIN#

Type PIN#
Req Validation

Display Menu
Confirm Valid

Request Cash

Prompt for amount

Enter amount
Sufficient funds?

Confirm funds

Dispense Cash

Another Trans?
Decline

Withdraw fundsReturn Card

Print Receipt

Print Receipt

:user



8

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 15

What is the lifecyle of each object?
:person

age

havebirthday()

child

adult

senior

havebirthday() 
[age = 18]

havebirthday() 
[age = 65]

havebirthday() 
[age < 18]

havebirthday() 
[age < 65]

havebirthday() 

child

adult

senior

when
[thisyear-birthyear>18]

when
[thisyear-birthyear>65]

unborn

deceased

recordBirth() 
/setDOB()

recordDeath()
/setDateofDeath()

:person
dateOfBirth
dateOfDeath
recordBirth()
setDOB()
recordDeath()
setDateofDeath()

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 16

adult

single partnered

A more detailed example

child

working age senior

unmarried

married

divorced

widowed

separated

deceased

registerDeath()

when
[age>17]

unborn
registerBirth()/
setDateOfBirth() 

when
[age>65]

registerMarriage()/setSpouse() 

when
[!!!!addr ≠
 spouse.addr]

registerDivorce() 

spouse.
registerDeath() when

[!!!!addr =
 spouse.addr]

registerDeath()

createRecord() 



9

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 17

What other
things matter?

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability

training

I/O volume

Access control

Access audit

Storage efficiency

consistency

instrumentation

expandability

generality

Self-descriptiveness

modularity

machine independence

s/w system independence

comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency

traceability

completeness

accuracy

error tolerance

simplicity

conciseness

data commonality

University of Toronto Department of Computer Science

© Steve Easterbrook 2003 18

Summary


