?; University of Toronto Department of Computer Science

Requirements Engineering:
Modelling the User's Needs

Prof. Steve Easterbrook

Dept of Computer Science
University of Toronto

http://www.cs.toronto.edu/~sme

© Steve Easterbrook 2003

Department of Computer Science

? University of Toronto
&

The “essential” software process

Source: Adapted from Blum, 1992, p32
see also: van Vliet p11
Real World -+
.
Problem
Statement § .§
“ o
S |8
Y= P
FEES
Implementation >
Statement
s 2
System Y

© Steve Easterbrook 2003

University of Toronto Department of Computer Science

Design changes the world...

real world

abstract

implementation model of world

statement
\ problem
statement
© Steve Easterbrook 2003 3
University of Toronto Department of Computer Science

Discovering Requirements
- Starting point

% Some notion that there is a “problem” that needs solving
> e.g. dissatisfaction with the current state of affairs
» e.g. a new business opportunity
> e.g. a potential saving of cost, time, resource usage, etc.

% A Requirements Engineer is an agent of change

- The requirements engineer must:

% identify the “problem”/"opportunity”

» Which problem needs to be solved? (identify problem Boundaries)
Where is the problem? (understand the Context/Problem Domain)
Whose problem is it? (identify Stakeholders)

Why does it need solving? (identify the stakeholders’ Goals)
How might a software system help? (collect some Scenarios)
When does it need solving? (identify Development Constraints)

» What might prevent us solving it? (identify Feasibility and Risk)
% and become an expert in the problem domain

» although ignorance is important too -- “the intelligent ignoramus”

Y V VYV V

© Steve Easterbrook 2003 4

University of Toronto Department of Computer Science

Difficulties of Elicitation

- Thin spread of domain knowledge

% The knowledge might be distributed across many sources
» It is rarely available in an explicit form (I.e. not written down)

% There will be conflicts between knowledge from different sources
» People have conflicting goals
> People have different understandings of the problem

- Tacit knowledge (The “say-do” problem)

% People find it hard to describe knowledge they regularly use
» Descriptions may be inaccurate rationalizations of expert behaviour

- Limited Observability

% The problem owners might be too busy coping with the existing system

% Presence of an observer may change the problem
> E.g. the Probe Effect and the Hawthorne Effect

- Bias
% People may not be free to tell you what you need to know
» Political climate & organisational factors matter

% People may not want to tell you what you need to know
> The outcome will affect them, so they may try to influence you (hidden agendas)

© Steve Easterbrook 2003 5
University of Toronto Department of Computer Science

Requirements Growth

Source: Adapted from Davis 1988, pp1453-1455

-Davis's model:

L User needs evolve continuously

» Imagine a graph showing growth
of needs over time

» May not be linear or continuous
(hence no scale shown)

% Traditional development always ;
lags behind needs growth (shaded area)
> first release implements only Shor#fall
part of the original requirements ‘
> functional enhancement adds new : Adaptability
functionality Latgness :

» eventually, further enhancement
becomes too costly, and a
replacement is planned 2 : ~

> the replacement also only &‘L’ 5 > M Tir?e
implements part of its & ' < &
requirements,

>and so on... @ < & o & &

conventional
A . develonment
User needs

¢ -Enapppdpriateness

Functionality

: % (slope of line)
Longevity

© Steve Easterbrook 2003 6

University of Toronto Department of Computer Science

What does correctness mean?

Application Domain

gﬁﬂ@@gi@ Machine Domain
€ - compuier
= PreEFamn

= domneln preperties
R - requireinents

- Some distinctions:

% Domain Properties are things in the that are true whether or not we
ever build the proposed system
% Requirements are things in the that we wish to be made true by

delivering the proposed system
% A specification is a description of the behaviours the program must have in order to
meet the requirements

- Two correctness criteria:
% The Program running on a particular Computer satisfies the Specification
% The Specification, in the context of the given domain properties, satisfies the
requirements

- Two validation criteria:
% We discovered all the important requirements
% We discovered all the relevant domain properties

©Steve Easterbrook 2003 Source: Adapted from Jackson, 1995, p170-171 7

University of Toronto Department of Computer Science

Validation Example

- Requirement R:

% “Reverse thrust shall only be enabled when the aircraft is moving on the
runway”

- Domain Properties D:

% Wheel pulses on if and only if wheels turning

% Wheels turning if and only if moving on runway
- Specification S:

% Reverse thrust enabled if and only if wheel pulses on
-+S + D imply R

% But what if the domain assumptions are wrong?

©Steve Easterbrook 2003 Source: Adapted from Jackson, 1995, p172 8

o

L University of Toronto Department of Computer Science

Another Example

- Requirement R:

% “The database shall only be accessible by authorized personnel”

- Domain Properties D:
% Authorized personnel have passwords
% Passwords are never shared with non-authorized personnel
- Specification S:
% Access to the database shall only be granted after the user types an
authorized password
-+S + D imply R

% But what if the domain assumptions are wrong?

©Steve Easterbrook 2003 Source: Adapted from Jackson, 1995, p172 9

o

L University of Toronto Department of Computer Science

Setting the Boundaries

- How will the software interact with the world?

- E.g. the four variable model:
% Fixes the input/output devices
% Uses I/0 data items as proxies for the monitored and controlled variables

System

Monitored Input \ipu Controlled

—_— .
Variables devices data
AN J

S - Specification of software in
terms of inputs & outputs
— i

R - Requirements: what control actions the system must take in which circumstances.
D - Domain Properties that constrain how the environment can behave

Variables

© Steve Easterbrook 2003 10

1 University of Toronto Department of Computer Science

Three different models??

a model of the
b environment
is
R: satisfied 5
by E3
a model i
of the g
requirements
a model of
the software
behaviour
© Steve Easterbrook 2003 11
. University of Toronto Department of Computer Science

Modeling...

- Modeling can guide elicitation:
% Does the modeling process help you figure out what questions to ask?

% Does the modeling process help to surface hidden requirements?
> i.e. does it help you ask the right questions?

- Modeling can provide a measure of progress:

% Does completeness of the model imply completeness of the elicitation?
> i.e. if we've filled in all the pieces of the model, are we done?

- Modeling can help to uncover problems

% Does inconsistency in the model reveal interesting things..?
> e.g. inconsistency could correspond to conflicting or infeasible requirements
» e.g. inconsistency could mean confusion over terminology, scope, etc
> e.g. inconsistency could reveal disagreements between stakeholders

- Modeling can help us check our understanding
% Can we test that the model has the properties we expect?
% Can we reason over the model to understand its consequences?
% Can we animate the model to help us visualize/validate the requirements?

© Steve Easterbrook 2003 12

? University of Toronto Department of Computer Science

4 What models might we build?

- (1) What kinds of information are we dealing with?
% What objects (classes of objects) are we dealing with?
% What are the relationships between those objects?
% What constraints are there on those relationships?

- Example:

:person
-car Name
VIN(vehicle Id Number)| Q..* owns 1 | Address
YearMade T DriversLicenceNumber
Mileage < owner | permittedVehicles
title
yearbought
initialMileage
PricePaid
LicencePlate#
© Steve Easterbrook 2003 13
@ University of Toronto Department of Computer Science

A - ° °
(2) How should objects interact?
% ATM Model A % ATM Model B
:user (ATM :bank ‘user tATM :Bank
Insert Card > Insert Card >
_Prompt for PIN# _Prompt for PIN#
l l
Type PIN# Type PIN#
s Reg Validatio& s Reg Validatio&
_Confirm Valid _Confirm Valid
Display Menu | Display Menu |
Regquest Cash > Reguest Cash >
Eromgt for amount Eromgt for amount}
Enter amount Enter amount
P| Sufficient fund&" P| Sufficient fundg
CariiFoam s _ Another Trans?
¢ Dispense Cash > Decline o
Withdraw fund | (Confirm funds
. Print Receipt
< . I
Display Menu P Return Card Withdraw fund
|_End Transactiony | g2ispense Cash
& Return Card & Print Receipt
- -

© Steve Easterbrook 2003 14

#

University of Toronto

Department of Computer Science

X
S

What is the lifecyle of each object?

person % :person o
dateOfBirth
age dateOfDeath
havebirthday() ;Z‘;grgg'(r)th()
recordDeath() o—>
setDateofDeath() unborn
recordBirth()
w/setDOB()
havebirthday() child
[age < 18]
. when
havebirthday() yithisyear-birthyear>18]
[age = 18]
v adult
havebirthday()
[age < 65] ad when
Yithisyear-birthyear>65]
havebirthday() nior
[age = 65] senio
A4
havebirthda - recordDeath()
Y0 senior /setDateofDeath()

.

© Steve Easterbrook 2003

15

#

5

University of Toronto

Department of Computer Science

createRecord()

registerBirth()/
setDateOfBirth()

when

A more detailed example

child

[age>17]

registerDeath()

adult

~

: when
Working agef 121 —s{ _senior] (deceased
__ A
L’ - partnered
4 single 2\
spouse. married registerDeath()
_ registerDeath() when®& [when
M widowed |« [addr=| fladdr=
spouse.addr] Js ouse.addr]
Hivoreadh i< registerDivorce(separated
| registerMarriage()/setSpouse()

\C

_/

© Steve Easterbrook 2003

16

L University of Toronto Department of Computer Science

wa What other‘ operabili
things matter? ’

integrity
-
reliability "
\
maintainability ‘
Ty el — N
| testability <\ _conciseness |
“\\ instrumentation
flexibility ,—~ sxpandabili
—S
SN =
reusability ,e=————=S%
e — H)
roduct transition == hine ind
portability —— machine inde
interoperability

| Product operation

]

W
|

pendence |

)

s/w system independence |

data commonality

© Steve Easterbrook 2003 17

. University of Toronto Department of Computer Science

Summary

THE PROJECT REQUIRE- NOW THEY'RE CHANGING... NATURALLY, I T BUDGETED

FORMIN 2| CHANGING...CHANGING...| | WONT BE FOR SOME
IP\SN;\\? ;;!\ZENDB ¢ § CHANGING ... OKAY. NO, |2 SHARING ANY GOONS TO
f] WATT... CHANGING... [§]OF THESE BEAT IT
2| CHANGING. .. DONE. 5| THOUGHTS QUT OF YOU.
g §| witi C
1| ENGINEERING.
‘ i
§ ©
v

C7aa

© Steve Easterbrook 2003

18

