
Development of
Object-Oriented

Frameworks

Authors
Niklas Landin
Axel Niklasson

Tutors
Grace Bosson

Ericsson Software Technology, Frameworks
Ronneby, Sweden

Björn Regnell
Department of Communication Systems

Lund Institute of Technology, Lund University
Lund, Sweden

CODEN:LUTEDX(TETS-5231)/1-146/(1995)&local 31

ABSTRACT

An object-oriented framework is a reusable software component pro-
viding large scale reuse, including reuse of analysis and design.

The thesis describes a process for the development of object-oriented
frameworks. A comprehensive introduction to object-oriented frame-
works is given and an extensive set of guidelines supporting frame-
work development is provided.

The authors have studied several object-oriented development meth-
ods to investigate how an ordinary development process may be adapt-
ed to suit the development of object-oriented frameworks. A small case
study has been performed to validate and exemplify the process.

The main focus is on capturing requirements, analysis and design of
object-oriented frameworks. The process of reusing frameworks for
application development is also described briefly.

CONTENTS

1 Introduction. 1

1.1 Background and Problems 1

1.2 Objectives . 2

1.3 Target Groups . 2

1.4 Delimitations. 2

1.5 Disposition of the Thesis 2

1.6 Acknowledgements. 3

2 Object-Oriented Frameworks 5

2.1 Some Object-Oriented Concepts 5
2.1.1 Inheritance . 5
2.1.2 Dynamic Binding and Polymorphism.. 6

2.2 Software Reuse . 7

2.3 What is a Framework? . 8

2.4 Why use Frameworks? 10
2.4.1 Advantages. 10
2.4.2 Difficulties . 11

2.5 Framework Documentation 12

2.6 Summary. 14

3 Framework Development 17

3.1 Introduction. 18

3.2 Project Organization . 19
3.2.1 A Strategical Investment 19
3.2.2 Work Organization . 19
3.2.3 Development Teams For and With Reuse 20
3.2.4 Summary . 21

3.3 Preparing Framework Development. 22
3.3.1 Domain Analysis . 22
3.3.2 Summary . 23

3.4 Capture Requirements and Analysis Phase . . . 24
3.4.1 Capture Requirements . 27
3.4.2 Analysis . 39
3.4.3 Complementary Results and Models 43

3.4.4 Summary . 43

3.5 The Design Phase . 46
3.5.1 Object-Oriented Design . 47
3.5.2 The Framework Design Process 48
3.5.3 Architectural Design . 52
3.5.4 Detailed Design . 60
3.5.5 Summary . 61

3.6 Implementation . 63
3.6.1 Process . 64
3.6.2 Guidelines . 65
3.6.3 Summary . 72

3.7 Verification and Validation 74
3.7.1 Unit Testing . 75
3.7.2 Integration Testing . 76
3.7.3 Test Model . 76
3.7.4 Frameworks Specifics . 77
3.7.5 Summary . 80

3.8 Maintenance . 82
3.8.1 Introduction . 82
3.8.2 Computer System Evolution Dynamics. 82
3.8.3 Limiting the Need for Software Maintenance . . . 83
3.8.4 Framework Evolution Dynamics 84
3.8.5 Summary . 85

4 Framework Reuse . 87

4.1 Reuse Organization . 87

4.2 Overview. 88

4.3 Analysis with Reuse . 90

4.4 Design with Reuse . 91

4.5 Summary . 92

5 Summary and Conclusions 95

A Guidelines . 97

B Case Study . 105

B.1 Notation. 105

B.2 The Analysis Phase . 107

B.3 The Design Phase . 120

C Glossary . 139

D References. 143

1

1 INTRODUCTION

1.1 Background and Problems

During the past years, the need for software reuse has become evident.
Object-orientation has provided a means to increase the reusability of
code, by introducing standard interfaces and inheritance. Class libraries
have provided well defined and tested reusable components, but using
class libraries mainly implies reuse of code and little reuse of analysis
and design. To increase the potential of reuse, object-oriented frame-
works have been suggested. An object-oriented framework is intended to
capture the functionality common to several similar applications. By de-
veloping and reusing frameworks, the reuse will also encompass design
and analysis.

Since developing object-oriented frameworks implies an analysis and
design of all the applications in the domain, existing and future, the fea-
sibility is highly dependent on the availability of experienced software
designers and people with extensive knowledge in the domain. To lessen
the dependence on key persons, there is a need for a methodology and a
development process to follow.

Ericsson Software Technology Frameworks in Ronneby have a template
methodology, which they apply to their customers’ development proc-
esses and organisations. The methodology was sporadically document-
ed, and much of the methodology was concealed in the heads of the
company’s consultants.

The problem is to visualize the methodology to the customers, and to
new consultants. To alleviate this problem, the documentation needed to
be compiled, revised and further developed.

Methodology

To compile an adequate documentation, we assembled information on
frameworks and development processes and methodologies. Many arti-
cles and references were found on the WWW, some documentation was

2

available at the company, and the rest have been elicited from informal
interviews with the consultants of the company, both methodologists and
developers.

1.2 Objectives

• To give an introduction to the object-oriented framework concepts.

• To provide guidelines that support the development of object-orient-
ed frameworks.

• To overview the framework reuse process.

1.3 Target Groups

The target group for the guidelines given is a software organization in-
tending to develop object-oriented frameworks in their application do-
main(s).

Target groups for the more general parts of the thesis are:

• students interested in object-oriented techniques, who wish to find out
about object-oriented frameworks as a reuse technique.

• software organizations in need of a reuse technique.

1.4 Delimitations

We do not judge whether frameworks are appropriate or not in a financial
perspective, and we do not provide a complete development process. We
specify how to customize the target organization’s development process
for framework development, with the focus on analysis and design.

1.5 Disposition of the Thesis

This introduction is followed by an introduction to the framework con-
cept. The following chapters describe the development processes, frame-
work development and framework reuse. The thesis is closed with a
summary and our conclusions. The appendices include a list of the guide-

3

lines provided, a small case study, a brief glossary and a list of our refer-
ences.

Each chapter starts with an introduction and a short description of the
chapter’s disposition. The chapters are closed with a short summary.

The graphical notation used in illustrations of object-oriented designs is
described in Appendix B.

1.6 Acknowledgements

Our tutors Grace Bosson and Björn Regnell have provided invaluable
help. We would also like to thank the Framework and Cafka employees
of Ericsson Software Technology, especially the boys on the 4:th floor.
Particular thanks go to Michael Mattsson, whose extensive framework
bibliography saved us a lot of work.

4

5

2 OBJECT-ORIENTED FRAMEWORKS

The reuse of software components is recognized as an important way to
increase productivity in software development. Experienced program-
mers have always reused code by using their experience and by looking
into old code designs, but it has been found that the reuse of analysis and
design has a significantly higher potential [Joh91].

The concept of frameworks makes it possible to reuse not just code, but
also analysis and design.

This chapter is intended to promote the object-oriented framework con-
cept and to give the reader a better understanding of it. The reader should
have at least a basic knowledge of software engineering and object-ori-
entation.

In section 2.1 we give a brief description of the features of object-orien-
tation that make framework development feasible. Software reuse is in-
troduced in section 2.2 and why software reuse should be achieved using
frameworks is motivated in sections 2.3 and 2.4. Section 2.5 is a brief
discussion on the documentation of frameworks and section 2.6 is a sum-
mary of this chapter.

2.1 Some Object-Oriented Concepts

It is the properties of object-oriented languages that make frameworks
feasible, mainly in that they support the concepts of inheritance, poly-
morphism and dynamic binding.

2.1.1 Inheritance

When one class inherits from another the heir is called a subclass and the
ancestor is called a superclass. The subclass inherits the superclass’
methods and internal structures. In the subclass new methods may be
added to the inherited ones and inherited methods may be redefined.

6

Inheritance has several advantages. Code is reused, as inheritance allows
several classes to share common code. Inheritance is also suitable in the
maintenance phase because it makes it possible to leave the original code
in the superclass untouched and implement the changes in a subclass. In-
heritance is a good way to structure the design and code. Good design
practice states that a subclass should be a specialization of its superclass.

Inheritance has as mentioned a lot of advantages but it has some draw-
backs as well. For instance, inheritance violates the information hiding
introduced by objects - the subclasses are dependent on their superclass-
es and the code is spread throughout the system. This may increase the
difficulties of understanding a large class hierarchy.[Joh88; Tal94a]

2.1.2 Dynamic Binding and Polymorphism.

Dynamic binding implies late binding of function calls, i.e. the function
call is bound to an object during runtime and not during compilation
[Joh91, p. 3; Ohl93; Mey94]. Checks on object types like:

if (S is of type Circle) {drawCircle();}
elseif (S is of type Square) {drawSquare();}

Figure 2.1 The concepts of dynamic binding and polymorphism.

Shape S;
S = new Circle();
S.draw();
 // calls draw() in class Circle
S = new Square();
S.draw();
 // calls draw() in class Square

dynamic bindingpolymorphism

class Shape
-move()
 // implementation
-draw()
 // virtual

class Circle
-draw()
 // implementation

class Square
-draw()
 // implementation

7

are replaced by a call to the common function S.draw(), see Figure 2.1.

In such a call the runtime system makes the decision whether to call the
function draw() implemented in class Circle or the function
draw() implemented in class Square.

A result of dynamic binding is that polymorphism is achieved. Polymor-
phism implies that variables and parameters can take on values of differ-
ent types, see Figure 2.1 [Joh91, p. 3; Ohl93; Mey94].

2.2 Software Reuse

The gap between software demand and software productivity is steadily
increasing. One way to increase the productivity is by introducing soft-
ware reuse.

The idea behind reuse is to not develop anything that already exists, but
to reuse it. This will lead to shortened development time and a decrease
in time-to-market.

Designing software for reuse aims to produce general, extensible soft-
ware components. Designers are asked to predict possible future applica-
tions and incorporate their requirements into the current design. To
accomplish this, the huge number of design decisions the designers have
to take will have to be limited. This has traditionally been done by pro-
viding domain-specific procedural libraries of functions or libraries of
reusable classes.

The problem with this approach is that it is hard to provide default be-
haviour and embody domain expertise in a library. A component library
contains rather small components of which the reuser has to build the re-
quired application, and when building an application with small compo-
nents the communication between the different components still has do
be defined.

These constraints are alleviated by using a framework; the application
designer does not have to know how or when to call each function - the
framework does it for him. The communication between components in-
side a framework is already defined and the reuser needs not to be con-
cerned about it. [Tal94a; Laj92]

Class Libraries

A class library is a set of related classes designed to provide reusable,
general-purpose functionality. An example of a class library is a set of
collection classes for lists and stacks. Class libraries do not impose a par-

8

ticular design on an application; they just provide functionality that can
help the application do its job. Class libraries provide functionality at a
low level and the developer must provide the interconnections between
the libraries.

As a framework consists of a collection of classes it could be regarded as
a class library. This is not entirely true, since in a class library every class
by itself is unique and most of the classes in a framework are dependent
of each other and will be of no use outside the framework.

The great difficulty with reuse libraries is that they must contain domain-
specific architectures and components large enough to be worth reusing
[Grif95]. To quote Mili, Mili and Mili: “For instance, objects seldom of-
fer any interesting behaviour on their own and it is often in combination
(interaction) with other objects that any useful functionality is achieved.”
[Mil95].

Frameworks provide reuse at a larger level. The technique of reusing
frameworks leads to reuse of analysis and design, but they also enable a
higher level of code reuse than possible with toolkits [EST95a]. In this
way applications can be developed by using the framework as a starting
point and writing smaller amounts of code to modify or extend the frame-
work’s behaviour[Tal94b].

2.3 What is a Framework?

Object-oriented frameworks have been defined in two similar ways by
Johnsson [Joh88; Joh91]: “A framework is a set of classes that embodies
an abstract design for solutions to a family of related problems.” and “A
framework is a set of objects that collaborate to carry out a set of respon-
sibilities for an application subsystem domain.”.

An object-oriented framework is a set of cooperating classes, both ab-
stract and concrete, that make up a reusable design for a specific class of
software [EST95a, Gam94]. The framework determines the architecture
of the applications built using it by partitioning the design into abstract
classes and defining their responsibilities and collaborations and the
thread of control. The design decisions that are common to its application
domain are captured, so that the application designer can concentrate on
the specifics of his/her application. Framework development thus em-
phasizes design reuse over code reuse [Gam94].

“Frameworks also reuse implementation, but that is less important than
reuse of the internal interfaces of a system and the way that its functions
are divided among its components.”

R E Johnson [Joh88]

9

Dynamic binding lets the framework treat an object without regard to its
implementation. An application developer who derives a new class to
customize the framework writes code following the template provided
by the abstract superclass. The framework will invoke the methods, and
because of this flip-flop in control, frameworks are sometimes referred to
as upside-down libraries, see Figure 2.2 [EST95a].

The common framework provides an architecture-driven1 base with a
data-driven2 layer. Application developers use the framework’s built-in
functionality by instantiating classes and calling their member functions
(data-driven) and extend and modify the functionality by deriving new
classes and overriding member functions (architecture-driven) [Tal94a].

When some applications have been developed using the framework there
will be libraries of subclasses to choose from and the customization can
be made increasingly by composition [EST95a; Tal94a]. If the applica-
tions are developed entirely by composition, there is no need for imple-
mentation or testing and the lead time is at a minimum.

As well as classifying frameworks by their internal structure, Taligent
has classified frameworks by the problem domain they address [Tal94a]:

• Support frameworks provide system-level services, such as file ac-
cess, distributed computing support, or device drivers. Application
developers typically use support frameworks directly or use modifi-
cations produced by system providers. However, even support frame-
works can be customized - for example when developing a new file
system or device driver.

• Application frameworks encapsulate expertise applicable to a wide
variety of programs. Current commercial graphical user interface
(GUI) application frameworks, which support the standard function-

(1) Also referred to as white-box[Joh91] or inheritance-focused[Tal94a].
(2) Also referred to as black-box[Joh91] or composition-focused[Tal94a].

Figure 2.2 The difference in control between frameworks and class libraries.

Class
library

Call
Call

Framework

Call Call

Code written by
application developer

10

ality required by all GUI applications, are one type of application
framework.

• Domain frameworks encapsulate expertise in a particular problem
domain, e.g. a securities trading framework or a multimedia frame-
work.

2.4 Why use Frameworks?

When using a well designed, well documented framework, both analysis,
design and code are reused. A framework makes it possible to reuse anal-
ysis by describing the objects of importance, the relationships between
the objects and how large problems are broken down into smaller ones.
The design is reused in that the framework design contains abstract algo-
rithms and defines the interfaces, as well as the constraints an implemen-
tation must satisfy. The code is reused since a concrete class
implemented by the user can inherit most of its implementation from its
superclass [Joh91].

The benefits from frameworks and reuse are gained over time, since the
productivity gains do not come just from the first time you are using the
framework, but from multiple use of the technology.

2.4.1 Advantages

• Reduced time to market When writing applications with a frame-
work as a foundation only the code that differs from earlier applica-
tions has to be written. Less code writing is needed, which means
shortened development time and hence reduced time to market.

• Maintenance Maintaining systems is very expensive. As much as 60
- 85% of the total life-cycle cost of a large system is spent on mainte-
nance, and there are great potential savings in reducing the need for
maintenance [Mey88]. When maintaining several applications of one
framework only the framework and the code that is different between
the applications have to be maintained. This means that changes only
has to be implemented in one place, ensuring consistency. Compared
to maintaining several different systems, the potential savings with
framework designs are significant.

• Testing When reusing a framework, the tests are also reused. The
only tests that have to be provided are the tests of the new modules
and the interaction between the new modules and the framework, the
system tests. Thus the amount of testing and debugging to be done is
reduced. This assumes that the framework is correct and that the sys-
tem tests checks that the framework is used correctly.

11

• Reliability A framework may, as well as all other software, contain
errors and bugs, but as the framework is reused it tends to get stabi-
lized and new errors and bugs will be reported more seldom. Reusing
a stable framework will increase the reliability compared to writing a
complete new code.

• Standards A well designed framework that follows company stand-
ards captures best practice. When developing applications from a
framework, the framework sets constrains on the application code
written. This leads to conformation to company standards as well as
to best practice.

• Frameworks embody expertise Good software design in a particu-
lar area requires domain knowledge that is typically acquired only by
experience. Because frameworks embody expertise, problems are
solved once and the business rules and design are used consistently.
This allows an organization to build from a base that has been proven
to work in the past. Frameworks also enable software developers to
concentrate on application solutions and rely on the framework to
provide consistent services. This frees developers who are not neces-
sarily experts in a certain area from the complexity of the underlying
details. This is possible because the framework is in control. The
framework provides the flow of control, while the application pro-
grammer’s code waits for the framework to call. This means that the
developers do not have to be concerned with details and they may fo-
cus solely on the problem domain [Tal94b].

• Improved consistency and compatibility There is a greater ability
to work together for those applications that share a framework. They
are also better integrated from a user point of view, having the same
or similar user interface [Tal94b].

2.4.2 Difficulties

Components and architectures do not become reusable by it self. They
must be designed with reuse in mind or redesigned for reuse. Designing
for reuse takes longer time than designing systems or components with-
out any thoughts of reuse. This extra time must be seen as an investment
[Joh88; Tal94a].

It is also more difficult to design a framework than to design a component
library, but the potential profit from reusing a framework is much greater
than the profit from reusing a component from a component library. A
framework is more difficult to design because the framework’s architec-
ture has to be designed as well as the communication between the inter-
nal components of the framework [Joh88; Tal94a]. When designing a
component for a component library no such decisions has to be made.

12

For framework development to be successful, it must be supported by
your team’s processes and organization. It must be realized that the ben-
efits from frameworks and reuse are gained over time, with multiple use
of the framework[Joh88; Tal94a].

2.5 Framework Documentation

“The most profoundly elegant framework will never be reused unless the
cost of understanding it and then using its abstractions is lower than the
programmer’s perceived cost of writing them from scratch.”

Grady Booch [Boo94]

The documentation of a framework is essential to its reuse potential. The
documentation must describe:

• the purpose of the framework,

• how to use the framework,

• the detailed design of the framework.

Process and product documentation are necessary in all software
projects, but especially important in the development of frameworks.
The detailed design has to be available to the application developers, as
well as a description of how to use the framework. As some aspects of a
framework design are not well expressed as code, e g invariants main-
tained by the cooperating objects, there is a need for some other means
of documentation [Joh91].

Figure 2.3 The informed framework designer has a clear picture of the framework and
its micro-architectures, whereas the novice framework user is overwhelmed with the
many, seemingly unrelated, classes in a poorly documented framework [Laj92].

Framework designer

Framework user

micro-
architectures

?

13

Design Patterns

Many common framework design problems have been solved many
times by different designers. Gamma et al. have documented some of
their design experience in form of design patterns [Gam94]. Design pat-
terns are generic designs to problems that often occur during object-ori-
ented design. In framework design a problem might be how to keep the
instantiation of the application specific classes outside the framework.
The design pattern “Abstract Factory” provides a generic solution to
such a problem, a solution that has been applied in several frameworks,
and thereby is well-proven, see Figure 2.4 [Gam94, p. 87].

The design pattern concept originates from the architectural pattern con-
cept introduced by Christopher Alexander in 1977 [Alex77]. Alexan-
der’s patterns concern buildings and towns, but Gamma et al. adapts the
concept to software design [Gam94].

Design patterns aim to capture design experience in a form that can be
used effectively and to make it easier to reuse successful designs and ar-
chitectures [Gam94].

A design pattern essentially consists of four elements:

• The pattern name increases design vocabulary and makes possible
design at a higher level of abstraction.

• The problem describes when to apply the pattern.

• The solution describes the elements that make up the design, their re-
lationships, responsibilities and collaborations.

Figure 2.4 The “Abstract Factory” design pattern [Gam94]. For details on how the
“Abstract Factory” can be applied, see Appendix B.

AbstractFactory

CreateProductA()
CreateProductB()

ConcreteFactory1

CreateProductA()
CreateProductB()

ConcreteFactory2

CreateProductA()
CreateProductB()

AbstractProductA

ProductA2 ProductA1

Framework

AbstractProductB

ProductB2 ProductB1

14

• The consequences are the results and trade-offs of applying the pat-
tern.

Reusing common patterns opens up an additional level of design reuse,
where the implementations vary, but the micro-architectures represented
by the patterns still apply [Gam94].

The term “design pattern” often refers to a pattern described by Gamma,
[Gam94] or some other pattern catalogue, but any generic design can be
expressed as a design pattern. The term is not absolute, something that is
a design pattern to one designer might be a basic building block to anoth-
er [Gam94]. What is considered a design patterns also depend on the tar-
get implementation language, e.g. if the implementation is conducted in
a procedural language, design patterns might be “Inheritance” or “Poly-
morphism” [Gam94].

Framework design is hard, and all potential problems should be foreseen.
Communication between designers and design teams, and the under-
standing of design decisions, and thereby the motivation of the decisions,
are evident trouble sources, and a way to alleviate these problems are de-
sign patterns. Design solutions that follow proven design patterns are
motivated, and communicating designs in the form of patterns add a level
of abstraction, and therefore alleviate communication.

Using design patterns

• provides a common vocabulary for design,

• reduces the system complexity, since abstractions are named and de-
fined consequently, and reduces the frameworks learning time,

• provides building blocks, from which more complex designs can be
built, for example a framework,

• provides targets for restructuring class hierarchies [Laj94; Gam94].

Design patterns are a natural part of a framework documentation, since
they motivate the design decisions [Gam94; Joh92; Laj94].

Without using design patterns or some other means of describing the
common micro-architectures that emerge in the development of frame-
works the situation illustrated in Figure 2.3 might occur [Laj94].

2.6 Summary

An object-oriented framework is the implementation of the general parts
of several applications. A framework defines a set of related classes and

15

the collaborations needed to provide the general functionality of the ap-
plications in the domain the framework covers. The framework defines
how the classes will interact by defining the protocols and the algorithms.

Developing a framework will make it possible to reuse not only code, but
also analysis and design. It is more time consuming to develop a frame-
work than to develop an application with an ordinary architecture. The
gains from framework development occur when the framework is reused
and new applications are developed with short lead times, and a limited
need for testing and maintenance.

The documentation of a framework is essential for its reuse potential.
The documentation must describe:

• the purpose of the framework,

• how to use the framework,

• the detailed design of the framework.

Design patterns are suggested as a natural way to document frameworks,
as they should be used in framework design.

16

17

3 FRAMEWORK DEVELOPMENT

This chapter covers the development of object-oriented frameworks. The
development process is outlined in Figure 3.1.

Figure 3.1 Process roadmap

Domain
Analysis

Capture
Requirements
and Analysis

Framework
Design

Framework
Implementation

Test
Application

Analysis
Application

Design
Application

Implementation

18

3.1 Introduction

During framework development the developers should try to migrate as
much common behaviour as possible from the applications into the
framework. The process presented in this chapter is intended to support
the construction of an adequate framework. The project organization
during framework development is covered in section 3.2 and a presenta-
tion of the actions that should be taken before initiating a framework de-
velopment process are described in section 3.3. The focus of this chapter
is on the activities in analysis and design, as described in sections 3.4 and
3.5. These two sections provide guidelines for how to accomplish a good
framework design. Guidelines for the transformation of the design into a
firm framework implementation are discussed in section 3.6, and test and
maintenance are briefly reviewed in sections 3.7 and 3.8.

19

3.2 Project Organization

This chapter is intended to give a brief introduction to the organizational
matters when developing frameworks. In section 3.3.1 it is argued how a
framework development product should be treated according to time
constraints. Section 3.3.2 points out the difficulties of dividing the work
between several parallel working groups. In section 3.3.3 some of the
difficulties in adapting the organisation to development for and with re-
use are described. The chapter ends with a summary in section 3.3.4.

3.2.1 A Strategical Investment

The responsibility for the development of a framework should not be in
the ordinary project organizations. The reusability of a framework is
strongly dependent on well defined interfaces and a good architecture,
since later changes of the architecture or the interfaces will affect all ap-
plications dependent of the framework. The development of a framework
should not be on the critical path of a project because the team responsi-
ble for the development should not have to make any compromises on
the framework leading to bad architectures and under-defined interfaces.

The development of a framework should be viewed as a strategical in-
vestment more than an operational investment. A well developed frame-
work will be an asset to the company, which when reused decreases
development effort and lead time of future projects. It is therefore suita-
ble to create a department or a team responsible for strategical develop-
ment.

3.2.2 Work Organization

In traditional software development the work is as much as possible done
in parallel with small development teams and well defined interfaces, see

Figure 3.2 Traditional software development.

A B C

D E F

G H I

Hard to find commonalities

Communication
 System

between e.g. C and G.

architect
between development
teams

20

Figure 3.2. Each team works with a well defined part of the system where
the subsystems interfaces to the other parts of the system were defined in
an earlier phase. A system architect maintains the overall picture of the
system.

A framework development team should not be larger than an ordinary
software development team. When the size of a software development
team increases the communication overhead increases and more effort is
needed to keep the team members informed. It becomes harder to get the
overall picture of the team’s progress.

A team suitable for framework development should roughly consist of no
more than eight persons. It is suitable to vary the members according to
the current phase of the development process. It is, for example, impor-
tant that the team performing the domain analysis should include a cou-
ple of domain experts. When the development process continues the
need for domain experts decreases and the need for system experts in-
creases and it should be reflected by the composition of the development
team.

Developing frameworks introduces new aspects when dividing the work.
The main idea of a framework is to capture generalities of a domain or a
set of applications within a domain. Finding generalities requires a good
overview of the domain and the system respectively. This makes it less
suitable to divide the work in several teams in an early phase.

There will be a trade off between shorter lead time, when dividing the
work early, and a framework with a good and stable architecture, when
not working in parallel.

The work should be divided into several parallel working teams as late
in the development cycle as possible. The structure of the framework
should as well as the public interfaces of the classes become stable before
dividing the work, but it is not necessary to have defined the objects and
classes in detail.

3.2.3 Development Teams For and With Reuse

There are basically two possible ways to organize the staff when apply-
ing reuse of frameworks. One is to let the same people both develop the
framework and reuse it. The other way is to have separate development
and reuse organizations.

If the intention is to sell the framework outside the organization the
choice of reuse organization is limited. However we think that most as-
sociations will use their frameworks internally and the choice of reuse or-
ganization is heavily dependent on the company policies.

21

The framework must be treated as a product even if it is intended to be
used internally. It must be well documented and the support of the frame-
work must be planned.

If the framework developers will use the framework they will have the
insight of the problems and the limitations of the framework. Also, they
will have few problems of understanding the intentions behind the archi-
tecture and the solutions. The classical resistance of reusing other peo-
ples solutions is also avoided and the well needed feedback from the
users to the developers is easily achieved.

Development teams should, as much as possible, consist of experienced
engineers, but this is seldom possible due to limited personnel and eco-
nomical resources. By having separate teams of framework developers
and application developers the knowledge of the experienced engineers
in the development team will be reused by the, perhaps, more inexperi-
enced engineers in the reuse teams. This is the main argument for sepa-
rate organizations.

3.2.4 Summary

There are some differences between ordinary software development and
development of frameworks which have an impact on the project organ-
ization.

Frameworks should be seen more like a strategical investment than an
operational investment. The development of a software product will give
an income after a relatively short period. A framework is more like a tool
for the development of software products.

When developing frameworks it is necessary to focus on what function-
ality is general and what is specific, and this will have impact on the work
organization. The ability of finding generalisations is dependent on an
overview of the system or the domain which limits the possibility to di-
vide work among several teams.

22

3.3 Preparing Framework Development

This chapter is intended to give a brief introduction to the activities per-
formed before the framework development process is started and what
input is needed to begin the development process.

The development team needs to possess extensive knowledge of the do-
main the framework is intended to capture. Therefore a domain analysis
of some sort should be performed before or as an initialization of the
process.

The domain analysis will form an input to the framework development
process. However, the development process should also provide feed-
back to the domain analysis to make the analysis more complete.

3.3.1 Domain Analysis

Domain analysis is the identification of classes and objects that are com-
mon to all applications within a given domain [Karl95, p. 297]. The do-
main model should only focus on key domain artifacts and not deal with
details [Karl92, p. 298]. A domain model is a good tool when starting to
develop a logical view of the system. It should describe the concepts peo-
ple use within the domain, and make the domain analysis an instrument
for communication between the people involved in the system develop-
ment by providing a common terminology. The domain model should not
describe the domain from the developers point of view, since this will
hinder communication and risk that details of design are emphasized too
early in the development process.

A domain analysis also provides good support when specifying use cases
[Jaco92, p. 162].

There are at least two documents that should be a result from the domain
analysis: The scope of the domain and a static model containing the im-
portant objects and classes from the world of the domain.

It is important to formulate a distinct scope of the domain, because it is
not possible for a framework to cover the whole world.

The scope is of much use in the capturing requirements activity of the de-
velopment process. The scope makes it clear if a requirement is in the do-
main and valid, or outside the domain and invalid. The scope of the
domain will also work as a tool in the reuse of a framework, when decid-
ing if a framework is suitable to reuse for a required application or not.

It is often difficult, when formulating the scope of the domain, to decide
what should be outside the domain and what the domain should include.

23

It is easier to develop a framework for a narrow domain than for a very
large domain. Enough time must be devoted to this very important activ-
ity.

The static model should contain the most important objects and classes
of the domain. These should be real world objects, objects from the
world of the application. The objects and classes should be named from
the users perspective because the model will be an instrument for com-
munication between the developers and the users of the future applica-
tion.

3.3.2 Summary

The domain analysis provides input to the framework development proc-
ess with the documents: The scope of the domain and the static model.

The scope of the domain is a good tool when validating requirements in
the capture requirements activity of the framework development process.
The scope is also useful as a search-criteria in the activity of finding a
framework suitable for reuse when developing with reuse.

24

3.4 Capture Requirements and Analysis Phase

This section covers the Capture Requirements and Analysis phase of
framework development.

The section begins with an introduction to the capture requirement and
analysis phase pointing out the required input to the phase and the goals
of the phase. The guidelines provided summarise the text above the
guideline and are provided to promote a good framework analysis. Sec-
tion 3.4.1 describes the requirements specification activity and the sec-
tion consists of three sub-sections:

Figure 3.3 Process roadmap

Domain
Analysis

Capture
Requirements
and Analysis

Framework
Design

Framework
Implementation

Test
Application

Analysis
Application

Design
Application

Implementation

25

• 3.4.1.1 Requirements Process, which describes the process of finding
and validating requirements and the identification of generalizations.

• 3.4.1.2 Requirements Specification, which describes the document
with the same name.

• 3.4.1.3 Use Case Model, which describes the use case model together
with a brief introduction to the concepts of use cases

Section 3.4.2 describes the analysis activity and the section consists of
two sub-sections:

• 3.4.2.1 Performing the Analysis, which describes the process of iden-
tifying the static structure of the framework.

• 3.4.2.2 Static Object Model, which describes the product of the anal-
ysis activity.

These activity sections are followed by section 3.5.3 which points out the
necessity of having the right, easy-to-understand models. The chapter is
concluded with a summary.

The goal of the Capture Requirements and Analysis Phase is to capture
all valid requirements and outline an ideal system that will fulfil these re-
quirements. The phase consists of two main activities: the Capture Re-
quirements activity and the Analysis activity. The two tasks are

Figure 3.4 Capture Requirements and Analysis phase with its subprocesses and products.

Requirements Model:
- Requirements Specification
- Use Case Model

Analysis Model:
- Static Object Model
- Data Flow Model

Capture
Requirements

Review

Analysis

Design

26

illustrated as they are sequential which is only partly true, the activities
are much done in parallel.

The products of the analysis phase are the Requirements Model and the
Analysis Model, see Figure 3.4. The requirements model will specify the
requirements imposed on the system and the analysis model will outline
the main concepts of the system.

A requirement specifies a constraint on the system or a service the system
should provide. The requirements are tools in the process of making the
correct analysis models. In the process of producing the analysis model
new requirements will be identified and inconsistencies in the require-
ments model will be found. It is not possible to first find all requirements
and succeed in making them consistent and then, with the requirements
models as inputs, construct a correct and complete analysis model, there-
fore the two activities need to be done in parallel.

A domain analysis together with a list of requirements should be provid-
ed as an input to the analysis phase and they should concern at least two
applications together with the future requirements of the framework.
Providing requirements on a couple of applications would make it easier
to find generalisations.

• Guideline 1: A list of requirements on at least two applications
should be provided together with a list of requirements
on the framework.

If the future applications of the framework are well defined it will be eas-
ier to develop a good and well adapted framework. If the future applica-
tions of the framework is very vague it should be considered if a
framework is feasible, because vague future requirements implies that it
is very uncertain whether there will be a demand for reuse of a frame-
work in that particular domain or not. If there will not be any need for a
framework to reuse, it should be considered if the extra effort that the de-
velopment of the framework will require is economically justified.

Vague future requirements will also make the development of a frame-
work very difficult. Developing a framework without any knowledge of
its future applications will almost certainly lead to a framework that will
be hard to reuse.

• Guideline 2: A list of future requirements on the framework should
be provided.

There should be a team working with requirements and the analysis, not
one single person. A single person will have difficulties in capturing all
requirements and aspects of a framework and its future applications. The

27

development team should include members with extensive knowledge of
each application area and a member with knowledge of framework de-
sign.

3.4.1 Capture Requirements

The goal of the activity capturing requirements is to find all requirements
on the system which is intended to be developed. Inconsistencies be-
tween requirements, requirements which are contradictory or ambiguous
should be found and be resolved.

The list of requirements is the base from which the process of capturing
requirements is started. The domain model is an instrument for commu-
nication and it provides a common terminology reducing the errors due
to misunderstandings in the discussions with the interested parties.For
further details on the domain model, see [Karl95] and [Mark94, p. 429].

The documents which will be the output from the capture requirements
activity are the Detailed requirements specification and the use case
model. These two models together form the requirements model. The re-
quirements models are intended to be an instrument for communication
between developers, procurers and users. Therefore it should be under-
standable to all of the interested parties. The requirements should though
be formulated from the users or clients points of view and not from the
view of the developers [Karl95, p. 282].

The requirements model is also intended to form a base to the testing and
verification phase. The two documents proposed in this chapter are only
a suggestion, other documents may be included in the requirements mod-
el. However, according to Heninger [Heni1980] the requirements docu-
ments should satisfy the following six requirements:

1. They should only specify external system behaviour

2. They should specify constraints on the implementation

3. They should be easy to change

4. They should serve as reference tools for system maintainers

5. They should record forethought about the lifecycle of the system

6. They should characterize acceptable responses to undesired events

28

3.4.1.1 Requirements Process

The goal of this process is to find all valid requirements on the system.
The requirements process may be viewed as a cycle of three sub activi-
ties, elicitation, specification and validation.

Loucopoulos and Karakostas [Louc95, p. 38] define these three sub ac-
tivities as follows:

• Requirements elicitation is the process of acquiring all the necessary
knowledge which is used in the production of the formal require-
ments specification.

• Requirements specification is the process which receives as input the
deliverables of the requirements elicitation in order to create a formal
model of the requirements.

• Requirements validation is the process which attempts to certify that
the produced formal requirements model satisfies the user’s needs.

Information should be gathered from all people concerned because dif-
ferent users will have different requirements on the system. A system
based on the view of one person is not likely to fulfil all requirements im-
posed on the system [Karl95].

Usable information can also be found in old products such as specifica-
tions, analysis, designs, code, test cases and so on [Karl95, p. 298].

The requirements process is a very important phase in the development
process because failure in finding all requirements, and finding the cor-
rect ones leads to later changes in the following phases. The cost of re-
pairing errors due to changes in the requirements is very high since much
of the design and code has to be rewritten. The cost increases for every
phase the error passes undiscovered [Som92, p. 86]. Therefore much ef-
fort should be put in the analysis phase ensuring a correct, complete and
consistent requirements specification.

Figure 3.5

Elicitation

Specification

Validation

29

Analysis Team

A good approach to cover as many information sources as possible is to
let the team cover different roles of the stakeholders. One way is to in-
clude people from these different areas, like market people, users and de-
velopers, into the project team. Another approach is to let the project
members take on different roles, perhaps more than one role per member.
The latter approach leads to smaller project groups which improves the
communication between the project members but the drawback is that
the project member not always has the knowledge to succeed in captur-
ing all aspects of his or hers roles. A suggestion of the roles to cover are
people from the product management, the developers and the market
people. There are, of course, sometimes a need to cover other roles, it de-
pends on the nature of the system.

• Guideline 3: Include members with knowledge of each application
and a member with knowledge of framework design into
the analysis team.

Elicitation

Even if the project team include people from all interested parties is it
seldom enough with the knowledge covered by the project team. Knowl-
edge of other people concerned has to be captured. Conducting inter-
views is the most traditional way of working. An alternative of making
interviews intended to capture the requirements and knowledge of all
people concerned is to perform a Group Dynamic Modelling session
[Will91]. Making interviews is very time consuming. A series of inter-
views has to be made during a rather long period of time. In a GDM-ses-
sion all people concerned are gathered to one place during a day or two
to make things out. The total cost in man time is roughly the same, but
synergy effects are gained when many people meet and the time period
during which the collection of requirements is done is shortened.

• Guideline 4: Gather information from as many different sources as
possible to acquire knowledge of which requirements
are of importance.

Validation

All requirements should, as mentioned above, be found. However, the re-
quirements should be correct as well. To ensure the correctness of the re-
quirements they have to be validated. Sommerville claims that the
validation process include four steps [Som92, p. 97]:

• The needs of the user should be shown to be valid

30

• The requirements should be consistent, a requirement should not be
in conflict with another requirement

• The requirements should be shown to be complete, the requirements
should cover all functionality the system is intended to provide and
all constraints imposed on the system

• The requirements should be shown to be realistic and realizable

The validation should be carried out during the requirements process not
at the end of the process [Som92, p. 98].

Formulating the functional requirements with use cases makes the re-
quirements easier to verify if the requirements are accomplished or not.

Find Generalizations

The main goal for the whole development process is, as mentioned ear-
lier, to produce a framework. The main strategy to accomplish this goal
is to focus on what is general between the applications, and what is spe-
cific for each application. The framework is formed by the architectural
constructs, algorithms and data that are common to all applications that
are intended to be covered by the framework.

The process of capturing requirements follows this strategy. Find all
unique requirements and isolate them, then collect all common require-
ments as framework requirements. The main strategy to accomplish this
is to identify all requirements of each application and make separate lists
of requirements for each application of the framework. The next step is
to identify all general requirements of the applications and then move
these invariants into the framework requirements. The separation of re-
quirements makes identification of common behaviour and commonali-
ties in the requirements of the applications easier.

There is, as mentioned above, no sharp border between the process of
capturing requirements and the process of analysis. Preliminary analysis
models are constructed for the purpose of finding new requirements and
validating existing ones.

3.4.1.2 Requirements Specification

The requirements specification is one of two documents of the require-
ments models.

31

Separation of Requirements

It is our opinion that the requirements should, in the requirements speci-
fication, be separated into two categories; framework requirements and
application specific requirements and then into functional requirements
and non-functional requirements, see Figure 3.6. It is suitable to make a
distinction between these different types of requirements since the sepa-
ration of requirements makes identification of common behaviour and
commonalities in the requirements of the applications easier.

• Guideline 5: Separate the requirements into framework specific and
application specific requirements

Application specific requirements include all functional and non-func-
tional requirements that are specific for each application. The framework
requirements include all requirements, functional and non-functional,
that are general between the applications.

If there are commonalities between some of but not all of the applications
these commonalities may be grouped into sub frameworks.

Figure 3.6 The division of requirements in functional and non-functional requirements
and the separation of application and framework requirements.

functional req non-functional req functional req non-functional req

functional req non-functional req

Framework requirements

Application 1 Application 2

General
requirements

32

Functional and Non-functional Requirements

Functional requirements are the requirements that specify the function-
ality the system will provide. The non-functional requirements specifies
other constraints placed on the system. Such constraints may arise be-
cause of company policies, standards, constraints imposed by other sys-
tems and so on [Som92, ch. 5.2].

Sommerville points out three different classes of non-functional require-
ments:

• Product requirements, such as performance, size and portability

• Process requirements, like standards, naming conventions and so on

• External requirements, which cover all other non-functional require-
ments like cost requirements, requirements imposed by other sys-
tems, requirements which can not be categorized by the two classes
above

The non-functional requirements on a framework are in general different
to the non-functional requirements on the applications. The non-func-
tional requirements of the frameworks are more design oriented than
non-functional requirements imposed to applications. The reason is that
the frameworks has different users than ordinary applications. The users
of a framework are application developers. A framework is used to de-
velop an application, which is developed to fulfil a user’s need. In most
cases it is the application developers who constitute the requirements on
the framework. For example the developers may require the framework
to be implemented with a certain language, or the framework implemen-
tation should follow certain standards, naming conventions etc.

The functional requirements are often easy to test and verify, especially
when the functional requirements are formulated with use cases the test-
ability is ensured.

Non-functional requirements are hard to formulate in a testable way. To
give an example of a non functional requirement which shall formulate
the adaptability of the framework: “New applications shall be easy to de-
velop by modifying existing concrete classes or writing new concrete
classes.” This statement is not possible to test. The requirement should
instead be formulated like:
“New applications should be able to be developed in a man week by
modifying or writing new concrete classes.” This requirement is testable
[Som92, ch. 5.2].

Non-functional requirements may be hard to specify by using other than
natural language because they tend to be very complex [Som92, p. 9].
Using natural languages introduces difficulties when finding inconsisten-
cies between requirements, because related requirements may be ex-

33

pressed differently hiding the relation between them [Som92, p. 87].
Natural language may also cause misunderstandings between people in-
volved in the development process because different people use different
words for the same concept [Som92, p. 88].

• Guideline 6: The application and framework requirements should be
divided into functional and non-functional requirements
due to the different properties of the requirements.

3.4.1.3 Use Case Model

A use case model consists of actors and use cases.

The Use Case

A use case defines how the system will be used and what the system will
perform in response to a certain input. Every use case is a specific way
to use the system. Jacobson defines the use case as “Each use case con-
stitutes a complete course of events initiated by an actor and it specifies
the interaction that take place between an actor and the system.”.

We believe that the use cases should be separated, as well as the require-
ments, into specific and general behaviour. The separation makes it eas-
ier to identify what is general between the different applications and what
behaviour that is specific to each application. The separation of require-
ments follows the main strategy of the framework development process,
which is to focus on what is generic and what is specific between the giv-
en applications.

• Guideline 7: Separate the use cases into framework specific and ap-
plication specific use cases. This enables to focus on
what is general and what is specific between the given
applications.

Actors and Users

Jacobsson et. al. defines in OOSE [Jaco92, ch. 6.4.1] the concepts of ac-
tors and users.

The actor is a modelling concept for human users or other systems and
it is an aid to define what exists outside the system. Actors have instanc-
es, called users, which perform sets of operations on the system.

There are a correspondence between classes and actors as well as objects
and users. The object is an instance of a class and a user is an instance of
an actor.

34

An actor is non-deterministic, the actor may give several responses to a
certain stimulus when in a specific state. The user do however perform
behaviourally related sequences of actions in dialogue with the system.
The sequences is behaviourally related to the role the actor or user is in-
tended to perform [Jaco92, ch. 6.4.1]. An example of different actors:
There are mainly two different user categories in a time reporting system,
the ordinary employee who reports how much time he or she spends on
different projects or activities, and an employee on the financial depart-
ment who compile the time reports. These actors will perform sequences
that are behaviourally related to their tasks, like a potential user will be
using the future system when it is developed.

The Model

The functional requirements should, when possible, be formulated by
use cases. Use cases make it useful to find general behaviour between ap-
plications, general behaviour which should be moved into the frame-
work.

The use case model is a good communication medium between users and
developers because a use case is expressed in terms familiar to the users.
A use case is also a good instrument in the activities of finding inconsist-
encies between different requirements since use cases are more formal
than normal language. The increased formality forces similar require-
ments to be expressed similarly which makes it easier to identify rela-
tions between requirements.

Figure 3.7 Requirements formulated in use cases.

Requirement Use case
described by

map onto

35

The use case model will also form a base for the testing process. If the
requirements are formulated by use cases and the tests are designed ac-
cording to these use cases then there will be a direct relationship between
passing the tests and fulfilment of the requirements. The relationship be-
tween the use case model and the other models of the development proc-
ess is visualised by figure 3.6 [Jaco92, p. 132].

3.4.1.4 Designing Use Cases

The process of finding use cases is iterative as most other construction
processes in software development. However, the first step to perform is
to find the actors who interacts with the system. A good way to find ac-
tors is to focus on the purpose of the system and on how the system will

Figure 3.1 A use case of “One turn of Yatzy” together with its symbolic representation.

Figure 3.8 The relations between the use case model and the other models of the system
development process.

One turn of
Yatzy

Player throws five dice.
Result: three “fives”.
Player keeps the “fives”.
Player throws two dice.
Result: Two “fives”.
Player stops.
Player notes 50 p. in the Yatzy row.

Use case
model

Implementa-
tion model

Domain
model

Analysis
model

Design
model

Test
model

expressed in terms of

structured by

realized by

implemented by

tested in

36

be used. All those actors are not found at once, there will almost certainly
be new actors identified during the requirements and analysis process.
More and more actors will be found as the system becomes clearer
[Jaco92].

Jacobson categorizes actors into primary and secondary actors. The sec-
ondary actors exist only to support the primary actors use of the system.
The primary actors are the actors the system is intended for and, thus, the
most important users of the system. [Jaco92, p. 154].

The next step is to identify the use cases by viewing the requirements
from the users perspective and perhaps continue with interviews with the
real-world user the actor is intended to model. In Jacobson et. al. [Jaco92,
p. 155] a number of good questions are presented, which answers will
lead to the identification of use cases:

• What are the main tasks of each actor?

• Will the actor have to read/write/change any system information?

• Will the actor have to inform the system about outside changes?

• Does the actor wish to be informed about unexpected changes?

It is hard to tell how detailed the use cases should be. It is often not ob-
vious when to stop and there is no limit on how detailed a use case can
be. Generally it is better to have a few detailed, more extensive use cases,
than many short ones.

Extends

Most of the use cases are, in at least a small part, variants of other use
cases. There will be many use cases that only differs in just small parts.
This leads to a unnecessary large use case model and it may be hard to
relate these use cases to each other. By only modelling the differences be-
tween different use cases the use case model becomes more perceptible.
In OOSE this is done with a modelling concept called extends [Jaco92,
p. 158].

37

The extend concept may be a good tool to isolate differences, when de-
signing use cases for framework development.

In the example above, Figure 3.9, there is a use case which only actions
are login, followed by logout. This use case is then extended with a start-
up command to Frame Maker, which results in a new use case containing
the action sequence: login, start-up framemaker, logout. Now there are
two use cases and the information which is common to both the use cases
is only modelled once and the model contains no redundant information.

3.4.1.5 Use Cases and Object-Oriented Frameworks

It is, as mentioned above, suitable to divide the use cases into use cases
specific to each application of the framework and into use cases general
to these applications. Use cases that are general should be moved into the
use case model of the framework and use cases which are application
specific into the use case model of the application to which they belong.

A concept that we think support this activity is to accomplish abstract
use cases.

Abstract Use Cases

Abstract use cases is another concept that origins from the OOSE meth-
odology [Jaco92]. The use cases are divided into abstract and concrete
use cases. Concrete use cases are the use cases that will be initiated by an
actor to produce a result. An abstract use case contains a sequence of ac-
tions that are shared by several concrete or abstract use cases. The ab-

Figure 3.9 The extends concept.

login/logout

Start up
Frame Maker

extends

38

stract use cases will not be used directly by an actor, they will be used
only by concrete use cases, or other abstract use cases.

A concrete or abstract use case may use several different abstract use cas-
es to complete it’s sequence of action. As many abstract use cases as pos-
sible, which are common to several use cases, should be found. The next
step is to identify sequences which are shared by several of these abstract
use cases, which were identified earlier. These sequences will form new
abstract use cases. This last step iterates until no more common sequenc-
es are found. The result of this activity will be a hierarchy of abstract use
cases.

We believe that such a hierarchy of use cases will map onto a typical
class hierarchy, a class hierarchy that for example forms a framework.
Use cases shared by several applications will form a hierarchy of abstract
use cases. The abstract use cases are sequences of action that much likely
will be performed by the future framework.

The process to identify a use case hierarchy mapping onto a framework
should include the following steps:

1. Identify commonalities between the use cases of an application.

2. Repeat step one for each application of the intended framework.

3. Identify commonalities between the concrete and abstract use cases
of all applications of the intended framework.

4. Repeat step three until no more general abstract use cases are found.

Figure 3.10 The concept of abstract use case. Both when playing a game of Yatzy and
when playing a game of Greed some common initializations needs to be made.

abstract use case

Playing the Greed

game

Playing the Yatzy

game

usesuses

Initiating the
game

concrete use
cases

39

This hierarchy should then form the use case model of the framework.
The use case model is the foundation from which the common parts are
identified and isolated into the framework.

3.4.2 Analysis

The goal of the analysis is to outline a model of a system which fulfils
the requirements. The analysis should focus entirely on the problem and
be done without consideration to the implementation environment. The
reason for this approach is that the analysis model should remain relevant
even if the implementation environment will change. Another, even
more important reason is that the implementation details would risk to
put the developers focus on implementation problems and put the prob-
lem that the system is intended to solve out of focus [Jaco92, ch. 7].

Once you have identified the problem domain and the requirements have
defined which part of the problem domain the framework (or system) is
intended to capture, the system has to be outlined and the frameworks
within this system should be identified.

The analysis models includes a static object model. The analysis models
are built of real world objects just like the domain analysis. Objects
present in both the domain and the analysis model should be named the
same in both the models to ensure traceability and to decrease the amount
of errors due to misunderstandings.

The idea with a model is to capture the concepts of importance and filter
out those of no importance. All abstractions are subsets of reality select-
ed for a special purpose. This makes it easier for the developers to focus
on the problem without irrelevant details hiding the problem. Every
model should have it’s special purpose. Models supporting framework
development should have the ability to focus the developers attention on
what is similar between the applications to be developed and what is not.

3.4.2.1 Performing the Analysis

The process of producing the analysis model is iterative in nature and a
model suitable as a base for the design phase is achieved by successive
refinement and an increasing degree of formalization [Karl95]. There is
no sharp edge between analysis and design. Some activities that normal-
ly belongs in the design phase are done in advance during the analysis
phase in the purpose of finding all classes and important relations in the
analysis models.

Outline the situation and the problem, describe them from the user's per-
spective. Once the situation and the problem is outlined, it should be pos-
sible to identify necessary abstractions and begin the construction of the
analysis models[Tal94a].

40

The analysis process should include the following steps according to
Taligent [Tal94a]:

• Outline the situation and the problem.

• Examine existing solutions.

• Identify key abstractions.

• Identify high level abstractions.

• Identify what parts of the problem the framework will deal with.

• Ask for input from clients and refine the approach.

In the process of refinement should classes from the domain model which
are not needed be removed. New necessary classes should be introduced
as well as, when possible, higher levels of abstraction. Introducing high-
er levels of abstraction leads to increased generalization of the system
[Karl95].

• Guideline 8: Remove redundant classes to refine the model from un-
important information.

• Guideline 9: Identify high level abstractions preparing for the identi-
fication of the framework.

By introducing high level abstractions more commonalities between the
applications are found, commonalities which should be moved into the
framework.

High level abstractions makes the component more stable to changes in
the requirements. A component with an architecture containing high lev-
el abstractions may be changed without restructuring of it’s architecture.
Needed changes are introduced by creating specialization of the high lev-
el abstraction [Karl95, p. 302].

Requirements will always change because the world surrounding the
software system is always changing. The changes of the surrounding
world will reflect in changes in the requirements imposed on the system
[Som92, p. 534]. Thus finding generalizations is of great importance not
only in framework analysis.

Finding these abstract classes is the first step in the analysis activity of
identifying the frameworks in the system.

41

The easiest way to identify the abstractions is with a bottom-up ap-
proach. Start by examining existing solutions. Examine existing solu-
tions or systems may generate useful knowledge and provide important
information about the possible frameworks.

• Guideline 10: Examine existing solutions to gain knowledge of possi-
ble frameworks.

Analyse the data structures and algorithms and then organize the abstrac-
tions. Always identify the objects before you map out the class hierarchy
and dependencies. Identify what the solutions have in common and what
is unique to each program. Taligent [Tal94a] suggests that potential
frameworks could be found in:

• Real-world models.

• Activities performed by end users.

• Source code for current software solutions.

Some of the generalizations identified may be introduced in the frame-
work to increase the framework’s generality according to future require-
ments These abstractions may not exists in the applications under
development. However, it is often difficult to decide if a generalization is
necessary or not. A generalization increases the complexity and may in-
crease the development and reuse costs. Therefore there must be a trade
off between the generality and the complexity of the framework. As a
rule the introduced high level abstraction should be within the domain of
the framework.

• Guideline 11: Introduce only abstractions which are within the do-
main of the framework.

Two examples in the domain of dice games: It is a proper generalization
to let a die have any number of sides and the make a specialization of this
general die to achieve an ordinary die with six sides. It is probably not a
proper generalization to make a high level abstraction of a dice player to
achieve an high level abstraction player. A player which may be special-
ized into a hockey player is outside the domain.

Decisions about generalizations should, in not obvious cases, be docu-
mented and motivated.

The frameworks should not be to big. Big frameworks should instead be
decomposed into smaller more focused frameworks. Smaller frame-
works is easier to reuse [Tal94a].

42

• Guideline 12: Structure large frameworks into sub frameworks. Small
frameworks are in general more focused than large ones.

3.4.2.2 Static Object Model

A goal of the static object model is to capture the objects, the relations
between objects and other concepts of the real world that are of impor-
tance to the application we have the intention to build [Rumb91 p.17].
The static object model should provide a graphical model easy to under-
stand, suitable for communication both between developers and between
developers and customers.

The static object model should not contain any computer constructs un-
less the problem to be solved is a computer problem. The naming of the
objects and concepts in the model should be done from the users perspec-
tive [Rumb91, p. 17].

As mentioned above, objects present in the domain model should be
named the same in the static object model. The static object model should
be a reference document, not only throughout the development process,
but also in the maintenance phase. Therefore, naming of the objects and
concepts in the model should be done with great care.

• Guideline 13: Abstractions present in the domain model should be
named the same in the static object model ensuring
traceability.

According to Rumbaugh [Rumb91] the static object model should in-
clude analysis objects and the associations between these objects. Aggre-
gational relations are not yet of importance but those found should be
introduced in the model. Suitable inheritance structures should be found
and attention should be paid to find structures and objects common to
more than one of the applications intended to be captured by the frame-
work.

It is suitable to develop a static object model for each application. The
model development should be done for all applications in parallel. When
common abstractions occur they should be introduced in the static object
model of the framework.

• Guideline 14: Develop a static object model for each application.

• Guideline 15: Introduce abstractions common to several applications
in the static object model of the framework.

43

3.4.3 Complementary Results and Models

The models presented in the chapter presenting the analysis phase are not
the only useful models and they may not be suitable for every organiza-
tion. However, these models presented are common in most development
methodologies but every analysis requires a special set of models. Some-
times not every model presented in this chapter is needed and sometimes
they are not enough. Use models that cover the needs and if the models
used not highlights the properties of importance, use an additional mod-
el.

The models should support identification of general concepts, be as easy
to understand as possible. The notation used should be kept simple with
no room for misunderstandings. Graphically models are good. One ex-
ample could be the use of different colours in the object model to express
concepts, relationships and so on. An model easy to understand reduces
errors due to misunderstandings and it is necessary for effective reuse
that the reuser will understand the model quick and easy [Karl95].

• Guideline 16: Use graphical notations. Graphical notations make the
models easier to understand.

The models should be easy accessible to all members of the project be-
cause it should be easy to discuss and refer to the models. It can be
achieved by presenting the models on large sheets on the wall.

• Guideline 17: Present the models clearly visible to all project mem-
bers making the models easy to discuss.

3.4.4 Summary

The goal of the capture requirements and analysis phase is to identify all
valid requirements and then outline an ideal system which fulfils these
requirements.

3.4.4.1 Capture Requirements

In most software development processes there exists an activity of cap-
turing requirements, the framework development process is no excep-
tion. All requirements should be found during this activity and they
should be validated to ensure correctness and consistency.

The analysis team is somewhat different from an ordinary analysis team.
The analysis team should have knowledge of the domain and of each ap-
plication that is intended to be developed using the framework. The anal-
ysis team should also have knowledge of framework development.

44

It is suitable to apply use cases to describe the requirements. Use cases
may be directly tested during the tests in the verification and validation
phase, thus it may be directly verified if the requirements imposed on the
system are accomplished or not.

The biggest difference between the capture requirement activity for
framework development and for ordinary software development is the
focus on which requirements that are general for a set of applications and
which requirements that are specific for each application.

One goal of the capture requirement activity is to isolate all requirements
general between the applications and to let these requirements be the re-
quirements imposed on the framework.

The above presented use case concepts abstract use cases and extends
are good tools which support this activity of isolation of general require-
ments.

The product of the capture requirements activity is the requirements
model which consists of the requirements specification and the use case
model.

3.4.4.2 Analysis

The presence of the analysis model is not unique to the framework devel-
opment process. There probably exist one analysis activity in every de-
velopment process.

The goal of an analysis activity is to outline a model of the system to be
developed. The analysis should entirely focus on the problem without
consideration of the implementation.

The big difference between the framework analysis activity and an ordi-
nary analysis is again the focus on what concepts are general between the
applications and what is specific to each application.

All abstractions that are common between the applications are moved
into the framework. The method used to identify the more obscure com-
mon abstractions is to introduce high level abstractions. It is suitable to
develop a static object model for each application. The model develop-
ment should be done for all applications in parallel and when common
abstractions occur they should be introduced in the static object model of
the framework.

When high level abstractions are used to build an architecture the archi-
tecture will be more stable with respect to changes in the requirements.

45

Frameworks should not become too big. It is better to divide a large
framework into several small frameworks. Small frameworks are easier
to reuse.

The product of the analysis activity is a static object model of the frame-
work and one for each application. The static object model consists of
real world abstractions, high level abstractions and the relations between
these abstractions.

46

3.5 The Design Phase

This section covers the Design phase of framework development.

The section will give a motivation for and a description of the design
phase, as well as a description of the special concerns in framework de-
sign. The section is opened with an introduction to object-oriented de-
sign and the certain concerns of framework design, followed by a
description of the framework design process.

The guidelines provided in this section are intended to promote a good
framework design.

Figure 3.11 Process roadmap

Domain
Analysis

Capture
Requirements
and Analysis

Framework
Design

Framework
Implementation

Test
Application

Analysis
Application

Design
Application

Implementation

47

The design phase encompasses an architectural design phase, where the
objects and their collaborations are defined, and a detailed design phase,
where the classes and their methods are described in more detail.

The output from the design phase is a static object model and dynamic
models that describe the collaborations. These models should constitute
an adequate base for the implementation of the system.

3.5.1 Object-Oriented Design

The reason for having a design phase, and not to start writing code direct-
ly after analysis, is that the analysis models are inappropriate as a basis
for source code writing. The analysis models view the system from a
conceptual point of view, without regard to the implementation environ-
ment. To provide a firm ground for the implementation, the objects has
to be refined, and the models have to be extended. Among else it has to
be determined what operations shall be offered and exactly what the
communication between the objects looks like. The design also serves to
validate the analysis, and unclarities that are discovered might result in a
return to the analysis process. [Jaco92, p. 196]

The analysis models may have to be changed in various ways to adapt to
the implementation environment. These changes should be conducted
with care. Changes should add or change functionality concerning the
implementation environment, and changes to other functionality belong
in the conceptual, logical object modelling, conducted during the analy-
sis phase.[Jaco92, p. 206]

Subsystems

Subsystems are used to manage large software systems. The subsystems
group objects to a larger unit, and thereby reduce the complexity of the
system [Jaco92, p. 190]. A subsystem should be a part of the system un-

48

der development that can be designed and implemented independently,
and is likely to be affected by the same minor change in requirements.

The classes in the subsystem should have high cohesion, i. e. fit well to-
gether, and implement a single logical entity, to which all classes shall
contribute [Som92, p. 183]. The coupling, the number of collaborations
a subsystem has with other classes or subsystems, should be minimized
[Karl95, p. 307]. Coupling is a measure of dependency between classes.
Strong coupling arise when many different messages are passed, or one
message is passed frequently. A subsystem with high cohesion and weak
coupling is illustrated in Figure 3.12.

• Guideline 18: Subsystems shall have high cohesion and weak cou-
pling.

Late introduction of subsystems inhibits early division of work among
teams, but a detailed object and class design allows better division into
subsystems [Karl95, p. 307].

3.5.2 The Framework Design Process

A framework design is a software design that, when implemented, pro-
vides the general and abstract functionality identified in analysis. The

Figure 3.12 The classes in a subsystem should have high cohesion, and the coupling to
the classes outside the subsystem should be weak.

High cohesion

Weak coupling

Subsystem

Weak coupling

49

framework will be an implementation of the general parts of the applica-
tions in the domain [Joh95].

The framework design subprocess of the framework development proc-
ess consists of architectural design and detailed design. During the archi-
tectural design, the object and their collaborations will be changed, as
consideration is taken to the implementation environment. During the
detailed design phase, the objects identified in architectural design are
described in the target implementation language and if necessary, the ob-
jects are refined [Karl95, p. 281-282].

Figure 3.13 A framework captures the general parts of the applications in the domain.

Framework

Application 1 Application 2

Application 3

50

The chronological order of the activities in the design phase is shown in
Figure 3.14.The design is continuously reviewed, and suggested design
solutions might be proven by prototyping.

The main issue during framework design is to provide a base for a gener-
ic implementation, that applies to several similar applications. During
the design process, many abstractions will be identified, and therefore the
design has to be easy to change.

Identify abstractions

Most of the concepts common to the applications will have been identi-
fied in domain analysis and analysis, and the abstractions found during
the design phase will probably be at a lower level. The identification of
a high level abstraction during design might result in a return to analysis.

Search for key mechanisms of the applications that can be captured in the
framework. Try to abstract as much as possible of these mechanisms into
the framework

The fact that abstractions are found “bottom-up”, by studying concrete
examples, implies there has to be a design to find an abstraction [Joh95].
The design could be an overview in the designer’s mind, a prototype de-
sign or an old application in which the same design problem is solved.

Figure 3.14 The process roadmap. The design is continuously reviewed, and design
solutions might be validated by prototyping.

Identify Objects

Review and
Prototype

Distribute
Responsibilities

Implementation

Define
Collaborations

Refine the inheritance hierarchies and collaborations

Architectural
Design

Detailed
Design

51

Identify Generic Design Solutions

There are no benefits in designing the same thing twice, or in doing two
complete designs to solve two similar problems. A generic design solu-
tion solves the current problem, but also takes similar problems that may
occur into consideration.

Seeking to reuse previous design solutions will limit the need for com-
plex design decisions. If a design problem is similar, or identical, to a de-
sign problem already solved, the previous design solution should be
reused.

The design knowledge available in the organization should be (re)used
to the maximum extent.

• Guideline 19: Study existing frameworks and generic designs, and try
to reuse all available design knowledge.

Design patterns are generic solutions to problems that often occur in
framework design [Gam94]. The design patterns have been applied to
many designs and the solutions they suggest are well-proven. Design
patterns also ease communication between design teams and make the
framework easier to understand [Laj94; Gam94].

Design patterns which might be applicable in the framework design
should be investigated, and if a design pattern applies to a problem, the
problem should be solved according to the design pattern. In the our case

Figure 3.15 The design pattern “Strategy” applied in the Dice Game framework.

Rules

Get_Decision()
Get_Winner()

Elector

Get_Winner()

Yatzy_Elector

Get_Winner()

Craps_Elector

Get_Winner()

Greed_Elector

Get_Winner()

Ruler

Get_Decision()

Yatzy_Ruler

Get_Decision()

Craps_Ruler

Get_Decision()

Greed_Ruler

Get_Decision()

ruler->Get_Decision()

elector->Get_Winner()

52

study, we applied the design pattern “Strategy” when designing the rep-
resentation of the rules of the games. The rules only differed in the algo-
rithms for decision making, and these algorithms were factored out into
separate objects. The “strategy objects” are then used to compose in-
stances of the “ruling class”. This approach makes the ruling class inde-
pendent of the algorithms used to “calculate” the decisions. See Figure
3.15.

• Guideline 20: Each design problem to which a design pattern apply
shall be solved according to that pattern.

If necessary, go as far as to implementing parts of the applications to val-
idate the design solutions, and see that they really are general and useful.

• Guideline 21: Approve the design solutions by prototyping. If neces-
sary, go as far as to implementation to validate the de-
sign solutions.

3.5.3 Architectural Design

During the architectural design phase, a high-level description of the
framework and the applications is made based on the models provided
by analysis [Karl95, p. 281].

The activities shown in Figure 3.16 should be common to architectural
design in most object-oriented methods [Karl95, p. 305].

The objective of architectural design is to identify the objects needed to
implement the system, and the way the objects collaborate. The system
is also, if necessary, divided into subsystems during this phase.

Figure 3.16 The activities of architectural design.

Analyse Object
Collaborations

Refine the Analysis
Object Model

Assign System
Responsibilities to
Specific Objects

Refine the Inheritance Hierarchies

and Collaborations

53

The input to the architectural design phase are the requirements and anal-
ysis models, as described in the analysis section.

The architectural design phase produces output in the form of a static ob-
ject model and dynamic models (interaction diagrams, state transition
graphs and data flow models). These will form the basis for the identifi-
cation of the implementation classes.

3.5.3.1 Refine the Analysis Object Model

In this activity, new objects, not present in the analysis models, may be
introduced to adapt the system under development to the implementation
environment. An analysis of the implementation environment should
been done in parallel with analysis, or at least before the design phase is
entered [Jaco92, p.196]. Other changes may be deleting, splitting or join-
ing objects from analysis. Such changes should be conducted with great
care, as they often tend to decrease the robustness of the system [Jaco92,
p. 206].

It is important for the understanding of a framework to maintain the
traceability between the analysis and design models [Jaco92, p. 117].
Many of the design objects may have been identified in the analysis
phase, and these objects’ names should be the same in both models.

• Guideline 22: Objects directly transferred from analysis should keep
their names. To understand the framework from a con-
ceptual point of view, the reuser should be able to trace
the objects back to the analysis models.

A class represents an abstraction of the objects instantiated from it. If a
class has many methods, it probably consists of several different abstrac-
tions. The amount of methods that indicate a large class varies, but more
than 25 qualifies the class for examination [Joh88].

Classes with a large number of methods are not likely to be shared by
several parts of the design. Parts of a class that is examined, and turns out
to represent several abstractions, might be shared by parts of the design
that did not share the original large class.

• Guideline 23: Keep classes appropriately small. Classes with more
than 25 methods should be considered candidates for re-
structuring.

3.5.3.2 Assign System Responsibilities to Specific Objects

The responsibility of an object or a system has been defined as the
“knowledge to maintain and actions that can be performed” [Wirfs90]. In

54

this activity, the system responsibilities shall be distributed among the
objects identified in the earlier phases.

During the identification of the operations an object is responsible for
performing, and what knowledge it shall maintain, a common way to ex-
press similar responsibilities should be used, since this may help identi-
fying abstractions.

• Guideline 24: State responsibilities as generally as possible. A com-
mon way to express responsibilities may help finding
abstractions.

Responsibilities should be placed where they logically belong, but in
some cases it may not be clear to which class a responsibility logically
belongs. The designer should then aim to distribute the intelligence to
achieve the highest level of abstraction. If a responsibility can belong in
several classes from a logical point of view, the responsibility should be
placed in the class where it allows the designer to identify the largest ab-
straction.

• Guideline 25: The first concern when distributing the responsibilities
should be to create methods which perform logical op-
erations on instances of the class.

• Guideline 26: Distribute system intelligence so that abstractions can
be identified. When in doubt, the responsibility should
be placed where it allows for the most abstractions.

Figure 3.17 Generally stated responsibilities promote abstraction identification

Kitty

Bet();
Win();
GetAmount();

Wallet

PutMoney();
GetMoney();
Count();

MoneyContainer

Deposit();
Withdraw();
GetAmount();

Kitty

Deposit();
Withdraw();
GetAmount();

Wallet

Deposit();
Withdraw();
GetAmount();

55

Identify abstractions, i.e. extract common behaviour into abstract super-
classes. Defining as many abstract classes as possible implies factoring
out as much common behaviour as possible [Karl95, p. 310].

Moving common responsibilities as high up in the inheritance hierarchy
as possible helps finding the most suitable abstractions [Wirfs90].

• Guideline 27: Create as many abstract classes as possible. Look for
duplicated responsibilities and factor them into abstract
superclasses.

• Guideline 28: Factor common responsibilities as high in the inherit-
ance hierarchy as possible.

3.5.3.3 Analyse Collaborations

An object collaborates with an other object if it has to invoke one or more
of the other objects methods to fulfil its responsibilities [Karl95, p.306].
During this activity, the collaborations between the objects in the system
should be identified. For each object and each responsibility, it should be
found out if the responsibility can be fulfilled by the object itself and, if
not, which objects it has to collaborate with.

Interaction diagrams, as shown in Figure 3.18, are helpful tools in defin-
ing how the objects should collaborate in the system [Jaco92, p. 142].

Figure 3.18 Interaction diagrams are an aid in analysing the collaborations

56

The associations between the objects may have to be changed from anal-
ysis. This is probably the most common change to the analysis model.
The actual implementation of associations and synchronization between
processes are examples where the associations may be changed. [Jaco92,
p. 206]

Since the intention is to make the design extensible, no references to con-
crete classes should be made. Make sure to define collaborations be-
tween abstract classes, as in Figure 3.19. Though the collaborations
become somewhat abstract, this paves the way for using dynamically
bound methods in the concrete classes.

• Guideline 29: Define collaborations between abstract classes. Use
polymorphism to access the methods in the concrete
leaves of the framework.

3.5.3.4 Refine the Inheritance Hierarchies and Collaborations

This activity is going on continuously throughout the process. Since all
abstractions are not likely to be identified at once, the designers probably
will have to iterate through the previous activities. The guidelines pro-
vided here are intended to promote the identification of abstractions dur-
ing the process.

Following the guidelines in the previously described activities, and ac-
tively seeking to identify abstractions, will provide deep and narrow in-
heritance hierarchies, since the behaviour shared by classes will have
been abstracted into superclasses. Wide and shallow inheritance hierar-
chies indicate that abstractions still are to be found in the hierarchy.

• Guideline 30: Class hierarchies should be fairly deep and narrow.
Shallow and wide inheritance hierarchies indicate that
abstractions still are to be found in the hierarchy.

Figure 3.19 If the concrete leaves of the framework are referenced, they are no longer
easily interchangeable.

Abstract

Concrete
object types

object type

57

A major concern when refining the hierarchies and collaborations should
be to preserve the general and abstract functionality identified in analy-
sis. Further refinement should not violate the conceptual abstractions.

• Guideline 31: Preserve the abstractions identified in domain analysis
and analysis. Further refinement should not violate the
conceptual abstractions.

One way to start the refinement is to look for subclasses that implement
the same method and try to migrate the method to a new common super-
class [Joh88]. This approach might result in a deep inheritance hierarchy
that might be hard to comprehend, since its methods will be spread in the
hierarchy. Whenever possible, the inheritance should be replaced by
composition. Try not to extend the inheritance hierarchy too far, but to
extract behaviour into a new class hierarchy and use instances of the new
class hierarchy as components in instances of the first class hierarchy.

• Guideline 32: Try not to extend the inheritance hierarchies too far.
Class hierarchies with more than 5 levels of abstraction
should be considered candidates for restructuring. Use
composition to flatten the hierarchies.

Designers should look for classes or methods that have different names,
but provide the same functionality. Renaming these is conceptually sim-
ple, and will make it easier to see commonalities, but requires quite a lot
of text editor work. [Joh95].

Figure 3.20 A transfer from inheritance to composition. An engine is used as a
component in an instance of a car.

Car

Volvo

Volvo 142
w/ B18 en-

gine

Volvo
Amazon

Volvo 142

Volvo
Amazon

w/ B18 en-
gine

Volvo
Amazon

w/ B16 en-
gine

Volvo 142
w/ B20 en-

gine

Engine

Volvo
Engine

B16 B18 B20

58

• Guideline 33: Make sure things that are the same are named the same.

If there are methods or classes that provide approximately the same func-
tionality, the possibility of parameterizing shall be investigated. If the
differences can be eliminated by passing parameters, similar classes in
different applications can be replaced by one general class in the frame-
work. The class is used with different parameters passed, depending on
the application using the class.

• Guideline 34: Eliminate differences by parameterizing. If some class-
es or methods provide approximately the same behav-
iour, the possibility of parameterizing should be investi-
gated.

Johnsson says that iteration seems inevitable, as all abstractions are not
likely to be found in the first try [Joh95]. This implies that the class hier-
archies will be restructured during the design, and a prerequisite for re-
structuring the hierarchies is to understand them. Understandability can
be achieved either by proper documentation or by simplicity, or by a
combination of both.

Figure 3.21 General properties is identified by renaming and parameterizing.

Money Kitty

unit = $

Container

unit[$, match, ...]
Deposit();
Withdraw();
GetNOUnits();

Wallet

unit = $

Match Kitty

unit = matchesContainer

Money
Container

Match
Container

WalletMoney
Kitty

Kitty

Match
Kitty

Money
Kitty

Wallet

59

• Guideline 35: Maintain the documentation and models, to ease the un-
derstanding of the class hierarchies.

Multiple inheritance is a feature in some object-oriented languages, e.g.
C++, that makes it possible for a subclass to inherit from more than one
superclass. Taligent recommends that a distinction is made between base
classes, that represent logical objects, and mixin classes, that represent
optional functionality [Tal94c]. A class may inherit from zero or one
base classes, plus zero or more mixin classes, and a class that inherits
from a base class is itself a base class. Mixin classes only inherit from
other mixin classes. This approach provides a conventional inheritance
hierarchy of base classes, with add-in mixin classes for optional func-
tionality [Tal94c; Gam94].

If a relationship is realized through multiple inheritance that violates
these guidelines, the motivation should be thoroughly documented. Mul-
tiple inheritance and especially ambiguous multiple inheritance makes
the inheritance hierarchy hard to understand.

• Guideline 36: Multiple inheritance should be handled with care. Mul-
tiple inheritance complicates the inheritance structure
and might make the framework design hard to under-
stand.

Future classes derived from the framework should be able to use any data
representation without fear of conflicting with the one inherited. In a con-
crete superclass it is easy to make to restrictive assumptions about spe-
cializations. Subclassing a concrete class indicates a faulty design and
should be avoided.

Figure 3.22 Multiple inheritance complicates the inheritance structures. Especially
ambiguous multiple inheritance should be handled with care.

multiple inheritance

Vehicle

Sea Vehicle Land Vehicle

Amphibious Vehicle

Sea Vehicle Land Vehicle

Amphibious Vehicle

ambiguous
multiple inheritance

60

• Guideline 37: Only the leaves of an inheritance hierarchy in a frame-
work should be concrete. Restructure the hierarchy in-
stead of inheriting from a concrete class.

No new methods should be introduced in the concrete leaves of the in-
heritance hierarchy, as these methods cannot be called through the ab-
stract superclass’ interface. Cancelling inherited methods imply that the
superclass’ interface is not valid for the subclass. The concept of poly-
morphism is fundamental to framework design and shall not be violated.

• Guideline 38: Use type preserving inheritance when the concrete
leaves of the framework are derived from its superclass-
es. Both adding and cancelling inherited methods will
violate the polymorphism.

3.5.4 Detailed Design

During the detailed design phase, all classes with attributes and methods
are identified and described using the target implementation language
[Karl95, p.283]. The inputs are the objects and the collaborations identi-
fied in architectural design, as represented in the static object model and
the dynamic models, e.g. interaction diagrams and state transition graphs
[Jaco92, p. 215].

A method with few parameters is more likely to be common to more than
one class than a method with a lot of parameters. A method common to
more than one class may be abstracted into a common superclass. Meth-
ods with many parameters should be redefined and possibly divided into
several methods. An exceptions to this are object constructors. [Jaco92,
p. 215; Joh88]

• Guideline 39: Methods should have few parameters. Methods with
more than five parameters should be considered candi-
dates for restructuring.

A method should perform only one task. A method which performs many
different tasks should be divided into several methods, since parts of the
method may be shared by several classes while other parts are unique to
one class.

• Guideline 40: Let one method perform only one task. Parts of a meth-
ods performing several tasks might be common to sev-
eral classes.

61

Classes are abstractions of the objects instantiated from it. Classes with
many methods (more than 25) represent complicated abstractions, and
probably consist of several different abstractions. These abstractions
should have their own classes. Complicated public interfaces are also
hard to understand.

• Guideline 41: Keep a small public interface for a class. Classes with
more than 25 methods should be considered candidates
for restructuring.

New abstractions may be found during detailed design. The abstractions
should be introduced in the models where they belong, to maintain the
structure of the documentation. Conceptual abstractions belong in anal-
ysis.

• Guideline 42: If new abstractions are identified, introduce them in the
appropriate model. Conceptual abstractions in the anal-
ysis models, and lower-level abstractions in the design
model.

To allow the identification of further abstractions, method signatures
should be consistent, uniformity should be favoured over specificity.

• Guideline 43: Keep method signatures consistent. Things that are the
same should be named the same.

3.5.5 Summary

The objective of the design phase is to provide a design of an implemen-
tation that easily can be adapted to provide the specific functionality of
the applications in the domain.

The design shall provide a firm base for the implementation of the frame-
work, and preserve the abstractions from the earlier phases.

Further abstractions should always be sought, but the hierarchies should
not be extended too far. Composition should replace inheritance when-
ever possible.

“Obvious” abstractions, and well-known abstractions are quite easy to
find, but steps should be taken to alleviate the finding of new abstrac-
tions. Such steps are having a strategy for expressing responsibilities in
a general way, or strict naming conventions. Design patterns might be
targets when identifying abstractions.

62

It is of importance to keep up a good framework structure, e.g. with only
the leaf classes of the inheritance hierarchy concrete, since the structure
will change continuously as new abstractions are found. The decisions
and abstraction should also be possible to trace back to the origin in the
analysis models.

Communications and the decision-making during design can be alleviat-
ed by using design patterns, since they provide a level of abstraction
above objects and classes, and represent proven design solutions to com-
mon problems in framework design.

The detailed design shall provide uniform classes with methods that are
as probable as possible to be common to several classes. Means to
achieve this may be keeping the number of arguments small.

63

3.6 Implementation

“A framework is a generalisation of the implementation of several appli-
cations.”

Ralph E Johnson [John95]

This section covers the Implementation phase of framework develop-
ment.

The section is intended to provide some guidelines to follow when im-
plementing an object-oriented framework. The guidelines are compiled
from the REBOOT project, as documented in [Karl95, p. 315-334], and
revised for the implementation of framework designs. Some of these

Figure 3.23 Process roadmap

Domain
Analysis

Capture
Requirements
and Analysis

Framework
Design

Framework
Implementation

Test
Application

Analysis
Application

Design
Application

Implementation

64

guidelines are C++ specific and some are general for all object-oriented
languages, and the reader is supposed to have a fair knowledge of C++
and its object-oriented constructs.

Implementation Strategy

In the implementation of a framework, a top-down approach should be
the most suitable, with development of the high-level objects first. These
implement the general functionality of the applications, and subcontract
to low-level objects. [Karl95, p. 285]

All low-level objects are not available at the time of the testing of the
framework, so a means of replacing them has to be found. Either code
stubs can be provided, or the calls to the low-level objects can be simu-
lated. [Karl95, p. 285; Som92, p. 381]

The top-down approach favours prototyping, since the main functionali-
ty is defined at an early stage [Karl95, p. 285].

Implementation Standards

The implementation standard conventions should either be defined or re-
used. These conventions include the definition of file structures, naming
conventions and rules for references and inline functions and so on
[Karl95, p. 285].

By having a uniform source code, the reading of the code is facilitated
[Jaco92, p. 239]. To have a code that is easy to read will facilitate the un-
derstanding of the framework, and shorten the retention time for the user.

Many companies have defined their own standards, and some are widely
spread, e.g. the Taligent and Ellemtel style guides for C++ programming
[Tal94c, Henr92].

3.6.1 Process

The implementation phase follows the detailed design phase, where all
classes with attributes and methods are identified and described using the
target implementation language [Karl95, p. 283]. The objective of the
implementation phase is to implement the objects, the relationships and
the collaborations identified in the design phase.

There is no strict boundary between detailed design, implementation and
testing, since inconsistencies discovered during implementation require
a return to detailed design. Components are also often tested during im-
plementation.[Karl95, p. 283]

65

The input is a detailed description of the classes, their interfaces and ex-
ternal definitions specified with the formalism of the implementation lan-
guage. The output is a set of implemented classes, ready to be tested
[Karl95, p. 283].

For each class there are two steps:

• Implementation of the class’ external interface. The interface, defined
during detailed design, is completed to include the internal definition
of the class, i.e. protected and private attributes and methods.

• Implementation of the methods, starting with an empty method body
with correct return type. The internal behaviour is identified by exam-
ining the dynamic models, i.e. the interaction diagrams and the state
transition graphs. The interaction diagrams may also contain pseu-
docode, on which the implementation can be based. The methods’ en-
tire behaviour is implemented in this step.

These steps are usually followed by unit testing. [Karl95, p. 286]

3.6.2 Guidelines

The purpose of these guidelines is to help preserve the benefits from
making a good framework design, to make the code easy to understand
and to ease the work of the framework user.

3.6.2.1 Relationships

The relationships between classes identified in the design should be pre-
served or transformed in a standardized manner in a framework imple-

66

mentation. Some transformations and concepts that might be
encountered in a C++ implementation are described in Table 3.1.

Object oriented concept C++

B “is-a” A, inheritance Public inheritance.

class A: public B {
 :
}

A “has-a” or “consists of”
B, aggregation

Declare the contained objects as
private or protected attributes.

class A {
protected:

B myB;
 :
}

A “knows” or “uses-a” B,
association

Take a reference, or a pointer, to
another class as a parameter.

class A {
 void Operation(B* aB);
}

Polymorphism Declare methods as virtual in the
base classes, while their
implementation is declared in the
subclasses.

class A {
 virtual void Operation();
}
class B: public A {
 void Operation();
}
class C: public A {
 void Operation();
}
B::Operation() {
 //implementation B
}
C::Operation() {
 //implementation C
}

Table 3.1 Object-oriented concepts in C++

67

Multiple inheritance will complicate the inheritance structure. This is
particularly true for ambiguous inheritance structures. Complicated in-
heritance structures are hard to understand without proper documenta-
tion. The ideas behind the framework design has to be as evident as
possible, in the code as well.

• Guideline 44: Comment all multiple inheritance thoroughly. Thor-
ough documentation might make up for the complica-
tions multiple inheritance implies.

Explicitly calling a method lower in a class hierarchy is called casting
down, and introduces dependencies beyond the inheritance structure. A
method lower in the class hierarchy should be implicitly called through
the abstract superclass’ interface, and the run-time system will bind the
call to the appropriate implementation dynamically.

• Guideline 45: Avoid casting down the inheritance hierarchy. The
methods in a subclass should be accessed through the
superclass’ interface.

Abstract class By declaring the constructor as
protected and/or by having at least
one pure virtual method, the class
cannot be instantiated

class A {
protected:
 A();
public:
 virtual void Operation() = 0;
 // pure virtual
}

Encapsulation,
information hiding

Specify attributes as private

Object oriented concept C++

Table 3.1 Object-oriented concepts in C++

68

The friend relation in C++ introduces relations in a component that are
difficult to follow and handle by the framework user. It allows other
classes to get access to a class’ private parts and thereby violates encap-
sulation. If possible, it is better to make some member functions
friends than to make a whole class a friend.

• Guideline 46: Avoid using friend if possible, as the friend concept
violates information hiding. It is better to make some
member functions friends than to make a whole class
a friend.

A subclass should not decide which methods to inherit, as this contra-
dicts the specialization relationships in the inheritance structures. Re-
structure the inheritance hierarchies instead of using type-restrictive
inheritance, i.e. cancelling one or more of the inherited methods, as the
interface of a subclass using type-restrictive inheritance will be unclear.

• Guideline 47: Restructure the inheritance hierarchies instead of using
type-restrictive inheritance.

Type-restrictive inheritance is realized by private inheritance in C++, see
Figure 3.24. Private inheritance is not an object-oriented concept and it
is not used in any object-oriented design methodology. Private inherit-
ance may confuse the framework user, since it is difficult to examine
what is inherited and therefore what is reused.

• Guideline 48: Do not use private inheritance. Private inheritance is not
an object-oriented concept.

class List{
public:
 :
 int Count();
 :
};
class Set: private List{
public:
 List::Count(); //Makes the count method visible
 :
}

Figure 3.24 Inheritance with cancellation, realized by private inheritance in C++.

69

3.6.2.2 Classes and Methods

The the guidelines from the design phase should still apply, and it is im-
portant that the structures from detailed design is transferred into code
with care.

Abstract classes are not intended to be instantiated, and shall be prevent-
ed from being instantiated. Classes can not be declared as abstract in
C++, but the class can not be instantiated if at least one method is de-
clared as pure virtual, or the constructor is specified as protected. See
Table 3.1.

• Guideline 49: Inhibit abstract classes from being instantiated

The methods of a framework class that are intended to be redefined in the
subclasses should be declared as virtual. Defining methods as virtu-
al provides hooks for changing or extending the behaviour of the frame-
work. There is no mechanism in C++ to make it difficult or impossible to
overload a method, and if the decision is made to redefine a non-virtu-
al method, the purpose of the framework is violated and either the prob-
lem should be solved in another way or the framework should be
redesigned.

• Guideline 50: All methods intended to be overloaded or redefined in
subclasses must be declared as virtual.

A method with more than twenty lines of code is a potential candidate for
modification, as methods should be quite small. Small methods are easier
to understand and modify, and the behaviour can be changed by redefin-
ing a few small methods, instead of modifying one large method. A small
method is also more likely to be common to several classes, and can then
be migrated into a common superclass.

• Guideline 51: Keep methods small, methods with more than 20 lines
should be regarded candidates for modification.

70

By declaring a member method as const, it is impossible to change its
attributes in the implementation of the class; that is, member methods de-
clared as const do not change the state of a class, see Figure 3.25. De-
claring member methods as const ensures a framework designer that
the called method will not change the class’ internal attributes. There is
therefore no risk of changing the state of an object by calling these meth-
ods. This guideline forces the framework user to implement the redefined
methods as the framework developer intended.

• Guideline 52: Declare member methods const when possible. De-
claring a method const ensures that invoking it will not
affect the state of the object.

By declaring a parameter or a pointer to a parameter as const, it is im-
possible to change its value in the implementation of the method, see Fig-
ure 3.25. Declaring parameters as const ensures the framework
designer that the parameters, or pointers to parameters, are not changed
in the implementation of the method. There is therefore no risk in passing
a parameter that it is not intended to change to such a method. This guide-
line forces the framework user to implement the redefined methods as the
framework developer intended

• Guideline 53: Declare parameters const when possible. Declaring a
parameter const ensures that its value will not be
changed in the method.

Use polymorphism instead of explicitly checking the object type. When
checking object types, unnecessary dependencies on other object types
are created. When a new object types is introduced in the framework, it
has to be modified by inserting another check. By using polymorphism
instead, the framework can be extended by simply deriving a new sub-
class.

• Guideline 54: Eliminate explicit type checking on object types

class ABCD{
public:
 Set(const int newInt);
 // newInt can not be changed inside the method
 int Get() const;
 // this method will not change the state of the
 class
}

Figure 3.25 Declaring parameters and methods const may help force the intended use of
the framework.

71

Specify attributes as private and provide access to attributes only through
public methods for external objects, and through protected methods for
subclasses. This hides data representation and keeps the interface stable
even if the type of the attribute is changed. The framework developer has
the responsibility of making a suitable interface for the framework user.
By using this interface, the framework classes are derived correctly.

• Guideline 55: Specify attributes as private. Specifying attributes as
private hides the data representation and makes the
class’ interface stable.

Implementation and code in header files violates encapsulation, use ex-
plicit inline instead. See Figure 3.26.

A framework developer should not lay any restrictions upon the imple-
mentation of a class derived from a framework class. The framework
user should be free to use the implementation and data representation of
his/her choice.

• Guideline 56: Avoid implicit inline, as implementation in header
files violates encapsulation. Use explicit inline in-
stead.

class Kitty: public Money_Container {public:
void Deposit(int const nAmount){
nSum = nSum+nAmount;

}
// Implicit inline

}

// File: file.h (header file)
class Kitty: public Money_Container {
public:
void Deposit(int const nAmount);

}

// File: file.cc (source file):
inline void Kitty::Deposit(int const nAmount){
nSum = nSum+nAmount;

}
//Explicit inline

Figure 3.26 Use explicit inline to avoid code in header files.

72

3.6.2.3 Constructors and Destructors

To keep the control and to avoid unexpected behaviour when an object is
created, copied and destroyed, the framework developer should imple-
ment implicitly-generated methods, i.e. constructor, destructor, copy
constructor and assignment, himself, and thereby prohibit the compiler
from implementing them. This is especially important for classes with
dynamically allocated memory and classes that have uses-a relations
with other classes.

• Guideline 57: Implement implicitly generated class methods. The
compiler’s implementations may result in unexpected
behaviour.

To inhibit the framework user from performing unintentional operations
with the class, hide the copy constructor and the assignment operator in
the private part of the class specification, when copying or assignment
makes no sense.

• Guideline 58: When copying or assignment makes no sense, hide the
copy constructor and the assignment operator in the pri-
vate part of the class specification.

To stress correct deallocation of memory resources, the destructors
should always be made virtual in the base classes. If the destructors
are not virtual, only the destructor for the declared object is called.
The classes in the framework should deallocate their own memory re-
sources, and leave only the deallocation of the derived classes memory
resources to the framework user. By declaring the destructors virtual
in the base classes the framework users work will be decreased.

• Guideline 59: Always make destructors virtual in the base classes.
Classes should deallocate the memory resources they
use themselves.

3.6.3 Summary

The main concerns in the implementation phase are to provide code that
is easy to understand and to preserve the benefits from a good framework
analysis and design.

A well defined implementation standard makes the framework code easy
to read and understand. Well defined standards have evolved in several
companies, and some are available for use outside the company of origin,
e.g. the Ellemtel style guides for C++ programming [Henr92].

73

To maintain a good object-oriented design, no non-object-oriented spe-
cial features of the implementation language should be used, unless they
are very well motivated. E.g. the friend concept in C++ should be
avoided, but friend is used in some well-proven design patterns, where
it is thoroughly motivated and documented [Gam94].

A top-down implementation strategy is suitable in framework develop-
ment, since the over all behaviour is defined first. A top-down approach
also favours prototyping.

74

3.7 Verification and Validation

This section covers the Verification and Validation phase of framework
development. The subject Verification and Validation is very wide and
this section is intended to provide a brief overview of the topic.

The section starts with presenting the concepts of verification and vali-
dation followed by sections 3.8.1 to 3.8.4 which presents the main con-
cepts of the test activities. Section 3.8.5 present the more important
aspects when testing frameworks and the applications developed with
frameworks. The chapter is closed with a short summary.

The verification aims to verify that the system being under construction
will fulfil the requirements stated in the Domain Analysis or in the Anal-

Figure 3.27 Process roadmap

Domain
Analysis

Capture
Requirements
and Analysis

Framework
Design

Framework
Implementation

Test
Application

Analysis
Application

Design
Application

Implementation

75

ysis phase [Jaco92, p. 307]. The validation aims to check if the product
under construction is the product the procurer really wants.

Two questions which are very common in the literature summarize the
verification and validation activities [Jaco92, p. 307; Karl95, p. 335;
Som92, p. 374]:

• Validation - Are we building the correct product?

• Verification - Are we building the product correctly?

The verification and validation activities take up a substantial part (30%
- 50%) of the development costs [Jaco92, p. 308; Marc94, p. 1331]. De-
creasing the need for test will have quite an economical impact on the de-
velopment process.

One activity of the verification and validation phase is the test activity,
This activity is often categorized into unit testing, integration testing and
regression testing [Jaco92, p. 310; Karl95, p. 339; Marc94, p. 1334;
Som92, p. 376]. Other activities in the verification and validation phase
are code inspections and reviews and statistical testing [Jaco92, p. 313;
Marc94, p. 1334].

This chapter will only briefly present statistical testing. Code inspections
and reviews are not different for framework development and reuse than
for other software development and will not be further presented in this
chapter.

3.7.1 Unit Testing

When performing a unit test, only one unit is tested at a time. A unit may
be an operation, a class, or a module consisting of several classes, maybe
a framework. The idea is that a well defined unit with well defined re-
sponsibilities is tested so it is verified that the unit will fulfil the require-
ments imposed on the unit.

According to Marciniak, Jacobsson and Karlsson there are two methods
for making unit tests [Marc94; Jaco92, p. 316; Karl95, p. 340]:

• Structural testing, which requires knowledge of the unit’s internal
structure, provides knowledge of the test’s code and branch coverage,
which indicates the unit’s reliability.

• Specification testing, or the functional testing, which only is based on
the requirements imposed on the unit. No attention is paid to the in-
ternal structure of the module, it is only of interest how the unit re-
sponds to certain inputs.

76

3.7.2 Integration Testing

Testing how software units work together is called integration testing
[Jaco92; Karl95, p. 340]. An integration test may, at the same time, be a
unit test, a unit may consist of several sub units. In Ivar Jacobson’s book
Object Oriented Software Engineering, use cases are suggested as good
tools for performing integration tests [Jaco92, p.310].

The final integration test, when all modules are combined to form the fi-
nal system, is sometimes called the system test. The system test verifies
if the system satisfies the requirements or not. If the requirements are for-
mulated as use cases, the results of a certain use case will directly map
onto the satisfying of a specific requirement. The system test will be the
first possibility to test if the system will satisfy the requirements imposed
on the system. The earlier integration test will only satisfy requirements
which are derived from the procurer’s requirements, thus the importance
of the system test.

3.7.3 Test Model

It is suitable to use a test model both in the development of the frame-
work and during the reuse of the framework. The test model consists of
test cases and test beds [Karl95, p. 337].

A test bed [Jaco92, p. 316] is used to simulate the tested unit's surround-
ing world. The test performs calls to the operations of the tested object.

A test case consists of an action sequence or a sequence of stimulus, to-
gether with a specification of the desired event. If use cases are used in
requirements model they will form a good base from which test cases are
easy to derive. The requirements which are formulated as use cases are

77

directly verifiable by the execution of the test cases which are derived
from use cases.

3.7.4 Frameworks Specifics

There is no substantial difference between testing units of a framework
compared to testing ordinary software systems. However there are some
differences depending on the use of object oriented techniques and the
fact that frameworks are developed to be reused.

There are mainly two questions that should be answered by the testing of
a framework. First, if the framework really covers the domain as intend-
ed [Joh91, p. 33]. This is verified by continuous reuse of the framework.
If the framework is unsuitable for developing an application within the
framework’s domain, it should be considered if the framework should be
redesigned or, perhaps, if the scope of the domain should be modified.
Existing applications may be used to model scenarios of events that can
be used in a later stage, to test the reusability of the framework [Karl95,
p. 302].

Second, the framework must fulfil the parts of the application’s require-
ments which is within the framework’s area of responsibility. This is ver-
ified primarily within the activity of system testing.

Figure 3.28 The test relations.

Interaction

Software unit

Test bed

Use caseRequirement

Test case Test result

Request

Request

Result

Result

Interaction

Map

onto

78

Jacobson [Jaco92, p. 319] claims that polymorphism is a good tool in the
testing process. If changes are made in a subclass - the server class - there
will be no need to test the client class (the framework). It will be suffi-
cient to test the subclass, verifying that the subclass will respond appro-
priate to the calls from the framework.

The statement above implies that if new concrete classes are designed to
configure the framework to a specific application. then each of these new
classes have to be unit tested, but the framework itself do not have to be
tested as a single component again. However, it has to be tested in an in-
tegration test, a test of the complete application, how these new concrete
classes will interact with the framework.

If all of the concrete classes are taken from the framework's library (the
classes have been used before) two cases may occur. The same combina-
tion of these classes and the framework have been used and tested before,
and it will not be necessary to test this combination again. The second
case occurs when the concrete classes have been used before together
with the framework but not in this particular combination. The second
case requires no new separate tests of the concrete classes, but a test of
the complete application is necessary.

The fact that it is not necessary to unit test a reused framework should
save a great deal of testing effort. A mature framework with all of the
needed concrete classes in the framework's library will of course save
even more testing effort.

Jacobsson [Jaco92, p. 320] also points out some difficulties with poly-
morphism compared to traditional procedure oriented languages. The
difficulties with polymorphism occurs in a structural test when different
paths should be covered. When using a CASE statement as in ordinary

79

techniques the possible paths are shown but when using polymorphism
only the invoked unit is displayed.

Inheritance will decrease the amount of code, but not the amount of test-
ing. Methods inherited from a super class may work fine in the super
class, but they must not necessarily work well in the inheriting class
[Jaco92, p. 321]. Inherited methods should be tested as well as methods
implemented in the class.

3.7.4.1 Reliability certification

Before reusing a component it is, in most cases, important that the reuser
can make a judgement of the component's reliability. Reliability is often
critical because a failure of the system will often cost the reuser a large
sum of money [Som92, p. 403].

The requirements should specify the required reliability level of the sys-
tem [Som92, p. 396].

If it is impossible or difficult for the reuser to gain confidence of the can-
didate component then the reuser probably will choose another compo-
nent or develop his own.

There exist a number of reliability metrics possible to provide with the
component. However, different users will use the component in different
ways. The reliability metrics of the component are strongly dependent on
how the component is used.

Sommerville [Som92, p. 394] presents some reliability metrics:

Figure 3.29 The differences between polymorphism and an “ordinary” case statement.

 File

 virtual:
 Read();
 Write();

 UnixFile

 PUBLIC:
 Read();
 Write();

 DosFile

 PUBLIC:
 Read();
 Write();

“Ordinary” Case statement:
...
store: File
...
CASE store.type IS
 DosFile: readDosFile(store);
 UnixFile: readUnixFile(store);
ENDCASE

Polymorphism:
...
store: File
...
store.Read();

80

• The first metric is the probability failure on demand which is a meas-
ure of the probability that the system will behave in a unexpected way
when it is called.

• The rate of failure occurrence is the second metric which is a measure
of how many times the system will behave unexpected per time unit.
According to Sommerville this metric is the most general one.

• The third metric is mean time to failure, which is a measure of the
mean time between two failures occurs on the system.

Availability shows the probability that the system is available for use.
According to these metrics the rate of error per lines of code is not as im-
portant as the actual rate of failure under use.

3.7.4.2 Statistical Testing

Statistical testing is a test method which provides information of the
probability of error or the probability that the system is available for use.
Sommerville [Som92, p. 398] identify four steps in the process of statis-
tical testing:

1. Determine the pattern of how the unit is going to be used.

2. Collect and select the test data identifying test cases according to this
pattern.

3. Execute the test cases according to the usage pattern. Recording the
execution time until a failure occurs.

4. Compute the software reliability according to the test results.

A framework is reused with the purpose of developing new applications.
Different applications may have very different usage patterns, which
may limit the use of statistical testing. However, work which argues for
usage testing as a method for reliability certification of software compo-
nents has been done. Usage testing may also be a suitable method to cer-
tify frameworks as well.

3.7.5 Summary

Reducing the need for test will probably have a rather significant eco-
nomical impact on the development costs of a software product.

The tests performed during the framework development process are not
different than the tests in an ordinary object-oriented development proc-
ess.

81

The validation of a framework is done when it is reused.

A reused framework does not have to be unit tested again the framework
has already been tested once.

A mature framework with many reused concrete classes reduces the need
for testing even more because reused concrete classes are not needed to
be unit tested again.

However, when applications are developed using the framework are in-
tegration tests are always necessary.

82

3.8 Maintenance

3.8.1 Introduction

Every software system of a significant size that will be used during a long
period of time needs maintenance. Object-oriented frameworks are not
an exception to this rule. However, an object-oriented framework is a
special type of a software system and will have some special character-
istics compared to more common software architectures.

The first two sections discuss computer systems in general. The first sec-
tion, 3.9.2 considers the evolution dynamics of software systems. 3.9.3
argues about how to limit the need for maintenance of software systems.
These general sections are followed by two more framework specific.
3.9.4 discuss the aspects of evolution dynamics of object-oriented frame-
works. The following section argues about how to limit the need for
maintenance of object-oriented frameworks. The chapter is closed with
a short summary.

3.8.2 Computer System Evolution Dynamics

This chapter intends to discuss the evolution dynamics of computer sys-
tems. All large systems are exposed to changes in the surrounding envi-
ronment leading to modification of the requirements imposed on the
systems. To meet with the changing requirements the system has to
evolve and thus, the system requires adaptive maintenance. There is also
a need for corrective maintenance because of undiscovered system errors
and from coding, design and analysis errors. Most of the studies of pro-
gram evolution dynamics has been performed by Lehman and Belady
(1985) resulting in a set of five laws, the Lehman’s laws, which in fact
are hypotheses not laws:

1. The law of continuing change

2. The law of increasing complexity

3. The law of program evolution

4. The law of organizational stability

5. The law of conservation of familiarity

Sommerville clarifies these laws [Som92, p. 534-538].The first law, the
law of continuing change states that a program that is being used in a
real-world environment has to change with the changing environment or
become less suitable for its purpose. A real-world environment will al-

83

ways change. For example a computer program for taxation will have to
be modified if the government will change the taxation rules and a fire-
alarm system will have to be modified if a new detector device is required
by a new customer.

The law of increasing complexity states that a system exposed to changes
will become more complex. The structure of a system that is being
changed is degraded and the structure will become more unclear. Most
often changes are done with a very local perspective and the structural
consequences are not understood. To preserve the quality and under-
standability of the system's architecture extra resources must be provid-
ed, enabling restructuring activities.

The third law is the law of the evolution of large programs and it states
that program evolution is a self-regulating process. System attributes as
system size, the number of found errors and the time between releases is
approximately the same between each release of the system. Lehman
suggests that the dynamics of the system is established in an early stage
of the development process. If a system is of low quality, inhabiting lots
of errors, there will be a need of corrective maintenance. However,
changes to the system will introduce new faults to the system, which then
requires new actions to be taken and so on. Therefore the error rate will
be fairly constant. The constant time between releases may be explained
by the bureaucracies of the development organizations, which slows
down the change process.

The law of organizational stability is the fourth law and it states that the
rate of change over the systems life time is approximately constant and
independent to the resources devoted to system development. This law is
valid in most large programming projects. The law implies that large
software development teams are unproductive because of the rapid in-
crease of communication when the size of the development team grows.
A large team needs to devote much effort to the communication.

The fifth law is the law of conservation of familiarity, which states that
the incremental system change in each release is approximately constant.

3.8.3 Limiting the Need for Software Maintenance

Maintenance of software systems is hard, mainly because little attention
is devoted to maintenance requirements during the development process.
This results in a loss of traceability which makes it hard to trace back to
user requirements or design specifications when making any modifica-
tion or correction to the system [Marc94, p. 621].

Actions should be taken to ensure the traceability from the requirements
through the processes of analysis, design and test down to the mainte-
nance phase. Any modification made to a system shall be traced from a

84

requirement, new or old. The test plans from the test phase should be the
foundation from which the maintenance tests are done. It is necessary to
identify if the modifications are of analysis, design or coding nature to be
able to take the correct actions.

To enable traceability the right documents have to be produced. The
analysis phase should produce documents which states the analysis re-
sults. The results of the design phase should be derived from the results
of the analysis phase. The design results as well as the relationship be-
tween the results from the analysis and the design should be documented.
Every phase should produce documents stating the results and it should
always be possible to trace back the results to the earlier phase. For an
example, to be sure of making the correct tests the test plans should be
traced back to the requirements of the system.

The third law of the Lehman’s laws, the law of program evolution, states
as mentioned above that the rate of faults remains fairly constant. The dy-
namics of the system is established in an early stage of the development
process and this implies that it is very important to do things correct the
first time in software development. The earlier in the development proc-
ess the fault is introduced the more damage it will do and the more ex-
pensive it will be to correct it.

The software should be developed with the knowledge of that the system
will be maintained and necessary precautions should be taken to make
maintenance of the system easier. This is done by following the design
and coding guidelines of best practice.

3.8.4 Framework Evolution Dynamics

The aspects of software maintenance discussed above are also valid to
object-oriented frameworks and some of these are even more important.
This chapter will emphasize on these, for frameworks, especially impor-
tant questions.

Lientz and Swanson [Lien80] found that maintenance made to improve
the system but not changing the system’s functionality took up a major
part, 65%, of the maintenance effort, maintenance of corrective nature
about 17% and adaptive maintenance about 18%.

A framework’s internal architecture consists, as mentioned before, of a
structure of abstract and concrete classes. A good framework consists of
a fairly deep but narrow inheritance structure. However, inheritance vio-
lates the principle of information hiding. A change implemented in a su-
per class will affect all of the depending subclasses.

A safe way to implement changes in a class hierarchy, in the short per-
spective, is to implement them in a subclass and inherit from the class
which characteristics should be modified. The effects of the changes will

85

then be controlled and the possibilities of unwanted behaviour depending
of unknown dependencies is reduced.

Such modifications will, in the long run, lead to a degeneration of the
class and inheritance structure. Therefore there is a need to restructure a
framework regularly [Gam94, p. 353].

A framework is constructed with the intention that it will be used to de-
velop many applications. The usefulness of a framework is reflected by
how many times it is reused and all these applications are dependent on
the framework. Modifications of interfaces and names are crucial and
will most likely affect the dependent applications.

Much effort should be placed on the interface design to be able to pro-
duce stable interfaces. Naming should be done with great care. Good
names are essential when designing for reuse and improves the under-
standability of the code and the functionality of the framework. Renam-
ing will as well as changes to the interfaces affect the dependent
applications and should as much as possible be done correctly the first
time.

Yet modifications of names and interfaces will, probably, be necessary.
When any change request is found valid it is better to implement these
changes as fast as possible because more dependent applications may be
developed meantime, increasing the number of dependent systems.

Internal modifications of the framework will not, in most cases, affect the
interaction between the framework and the applications. Therefore these
changes are not so crucial.

Each reuser should be notified when a component is modified, and espe-
cially if faults have been corrected and new versions issued [Karl95, p.
302]. Recording a reuse history is important, to enable modifications or
validation of quality models and reusability models, as well as for vali-
dation of development guidelines.

Reusers should give feedback on components. Quality problems must be
identified and dealt with both when developing new components and
maintaining existing components [Karl95, p. 302].

3.8.5 Summary

Frameworks may reduce the need for maintenance. A framework is, as
mentioned above, common to several applications and the framework is
a big part of each application. Thus, the amount of code to maintain is
reduced compared to the situation of maintaining a set of independent ap-
plications.

86

However, frameworks also introduces some difficulties. Applications de-
veloped from the framework will be dependent on the framework’s inter-
faces. Modifications such as naming of the methods and parameters, the
number of parameters in a method and possible changes in the methods
services will have a great impact on the dependent applications.

87

4 FRAMEWORK REUSE

This chapter is intended to present an overview of the framework reuse
process. The chapter is started with a discussion on how to organize the
organization for reuse and the necessity of collecting reuse experiences
in an organized way, section 4.1. Section 4.2 describes framework reuse
and the necessity of understanding the framework before reusing it. Sec-
tion 4.3 discusses how to introduce reuse in the analysis phase and sec-
tion 4.4 present a brief overview on how to reuse architectural designs
using frameworks. The chapter is concluded with a summary.

4.1 Reuse Organization

There are basically two ways to organize the staff when applying reuse
of frameworks. One is to let the same people both develop the framework
and reuse it. The other way to organize is to have separate development
and reuse organizations.

If the intention is to sell the framework outside the association, the choice
of reuse organization is limited. However, we believe that most associa-
tions will use their frameworks internally and the choice of reuse organ-
ization is heavily dependent on the company policies.

If the framework developers themselves will use the framework, they
will know the problems and the limitations of the framework. Also, they
will not have any problems of understanding the intentions behind the ar-
chitecture and the solutions. The classical resistance to reusing other
peoples solutions is also avoided and the well needed feedback from the
users to the developers is easily achieved.

Development teams should, as much as possible, consist of engineers
with knowledge of the domain, but this is seldom possible due to limited
personnel and economical resources. By having separate teams of frame-
work developers and application developers, the domain knowledge of
the experienced engineers (the framework developers) may be reused by
engineers with less domain knowledge (the application developers). This
is the main argument for separate organizations.

88

Reporting

A framework will probably not be completely stable after the first appli-
cation has been developed from it. The framework will probably need
modification the first times it is reused and each time it is reused it will
grow more and more stable [Joh91].

The reporting activity in the development with reuse process will con-
tribute to the increasing maturity of the framework.

Depending on how the responsibilities for the reuse and development of
the framework is organized the reports looks a little different, but in gen-
eral a reuse report should include [Karl95, p. 355]:

• Information about the reuse environment.

• Information about difficulties in understanding the framework or the
framework’s library.

• Information about difficulties when adapting the framework.

• The costs of reusing the framework.

• If any adaptions were needed to modify the framework.

4.2 Overview

We have limited our thesis to cover object-oriented frameworks. Howev-
er, there are other reusable components, mainly small components. Most
literature covering the development with reuse phase only address these
small components, and do not cover frameworks.

Reuse with frameworks requires a life cycle different from a life cycle
supporting reuse with smaller components. For example, searching for
suitable components requires a great effort in the case of reusing small
components, but when reusing a framework the effort devoted to search-
ing for frameworks is much less, due to the differences in size between
components and frameworks.

Another difference between small components and frameworks is that
understanding a framework requires greater effort than it takes to under-
stand a smaller component, due to the framework’s greater complexity.

Reuse will have greater impact if it is introduced early in the develop-
ment phase. Reusing a framework, which is an architectural component,
leads to reuse of all associated information, the products of the architec-
tural design, code and test [Karl95, p.344]. If the framework covers a

89

complete domain, parts of the domain analysis of this domain and the
analysis is reused as well.

Understanding the Framework

The effort required to understand the framework is a serious limitation to
reuse. Without understanding of what the framework does and how the
framework works it can not be decided if the framework is a suitable so-
lution to the problem. It is very difficult to understand the concepts of a
software component by just reading its specifications [Marc94, p.603].
To gain full understanding of the object, people must see the object’s stat-
ic context and behaviour and have some knowledge of world surround-
ing the component.

In the REBOOT project, two aspects of understanding the component is
considered [Karl95, p. 94]:

• Understanding of the functionality offered by the component. The fo-
cus should be on the component’s interface and later, if needed, effort
should be put into understanding the component’s internal structure.

• Understanding of the non-functional aspects of the component such
as efficiency, portability, reliability and understandability.

The results from the domain analysis are a good support for understand-
ing a framework within the actual domain.

• Guideline 60: Use domain analysis results, if available, to understand
the characteristics of the component [Karl95, p.348].

Any model of the framework is a good support when understanding it

If domain experts, experienced users of the framework or the developers
of the framework are available, consult them when needed.

• Guideline 61: Consult experienced people and every useful model
[Karl95, p.349].

Understanding of the components that are to be reused is important.
Gaining understanding of these components can be costly. It is, however,
essential because there are only limited ways to adapt a framework and
it is necessary that the chosen framework is the appropriate one [Karl95,
p. 349].

• Guideline 62: Carry out a complete study of the framework so it is ful-
ly understood and the appropriate choice can be made.

90

4.3 Analysis with Reuse

The analysis process aims to capture the requirements imposed on the
system as well as modelling the application world.

Introducing reuse at the analysis stage has a great impact on the contin-
uing development process [Karl95, p. 357]. A good tool to accomplish
reuse of analysis is to reuse domain frameworks.

• Guideline 63: Identify reuse opportunities during the specification
phase, and identify specific reuse requirements that sup-
port them [NATO91a; NATO91b; Karl95, p. 347].

It is important to formulate the requirements as generally as possible
when performing analysis with reuse, because too detailed requirements
will not map onto existing requirements. Different people will solve the
same problem differently and no solution should be proposed in the re-
quirements, since this will obscure the similarities between the require-
ments on existing components and requirements on the component to be
developed [Karl95, p. 347]. To increase the suitability for reuse, only
necessary functionality and performance should be described, since this
will increase the freedom to choose among reusable solutions [Karl95, p.
359].

• Guideline 64: Do not over-specify requirements [NATO91a,b, Karl95
p.357].

Several advantages exist when reusing requirements [Karl95, p. 358]:

• Consistency among related systems is provided.

• De-facto standards are established.

• Proven implementations are used, which increases the reliability.

• The overall risk is reduced if the development process of a similar
component may be studied.

The results from the domain analysis or the scope definition of the do-
main should be used to determine if the required component is comprised
within a domain already covered by a reusable framework.

• Guideline 65: Use the products from the domain analysis to under-
stand the context in which the application takes place,
and its dynamics [Karl95, p. 359].

91

• Guideline 66: Use the domain analysis to determine and validate new
application requirements[Karl95, p. 359].

If the required application is comprised within the domain and there ex-
ists a (almost) suitable framework its generic requirements can be used
in the negotiations of the application’s capabilities with the procurer
[Karl95, p. 359]. The procurer may accept some reduction of the appli-
cation’s functionality if this reduction makes it possible to reuse a frame-
work.

4.4 Design with Reuse

The design phase consists of two sub phases, architectural design and de-
tailed design.

Architectural Design with Reuse

The architectural design aims to define a high-level strategy for solving
the problem and implementing the solution.

Karlsson points out two main difficulties of reuse in the architectural
phase [Karl95, p. 361]:

• The difficulty of building up a knowledge of predefined solutions.

• Applying that knowledge to structure the actual problem so it can be
solved by the predefined solutions.

The problem is about knowing what solutions already exist and to iden-
tify solutions suitable to the problem. A framework may be such an ex-
isting solution. It may be necessary to adapt the framework to fully suit
the problem, or it may be necessary to negotiate the capability of the re-
quired application as mentioned in section 4.3.

An adaption of the framework is most likely needed and to make the
framework easier to understand and to adapt, the framework should be
well documented. If there are several framework candidates, choose one
that is well documented.

• Guideline 67: Select well-documented frameworks [Karl95, p. 362].

The selected framework should be evaluated and the framework’s behav-
iour should be understood. A way to achieve this understanding is to car-
ry out a some detailed design in advance [Karl95, p. 362]. This detailed

92

design will generate knowledge about how to get access to the most cen-
tral functionality of the framework.

When knowledge of how the framework interacts with other components
and how the most central functionality is accomplished the remainder of
the adaption is left to the phase of detailed design.

• Guideline 68: Carry out some detailed design of the application in ad-
vance for evaluation of the framework.

Implementation of new components that adapt the framework should fol-
low the architectural strategy of the framework, since these components
will be added to the framework’s component library. To make it easy to
understand the components in the framework’s library, the components
should be implemented and designed following the standards and strate-
gies of the framework.

• Guideline 69: Preserve the strategy implemented in the framework
when adapting it [Karl95, p. 362].

Reusing a framework is partly done by inheriting from a set of objects
and classes already defined by the framework. When making these adap-
tions new objects and classes will be identified. Object-oriented design
is an iterative process but the detailed objects and classes should be kept
apart from the results from the architectural design phase. These results
may be introduced in a preliminary version of the detailed design results.

• Guideline 70: Keep results from different phases separated

The best way to adapt a framework is refining it by using inheritance. In-
heritance will let the framework’s internals be kept unchanged.

• Guideline 71: Use inheritance to customize a framework [Karl95, p.
363].

4.5 Summary

Organizing the reuse process is important, if the framework is reused in-
ternally there are mainly two possibilities to organize the organization.
Separate development and reuse organizations or not separated organiza-
tions. Separate organizations makes most use of the experienced engi-
neers by letting them develop the framework and the less experienced
engineers use the framework to develop the applications. The drawback
is the difficulties to reuse other peoples work.

93

A framework will not be stable at once, feedback from the reusers are
necessary to accomplish a stable framework. Therefore a process for col-
lecting the reuse experiences should be established.

The life cycle of reuse of a framework is different from the life cycle of
reuse of smaller components. Less search for components is needed
when reusing a framework and a framework is introduced earlier in the
life cycle

Understanding frameworks is harder than understanding a smaller com-
ponent, but reuse introduction early in the life cycle will have a greater
impact.

Requirements imposed on a system should be formulated as generally as
possible if the system is going to be developed by reusing frameworks,
or if the system itself is developed for reuse.

The scope of a domain framework is important information when it
should be established if the framework is suitable for reuse in a special
case or not.

94

95

5 SUMMARY AND CONCLUSIONS

This thesis provides a process for the development of object-oriented
frameworks. Object-oriented frameworks are a reuse technique claimed
to have high reuse potential.

Our conclusion is that frameworks do allow for a high degree of reuse,
but are not always the best alternative from an economical point of view.
Developing frameworks is only recommended if the application domain
and its future evolution are well known.

The development of frameworks is time consuming, but a good frame-
work will pay back when the development time of later applications is
reduced. Little public evidence of economical benefits from framework
development exists, but many companies use frameworks internally.

Current object-oriented methodologies do not support the identification
of abstractions shared by several applications.

Framework development

Some of the techniques used in framework development may be suitable
to ordinary application development as well. The framework develop-
ment results in a stable architecture, less sensitive to changes in the re-
quirements.

A thorough analysis of the domain should precede the framework devel-
opment. The intention is to investigate if developing a framework in the
domain is feasible, to identify concepts common to the applications and
to define the borders of the domain. It is important to define the borders
of the domain. A very general framework, that can be reused by a variety
of applications, can not capture much of a specific application’s function-
ality.

Frameworks should not become to big, it is better to divide a large frame-
work into several small frameworks. Small frameworks are easier to re-
use and maintain.

96

Analysis

The analysis team should have knowledge of the domain, i e knowledge
of each application that is intended to be developed from the framework.
The analysis team should also have knowledge of framework develop-
ment.

A major issue during the capturing of requirements is to isolate all re-
quirements common to the applications and to let these requirements be
the requirements imposed on the framework. Use cases are suitable for
framework analysis, since the use case concepts abstract use cases and
extends support the isolation of general requirements.

Design

During the design of the framework, the focus should be on reusing and
designing generic design solutions.

Communications and the decision-making during design can be alleviat-
ed by using design patterns, since they provide a level of abstraction
above objects and classes, and represent proven design solutions to com-
mon problems in framework design.

Test, Maintenance and Reuse

A framework’s architecture is validated when the framework is reused
and the framework’s implementation is tested when the applications are
tested.

The amount of code to maintain is reduced when using frameworks, as
large parts of the applications’ code is implemented in the framework.

The scope of the framework is important information when establishing
if the framework is suitable for reuse in a special case or not.

Reusing a framework might be hard, due to lack of adequate documen-
tation. There are currently no well-documented techniques for frame-
work documentation, but current research suggests design patterns as a
component.

97

A GUIDELINES

This appendix contains a list of the guidelines provided for framework
development and framework reuse. The section headings are included
for reference.

3 Framework Development

3.4 Capture Requirements and Analysis Phase

• Guideline 1: A list of requirements on at least two applications
should be provided together with a list of require-
ments on the framework.

• Guideline 2: A list of future requirements on the framework
should be provided.

3.4.1 Capture Requirements

3.4.1.1 Requirements Process

• Guideline 3: Include members with knowledge of each appli-
cation area and a member with knowledge of
framework design into the analysis team.

• Guideline 4: Gather information from as many different sourc-
es as possible to acquire knowledge of which re-
quirements are of importance.

3.4.1.2 Requirements Specification

• Guideline 5: Separate the requirements into framework specif-
ic and application specific requirements

• Guideline 6: The application and framework requirements
should be divided into functional and non-func-
tional requirements due to the different properties
of the requirements.

3.4.1.3 Use Case Model

98

• Guideline 7: Separate the use cases into framework specific
and application specific use cases. This enables to
focus on what is general and what is specific be-
tween the given applications.

3.4.2 Analysis

3.4.2.1 Performing the Analysis

• Guideline 8: Remove redundant classes to refine the model
from unimportant information.

• Guideline 9: Identify high level abstractions preparing for the
identification of the framework.

• Guideline 10: Examine existing solutions to gain knowledge of
possible frameworks.

• Guideline 11: Introduce only abstractions which are within the
domain of the framework.

• Guideline 12: Structure large frameworks into sub frameworks.
Small frameworks are in general more focused
than large ones.

3.4.2.2 Static Object Model

• Guideline 13: Abstractions present in the domain model should
be named the same in the static object model en-
suring traceability.

• Guideline 14: Develop a static object model for each applica-
tion.

• Guideline 15: Introduce abstractions common to several appli-
cations in the static object model of the frame-
work.

3.4.3 Complementary Results and Models

• Guideline 16: Use graphical notations. Graphical notations
make the models easier to understand.

• Guideline 17: Present the models clearly visible to all project
members making the models easy to discuss.

3.5 The Design Phase

3.5.1 Object-Oriented Design

• Guideline 18: Subsystems shall have high cohesion and weak
coupling.

99

3.5.2 The Framework Design Process

• Guideline 19: Study existing frameworks and generic designs,
and try to reuse all available design knowledge.

• Guideline 20: Each design problem to which a design pattern
apply shall be solved according to that pattern.

• Guideline 21: Approve the design solutions by prototyping. If
necessary, go as far as to implementation to vali-
date the design solutions.

3.5.3 Architectural Design

3.5.3.1 Refine the Analysis Object Model

• Guideline 22: Objects directly transferred from analysis should
keep their names. To understand the framework
from a conceptual point of view, the reuser should
be able to trace the objects back to the analysis
models.

• Guideline 23: Keep classes appropriately small. Classes with
more than 25 methods should be considered can-
didates for restructuring.

3.5.3.2 Assign System Responsibilities to Specific Objects

• Guideline 24: State responsibilities as generally as possible. A
common way to express responsibilities may help
finding abstractions.

• Guideline 25: The first concern when distributing the responsi-
bilities should be to create methods which per-
form logical operations on instances of the class.

• Guideline 26: Distribute system intelligence so that abstractions
can be identified. When in doubt, the responsibil-
ity should be placed where it allows for the most
abstractions.

• Guideline 27: Create as many abstract classes as possible. Look
for duplicated responsibilities and factor them
into abstract superclasses.

• Guideline 28: Factor common responsibilities as high in the in-
heritance hierarchy as possible.

3.5.3.3 Analyse Collaborations

• Guideline 29: Define collaborations between abstract classes.
Use polymorphism to access the methods in the
concrete leaves of the framework.

3.5.3.4 Refine the Inheritance Hierarchies and Collaborations

• Guideline 30: Class hierarchies should be fairly deep and nar-
row. Shallow and wide inheritance hierarchies in-

100

dicate that abstractions still are to be found in the
hierarchy.

• Guideline 31: Preserve the abstractions identified in domain
analysis and analysis. Further refinement should
not violate the conceptual abstractions.

• Guideline 32: Try not to extend the inheritance hierarchies too
far. Class hierarchies with more than 5 levels of
abstraction should be considered candidates for
restructuring. Use composition to flatten the hier-
archies.

• Guideline 33: Make sure things that are the same are named the
same.

• Guideline 34: Eliminate differences by parameterizing. If some
classes or methods provide approximately the
same behaviour, the possibility of parameterizing
should be investigated.

• Guideline 35: Maintain the documentation and models, to ease
the understanding of the class hierarchies.

• Guideline 36: Multiple inheritance should be handled with care.
Multiple inheritance complicates the inheritance
structure and might make the framework design
hard to understand.

• Guideline 37: Only the leaves of an inheritance hierarchy in a
framework should be concrete. Restructure the hi-
erarchy instead of inheriting from a concrete
class.

• Guideline 38: Use type preserving inheritance when the con-
crete leaves of the framework are derived from its
superclasses. Both adding and cancelling inherit-
ed methods will violate the polymorphism.

3.5.4 Detailed Design

• Guideline 39: Methods should have few parameters. Methods
with more than five parameters should be consid-
ered candidates for restructuring.

• Guideline 40: Let one method perform only one task. Parts of a
methods performing several tasks might be com-
mon to several classes.

• Guideline 41: Keep a small public interface for a class. Classes
with more than 25 methods should be considered
candidates for restructuring.

• Guideline 42: If new abstractions are identified, introduce them
in the appropriate model. Conceptual abstractions
in the analysis models, and lower-level abstrac-
tions in the design model.

101

• Guideline 43: Keep method signatures consistent. Things that
are the same should be named the same.

3.6 Implementation

3.6.2 Guidelines

3.6.2.1 Relationships

• Guideline 44: Comment all multiple inheritance thoroughly.
Thorough documentation might make up for the
complications multiple inheritance implies.

• Guideline 45: Avoid casting down the inheritance hierarchy.
The methods in a subclass should be accessed
through the superclass’ interface.

• Guideline 46: Avoid using friend if possible, as the friend con-
cept violates information hiding. It is better to
make some member functions friends than to
make a whole class a friend.

• Guideline 47: Restructure the inheritance hierarchies instead of
using type-restrictive inheritance.

• Guideline 48: Do not use private inheritance. Private inheritance
is not an object-oriented concept.

3.6.2.2 Classes and Methods

• Guideline 49: Inhibit abstract classes from being instantiated

• Guideline 50: All methods intended to be overloaded or rede-
fined in subclasses must be declared as virtual.

• Guideline 51: Keep methods small, methods with more than 20
lines should be regarded candidates for modifica-
tion.

• Guideline 52: Declare member methods const when possible.
Declaring a method const ensures that invoking it
will not affect the state of the object.

• Guideline 53: Declare parameters const when possible. Declar-
ing a parameter const ensures that its value will
not be changed in the method.

• Guideline 54: Eliminate explicit type checking on object types

• Guideline 55: Specify attributes as private. Specifying attributes
as private hides the data representation and makes
the class’ interface stable.

• Guideline 56: Avoid implicit inline, as implementation in head-
er files violates encapsulation. Use explicit inline
instead.

3.6.2.3 Constructors and Destructors

102

• Guideline 57: Implement implicitly generated class methods.
The compiler’s implementations may result in un-
expected behaviour.

• Guideline 58: When copying or assignment makes no sense,
hide the copy constructor and the assignment op-
erator in the private part of the class specification.

• Guideline 59: Always make destructors virtual in the base class-
es. Classes should deallocate the memory re-
sources they use themselves.

4 Framework Reuse

4.2 Overview

• Guideline 60: Use domain analysis results, if available, to un-
derstand the characteristics of the component
[Karl95, p.348].

• Guideline 61: Consult experienced people and every useful
model [Karl95, p.349].

• Guideline 62: Carry out a complete study of the framework so it
is fully understood and the appropriate choice can
be made.

4.3 Analysis with Reuse

• Guideline 63: Identify reuse opportunities during the specifica-
tion phase, and identify specific reuse require-
ments that support them [NATO91a; NATO91b;
Karl95, p. 347].

• Guideline 64: Do not over-specify requirements [NATO91a,b,
Karl95 p.357].

• Guideline 65: Use the products from the domain analysis to un-
derstand the context in which the application
takes place, and its dynamics [Karl95, p. 359].

• Guideline 66: Use the domain analysis to determine and validate
new application requirements[Karl95, p. 359].

4.4 Design with Reuse

• Guideline 67: Select well-documented frameworks [Karl95, p.
362].

• Guideline 68: Carry out some detailed design of the application
in advance for evaluation of the framework.

103

• Guideline 69: Preserve the strategy implemented in the frame-
work when adapting it [Karl95, p. 362].

• Guideline 70: Keep results from different phases separated

• Guideline 71: Use inheritance to customize a framework
[Karl95, p. 363].

104

105

B CASE STUDY

The purpose of the case study is to provide a simple working example of
the high-level development of a small framework.

The domain we chose is small and simple enough according to the time
constraints of the thesis. The domain should be well known to both the
readers and the authors of the thesis and requires no further investigation.
The chosen domain was games of dice, which is a small domain whose
few concepts are well known to most people.

We decided to develop three applications of games of dice; The Game of
Greed, Craps and Yatzy. The games were randomly chosen with no re-
gard to similarities between the games or whether they where suitable to
fit into a common framework or not.

Use cases should be used to describe then entire external behaviour of the
system, but since the domain is well known, we have only provided a few
use cases and interaction diagrams. The implementation of the frame-
work is not in the scope of this case study and no consideration is taken
to user interfaces.

B.1 Notation

In the interaction diagrams and object models, we have used an OMT-
based notation, defined by Gamma et al. in the Design Patterns book
[Gam94].

106

B.1.1 Class Diagram Notation [Gam94]

B.1.2 Interaction Diagram Notation [Gam94]

implementation
pseudocode

Abstract_Class

Operation()
// virtual

Concrete_Subclass_1

Operation()
// implementation 1

Concrete_Subclass_2

Operation()
// implementation 2

Concrete_Class

Framework_Class

aggregation

object reference

creates

one

many

Operation()

new Object

DoOperation()tim
e

(operation on self)

anObject anotherObject

(instantiation)

op
er

at
io

n
ac

tiv
e

on
 a

nO
bj

ec
t

107

B.2 The Analysis Phase

B.2.1 Requirements

We provided requirements on three applications. We also provided re-
quirements on the framework and future requirements on the framework.

B.2.1.1 Dice Game Framework Requirements

Concept descriptions

Die: Cube. Six sides, numbered from one to six. When thrown it lands
with one side up.

Throw: A die is thrown upon a surface. The side facing up is the result
of the throw.

Player: A person participating in a game of dice.

Requirements

A player shall be able to throw any number of dice.

There shall be a dice container, dice can be added and removed and all
dice can be thrown at once.

There shall be rules to a game of dice.

A player can bet, play a game according to the rules, decide if to stop or
continue and throw the dice. He has somewhere to keep his money, or his
current score.

There is an order of turns. A scheduler shall keep track of who is in turn.

It shall be possible to see when the game is over and who has won.

B.2.1.2 Yatzy Requirements

The Yatzy game uses five dice, of which an arbitrary number can be
thrown together.

108

A Yatzy protocol looks like this:

Two or more players can participate in a game.

The calculation of Yatzy scores is supposed to be known by the reader.

Rules

When the game starts, the order of turns is decided upon, and the player
to begin is chosen.

In the first throw of a turn, the player throws all five dice. He can chose
to throw an optional number of dice again or to stop. When he is satisfied
or he has thrown three times, he chooses in which row in the protocol to
note the score. The score is calculated according to the chosen row and
noted in the row.

The turn goes to the player to the left of him when he is done.

The game ends when all squares in the protocol are full (after 16 rounds)
and the winner is the player with the highest score.

B.2.1.3 Greed Requirements

The Game of Greed uses five dice, of which an arbitrary number can be
thrown together.

Yatzy

Ones

Twos
Threes

Fours
Fives

Sixes

Sum
Bonus

One Pair
Two Pairs
Threesome

Foursome

Small straight
Large Straight
Full House

Chance

Yatzy
Sum

Axel Niklas

109

A Greed protocol looks like this:

Two or more players can participate in a game.

The score of a throw is calculated as follows:
Three 1:s give 1000 points, three n:s give n*100 points. Single 1:s give
100 points, single 5:s give 50 points. Each die can only give points once.

Rules

When the game starts, the order of turns is decided upon, and the player
to begin is chosen.

In the first throw of a turn, the player throws all five dice. If the score is
>300 p., he can choose to throw the dice that did not give any points
again or to stop. He continues to throw until the score of a throw is 0, or
until he chooses to stop. When finished he notes the score in the current
square of his column in the protocol.

The turn goes to the player to the left of him when he is done.

The game ends when a player reaches 5000 p and all players have had an
equal number of turns. The player with the highest score wins.

B.2.1.4 Craps Requirements

The Craps game uses two dice, which are always thrown together.

Two or more players can participate in a game. Each player has a wallet
in which he stores his money, and from which he can take money to bet.

Axel Niklas

110

Rules

When the game starts, the order of turns is decided upon, and the player
to begin is chosen.

In a round, all players except from the player to throw bets money to the
kitty, saying the thrower will fail. The thrower bets, no more than is in
the kitty, saying he will make it.

The player throws the dice, and if the sum of the eyes of the two dice
(“the sum”) is 7 or 11, he wins. If the sum is 2, 3 or 12 he loses. If the
sum is 4, 5, 6, 8, 9 or 10 he gets a second chance. The player to the left
throws the dice, and the player has to throw the same sum as the player
to the left to win, and the sum can not be 7.

If he wins, he can take out twice his bet from the kitty.

The turn goes to the player to the left of him when he is done.

The game ends when one or more of the players goes bankrupt, and the
winner is the player with the most money.

B.2.1.5 Future requirements

The design shall be possible to extend to a general framework for appli-
cation of games of dice.

The framework should be able to extend into both human and computer
players.

B.2.1.6 Requirements modifications

Craps

After renegotiations with the customer the requirement:

“The player throws the dice, and if the sum of the eyes of the two dice
(“the sum”) is 7 or 11, he wins. If the sum is 2, 3 or 12 he loses. If the
sum is 4, 5, 6, 8, 9 or 10 he gets a second chance. The player to the left
throws the dice, and the player has to throw the same sum as the player
to the left to win, and the sum can not be 7.”

is changed to the new requirement:

“The player throws the dice, and if the sum of the eyes of the two dice
(“the sum”) is 7 or 11, he wins. If the sum is 2, 3 or 12 he loses. If the
sum is 4, 5, 6, 8, 9 or 10 he gets a second chance, and he has to throw the
same sum twice in a row to win, and the sum can not be 7.”

111

The change in the requirement did not have any negative impact on the
functionality of the application. The requirement is changed to let the
Craps application fit better into the framework promoting reuse.

B.2.2 Use Cases

B.2.2.1 Yatzy Use Cases

Use case: Start of game

Two players start playing with five dice according to Yatzy rules. They
write their names at the top of a column in the Yatzy protocol.

Use case: One turn

The first player throw all five dice, and get three fives. He keeps the fives
and throws the other two dice again. He get two more fives and notes fifty
points at the “Yatzy” square of his column in the Yatzy protocol.

Use case: End of game

The players take turns playing until the protocol is full, i.e. 16 times. The
first player wins, since he has a score of 362 and the second player has a
score of 253.

B.2.2.2 Greed Use Cases

Use case: Start of game

Two players start playing with five dice according to Greed rules. They
write their names at the top of a column each in the Greed protocol.

Use case: One turn 1

The first player throws all five dice, and get three ones, a two and a three.
He keeps the ones and throws the other two dice again. He get two threes,
and scores zero, which he notes in the current square of his column in the
Greed protocol.

Use case: One turn 2

112

The second player throws all five dice, and get two fives, a two, a three
and a one. Since the score is 200, and less than 300, he scores zero, which
he notes in the current square of his column in the Greed protocol.

Use case: End of game

The first player reaches 5020 p, and the second player gets a last chance.
The second player throws all five dice, and gets three ones, a two and a
three. He chooses to stop, and scores 1000 p, which he notes in the cur-
rent square of his column in the Greed protocol. His total score is 5100,
and he wins.

B.2.2.3 Craps Use Cases

Use case: Start of game

Two players start playing with two dice according to Craps rules. They
have a kitty to place the bets in.

Use case: One turn 1

The second player bets $10 to the kitty, saying the first player will fail.
The first player sees there are $10 in the kitty and places the maximum
$10 bet. The first player throws the two dice and the sum is 7, and he gets
to take $20 from the kitty.

Use case: One turn 2

The second player bets $5 to the kitty, saying the first player will fail. The
first player sees there are $5 in the kitty and places a $2 bet, saying he
will make it. The first player throws the two dice and the sum is 4, and
he gets a second chance. He throws the two dice and the sum is 6. He
throws the two dice and again the sum is 6, and he gets to take $4 from
the kitty.

Use case: End of game

The first player goes bankrupt, and the second player wins the game.

B.2.3 The Object Model

The process of identifying the objects of a framework is started by the
identification of the objects of each application. The object identification
of an application should be done in parallel with the other applications to

113

achieve consistency between the applications in naming of similar ob-
jects.

The above also applies to the design process of the analysis models. One
model should be designed for each application. The analysis model of
each application should be designed in parallel with the other applica-
tions’ analysis models to achieve maximum similarity between the archi-
tectures of the applications. Designing the analysis models in parallel
makes it easier to find similarities between the models, that can be moved
into the framework.

114

Dice_Player

Play()

Greed_Player

Play()

Yatzy_Player

Play()

Craps_Player

Play()

Scheduler

Play_Game()

Rules

Rule()
Get_Winner()

Greed_Rules

Rule()
Get_Winner()

Yatzy_Rules

Rule()
Get_Winner()

Craps_Rules

Rule()
Get_Winner()

Die

Roll()
Get_Side_Up()

Cup

Throw()
Get_Result()
Get_No_Dice()
Add_Die()
Remove_Die()

Mind

Decide()

Greed_Mind

Decide()

Yatzy_Mind

Decide()

Craps_Mind

Decide()

Protocol

Note_Score()

Yatzy_Protocol

Note Score()

Greed_Protocol

Note Score()

Wallet

Deposit()
Withdraw()
GetAmount()

Kitty

Deposit()
Withdraw()
GetAmount()

Analysis
Object
Model

115

B.2.3.1 Yatzy Object Responsibilities

Player

• Be able to participate in a game of Yatzy.

• Be able to perform a turn of the game, according to the rules.

• Be able to read the protocol.

Scheduler

• Keep track of the players participating in a round of the game.

• Keep track of who is in turn.

• Judge if the game is over.

• Judge who has won.

Die

• Be able to produce a random integer in [1..6], when thrown.

• Remember the result until thrown again.

Cup

• Contains a number of dice.

• Throw contained dice and tell their result, respectively.

Protocol

• Keep track of the cells of a Yatzy protocol, with 18 rows and n col-
umns.

• Be able to store and tell the number in each cell.

Rules

• Calculate the result of a throw, depending on the dice and which row
in the protocol to use.

116

• Judge if the player may continue, depending on the number of throws
he has done in this round.

• Judge who is the final winner.

Mind

• Make a decision to throw the dice.

• Make a decision which dice to throw again.

• Make a stop/continue decision.

• Make a decision about where to put the result in the protocol.

B.2.3.2 Greed Object Responsibilities

Player

• Be able to participate in a game of Greed.

• Be able to perform a turn of the game, according to the rules.

• Be able to read the protocol.

Scheduler

See Yatzy.

Die

See Yatzy.

Cup

See Yatzy.

Protocol

• Keep track of the cells of a greed protocol, with n rows and m col-
umns.

• Be able to store and tell a number in each cell.

117

Rules

• Be able to calculate the score for a throw with n dice (according to an
algorithm), and which dice can be thrown again.

• Judge if the player may continue, depending on the score and the
number of throws he has done in this round.

• Judge who is the final winner.

Mind

• Make a decision to throw the dice.

• Make a decision to stop or continue.

B.2.3.3 Craps Object Responsibilities

Player

• Be able to participate in a game of Craps.

• Be able to perform a turn of the game, according to the rules.

• Be able to bet money from his wallet to a kitty.

• Be able to receive money from kitty to wallet.

• Be able to tell how much money he has got.

• Be able to check the amount in the kitty.

Scheduler

See Yatzy.

Die

See Yatzy.

Cup

See Yatzy.

118

Kitty

• Be able to receive money.

• Be able to pay money.

Rules

• Add up the dice.

• Judge if the player has won/has lost/gets a second chance, depending
on the sum and the number of throws he has done.

• Judge who is the final winner.

Mind

• Make a decision to throw the dice.

• Bet an amount.

B.2.3.4 Identification of Similar Objects

We found that many classes were common to all three applications.
These classes were moved into the framework. However, some objects
were not completely similar:

Player

This object exists in all three games (and in all other games of dice to).
Some behaviour and attributes is common to all rules and some is not.

Analysis decision:
Commonalities between the rules of the three games are moved into the
abstract class Player. The differences between the applications are
moved into three different specializations: Yatzy_Player, Greed_Player
and Craps_Player. The class Mind should be moved into the framework.

Protocol

This object does not exists in Craps but it exists in both Yatzy and Greed.
The object protocol is not completely similar between the games Yatzy
and Greed, but the differences may be modelled through specialisation.

119

Analysis decision:
The behaviour and attributes that are similar between the two protocol
objects is moved into the abstract class Protocol. The differences is
moved into the specializations Yatzy_Protocol and Greed_Protocol. The
abstract class is moved into the framework.

Kitty

This object only exists in Craps and it should only be modelled outside
the framework. However, many games of dice use a Kitty and consider-
ing future applications the object Kitty should be moved into the frame-
work.

Analysis decision:
The object Kitty should be moved into the framework.

Rules

This object exists in all three games (and in all other games of dice to).
Some behaviour and attributes is common to all rules and some is not.

Analysis decision:
Commonalities between the rules of the three games are moved into the
abstract class Rules. The differences between the applications are moved
into three different specializations: Yatzy_Rules, Greed_Rules and
Craps_Rules. The class Rules should be moved into the framework.

Mind

This object exists in all three games (and in all other games of dice to).
Some behaviour and attributes is common to all rules and some is not.

Analysis decision:
Commonalities between the rules of the three games are moved into the
abstract class Mind. The differences between the applications are moved
into three different specializations: Yatzy_Mind, Greed_Mind and
Craps_Mind. The class Mind should be moved into the framework.

120

B.3 The Design Phase

B.3.1 Architectural Design

During this phase it occurred that the object Wallet had the same func-
tionality as the object Kitty, and a new object was identified and intro-
duced into the design model, the Unit Container.

B.3.1.1 Framework Solutions

Mechanisms are needed to decouple the instantiation of application spe-
cific classes from the framework. The design pattern “Abstract Factory”
provides a way to isolate the instantiation from the framework. For ex-
ample, when a Yatzy game is initiated, the Yatzy_Player objects should
not be instantiated inside the Scheduler, as this couples the framework to
one of its applications. By using an “abstract factory”, the Scheduler can
use instances of Yatzy_Player without having to know their actual type.

Upon discovering that the Rules classes for the applications only differed
in the algorithms used by its methods, we saw a possibility to apply the
“Strategy” design pattern. By doing this we discovered further possibil-
ities of generalisation between the Ruler and Mind classes, but these gen-
eralisations are not included in the design models. There are other
possibilities to apply the “Strategy” pattern, e.g. the Play() method in the
Dice_Player class hierarchy. Using “Strategy” makes the Rules class in-
dependent of the algorithms used to “calculate” the decisions.

B.3.1.2 The Object Model

Interaction diagrams were used to identify the methods of the design ob-
jects.

The design objects are added to the object model, and we have marked
out the design patterns used in the design. How the “Abstract Factory”
instantiates the application specific classes is exemplified for the Yatzy
factory, and the other applications work in a similar way.

121

FRules

Get_Decision()
Get_Winner()
Evaluate()

FDice_Player

Play()
Get_Score()

Greed_Player

Play()

Yatzy_Player

Play()

Craps_Player

Play()

FScheduler

Play_Game();

FDie

Roll()
Get_Side_Up()

FCup

Throw()
Get_First_Result()
Get_Next_Result()
Get_No_Dice()
Add_Die()
Remove_Die()

FMind

Get_Decision();

Greed_Mind

Get_Decision();

Yatzy_Mind

Get_Decision();

Craps_Mind

Get_Decision();

FProtocol

Note_Score();

Yatzy_Protocol

Note_Score();

Greed_Protocol

Note_Score();

FUnit_Container

Deposit();
Withdraw();
Get_nUnitst();

FDice_Game

Create_Player()
Create_Rules()
Create_Protocol()
Create_Kitty()

Yatzy

Create_Player()
Create_Rules()
Create_Protocol()
Create_Kitty()
// empty

Greed

Create_Player()
Create_Rules()
Create_Protocol()
Create_Kitty()
//empty

Craps

Create_Player()
Create_Rules()
Create_Protocol()
//empty
Create_Kitty()

FElector

Get_Winner()

Yatzy_Elector

Get_Winner()

Craps_Elector

Get_Winner()

Greed_Elector

Get_Winner()

FRuler

Get_Decision()

Yatzy_Ruler

Get_Decision()

Craps_Ruler

Get_Decision()

Greed_Ruler

Get_Decision()

ruler->Get_Decision()

elector->Get_Winner()

Kitty

evaluator->Evaluate()

FEvaluator

Evaluate()

Yatzy_Evaluator

Evaluate()

Craps_Evaluator

Evaluate()

Greed_Evaluator

Evaluate()

Design Object Model

Abstract
Factory

Strategies

122

B.3.2 Interaction Diagrams

We used interaction diagrams to identify the collaborations between the
objects and to identify the methods. The interaction diagrams shows how
the system handles the functionality in the use cases.

B.3.2.1 Yatzy

Use case 1: Start of game

Two players start playing with five dice according to Yatzy rules. They
write their names at the top of a column in the Yatzy protocol.

Use case 2: One turn

The first player throw all five dice, and get three fives. He keeps the fives
and throws the other two dice again. He get two more fives and notes fifty
points at the “Yatzy” square of his column in the Yatzy protocol.

Use case 3: End of game

The players take turns playing until the protocol is full, i.e. 16 times. The
first player wins, since he has a score of 362 and the second player has a
score of 253.

123

aYatzyMind[2] aYatzyPlayer[1] aYatzyPlayer[2] aScheduler aYatzyFactory aYatzyRuler aYatzyElector

CreatePlayer()

new YatzyPlayer

CreatePlayer()

new YatzyPlayer

CreateRules()
new Yatzy_Ruler

new Yatzy_Elector

new Rules

aYatzyMind[1] aCup

new YatzyMind

new YatzyMind

aYatzyProtocol

CreateProtocol()

new Y_Protocol

CreateKitty()

aRules

new Die

new Die

new Die

new Die

new Die

124

___Dice 1-5___aYatzyMind[2] aYatzyPlayer[1] aYatzyPlayer[2] aScheduler aYatzyFactory aYatzyRuler aYatzyElectoraYatzyMind[1] aCupaYatzyProtocol aRules

Play(aCup, aYatzyProtocol, Round 1)

Get_Decision(aCup, Throw 1) Rule(aCup, Throw 1)

Get_Decision(aCup, aYatzyProtocol, Throw 1)

Throw() Roll()

Roll()

Roll()

Roll()

Roll()

Get_Side

Get_Side

Get_Side

Get_Side

Get_SideGet_Decision(aCup, Throw 2)
Rule(aCup, Throw 2)Get_Decision(aCup, aYatzyProtocol, Throw 2)

Throw()
Roll()

Roll()

Get_Side

Get_Side

Get_Decision(Round 2)

Rule(aCup, Throw 2)

Get_Decision(aCup, aYatzyProtocol, Throw 3)

Evaluate(aCup)

Play(aCup, aYatzyProtocol, Round 1)

Get_Decision(Round 1)

Get_Decision(Round 17)

Get_Decision(aCup, Throw 3)

Get_Winner(aYatzyPlayer[1..2])
Elect(aYatzyPlayer[1..2])

Rule(aCup, Round2)

Rule(aCup, Round17)

Evaluate(aCup)

Evaluate(aCup)

Note(Score, Row, this)
Evaluator???

Evaluator???

125

B.3.1.3 Greed

Use case 1: Start of game

Two players start playing with five dice according to Greed rules. They
write their names at the top of a column each in the Greed protocol.

Use case 2: One turn 1

The first player throws all five dice, and get three ones, a two and a three.
He keeps the ones and throws the other two dice again. He get two threes,
and scores zero, which he notes in the current square of his column in the
Greed protocol.

Use case 3: One turn 2

The second player throws all five dice, and get two fives, a two, a three
and a one. Since the score is 200, and less than 300, he scores zero, which
he notes in the current square of his column in the Greed protocol.

Use case 4: End of game

The first player reaches 5020 p, and the second player gets a last chance.
The second player throws all five dice, and gets three ones, a two and a
three. He chooses to stop, and scores 1000 p, which he notes in the cur-
rent square of his column in the Greed protocol. His total score is 5100,
and he wins.

126

___Dice 1-5___aGreedMind[2] aGreedPlayer[1] aGreedPlayer[2] aScheduler aGreedFactory aGreedRuler aGreedElector

CreatePlayer()

new GreedPlayer

CreatePlayer()

new GreedPlayer

CreateRules()
new Greed_Ruler

new Greed_Elector

new Rules

aGreedMind[1] aCup

new GreedMind

new GreedMind

aGreedProtocol

CreateProtocol()

new G_Protocol

CreateKitty()

aRules

new Die

new Die

new Die

new Die

new Die

127

___Dice 1-5___aGreedMind[2] aGreedPlayer[1] aGreedPlayer[2] aScheduler aGreedFactory aGreedRuler aGreedElectoraGreedMind[1] aCupaGreedProtocol aRules

Play(aCup, aGreedProtocol, Round 1)

Get_Decision(aCup, Throw 1) Rule(aCup, Throw 1)

Get_Decision(aCup, Throw 1)

Roll()

Get_Side
Get_Decision(aCup, Throw 2)

Rule(aCup, Throw 2)

Get_Decision(aCup, Throw 2)

Throw()
Roll()

Roll()

Get_Side

Get_Side

Get_Decision(aGreedPlayer[1..2])

Note(0, Round, this)

Rule(aGreedPlayer[1..2])

Get_Score

Get_Score

Evaluator???

Evaluate(aCup)

Throw()

Get_Decision(aCup, Throw 2)
Rule(aCup, Throw 2)

Evaluator???

Evaluate(aCup)

Get_Decision(aGreedPlayer[1..2])
Rule(aGreedPlayer[1..2])

Get_Score

Get_Score

Play(aCup, aGreedProtocol, Round 1)

Get_Decision(aCup, Throw 1) Rule(aCup, Throw 1)
Get_Decision(aCup, Throw 1)

Roll()

Get_Side

Throw()

Get_Decision(aCup, Throw 2)

Note(0, Round, this)

128

___Dice 1-5___aGreedMind[2] aGreedPlayer[1] aGreedPlayer[2] aScheduler aGreedFactory aGreedRuler aGreedElectoraGreedMind[1] aCupaGreedProtocol aRules

Get_Decision(aGreedPlayer[1..2])
Rule(aGreedPlayer[1..2])

Get_Score

Get_Score

Play(aCup, aGreedProtocol, Round 9)

Get_Decision(aCup, Throw 1) Rule(aCup, Throw 1)
Get_Decision(aCup, Throw 1)

Roll()

Get_Side

Throw()

Get_Decision(aCup, Throw 2)

Note(1000, Round, this)

Player 1 has
5000 p., the

Get_Decision(aCup, Throw 2)

decision is “stop”.
The other players
get a chance

Get_Winner(aGreedPlayer[1..2])
Elect(aGreedPlayer[1..2])

Get_Score

Get_Score

129

B.3.1.4 Craps

Use case 1: Start of game

Two players start playing with two dice according to Craps rules. They
have a kitty to place the bets in.

Use case 2: One turn 1

The second player bets $10 to the kitty, saying the first player will fail.
The first player sees there are $10 in the kitty and places the maximum
$10 bet. The first player throws the two dice and the sum is 7, and he gets
to take $20 from the kitty.

Use case 3: One turn 2

The second player bets $5 to the kitty, saying the first player will fail. The
first player sees there are $5 in the kitty and places a $2 bet, saying he
will make it. The first player throws the two dice and the sum is 4, and
he gets a second chance. He throws the two dice and the sum is 6. He
throws the two dice and again the sum is 6, and he gets to take $4 from
the kitty.

Use case 4: End of game

The first player goes bankrupt, and the second player wins the game.

130

Die[1]aCrapsMind[2] aCrapsPlayer[1] aCrapsPlayer[2] aScheduler aCrapsFactory aCrapsRuler aCrapsElector

CreatePlayer()

new Crap-

CreatePlayer()

new Crap-

CreateRules()
new

new Craps_Elector

new Rules

aCrapsMind[1] aCup

new CrapsMind

new CrapsMind

aKitty

aWallet[2]

new Kitty

CreateKitty()

aRules

new Die

new Die

aCrapsEvalua-

new Craps_Evaluator

new Cup

new Wallet

new Wallet

aWallet[1] Die[2]

CreateProto-

131

aCrapsMind[2] aCrapsPlayer[1]aCrapsPlayer[2] aScheduler aCrapsFactory aCrapsRuler aCrapsElectoraCrapsMind[1] aCupaRules

Play(aCup, aKitty, Round 1)

Get_Decision(aCup, Throw Rule(aCup, Throw 1)

GetAmount()

Roll()

Roll()

Get_Side

Get_Side

Get_Decision(aCrap-

Rule(aCrapsPlayer[1..2])

Get_Score()

Get_Score()

Throw()

aWal-

aWal- aKitty

Get_Amount()

Get_Amount()

Die[1] Die[2]aCrapsEvalua-

Bet()

Deposit()

Withdraw()
Get_Decision(aCup, Throw Rule(aCup, Throw 2)

Bet()

Deposit()

Get_Amount()

Bet()

Get_Amount()

Get_Decision(aCrap-

Rule(aCrapsPlayer[1..2])

Get_Score()

Get_Score()
Get_Amount()

Get_Amount()

Bet()

Deposit()

Get_Amount()

Bet()

132

aCrapsMind[2] aCrapsPlayer[1]aCrapsPlayer[2] aScheduler aCrapsFactory aCrapsRuler aCrapsElectoraCrapsMind[1] aCupaRules

aWal-

aWal- aKitty Die[1] Die[2]aCrapsEvalua-

Play(aCup, aKitty, Round 1)

Get_Decision()

Rule(aCup, Throw 1)

GetAmount()

Roll()

Roll()

Get_Side

Get_Side

Throw()

Bet()

Deposit()

Get_Decision(aCup, Throw 2) Rule(aCup, Throw 2)

Get_Amount()

Get_Decision()

Roll()

Roll()

Get_Side

Get_Side

Throw()

Get_Decision(aCup, Throw 4) Rule(aCup, Throw 4)

Roll()

Roll()

Get_Side

Get_Side

Throw()

Get_Decision(aCup, Throw 3) Rule(aCup, Throw 3)

Get_Decision(aCup, Throw 1)
Evaluate()

Evaluate()

Evaluate()

Evaluate()

Win()
Withdraw()

Deposit()
Get_Decision(aCrap-

Rule(aCrapsPlayer[1..2])

Get_Score()

Get_Score()

Get_Amount()

Get_Amount()

Get_Winner(aCrapsPlayer[1..2])
Rule(aCrapsPlayer[1..2])

Get_Score()

Get_Score()

Get_Amount()

Get_Amount()

133

B.3.3 Detailed Design

In the detailed design, we fully define the public interfaces and attributes
of the framework and application classes. We use a C++ syntax with no
regard to pointers etc.

B.3.3.1 Framework

enum TDecision {stop, continue, win, lose}

class FDice_Player{

 protected:
 int nThrow;
 FMind aMind;
 FUnit_Container aWallet;

 public:
 FDice_Player();
 virtual int Play();
 int Get_Score();
}

class FScheduler{

 private:
 FDice_Player array Players[100];
 int nRound;

 public:
 FScheduler(int nPlayers, int nDice,
 FDiceGame aGame);
 Play_Game();
}

class FDie{

 private:
 int nSideUp;

 public:
 int Roll();
 int Get_Side_Up();
}

class FCup{

 private:
 int nDice;

 public:

134

 Throw();
 int Get_First_Result();
 int Get_Next_Result();
 int Get_No_Dice();
 Add_Die(Die aDie);
 Remove_Die();
}

class FProtocol{

 public:
 virtual Note_Score(int nScore, int nRow,
 FDice_Player aPlayer);
}

class FRules {

 private:
 FRuler aRuler;
 FElector anElector;
 FEvaluator anEvaluator;

 public:
 FRules(FRuler aRuler, FElector anElector,
 FEvaluator anEvaluator);
 TDecision Get_Decision(FCup aCup, int nRound,
 int nThrow,
 FPlayer array Players);
 FPlayer Get_Winner(FPlayer array Players);
 int Evaluate(FCup aCup);
}

class FRuler{

 public:
 virtual TDecision GetDecisison(FCup aCup,
 int nRound,
 int nThrow,
 FPlayer array
 Players);
}

class FElector{

 public:
 virtual FPlayer Get_Winner(FPlayer array Players);
}

class FEvaluator{

 public:
 virtual int Evaluate(FCup aCup);

135

}

class FMind{

 public:
 virtual TDecisison Get_Decision(FCup aCup,
 int nRound,
 int nThrow,
 FPlayer array
 Players);
}

class FDice_Game{

 public:
 virtual FPlayer Create_Player();
 virtual FRules Create_Rules();
 virtual FProtocol Create_Protocol();
 virtual FUnit_Container Create_Kitty();
}

B.3.3.2 Yatzy

class Yatzy_Player: public FDice_Player{

 public:
 Yatzy_Player();
 int Play();
}

class Yatzy_Protocol: public FProtocol{

 public:
 Note_Score(int nScore, int nRow,
 FDice_Player aPlayer);
}

class Yatzy_Ruler: public FRuler{

 public:
 TDecision Get_Decision(FCup aCup, int nRound,
 int nThrow,
 FPlayer array Players);
}

class Yatzy_Elector: public FElector{

 public:
 FPlayer Get_Winner(FPlayer array Players);
}

class Yatzy_Evaluator: public FEvaluator{

136

 public:
 int Evaluate(FCup aCup);
}

class Yatzy_Mind: public FMind{

 public:
 TDecisison Get_Decision(FCup aCup, int nRound,
 int nThrow,
 FPlayer array Players);
}

class Yatzy: public FDice_Game{

 public:
 FPlayer Create_Player();
 FRules Create_Rules();
 FProtocol Create_Protocol();
 FUnit_Container Create_Kitty();
 // empty
}

B.3.3.3 Greed

class Greed_Player: public FDice_Player{

 public:
 Greed_Player();
 int Play();
}

class Greed_Protocol: public FProtocol{

 public:
 Note_Score(int nScore, int nRow,
 FDice_Player aPlayer);
}

class Greed_Rule: public FRuler{

 public:
 TDecision Get_Decision(FCup aCup, int nRound,
 int nThrow,
 FPlayer array Players);
}

class Greed_Elector: public FElector{

 public:
 FPlayer Get_Winner(FPlayer array Players);
}

137

class Greed_Evaluator: public FEvaluator{

 public:
 int Evaluate(FCup aCup);
}

class Greed_Mind: public FMind{

 public:
 TDecisison Get_Decision(FCup aCup, int nRound,
 int nThrow,
 FPlayer array Players);
}

class Greed: public FDice_Game{

 public:
 FPlayer Create_Player();
 FRules Create_Rules();
 FProtocol Create_Protocol();
 FUnit_Container Create_Kitty();
 // empty
}

B.3.3.4 Craps

class Craps_Player: public FDice_Player{

 public:
 Craps_Player();
 int Play();
}

class Craps_Protocol: public FProtocol{

 public:
 Note_Score(int nScore, int nRow,
 FDice_Player aPlayer);
}

class Craps_Rule: public FRuler{

 public:
 TDecision Get_Decision(FCup aCup, int nRound,
 int nThrow,
 FPlayer array Players);
}

class Craps_Elector: public FElector{

 public:

138

 FPlayer Get_Winner(FPlayer array Players);
}

class Craps_Evaluator: public FEvaluator{

 public:
 int Evaluate(FCup aCup);
}

class Craps_Mind: public FMind{

 public:
 TDecisison Get_Decision(FCup aCup, int nRound,
 int nThrow,
 FPlayer array Players);
}

class Craps: public FDice_Game{

 public:
 FPlayer Create_Player();
 FRules Create_Rules();
 FProtocol Create_Protocol();
 // empty
 FUnit_Container Create_Kitty();
}

139

C GLOSSARY

Abstract Class An abstract class is a class without instances (objects).
Objects are only created from subclasses to the abstract class. An abstract
class is a template for its subclasses, see Figure 5.1.

Abstract Use Case See section 3.4.1.3.

Actor A use case concept, see section 3.4.1.3.

Architectural design In the architectural design activity the objects and
their collaborations are defined.

Attribute The values of the attributes describe the state of the object.
Also called member attribute.

Base Class A base class according to Taligent is a class which represent
a logical object, see also mixin class [Tal94c].

Class A class is a template for a collection of objects that share the same
data structure and support the same operations, see Figure 5.1.

Class Hierarchy A class hierarchy is a tree of classes related by inherit-
ance. Commonalities between classes are extracted to common super-

Figure 5.1 The relationships between abstract classes, concrete classes and objects.

FILE
- read
- write
- copy

DOS-FILE
- read
- write

UNIX-FILE
- read
- write

inheritance

classes

abstract

concrete

Axel’s

.login

Niklas’

.login

objects

instances of UNIX-FILE

140

classes. For instance, a subclass should be a specialization of its
superclass.

Class Library A class library contains several common classes, for
strings, lists et cetera. An example of a class library are the Microsoft
Foundation Classes.

Collaboration An object collaborates with another object if it has to in-
voke one or more of the other objects methods to fulfil its responsibilities
[Karl95, p. 306].

Concrete Class A concrete class will provide the implementations of the
abstract (virtual) operations of its abstract superclass, see Figure 5.1.

Concrete Use Case A use case concept, see section 3.4.1.3.

Coupling The coupling is used as a measure of dependency between
classes. Either many different messages are passed, or one message is
frequently passed.

Design pattern See section .

Detailed Design In the detailed design activity the classes and their
methods and attributes are fully defined in the terms of the implementa-
tion languages.

Domain A domain is an application area for software products.

Dynamic Binding See section 2.1.2.

Extends A use case concept, see section 3.4.1.3.

Functional Requirement The functional requirements specify the serv-
ices which should be provided by the system to the user.

Inheritance See section 2.1.2.

Non-functional Requirement The constraints imposed on the system
which could not be categorized within the functional requirements is de-
scribed in the non-functional requirements.

Method A method is the implementation of an operation in a class.
Methods are also called member functions.

Mixin class A mixin class according to Taligent is a class that represents
optional functionality. The concepts of base- and mixin classes support
multiple inheritance. Taligent states that an optional number of mixin
classes may be inherited but only one base class. The reason for inherit-
ing a mixin class is to achieve its functionality. [Tal94c]

141

Multiple Inheritance Inheritance from more than one class is called
multiple inheritance. Use of multiple inheritance may obscure the inher-
itance hierarchies.

Object An object is a data abstraction unit which encapsulates the asso-
ciated operations. An object is said to be an instance of a class, see Figure
5.1.

Operation An operation on an object is used when an object shall be ma-
nipulated or extracted information from. Also called message.

Polymorphism See section 2.1.2.

Prototyping The development of an experimental version of some as-
pect of the system is referred to as prototyping [Mark94, p. 472].

Responsibility The responsibility of an object is defined as the knowl-
edge it maintains and the actions it can perform [Wirfs90].

Stakeholder A stakeholder is a person or an organisation which have re-
quirements or interest on the system. A typical stakeholder is the future
user or the financier of the system.

Subclass Class B is a subclass of class A if B inherits from A, see Figure
5.1.

Superclass Class A is said to be a superclass of class B if B inherits from
A, see Figure 5.1.

Use Case See section 3.4.1.3.

Virtual Operation A virtual operation is defined in a superclass but im-
plemented in a subclass.

142

143

D REFERENCES

[Boo94] Grady Booch. Designing an Application Framework. Dr. Do-
bb’s Journal 19, No. 2, 1994.

[EST95a] Reuse and object-oriented frameworks, EST Frameworks,
1995

[EST95b] State-of-the-art components Frameworks and Patterns, EST
AB, 1995.

[Gam94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Design Patterns - Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley, Reading, MA, 1994.

[Grif95] William G. Griffin. Lessons learned in software reuse. IEEE
Software, July 1995

[Heni80] Heninger K.L., Specifying software requirements for complex
systems. New techniques and their applications. IEEE Transactions on
Software Engineering 6 (1), p. 2-13, 1980.

[Henr92] Mats Henricsson, Eric Nyqvist. Programming in C++, Rules
and Recommendations. Ellemtel Telecommunication Systems Libraries,
1992.

[Jaco92] Ivar Jacobson et. al. Object-Oriented Software Engineering, A
Use Case Driven Approach. Addison-Wesley, 1992.

[Joh88] Ralph E. Johnson, Brian Foote. Designing Reusable Classes.
Journal of Object-Oriented Programming, June/July 1991.

[Joh91] Ralph E. Johnson, Vincent F. Russo. Reusing Object-Oriented
Designs. University of Illinois tech. report UIUCDCS 91-1696, 1991.

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns.
OOPSLA ’92 Proceedings, 1992.

[Joh95] Ralph E. Johnson. How to develop frameworks. Notes for
OOPSLA ’95, 1995.

144

[Karl95] Even-André Karlsson (editor). Software Reuse, A Holistic Ap-
proach, John Wiley & Sons, 1995

[Laj94] Richard Lajoie, Rudolf K. Keller. Design and Reuse in Object-
Oriented Frameworks: Patterns, Contracts and Motifs in Concert. Pro-
ceedings of the 62nd Congress of the Association Canadienne Francaise
pour l’Avancement des Sciences, Montreal, Canada, May 1994.

[Lar92] Johan Larsson. Object-oriented frameworks. REBOOT Consor-
tium, 1992.

[Lien80] Lientz B.P and Swansson E.B. Software Maintenance Manage-
ment. Reading MA: Adison-Wesley.

[Louc95] Loucopoulos P. and Karakostas V. System Requirements Engi-
neering. Mc.Graw-Hill international series in Software Engineering.
1995.

[Marc94] J. J. Marciniak. Encyclopedia of Software Engineering, 1994

[Matt95] Michael Mattsson. Draft for 3rd chapter of thesis. August
1995.

[Mey88] Ware Meyers. Interview with Wilma Osborne. IEEE Software
5(3): 104-105, 1988.

[Mey94] Bertrand Meyer. Reusable Software - The Base Object-Orient-
ed Component Libraries. Prentice Hall, 1994.

[Mil95] H. Mili, F. Mili, A. Mili. Reusing software: Issues and research
directions. IEEE Transactions on Software Engineering, Vol. 21, No. 6,
June 1995.

[NATO91a] Nato Communications and Information Systems Commit-
tee. Software Reuse in NATO, 1991.

[NATO91b] Contel corporation, Standard for Software reuse procedures,
NATO contract number 5957-ADA, 1991.

[Ohl93] Lennart Ohlsson. The next generations of OOD. Object Maga-
zine, May-June 1993.

[Rumb91] James Rumbaugh et al. Object-Oriented Modelling and De-
sign, Prentice Hall. 1991.

[Som92] Ian Sommerville. Software Engineering. Addison-Wesley,
1992.

[Tal94a] Building object-oriented frameworks, Taligent, Inc., 1994

145

[Tal94b] Leveraging object-oriented frameworks, Taligent, Inc., 1994

[Tal94c] Taligent’s Guide To Designing Programs. Well-mannered Ob-
ject-Oriented Design In C++, Taligent, Inc., 1994

[Will91] H. Willars. Amplification of Business Cognition through Mod-
elling Techniques. Proceedings of the 11th IEA Congress, Paris, July
1991.

[Wirfs90] R. J. Wirfs-Brock, R. E. Johnsson. Surveying current research
in object-oriented design. Communication of the ACM, 33(9), pp. 104-
124, September 1990.

146

