CODEN:LUTEDX(TETS-5231)/1-146/(1995)&local 31

Development of
Object-Oriented
Frameworks

Authors

Niklas Landin
Axel Niklasson

Tutors

Grace Bosson
Ericsson Software Technology, Frameworks
Ronneby, Sweden

Bjorn Regnell
Department of Communication Systems
Lund Institute of Technology, Lund University
Lund, Sweden

ABSTRACT

An object-oriented framework is a reusabl e software component pro-
viding large scale reuse, including reuse of analysis and design.

The thesis describes a process for the development of object-oriented
frameworks. A comprehensive introduction to object-oriented frame-
worksis given and an extensive set of guidelines supporting frame-
work development is provided.

The authors have studied several object-oriented devel opment meth-
odsto investigate how an ordinary devel opment process may be adapt-
ed to suit the devel opment of object-oriented frameworks. A small case
study has been performed to validate and exemplify the process.

The main focus is on capturing requirements, analysis and design of
object-oriented frameworks. The process of reusing frameworks for
application development is also described briefly.

CONTENTS

Introduction. 1
1.1 BackgroundandProblems................. 1
12 Objectives.o 2
13 TargetGroups.covvi i 2
1.4 Dédimitations...................c.iian.. 2
1.5 DispositionoftheThesis 2
1.6 Acknowledgements....................... 3
Object-Oriented Frameworks. 5
21 Some Object-Oriented Concepts 5
211 Inheritance.o 5
2.1.2 Dynamic Binding and Polymorphism........... 6
22 SoftwareReuse............... ... 7
23 WhatisaFramework? 8
24 WhyuseFrameworks?................... 10
241 Advantages. ... 10
242 Difficulties........ .. . i 1
25 Framework Documentation 12
26 SUMMANY. ...t 14
Framework Development 17
31 Introduction............... 18
3.2 Project Organization..................... 19
321 A Strategical Investment 19
322 Work Organization...................c.... 19
3.23 Development Teams For and With Reuse 20
324 SUMMAY ..ot 21
3.3 Preparing Framework Development. 22
331 DomanAnaysiS..........ccoiiiiiiiiiin.. 22
332 SUMMAY ... e 23
34 Capture Requirements and AnalysisPhase . .. 24
34.1 CaptureRequirements..................... 27
342 AnAYSIS. ... 39

34.3 Complementary Resultsand Models. 43

344 SUMMAY ... e 43

35 TheDesignPhase....................... 46
351 Object-OrientedDesign.ccoovnnn. 47
352 TheFramework DesignProcess 48
353 Architectural Design ... 52
354 DetaledDesign...........ccoviiiiii... 60
355 Summary ... 61
3.6 Implementation......................... 63
361 Process...........iiiiiiiii e 64
362 Guidelinesooiiiiiiii 65
363 SUMMAY ... 72
3.7 Veificationand Validation 74
371 UnitTestingcoovveiiiininnnn. 75
372 IntegrationTesting............... ... 76
373 TestModel 76
3.7.4 Frameworks Specifics 77
375 SUMMAY ... 80
38 Mantenance............ ..., 82
381 Introduction............l 82
3.8.2 Computer System Evolution Dynamics. 82
3.8.3 Limiting the Need for Software Maintenance.. . .83
3.84 Framework Evolution Dynamics............. 84
385 Summary ... 85
Framework Reuse...................... 87
41 ReuseOrganization...................... 87
42 OVEIVIEW. ..ot 88
43 AnadysiswithReuse..................... 90
44 DesignwithReuse 91
45 SUMMAY.o.iuii e 92
Summary and Conclusions. 95
Guiddlines. i 97
CaseStudycoviiiiiiin, 105
B.1 Notation..............coiiiiiiiin.... 105
B.2 TheAnaysisPhase..................... 107

B.3 TheDesignPhase...................... 120

INTRODUCTION

1.1

Background and Problems

During the past years, the need for software reuse has become evident.
Object-orientation has provided a means to increase the reusability of
code, by introducing standard interfaces and inheritance. Class libraries
have provided well defined and tested reusable components, but using
classlibraries mainly implies reuse of code and little reuse of analysis
and design. To increase the potential of reuse, object-oriented frame-
wor ks have been suggested. An object-oriented framework isintended to
capture the functionality common to several similar applications. By de-
veloping and reusing frameworks, the reuse will also encompass design
and analysis.

Since devel oping object-oriented frameworks implies an analysis and
design of al the applications in the domain, existing and future, the fea-
sibility is highly dependent on the availability of experienced software
designers and people with extensive knowledgein the domain. To lessen
the dependence on key persons, thereis a need for a methodology and a
devel opment process to follow.

Ericsson Software Technology Frameworksin Ronneby have atemplate
methodology, which they apply to their customers’ development proc-
esses and organisations. The methodology was sporadically document-
ed, and much of the methodology was concealed in the heads of the
company’s consultants.

The problem is to visualize the methodology to the customers, and to
new consultants. To aleviate this problem, the documentation needed to
be compiled, revised and further developed.

Methodology
To compile an adequate documentation, we assembled information on

frameworks and devel opment processes and methodologies. Many arti-
cles and references were found on the WWW, some documentation was

available at the company, and the rest have been elicited from informal
interviewswith the consultants of the company, both methodologistsand
developers.

1.2 Objectives
» To give an introduction to the object-oriented framework concepts.
» To provide guidelines that support the development of object-orient-
ed frameworks.
» To overview the framework reuse process.
1.3 Target Groups
Thetarget group for the guidelines given is a software organization in-
tending to devel op object-oriented frameworks in their application do-
main(s).
Target groups for the more genera parts of the thesis are:
» studentsinterested in object-oriented techniques, who wish to find out
about object-oriented frameworks as a reuse technique.
» software organizations in need of areuse technique.
1.4 Delimitations
We do not judge whether frameworks are appropriate or not in afinancial
perspective, and we do not provide acompl ete devel opment process. We
specify how to customize the target organization’s devel opment process
for framework development, with the focus on analysis and design.
1.5 Disposition of the Thesis

Thisintroduction is followed by an introduction to the framework con-
cept. The following chapters describe the devel opment processes, frame-
work development and framework reuse. The thesisis closed with a
summary and our conclusions. The appendicesincludealist of the guide-

1.6

lines provided, asmall case study, a brief glossary and alist of our refer-
ences.

Each chapter starts with an introduction and a short description of the
chapter’s disposition. The chapters are closed with a short summary.

The graphical notation used in illustrations of object-oriented designsis
described in Appendix B.

Acknowledgements

Our tutors Grace Bosson and Bjorn Regnell have provided invaluable
help. We would also like to thank the Framework and Cafka employees
of Ericsson Software Technology, especialy the boys on the 4:th floor.
Particular thanks go to Michael Mattsson, whose extensive framework
bibliography saved us alot of work.

OBJECT-ORIENTED FRAMEWORKS

The reuse of software componentsis recognized as an important way to
increase productivity in software development. Experienced program-
mers have always reused code by using their experience and by looking
into old code designs, but it has been found that the reuse of analysisand
design has a significantly higher potential [Joh91].

The concept of frameworks makes it possible to reuse not just code, but
also analysis and design.

This chapter isintended to promote the object-oriented framework con-
cept and to give the reader abetter understanding of it. The reader should
have at least a basic knowledge of software engineering and object-ori-
entation.

In section 2.1 we give a brief description of the features of object-orien-
tation that make framework development feasible. Software reuseisin-
troduced in section 2.2 and why software reuse should be achieved using
frameworksis motivated in sections 2.3 and 2.4. Section 2.5 is abrief
discussion on the documentation of frameworks and section 2.6 isasum-
mary of this chapter.

2.1 Some Object-Oriented Concepts
It is the properties of object-oriented languages that make frameworks
feasible, mainly in that they support the concepts of inheritance, poly-
morphism and dynamic binding.
2.1.1 Inheritance

When one classinherits from another the heir is called asubclass and the
ancestor is called a superclass. The subclass inherits the superclass
methods and internal structures. In the subclass new methods may be
added to the inherited ones and inherited methods may be redefined.

Inheritance has several advantages. Codeisreused, asinheritance alows
several classesto share common code. Inheritanceis also suitablein the
maintenance phase because it makesit possibleto |eavethe original code
in the superclass untouched and implement the changesin asubclass. In-
heritance is a good way to structure the design and code. Good design

practice states that a subclass should be a specialization of its superclass.

Inheritance has as mentioned a lot of advantages but it has some draw-
backs as well. For instance, inheritance violates the information hiding
introduced by objects - the subclasses are dependent on their superclass-
es and the code is spread throughout the system. This may increase the
difficulties of understanding a large class hierarchy.[Joh88; Tal944]

2.1.2 Dynamic Binding and Polymorphism.

class Shape
-move()
/l implementation
-draw()
[l virtual
class Circle class Square
-draw() -draw()
// implementation /I implementation
_ Shape S;
polymorphism S =newdrcle(); dynamic binding
o S.dram(); - ————— — — — 7
\\ /] calls dram() in class Circle /
S = new Square(); /
S.draw(); - — — — — — — — —
/1 calls draw() in class Square

Figure 2.1 The concepts of dynamic binding and polymorphism.

Dynamic binding implies late binding of function calls, i.e. the function
call is bound to an object during runtime and not during compilation
[Joh91, p. 3; Ohl93; Mey94]. Checks on object types like:

if (Sis of type Grcle) {drawCircle();}
elseif (Sis of type Square) {drawSquare();}

2.2

arereplaced by acall to thecommon function S. dr aw() , seeFigure2.1.

In such acall the runtime system makes the decision whether to call the
function dr aw() implemented incl ass Ci rcl e or thefunction
draw() implementedincl ass Square.

A result of dynamic binding is that polymorphismis achieved. Polymor-

phism implies that variables and parameters can take on values of differ-
ent types, see Figure 2.1 [Joh9l, p. 3; Ohl93; Mey94].

Software Reuse

The gap between software demand and software productivity is steadily
increasing. One way to increase the productivity is by introducing soft-
ware reuse.

Theidea behind reuseis to not develop anything that already exists, but
toreuseit. Thiswill lead to shortened development time and a decrease
in time-to-market.

Designing software for reuse aims to produce general, extensible soft-
ware components. Designers are asked to predict possible future applica
tions and incorporate their requirementsinto the current design. To
accomplish this, the huge number of design decisionsthe designers have
to take will have to be limited. This has traditionally been done by pro-
viding domain-specific procedural libraries of functions or libraries of
reusabl e classes.

The problem with this approach isthat it is hard to provide default be-
haviour and embody domain expertisein alibrary. A component library
containsrather small components of which the reuser hasto build the re-
quired application, and when building an application with small compo-
nents the communication between the different components still has do
be defined.

These constraints are alleviated by using a framework; the application
designer does not have to know how or when to call each function - the
framework doesit for him. The communication between components in-
side aframework is aready defined and the reuser needs not to be con-
cerned about it. [Tal94a; Lg92]

Class Libraries
A classlibrary isaset of related classes designed to provide reusable,

general-purpose functionality. An example of aclasslibrary is a set of
collection classesfor lists and stacks. Classlibraries do not impose a par-

2.3

ticular design on an application; they just provide functionality that can
help the application do its job. Class libraries provide functionality at a
low level and the developer must provide the interconnections between
the libraries.

Asaframework consists of acollection of classesit could be regarded as
aclasslibrary. Thisisnot entirely true, sincein aclasslibrary every class
by itself is unique and most of the classesin aframework are dependent
of each other and will be of no use outside the framework.

The great difficulty with reuse librariesisthat they must contain domain-
specific architectures and components large enough to be worth reusing

[Grif95]. To quote Mili, Mili and Mili: “For instance, objects seldom of -
fer any interesting behaviour on their own and it is often in combination

(interaction) with other objectsthat any useful functionality isachieved.”

[Mil95].

Frameworks provide reuse at alarger level. The technique of reusing
frameworks leads to reuse of analysis and design, but they also enable a
higher level of code reuse than possible with toolkits [EST954]. In this
way applications can be developed by using the framework as a starting
point and writing smaller amounts of code to modify or extend the frame-
work’s behaviour[Tal94b].

What is a Framework?

Object-oriented frameworks have been defined in two similar ways by
Johnsson [Joh88; Joh91]: “ A framework isaset of classesthat embodies
an abstract design for solutionsto afamily of related problems.” and “ A
framework isaset of objectsthat collaborate to carry out aset of respon-
sibilities for an application subsystem domain.”.

An object-oriented framework is a set of cooperating classes, both ab-
stract and concrete, that make up areusable design for a specific class of
software [EST95a, Gam94]. The framework determines the architecture
of the applications built using it by partitioning the design into abstract
classes and defining their responsibilities and collaborations and the
thread of control. Thedesign decisionsthat are common to itsapplication
domain are captured, so that the application designer can concentrate on
the specifics of hisher application. Framework development thus em-
phasizes design reuse over code reuse [Gam94].

“Frameworks also reuse implementation, but that is less important than
reuse of the internal interfaces of a system and the way that its functions
are divided among its components.”

R E Johnson [Joh88]

Dynamic binding lets the framework treat an object without regard to its
implementation. An application developer who derives anew classto
customize the framework writes code following the template provided
by the abstract superclass. The framework will invoke the methods, and
because of thisflip-flopin control, frameworks are sometimesreferred to
as upside-down libraries, see Figure 2.2 [EST95a].

Code written by Framework
application developer

Figure 2.2 The difference in control between frameworks and class libraries.

The common framework provides an architecture-driven base with a
data-driven® layer. Application developers use the framework’s built-in
functionality by instantiating classes and calling their member functions
(data-driven) and extend and modify the functionality by deriving new
classes and overriding member functions (architecture-driven) [Tal944].

When some applications have been devel oped using the framework there
will be libraries of subclassesto choose from and the customization can
be made increasingly by composition [EST95a; Tal944]. If the applica

tions are devel oped entirely by composition, there is no need for imple-
mentation or testing and the lead timeis at a minimum.

Aswell as classifying frameworks by their internal structure, Taligent
has classified frameworks by the problem domain they address [Tal944]:

e Support frameworks provide system-level services, such asfile ac-
cess, distributed computing support, or device drivers. Application
developers typically use support frameworks directly or use modifi-
cations produced by system providers. However, even support frame-
works can be customized - for example when developing anew file
system or device driver.

* Application framewor ks encapsul ate expertise applicable to awide
variety of programs. Current commercial graphical user interface
(GUI) application frameworks, which support the standard function-

L
2

Also referred to as white-box[Joh91] or inheritance-focused[Tal 944].
Also referred to as black-box[Joh91] or composition-focused[Tal944].

9

2.4

ality required by all GUI applications, are one type of application
framework.

» Domain framewor ks encapsul ate expertise in a particular problem

domain, e.g. a securities trading framework or a multimedia frame-
work.

Why use Frameworks?

241

When using awell designed, well documented framework, both analysis,
design and code arereused. A framework makesit possibleto reuse anal-
ysis by describing the objects of importance, the relationships between
the objects and how large problems are broken down into smaller ones.
Thedesignisreused in that the framework design contains abstract algo-
rithms and definesthe interfaces, aswell asthe constraints an implemen-
tation must satisfy. The code is reused since a concrete class
implemented by the user can inherit most of itsimplementation from its
superclass [Joh91].

The benefits from frameworks and reuse are gained over time, since the
productivity gains do not come just from the first time you are using the
framework, but from multiple use of the technology.

Advantages

* Reduced timeto market When writing applications with aframe-
work as afoundation only the code that differs from earlier applice-
tions has to be written. Less code writing is needed, which means
shortened development time and hence reduced time to market.

* Maintenance Maintaining systemsisvery expensive. Asmuch as 60
- 85% of thetotal life-cycle cost of alarge system is spent on mainte-
nance, and there are great potential savings in reducing the need for
maintenance [Mey88]. When maintaining several applications of one
framework only the framework and the code that is different between
the applications have to be maintained. Thismeansthat changes only
hasto be implemented in one place, ensuring consi stency. Compared
to maintaining several different systems, the potential savings with
framework designs are significant.

» Testing When reusing aframework, the tests are also reused. The
only teststhat have to be provided are the tests of the new modules
and the interaction between the new modules and the framework, the
system tests. Thus the amount of testing and debugging to be doneis
reduced. This assumes that the framework is correct and that the sys-
tem tests checks that the framework is used correctly.

10

24.2

* Rdiability A framework may, aswell as al other software, contain
errors and bugs, but as the framework is reused it tends to get stabi-
lized and new errors and bugswill be reported more seldom. Reusing
astable framework will increase the reliability compared to writing a
complete new code.

» Standards A well designed framework that follows company stand-
ards captures best practice. When devel oping applications from a
framework, the framework sets constrains on the application code
written. This leads to conformation to company standards as well as
to best practice.

» Frameworksembody expertise Good software design in a particu-
lar arearequires domain knowledge that istypically acquired only by
experience. Because frameworks embody expertise, problems are
solved once and the business rules and design are used consistently.
Thisallows an organization to build from abase that has been proven
to work in the past. Frameworks a so enable software developersto
concentrate on application solutions and rely on the framework to
provide consistent services. This frees devel opers who are not neces-
sarily expertsin acertain areafrom the complexity of the underlying
details. Thisis possible because the framework isin control. The
framework provides the flow of control, while the application pro-
grammer’s code waits for the framework to call. This means that the
devel opers do not have to be concerned with details and they may fo-
cus solely on the problem domain [Tal94b].

* Improved consistency and compatibility Thereis agreater ability
to work together for those applications that share aframework. They
are also better integrated from a user point of view, having the same
or similar user interface [Tal94b].

Difficulties

Components and architectures do not become reusable by it self. They
must be designed with reuse in mind or redesigned for reuse. Designing
for reuse takes longer time than designing systems or components with-
out any thoughts of reuse. This extratime must be seen as an investment
[Joh88; Tal944].

Itisalso moredifficult to design aframework than to design acomponent
library, but the potential profit from reusing aframework ismuch greater
than the profit from reusing a component from a component library. A
framework is more difficult to design because the framework’s architec-
ture has to be designed as well as the communication between the inter-
nal components of the framework [Joh88; Tal94a]. When designing a
component for a component library no such decisions has to be made.

11

2.5

For framework development to be successful, it must be supported by
your team’s processes and organization. It must be realized that the ben-
efits from frameworks and reuse are gained over time, with multiple use
of the framework[Joh88; Tal944].

Framework Documentation

“The most profoundly el egant framework will never bereused unlessthe
cost of understanding it and then using its abstractionsis lower than the
programmer’s perceived cost of writing them from scratch.”

Grady Booch [Bo094]

The documentation of aframework isessential to itsreuse potential. The
documentation must describe:

* the purpose of the framework,
* how to use the framework,
» thedetailed design of the framework.

Process and product documentation are necessary in al software
projects, but especially important in the devel opment of frameworks.
The detailed design has to be available to the application devel opers, as
well as a description of how to use the framework. As some aspects of a
framework design are not well expressed as code, e g invariants main-
tained by the cooperating objects, there is aneed for some other means
of documentation [Joh91].

Framework designer

Framework user

r ~migo 7

L architetures |

Figure 2.3 The informed framework designer has a clear picture of the framework and
its micro-architectures, whereas the novice framework user is overwhelmed with the
many, seemingly unrelated, classesin a poorly documented framework [L&j92].

12

Design Patterns

Many common framework design problems have been solved many
times by different designers. Gamma et al. have documented some of
their design experiencein form of design patterns [Gam94]. Design pat-
terns are generic designs to problems that often occur during object-ori-
ented design. In framework design a problem might be how to keep the
instantiation of the application specific classes outside the framework.
The design pattern “ Abstract Factory” provides a generic solution to
such a problem, a solution that has been applied in severa frameworks,
and thereby iswell-proven, see Figure 2.4 [Gam94, p. 87].

AbstractFactory |- Framework
CreateProductA()
CreateProductB() AbstractProductA

AN

|—>| ProductA2 | | ProductAl |<-|
I

ConcreteFactoryl 4 | ConcreteFactory?2 H
| I
| |

I
I
I

CreateProductA()
CreateProductB()

CreateProductA()
CreateProductB()

AbstractProductB

|
'->| ProductB2 | |ProductBl |<—|
|

Figure 2.4 The“ Abstract Factory” design pattern [Gam94]. For details on how the
“Abstract Factory” can be applied, see Appendix B.

The design pattern concept originates from the architectural pattern con-
cept introduced by Christopher Alexander in 1977 [Alex77]. Alexan-
der’s patterns concern buildings and towns, but Gammaet al. adapts the
concept to software design [Gam94].

Design patterns aim to capture design experience in aform that can be
used effectively and to make it easier to reuse successful designs and ar-
chitectures [Gam94].

A design pattern essentially consists of four elements:

» The pattern name increases design vocabulary and makes possible
design at a higher level of abstraction.

e The problem describes when to apply the pattern.

» The solution describes the elements that make up the design, their re-
lationships, responsibilities and collaborations.

13

2.6

» The consequences are the results and trade-offs of applying the pat-
tern.

Reusing common patterns opens up an additional level of design reuse,
where theimplementations vary, but the micro-architectures represented
by the patterns still apply [Gam94].

Theterm “design pattern” often refersto a pattern described by Gamma,
[Gam94] or some other pattern catalogue, but any generic design can be
expressed as adesign pattern. Theterm isnot absolute, something that is
adesign pattern to one designer might be abasic building block to anoth-
er [Gam94]. What is considered a design patterns al so depend on the tar-
get implementation language, e.g. if the implementation is conducted in
aprocedural language, design patterns might be “Inheritance” or “Poly-
morphism” [Gam94].

Framework designishard, and all potential problems should beforeseen.
Communication between designers and design teams, and the under-
standing of design decisions, and thereby the motivation of thedecisions,
are evident troubl e sources, and away to alleviate these problems are de-
sign patterns. Design solutions that follow proven design patterns are
motivated, and communicating designsintheform of patternsadd alevel
of abstraction, and therefore alleviate communication.

Using design patterns
e provides acommon vocabulary for design,

* reduces the system complexity, since abstractions are named and de-
fined consequently, and reduces the frameworks learning time,

 provides building blocks, from which more complex designs can be
built, for example aframework,

» providestargets for restructuring class hierarchies [Lg94; Gam94].

Design patterns are a natural part of aframework documentation, since
they motivate the design decisions [Gam94; Joh92; Lgj94].

Without using design patterns or some other means of describing the

common micro-architectures that emerge in the development of frame-
works the situation illustrated in Figure 2.3 might occur [Laj94].

Summary

An abject-oriented framework istheimplementation of the genera parts
of several applications. A framework defines a set of related classes and

14

the collaborations needed to provide the general functionality of the ap-
plications in the domain the framework covers. The framework defines
how the classeswill interact by defining the protocolsand the algorithms.

Developing aframework will makeit possibleto reuse not only code, but
also analysis and design. It is more time consuming to develop aframe-
work than to develop an application with an ordinary architecture. The
gainsfrom framework development occur when the framework isreused
and new applications are devel oped with short lead times, and alimited
need for testing and maintenance.

The documentation of aframework is essential for its reuse potential.
The documentation must describe:

« the purpose of the framework,
* how to use the framework,
» thedetailed design of the framework.

Design patterns are suggested as anatural way to document frameworks,
as they should be used in framework design.

15

16

FRAMEWORK DEVELOPMENT

Thischapter coversthe devel opment of object-oriented frameworks. The
development processis outlined in Figure 3.1.

‘Domain | © |
Analysis J< o |
7
\/

)

Capture
Requirements
and Analysis

Framework
Design
Framework
I mplementation ﬂ

Application
Analysis
Application
Design
Application
Implementation

Figure 3.1 Process roadmap

17

3.1

Introduction

During framework development the devel opers should try to migrate as
much common behaviour as possible from the applications into the
framework. The process presented in this chapter isintended to support
the construction of an adequate framework. The project organization
during framework development is covered in section 3.2 and a presenta-
tion of the actions that should be taken beforeinitiating aframework de-
velopment process are described in section 3.3. The focus of this chapter
isontheactivitiesin analysisand design, as described in sections 3.4 and
3.5. Thesetwo sections provide guidelinesfor how to accomplish agood
framework design. Guidelinesfor the transformation of thedesigninto a
firm framework implementation are discussed in section 3.6, and test and
maintenance are briefly reviewed in sections 3.7 and 3.8.

18

3.2

Project Organization

3.2.1

3.2.2

This chapter isintended to give abrief introduction to the organi zational
matterswhen devel oping frameworks. In section 3.3.1 it isargued how a
framework development product should be treated according to time
constraints. Section 3.3.2 points out the difficulties of dividing the work
between several parallel working groups. In section 3.3.3 some of the
difficulties in adapting the organisation to development for and with re-
use are described. The chapter ends with a summary in section 3.3.4.

A Strategical Investment

The responsibility for the development of aframework should not bein
the ordinary project organizations. The reusability of aframework is
strongly dependent on well defined interfaces and a good architecture,
since later changes of the architecture or the interfaces will affect all ap-
plications dependent of theframework. The devel opment of aframework
should not be on the critical path of a project because the team responsi-
ble for the development should not have to make any compromises on
the framework leading to bad architectures and under-defined interfaces.

The development of aframework should be viewed as a strategical in-
vestment more than an operational investment. A well devel oped frame-
work will be an asset to the company, which when reused decreases
development effort and lead time of future projects. It is therefore suita-
ble to create a department or ateam responsible for strategical develop-
ment.

Work Organization

Hard to find commonalities
between e.g. Cand G.

8/ |

T~ ~ Communication
Sl’ﬁtfgt] between development
archi teams

G |[A—

S

Figure 3.2 Traditional software development.

Intraditional software development thework isas much as possibledone
in paralel with small development teams and well defined interfaces, see

19

3.2.3

Figure 3.2. Each team workswith awell defined part of the system where
the subsystemsinterfacesto the other parts of the system were defined in
an earlier phase. A system architect maintains the overall picture of the
system.

A framework devel opment team should not be larger than an ordinary
software devel opment team. When the size of a software development
team increases the communication overhead increases and more effort is
needed to keep the team membersinformed. It becomes harder to get the
overall picture of the team’s progress.

A team suitablefor framework devel opment should roughly consist of no
more than eight persons. It is suitable to vary the members according to
the current phase of the development process. It is, for example, impor-
tant that the team performing the domain analysis should include a cou-
ple of domain experts. When the devel opment process continues the
need for domain experts decreases and the need for system expertsin-
creases and it should be reflected by the composition of the development
team.

Devel oping frameworksintroduces new aspectswhen dividing thework.
Themainideaof aframework isto capture generalities of adomain or a
set of applications within adomain. Finding generalities requires agood
overview of the domain and the system respectively. This makes it less
suitable to divide the work in several teamsin an early phase.

There will be atrade off between shorter lead time, when dividing the
work early, and aframework with a good and stable architecture, when
not working in parallel.

The work should be divided into severa parallel working teams as late
in the development cycle as possible. The structure of the framework
should aswell asthe publicinterfaces of the classes become stable before
dividing the work, but it is not necessary to have defined the objects and
classesin detail.

Development Teams For and With Reuse

There are basically two possible ways to organize the staff when apply-
ing reuse of frameworks. Oneisto | et the same people both develop the
framework and reuse it. The other way is to have separate devel opment
and reuse organizations.

If the intention isto sell the framework outside the organization the
choice of reuse organization is limited. However we think that most as-
sociationswill usetheir frameworksinternally and the choice of reuse or-
ganization is heavily dependent on the company policies.

20

3.24

The framework must be treated as a product even if it isintended to be
used internally. It must be well documented and the support of the frame-
work must be planned.

If the framework developers will use the framework they will have the
insight of the problems and the limitations of the framework. Also, they
will have few problems of understanding the intentions behind the archi-
tecture and the solutions. The classical resistance of reusing other peo-
ples solutionsis also avoided and the well needed feedback from the
usersto the developersis easily achieved.

Devel opment teams should, as much as possible, consist of experienced
engineers, but thisis seldom possible due to limited personnel and eco-
nomical resources. By having separate teams of framework developers
and application devel opers the knowledge of the experienced engineers
in the development team will be reused by the, perhaps, more inexperi-
enced engineers in the reuse teams. Thisisthe main argument for sepa-
rate organizations.

Summary

There are some differences between ordinary software development and
development of frameworks which have an impact on the project organ-
ization.

Frameworks should be seen more like a strategical investment than an
operational investment. The development of asoftware product will give
anincomeafter arelatively short period. A framework ismorelike atool
for the development of software products.

When devel oping frameworks it is necessary to focus on what function-
aity isgeneral and what isspecific, and thiswill haveimpact on thework
organization. The ability of finding generalisations is dependent on an
overview of the system or the domain which limits the possibility to di-
vide work among several teams.

21

3.3

Preparing Framework Development

3.3.1

This chapter isintended to give a brief introduction to the activities per-
formed before the framework development process is started and what
input is needed to begin the development process.

The development team needs to possess extensive knowledge of the do-
main the framework isintended to capture. Therefore adomain analysis
of some sort should be performed before or as an initialization of the
process.

The domain analysis will form an input to the framework devel opment
process. However, the development process should also provide feed-
back to the domain analysis to make the analysis more compl ete.

Domain Analysis

Domain analysisis the identification of classes and objects that are com-
mon to all applications within agiven domain [Karl95, p. 297]. The do-
main model should only focus on key domain artifacts and not deal with
details[Karl92, p. 298]. A domain model isagood tool when starting to
develop alogical view of the system. It should describe the concepts peo-
ple use within the domain, and make the domain analysis an instrument
for communication between the people involved in the system develop-
ment by providing acommon terminology. Thedomain model should not
describe the domain from the devel opers point of view, since this will
hinder communication and risk that details of design are emphasized too
early in the development process.

A domain analysisalso providesgood support when specifying use cases
[Jaco92, p. 162].

There are at least two documentsthat should be aresult from the domain
analysis. The scope of the domain and a static model containing the im-
portant objects and classes from the world of the domain.

It isimportant to formulate a distinct scope of the domain, because it is
not possible for aframework to cover the whole world.

The scopeisof much usein the capturing requirements activity of the de-
velopment process. The scope makesit clear if arequirement isin the do-
main and valid, or outside the domain and invalid. The scope of the
domain will also work as atool in the reuse of aframework, when decid-
ing if aframework is suitable to reuse for arequired application or not.

It is often difficult, when formulating the scope of the domain, to decide
what should be outside the domain and what the domain should include.

22

3.3.2

It is easier to develop aframework for a narrow domain than for avery
large domain. Enough time must be devoted to this very important activ-

ity.

The static model should contain the most important objects and classes
of the domain. These should be real world objects, objects from the
world of the application. The objects and classes should be named from
the users perspective because the model will be an instrument for com-
munication between the devel opers and the users of the future applica-
tion.

Summary

The domain analysis providesinput to the framework devel opment proc-
ess with the documents: The scope of the domain and the static model.

The scope of the domain is agood tool when validating requirementsin
the capture requirements activity of theframework development process.
The scope is also useful as a search-criteriain the activity of finding a
framework suitable for reuse when devel oping with reuse.

23

3.4

Capture Requirements and Analysis Phase

This section covers the Capture Requirements and Analysis phase of
framework devel opment.

" Domain | 1 .
Analysis J< o |
N7

\/
v

Capture
Requirements
and Analysis

Design

I Framework

Framework
Implementation

Application
I Analysis | Test
Application
I Design
Application

<

Implementation

Figure 3.3 Process roadmap

The section begins with an introduction to the capture requirement and
analysis phase pointing out the required input to the phase and the goals
of the phase. The guidelines provided summarise the text above the
guideline and are provided to promote a good framework analysis. Sec-
tion 3.4.1 describes the requirements specification activity and the sec-
tion consists of three sub-sections:

24

e 3.4.1.1 Requirements Process, which describes the process of finding
and validating requirements and the identification of generalizations.

» 3.4.1.2 Requirements Specification, which describes the document
with the same name.

e 3.4.1.3UseCase Model, which describes the use case model together
with abrief introduction to the concepts of use cases

Section 3.4.2 describes the analysis activity and the section consists of
two sub-sections:

e 3.4.2.1 Performing the Analysis, which describes the process of iden-
tifying the static structure of the framework.

» 3.4.2.2 Static Object Model, which describes the product of the anal-
ysis activity.

These activity sectionsarefollowed by section 3.5.3 which pointsout the
necessity of having the right, easy-to-understand models. The chapter is
concluded with a summary.

Requirements M odel:
- Requirements Specification
- Use Case Model

AnalysisModel:
- Static Object Model
- Data Flow Model

Capture
Requirements

/:> Design

Figure 3.4 Capture Requirements and Analysis phase with its subprocesses and products.

Review

The goa of the Capture Requirements and Analysis Phaseisto capture
all valid requirements and outline an ideal system that will fulfil thesere-
quirements. The phase consists of two main activities: the Capture Re-
guirements activity and the Analysis activity. The two tasks are

25

illustrated as they are sequential which isonly partly true, the activities
are much donein paralld.

The products of the analysis phase are the Requirements Model and the
AnalysisModel, see Figure 3.4. The requirements model will specify the
reguirementsimposed on the system and the analysis model will outline
the main concepts of the system.

A requirement specifiesaconstraint onthe system or aservicethe system
should provide. The requirements are tools in the process of making the
correct analysis models. In the process of producing the analysis model
new reguirements will be identified and inconsistenciesin the require-
ments model will befound. It isnot possibletofirst find al requirements
and succeed in making them consistent and then, with the requirements
models asinputs, construct a correct and compl ete analysis model, there-
fore the two activities need to be done in paralldl.

A domain analysistogether with alist of requirements should be provid-
ed as an input to the analysis phase and they should concern at least two
applications together with the future requirements of the framework.
Providing requirements on a couple of applicationswould makeit easier
to find generalisations.

Guideline 1: A list of requirements on at least two applications
should be provided together with alist of requirements
on the framework.

If the future applications of the framework are well defined it will be eas-
ier to develop a good and well adapted framework. If the future applica-
tions of the framework is very vague it should be considered if a
framework isfeasible, because vague future requirementsimplies that it
is very uncertain whether there will be a demand for reuse of aframe-
work in that particular domain or not. If there will not be any need for a
framework to reuse, it should be considered if the extra effort that the de-
velopment of the framework will require is economically justified.

Vague future requirements will also make the development of aframe-
work very difficult. Developing aframework without any knowledge of
itsfuture applications will almost certainly lead to aframework that will
be hard to reuse.

Guideline2: A list of future requirements on the framework should

be provided.

There should be ateam working with requirements and the analysis, not
one single person. A single person will have difficultiesin capturing all
requirements and aspects of aframework and itsfuture applications. The

26

3.4.1

devel opment team should include memberswith extensive knowledge of
each application area and a member with knowledge of framework de-
sign.

Capture Requirements

Thegoal of theactivity capturing requirementsistofind all requirements
on the system which is intended to be devel oped. Inconsistencies be-
tween requirements, requirementswhich are contradictory or ambiguous
should be found and be resolved.

Thelist of requirements is the base from which the process of capturing
requirements is started. The domain model is an instrument for commu-
nication and it provides a common terminology reducing the errors due
to misunderstandings in the discussions with the interested parties.For

further details on the domain model, see [Karl95] and [Mark94, p. 429].

The documents which will be the output from the capture requirements
activity are the Detailed requirements specification and the use case
model. These two models together form the requirements model. There-
quirements models are intended to be an instrument for communication
between developers, procurers and users. Therefore it should be under-
standableto all of theinterested parties. The requirements should though
be formulated from the users or clients points of view and not from the
view of the developers [Karl95, p. 282].

The requirements model isalso intended to form abase to the testing and
verification phase. The two documents proposed in this chapter are only
asuggestion, other documents may be included in the requirements mod-
el. However, according to Heninger [Heni1980] the requirements docu-
ments should satisfy the following six requirements:

1. They should only specify external system behaviour

2. They should specify constraints on the implementation

3. They should be easy to change

4. They should serve as reference tools for system maintainers

5. They should record forethought about the lifecycle of the system

6. They should characterize acceptable responses to undesired events

27

34.1.1

Requirements Process
The goal of this processisto find all valid requirements on the system.

The requirements process may be viewed as a cycle of three sub activi-
ties, elicitation, specification and validation.

/V Elicitation

Validation

‘\ Specification

Figure3.5

L oucopoulos and Karakostas [Louc95, p. 38] define these three sub ac-
tivities as follows:

» Requirements elicitation is the process of acquiring all the necessary
knowledge which is used in the production of the formal require-
ments specification.

* Requirements specification is the process which receives as input the
deliverables of the requirementselicitation in order to create aformal
model of the requirements.

» Reguirements validation is the process which attempts to certify that
the produced formal requirements model satisfies the user’s needs.

Information should be gathered from all people concerned because dif-
ferent users will have different requirements on the system. A system
based on the view of one personisnot likely to fulfil all requirementsim-
posed on the system [Karl95].

Usable information can also be found in old products such as specifica-
tions, analysis, designs, code, test cases and so on [Karl95, p. 298].

The requirements processis avery important phase in the devel opment
process because failure in finding all requirements, and finding the cor-
rect ones leads to later changes in the following phases. The cost of re-
pairing errors dueto changesin the requirementsisvery high since much
of the design and code has to be rewritten. The cost increases for every
phase the error passes undiscovered [Som92, p. 86]. Therefore much ef-
fort should be put in the analysis phase ensuring a correct, complete and
consistent requirements specification.

28

Analysis Team

A good approach to cover as many information sources as possible isto
let the team cover different roles of the stakeholders. One way isto in-
clude people from these different areas, like market people, usersand de-
velopers, into the project team. Another approach isto let the project
memberstake on different roles, perhaps more than onerole per member.
The latter approach |eads to smaller project groups which improves the
communication between the project members but the drawback is that
the project member not always has the knowledge to succeed in captur-
ing all aspects of hisor hersroles. A suggestion of the rolesto cover are
people from the product management, the devel opers and the market
people. There are, of course, sometimes aneed to cover other roles, it de-
pends on the nature of the system.

Guideline3: Include members with knowledge of each application
and amember with knowledge of framework designinto
the analysis team.

Elicitation

Even if the project team include people from al interested partiesisit
seldom enough with the knowledge covered by the project team. Know!-
edge of other people concerned has to be captured. Conducting inter-
views isthe most traditional way of working. An aternative of making
interviews intended to capture the requirements and knowledge of all
people concerned is to perform a Group Dynamic Modelling session
[Will91]. Making interviews is very time consuming. A series of inter-
views hasto be made during arather long period of time. In a GDM-ses-
sion all people concerned are gathered to one place during a day or two
to make things out. The total cost in man time is roughly the same, but
synergy effects are gained when many people meet and the time period
during which the collection of requirementsis done is shortened.

Guideline4: Gather information from as many different sources as
possible to acquire knowledge of which requirements
are of importance.

Validation

All requirements should, as mentioned above, be found. However, there-

quirements should be correct aswell. To ensure the correctness of there-

guirements they have to be validated. Sommerville claims that the

validation process include four steps [Som92, p. 97]:

¢ The needs of the user should be shown to be valid

29

3412

» The requirements should be consistent, a requirement should not be
in conflict with another requirement

» The requirements should be shown to be complete, the requirements
should cover al functionality the system is intended to provide and
all constraints imposed on the system

» The requirements should be shown to be realistic and realizable

Thevalidation should be carried out during the requirements process not
at the end of the process [Som92, p. 98].

Formulating the functional requirements with use cases makes the re-
guirements easier to verify if the requirements are accomplished or not.

Find Generalizations

The main goal for the whole development processis, as mentioned ear-

lier, to produce a framework. The main strategy to accomplish this goal

isto focus on what is general between the applications, and what is spe-
cific for each application. The framework is formed by the architectural

constructs, algorithms and data that are common to all applications that
are intended to be covered by the framework.

The process of capturing requirements follows this strategy. Find all
unique regquirements and isolate them, then collect all common require-
ments as framework requirements. The main strategy to accomplish this
istoidentify all requirements of each application and make separate lists
of requirements for each application of the framework. The next stepis
to identify all general requirements of the applications and then move
these invariantsinto the framework regquirements. The separation of re-
guirements makes identification of common behaviour and commonali-
tiesin the requirements of the applications easier.

Thereis, as mentioned above, no sharp border between the process of
capturing requirements and the process of analysis. Preliminary analysis
models are constructed for the purpose of finding new requirements and
validating existing ones.

Requirements Specification

The requirements specification is one of two documents of the require-
ments models.

30

Separation of Requirements

It isour opinion that the requirements should, in the requirements speci-
fication, be separated into two categories; framework requirements and
application specific requirements and then into functional requirements
and non-functional requirements, see Figure 3.6. It is suitable to make a
distinction between these different types of requirements since the sepa-
ration of requirements makes identification of common behaviour and
commonalities in the requirements of the applications easier.

Guideline5: Separate the requirements into framework specific and
application specific requirements

functional req non-functional req

Framework requirements

Genera
reguirements

functional req non-functional req functional req non-functional req

Application 1 Application 2

Figure 3.6 The division of requirementsin functional and non-functional requirements
and the separation of application and framework requirements.

Application specific requirements include all functional and non-func-
tional requirementsthat are specific for each application. The framework
requirements include all requirements, functional and non-functional,
that are general between the applications.

If there are commonalities between some of but not all of the applications
these commonalities may be grouped into sub frameworks.

31

Functional and Non-functional Requirements

Functional requirements are the requirements that specify the function-
ality the system will provide. The non-functional requirements specifies
other constraints placed on the system. Such constraints may arise be-
cause of company policies, standards, constraints imposed by other sys-
tems and so on [Som92, ch. 5.2].

Sommerville points out three different classes of non-functional require-
ments:

» Product requirements, such as performance, size and portability
* Process requirements, like standards, naming conventions and so on

» External reguirements, which cover all other non-functional require-
ments like cost requirements, requirements imposed by other sys-
tems, requirements which can not be categorized by the two classes
above

The non-functional requirementson aframework arein general different
to the non-functional requirements on the applications. The non-func-
tional requirements of the frameworks are more design oriented than
non-functional requirementsimposed to applications. The reason is that
the frameworks has different users than ordinary applications. The users
of aframework are application developers. A framework is used to de-
velop an application, which is developed to fulfil auser’s need. In most
casesit isthe application devel opers who constitute the requirements on
the framework. For example the developers may require the framework
to be implemented with a certain language, or the framework implemen-
tation should follow certain standards, naming conventions etc.

The functiona requirements are often easy to test and verify, especially
when the functional requirements are formulated with use cases the test-
ability is ensured.

Non-functional requirements are hard to formulate in atestable way. To
give an example of anon functional requirement which shall formulate
the adaptability of the framework: “New applications shall be easy to de-
velop by modifying existing concrete classes or writing new concrete
classes.” This statement is not possible to test. The requirement should
instead be formulated like:

“New applications should be able to be developed in a man week by
modifying or writing new concrete classes.” Thisregquirement istestable
[Som92, ch. 5.2].

Non-functional requirements may be hard to specify by using other than
natural language because they tend to be very complex [Som92, p. 9].
Using natural languages introduces difficulties when finding inconsi sten-
cies between requirements, because related requirements may be ex-

32

3.4.1.3

pressed differently hiding the relation between them [Som92, p. 87].
Natural language may also cause misunderstandings between people in-
volved in the devel opment process because different people use different
words for the same concept [Som92, p. 88].

Guideline6: The application and framework requirements should be
divided into functional and non-functional requirements
due to the different properties of the requirements.

Use Case Model

A use case model consists of actors and use cases.

The Use Case

A use case defines how the system will be used and what the system will
perform in response to a certain input. Every use case is a specific way
to use the system. Jacobson defines the use case as “Each use case con-
stitutes a complete course of eventsinitiated by an actor and it specifies
the interaction that take place between an actor and the system.”.

We believe that the use cases should be separated, aswell as the require-
ments, into specific and general behaviour. The separation makes it eas-
ier toidentify what isgeneral between the different applicationsand what
behaviour that is specific to each application. The separation of require-
ments follows the main strategy of the framework devel opment process,

which isto focus on what is generic and what is specific between the giv-
en applications.

Guideline7: Separate the use cases into framework specific and ap-
plication specific use cases. This enables to focus on
what is general and what is specific between the given
applications.

Actors and Users

Jacobsson et. al. definesin OOSE [Jaco92, ch. 6.4.1] the concepts of ac-
tors and users.

The actor is amodelling concept for human users or other systems and
itisan aid to define what exists outside the system. Actors have instanc-
es, called users, which perform sets of operations on the system.

There are acorrespondence between classes and actors aswell as objects

and users. The object isan instance of aclass and a user is an instance of
an actor.

33

An actor is non-deterministic, the actor may give several responsesto a
certain stimulus when in a specific state. The user do however perform
behaviourally related sequences of actions in dialogue with the system.
The sequences is behaviourally related to the role the actor or user isin-
tended to perform [Jaco92, ch. 6.4.1]. An example of different actors:
Thereare mainly two different user categoriesin atimereporting system,
the ordinary employee who reports how much time he or she spends on
different projects or activities, and an employee on the financial depart-
ment who compilethetime reports. These actorswill perform sequences
that are behaviourally related to their tasks, like a potential user will be
using the future system when it is developed.

The Model

The functional requirements should, when possible, be formulated by
use cases. Use cases makeit useful to find general behaviour between ap-
plications, general behaviour which should be moved into the frame-
work.

Requirement) Use case
described by
— o
| gy [
— map onto —

Figure 3.7 Requirements formulated in use cases.

The use case model isagood communication medium between users and
devel opers because ause case is expressed in termsfamiliar to the users.
A use caseisalso agood instrument in the activities of finding inconsist-
encies between different requirements since use cases are more formal
than normal language. The increased formality forces similar require-
ments to be expressed similarly which makes it easier to identify rela-
tions between requirements.

3414

Player throws five dice.
Result: three “fives’.

Oneturn of Player keeps the “fl_/e§’.
Yatzy Player throws two dice.
Result: Two “fives’.

Player stops.
Player notes50 p. inthe Y atzy row.

Figure 3.1 A use case of “Oneturn of Yatzy” together with its symbolic representation.

The use case model will also form a base for the testing process. If the
requirements are formulated by use cases and the tests are designed ac-
cording to these use casesthen there will be adirect relationship between
passing the tests and fulfilment of the requirements. The relationship be-
tween the use case model and the other models of the devel opment proc-
essisvisualised by figure 3.6 [Jac092, p. 132].

expressed in terms of

structured by implement

i DN

Domain Analysis Design I mplementa| Test
model mode model tion model model

Figure 3.8 The relations between the use case model and the other models of the system
development process.

Designing Use Cases

The process of finding use casesis iterative as most other construction

processesin software development. However, thefirst step to performis
to find the actors who interacts with the system. A good way to find ac-
torsisto focus on the purpose of the system and on how the system will

35

beused. All those actorsare not found at once, therewill amost certainly
be new actors identified during the requirements and analysis process.
More and more actors will be found as the system becomes clearer
[Jaco92].

Jacobson categorizes actors into primary and secondary actors. The sec-
ondary actors exist only to support the primary actors use of the system.
The primary actors are the actorsthe system isintended for and, thus, the
most important users of the system. [Jaco92, p. 154].

The next step isto identify the use cases by viewing the requirements
from the users perspective and perhaps continue with interviewswith the
real-world user the actor isintended to model. In Jacobson et. al. [Jac092,
p. 155] a number of good questions are presented, which answers will
lead to the identification of use cases:

* What are the main tasks of each actor?

» Will the actor have to read/write/change any system information?
* Will the actor have to inform the system about outside changes?

» Does the actor wish to be informed about unexpected changes?

It is hard to tell how detailed the use cases should be. It is often not ob-
vious when to stop and there is no limit on how detailed a use case can
be. Generally it isbetter to have afew detailed, more extensive use cases,
than many short ones.

Extends

Most of the use cases are, in at least asmall part, variants of other use
cases. There will be many use cases that only differsin just small parts.
This leads to a unnecessary large use case model and it may be hard to
relate these use casesto each other. By only modelling the differencesbe-
tween different use cases the use case model becomes more perceptible.
In OOSE thisis done with a modelling concept called extends [Jac092,
p. 158].

36

3.4.1.5

The extend concept may be a good tool to isolate differences, when de-
signing use cases for framework development.

login/logout

| extends

Start up
Frame M aker

Figure 3.9 The extends concept.

In the example above, Figure 3.9, thereis a use case which only actions
arelogin, followed by logout. This use case isthen extended with a start-
up command to Frame Maker, which resultsin anew use case containing
the action sequence: login, start-up framemaker, logout. Now there are

two use cases and theinformation which iscommon to both the use cases
isonly modelled once and the model contains no redundant information.

Use Cases and Object-Oriented Frameworks

It is, as mentioned above, suitable to divide the use cases into use cases
specific to each application of the framework and into use cases general
to these applications. Use casesthat are general should be moved into the
use case model of the framework and use cases which are application
specific into the use case model of the application to which they belong.

A concept that we think support this activity is to accomplish abstract
use cases.

Abstract Use Cases

Abstract use cases is another concept that origins from the OOSE meth-
odology [Jac092]. The use cases are divided into abstract and concrete
use cases. Concrete use cases are the use casesthat will beinitiated by an
actor to produce aresult. An abstract use case contains a sequence of ac-
tions that are shared by several concrete or abstract use cases. The ab-

37

stract use cases will not be used directly by an actor, they will be used
only by concrete use cases, or other abstract use cases.

abstract use case

Initiating the
game

uses , \ uses
, N

N
p 7 concrete use N
cases b

Playing the Yatzy
game

Playing the Greed
game

Figure 3.10 The concept of abstract use case. Both when playing a game of Yatzy and
when playing a game of Greed some common initializations needs to be made.

A concrete or abstract use case may use several different abstract use cas-
esto completeit’s sequence of action. As many abstract use cases as pos-
sible, which are common to several use cases, should befound. The next
step istoidentify sequenceswhich are shared by several of these abstract
use cases, which were identified earlier. These sequences will form new
abstract use cases. Thislast step iterates until no more common sequenc-
esarefound. Theresult of thisactivity will be ahierarchy of abstract use
cases.

We believe that such ahierarchy of use cases will map onto atypical
class hierarchy, a class hierarchy that for example forms a framework.
Use cases shared by several applicationswill form ahierarchy of abstract
use cases. The abstract use cases are sequences of action that much likely
will be performed by the future framework.

The process to identify a use case hierarchy mapping onto a framework
should include the following steps:

1. Identify commonalities between the use cases of an application.
2. Repeat step one for each application of the intended framework.

3. ldentify commonalities between the concrete and abstract use cases
of all applications of the intended framework.

4. Repeat step three until no more general abstract use cases are found.

38

3.4.2

3421

This hierarchy should then form the use case model of the framework.
The use case model is the foundation from which the common parts are
identified and isolated into the framework.

Analysis

The goa of the analysisisto outline amodel of a system which fulfils
the requirements. The analysis should focus entirely on the problem and
be done without consideration to the implementation environment. The
reason for thisapproach isthat the analysismodel should remain relevant
even if the implementation environment will change. Another, even
more important reason is that the implementation details would risk to
put the devel opers focus on implementation problems and put the prob-
lem that the system is intended to solve out of focus [Jaco92, ch. 7].

Once you haveidentified the problem domain and the requirements have
defined which part of the problem domain the framework (or system) is
intended to capture, the system has to be outlined and the frameworks
within this system should be identified.

The analysis modelsincludes a static object model. The analysismodels
are built of real world objects just like the domain analysis. Objects
present in both the domain and the analysis model should be named the
samein both the model sto ensuretraceability and to decrease the amount
of errors due to misunderstandings.

The ideawith amodel isto capture the concepts of importance and filter
out those of no importance. All abstractions are subsets of reality select-
ed for aspecial purpose. Thismakesit easier for the devel opersto focus
on the problem without irrelevant details hiding the problem. Every
model should have it's special purpose. Models supporting framework
devel opment should have the ability to focus the devel opers attention on
what is similar between the applications to be developed and what is not.

Performing the Analysis

The process of producing the analysis model isiterative in nature and a
model suitable as abase for the design phase is achieved by successive
refinement and an increasing degree of formalization [Karl95]. Thereis
no sharp edge between analysis and design. Some activities that normal-
ly belongs in the design phase are done in advance during the analysis
phase in the purpose of finding all classes and important relationsin the
analysis models.

Outline the situation and the problem, describe them from the user's per-
spective. Oncethe situation and the problem is outlined, it should be pos-
sible to identify necessary abstractions and begin the construction of the
analysis model [Tal944].

39

The analysis process should include the following steps according to
Taligent [Tal944a]:

* Outline the situation and the problem.

e Examine existing solutions.

* |dentify key abstractions.

* ldentify high level abstractions.

 ldentify what parts of the problem the framework will deal with.
» Ask for input from clients and refine the approach.

Inthe process of refinement should classesfrom the domain model which
are not needed be removed. New necessary classes should be introduced
aswell as, when possible, higher levels of abstraction. Introducing high-
er levels of abstraction leads to increased generalization of the system
[Karl95].

Guideline 8: Remove redundant classes to refine the model from un-
important information.

Guideline9: Identify high level abstractions preparing for the identi-
fication of the framework.

By introducing high level abstractions more commonalities between the
applications are found, commonalities which should be moved into the
framework.

High level abstractions makes the component more stable to changesin
the requirements. A component with an architecture containing high lev-
el abstractions may be changed without restructuring of it's architecture.
Needed changes are introduced by creating specialization of the high lev-
el abstraction [Karl95, p. 302].

Reguirements will always change because the world surrounding the
software system is always changing. The changes of the surrounding
world will reflect in changes in the requirements imposed on the system
[Som92, p. 534]. Thusfinding generalizationsis of great importance not
only in framework analysis.

Finding these abstract classes isthefirst step in the analysis activity of
identifying the frameworks in the system.

40

The easiest way to identify the abstractions is with a bottom-up ap-
proach. Start by examining existing solutions. Examine existing solu-
tions or systems may generate useful knowledge and provide important
information about the possible frameworks.

Guideline 10: Examine existing solutions to gain knowledge of possi-
ble frameworks.

Analysethe data structures and algorithms and then organi ze the abstrac-
tions. Alwaysidentify the objects before you map out the class hierarchy
and dependencies. Identify what the sol utions have in common and what
is unique to each program. Taligent [Tal944a] suggests that potential
frameworks could be found in:

* Real-world models.
e Activities performed by end users.
* Source code for current software solutions.

Some of the generalizations identified may be introduced in the frame-
work to increase the framework’s generality according to future require-
ments These abstractions may not exists in the applications under
development. However, itisoften difficult to decideif agenerdizationis
necessary or not. A generalization increases the complexity and may in-
crease the development and reuse costs. Therefore there must be atrade
off between the generality and the complexity of the framework. Asa
ruletheintroduced high level abstraction should be within the domain of
the framework.

Guideline11: Introduce only abstractions which are within the do-
main of the framework.

Two examplesin the domain of dice games: It isaproper generalization
tolet adie have any number of sides and the make aspecialization of this
genera dieto achieve an ordinary die with six sides. It is probably not a
proper generalization to make ahigh level abstraction of adice player to
achieve an high level abstraction player. A player which may be special-
ized into a hockey player is outside the domain.

Decisions about generalizations should, in not obvious cases, be docu-
mented and motivated.

The frameworks should not be to big. Big frameworks should instead be

decomposed into smaller more focused frameworks. Smaller frame-
worksis easier to reuse [Tal944].

41

3.4.22

Guideline12: Structure large frameworksinto sub frameworks. Small
frameworks are in general more focused than large ones.

Static Object Model

A goal of the static object model isto capture the objects, the relations
between objects and other concepts of the real world that are of impor-
tance to the application we have the intention to build [Rumb91 p.17].
The static object model should provide a graphical model easy to under-
stand, suitable for communication both between devel opers and between
devel opers and customers.

The static object model should not contain any computer constructs un-
less the problem to be solved is a computer problem. The naming of the
objects and conceptsin the model should be done from the users perspec-
tive[Rumb9l, p. 17].

As mentioned above, objects present in the domain model should be
named the samein the static object model. The static object model should
be areference document, not only throughout the development process,
but also in the maintenance phase. Therefore, naming of the objects and
concepts in the model should be done with great care.

Guideline13: Abstractions present in the domain model should be
named the same in the static object model ensuring
traceability.

According to Rumbaugh [Rumb91] the static object model should in-
clude analysis objects and the associ ations between these objects. Aggre-
gational relations are not yet of importance but those found should be
introduced in the model. Suitable inheritance structures should be found
and attention should be paid to find structures and objects common to
more than one of the applications intended to be captured by the frame-
work.

It is suitable to develop a static object model for each application. The
model development should be donefor all applicationsin parallel. When
common abstractions occur they should beintroduced in the static object
model of the framework.

Guideline14: Develop a static object model for each application.

Guideline 15: Introduce abstractions common to several applications
in the static object model of the framework.

42

3.4.3

3.4.4

3441

Complementary Results and Models

Themodels presented in the chapter presenting the analysis phase are not
the only useful models and they may not be suitable for every organiza-
tion. However, these model s presented are common in most devel opment
methodologies but every analysisrequires aspecial set of models. Some-
times not every model presented in this chapter is needed and sometimes
they are not enough. Use models that cover the needs and if the models
used not highlights the properties of importance, use an additional mod-
el.

The models should support identification of general concepts, be as easy
to understand as possible. The notation used should be kept simple with
no room for misunderstandings. Graphically models are good. One ex-
ample could bethe use of different coloursin the object model to express
concepts, relationships and so on. An model easy to understand reduces
errors due to misunderstandings and it is necessary for effective reuse
that the reuser will understand the model quick and easy [Karl95].

Guideline16: Use graphical notations. Graphical notations make the
models easier to understand.

The models should be easy accessible to all members of the project be-
cause it should be easy to discuss and refer to the models. It can be
achieved by presenting the models on large sheets on the wall.

Guideline17: Present the models clearly visible to all project mem-
bers making the models easy to discuss.

Summary

Thegoa of the capture requirements and analysis phaseisto identify all
valid requirements and then outline an ideal system which fulfils these
requirements.

Capture Requirements

In most software development processes there exists an activity of cap-
turing requirements, the framework development processis no excep-
tion. All requirements should be found during this activity and they
should be validated to ensure correctness and consistency.

Theanalysisteamis somewhat different from an ordinary analysisteam.
The analysis team should have knowledge of the domain and of each ap-
plication that isintended to be devel oped using the framework. The anal-
ysis team should also have knowledge of framework development.

43

3.4.4.2

It is suitable to apply use cases to describe the requirements. Use cases

may be directly tested during the tests in the verification and validation

phase, thusit may bedirectly verified if the requirementsimposed on the
system are accomplished or not.

The biggest difference between the capture requirement activity for
framework development and for ordinary software development isthe
focus on which requirementsthat are general for aset of applicationsand
which requirements that are specific for each application.

Onegoal of the capture requirement activity isto isolate all requirements
general between the applications and to let these requirements be the re-
guirements imposed on the framework.

The above presented use case concepts abstract use cases and extends
are good tools which support this activity of isolation of general require-
ments.

The product of the capture requirements activity is the requirements
model which consists of the requirements specification and the use case
model.

Analysis

The presence of the analysis model isnot uniqueto the framework devel-
opment process. There probably exist one analysis activity in every de-
velopment process.

The goal of an analysis activity isto outline amodel of the system to be
developed. The analysis should entirely focus on the problem without
consideration of the implementation.

The big difference between the framework analysis activity and an ordi-
nary analysisisagain thefocus on what concepts are general between the
applications and what is specific to each application.

All abstractions that are common between the applications are moved
into the framework. The method used to identify the more obscure com-
mon abstractions isto introduce high level abstractions. It is suitable to
develop a static object model for each application. The model develop-
ment should be done for al applications in parallel and when common
abstractions occur they should beintroduced in the static object model of
the framework.

When high level abstractions are used to build an architecture the archi-
tecture will be more stable with respect to changes in the requirements.

Frameworks should not become too big. It is better to divide alarge
framework into several small frameworks. Small frameworks are easier
to reuse.

The product of the analysis activity is a static object model of the frame-
work and one for each application. The static object model consists of
real world abstractions, high level abstractions and the relations between
these abstractions.

45

3.5

The Design Phase

This section covers the Design phase of framework development.

Domain ¢ -
Analysis Lo
N U
\/
v

Capture
Requirements
and Analysis

Framework
Design
Framework
I mplementation <@

Application
I Analysis | Test
Application
I Design
Application <

Implementation

Figure 3.11 Process roadmap

The section will give amotivation for and a description of the design
phase, as well as a description of the special concernsin framework de-
sign. The section is opened with an introduction to object-oriented de-
sign and the certain concerns of framework design, followed by a
description of the framework design process.

The guidelines provided in this section are intended to promote a good
framework design.

46

3.5.1

The design phase encompasses an architectural design phase, where the
objects and their collaborations are defined, and a detailed design phase,
where the classes and their methods are described in more detail.

The output from the design phase is a static object model and dynamic
models that describe the collaborations. These models should constitute
an adequate base for the implementation of the system.

Object-Oriented Design

Thereason for having adesign phase, and not to start writing code direct-
ly after analysis, isthat the analysis models are inappropriate as abasis
for source code writing. The analysis models view the system from a
conceptual point of view, without regard to the implementation environ-
ment. To provide afirm ground for the implementation, the objects has
to be refined, and the models have to be extended. Among elseit hasto
be determined what operations shall be offered and exactly what the
communication between the objectslooks like. The design also servesto
validate the analysis, and unclarities that are discovered might resultin a
return to the analysis process. [Jac092, p. 196]

The analysis models may have to be changed in various waysto adapt to
the implementation environment. These changes should be conducted
with care. Changes should add or change functionality concerning the
implementation environment, and changes to other functionality belong
in the conceptual, logical object modelling, conducted during the analy-
sis phase.[Jac092, p. 206]

Subsystems
Subsystems are used to manage large software systems. The subsystems

group objects to alarger unit, and thereby reduce the complexity of the
system [Jaco92, p. 190]. A subsystem should be a part of the system un-

47

3.5.2

der development that can be designed and implemented independently,
and islikely to be affected by the same minor change in requirements.

Weak coupling High cohesion

\ I_____¢_____l /
| A Subsystem | .

- 7
| hAj | \
I I I
| A | Weak coupling
I I
I I

Figure 3.12 The classes in a subsystem should have high cohesion, and the coupling to
the classes outside the subsystem should be weak.

The classes in the subsystem should have high cohesion, i. e. fit well to-
gether, and implement asingle logical entity, to which all classes shall
contribute [Som92, p. 183]. The coupling, the number of collaborations
a subsystem has with other classes or subsystems, should be minimized
[Karl95, p. 307]. Coupling is a measure of dependency between classes.
Strong coupling arise when many different messages are passed, or one
message is passed frequently. A subsystem with high cohesion and weak
coupling isillustrated in Figure 3.12.

Guideline18: Subsystems shall have high cohesion and weak cou-
pling.

Late introduction of subsystems inhibits early division of work among
teams, but a detailed object and class design allows better division into
subsystems [Karl 95, p. 307].

The Framework Design Process

A framework design is a software design that, when implemented, pro-
vides the general and abstract functionality identified in analysis. The

48

framework will be an implementation of the general parts of the applica-
tionsin the domain [Joh95].

Application 1 Application 2
7 2 =N NN

<9 Framework

e

‘ \
\ f

Application 3

Figure 3.13 A framework captures the general parts of the applications in the domain.

The framework design subprocess of the framework development proc-
ess consists of architectural design and detailed design. During the archi-
tectural design, the object and their collaborations will be changed, as
consideration is taken to the implementation environment. During the
detailed design phase, the objects identified in architectural design are
described in the target implementation language and if necessary, the ob-
jects are refined [Karl95, p. 281-282].

49

The chronological order of the activitiesin the design phaseis shownin
Figure 3.14.The design is continuously reviewed, and suggested design
solutions might be proven by prototyping.

Distribute
Responsibilities 1

Figure 3.14 The process roadmap. The design is continuously reviewed, and design
solutions might be validated by prototyping.

The main issue during framework design isto provide abasefor agener-
ic implementation, that appliesto several similar applications. During
the design process, many abstractionswill beidentified, and thereforethe
design hasto be easy to change.

I dentify abstractions

Most of the concepts common to the applications will have been identi-
fied in domain analysis and analysis, and the abstractions found during
the design phase will probably be at alower level. The identification of
ahigh level abstraction during design might result in areturn to analysis.

Search for key mechanisms of the applicationsthat can be captured in the
framework. Try to abstract as much as possible of these mechanismsinto
the framework

The fact that abstractions are found “ bottom-up”, by studying concrete
examples, impliesthere hasto be adesign to find an abstraction [Joh95].
The design could be an overview in the designer’s mind, a prototype de-
sign or an old application in which the same design problem is solved.

50

Identify Generic Design Solutions

There are no benefits in designing the same thing twice, or in doing two
complete designs to solve two similar problems. A generic design solu-
tion solvesthe current problem, but also takes similar problemsthat may
occur into consideration.

Seeking to reuse previous design solutions will limit the need for com-
plex design decisions. If adesign problemissimilar, or identical, to ade-
sign problem already solved, the previous design solution should be
reused.

The design knowledge available in the organization should be (re)used
to the maximum extent.

Guideline19: Study existing frameworks and generic designs, and try
to reuse al available design knowledge.

Design patterns are generic solutions to problems that often occur in
framework design [Gam94]. The design patterns have been applied to
many designs and the solutions they suggest are well-proven. Design
patterns also ease communication between design teams and make the
framework easier to understand [Lgj94; Gam94].

Rules Ruler

Get_Decision() & — |
Get_Winner() ¢
1

Get_Decision()

|
eIector—>Get_WinnerH |
1 Get_Decision()

Yatzy_Ruler Craps_Ruler Greed_Ruler

P |

Get_Decision() Get_Decision()

1
ruIer—>Get_DecisiorH

Elector

Get_Winner()

Yatzy_Elector

Craps_Elector

Greed_Elector

Get_Winner()

Get_Winner()

Get_Winner()

Figure 3.15 The design pattern “ Strategy” applied in the Dice Game framework.

Design patterns which might be applicable in the framework design
should beinvestigated, and if a design pattern appliesto a problem, the
problem should be solved according to the design pattern. In the our case

51

3.5.3

study, we applied the design pattern “ Strategy” when designing the rep-
resentation of the rules of the games. The rules only differed in the algo-
rithms for decision making, and these algorithms were factored out into
separate objects. The “strategy objects’ are then used to compose in-
stances of the “ruling class’. This approach makes the ruling class inde-
pendent of the algorithms used to “calculate” the decisions. See Figure
3.15.

Guideline20: Each design problem to which a design pattern apply
shall be solved according to that pattern.

If necessary, go asfar asto implementing parts of the applicationsto val-
idate the design solutions, and see that they really are general and useful.

Guideline21: Approve the design solutions by prototyping. If neces-
sary, go as far as to implementation to validate the de-
sign solutions.

Architectural Design

During the architectural design phase, a high-level description of the
framework and the applications is made based on the model s provided
by analysis [Karl95, p. 281].

The activities shown in Figure 3.16 should be common to architectural
design in most object-oriented methods [Karl95, p. 305].

Refinethe Analysis
Object Model

Assign System
Responsibilities to
Specific Objects

Analyse Object
Collaborations

Figure 3.16 The activities of architectural design.

The objective of architectural design isto identify the objects needed to
implement the system, and the way the objects collaborate. The system
isaso, if necessary, divided into subsystems during this phase.

52

3.53.1

3.5.3.2

Theinput to the architectural design phase are the requirements and anal-
ysis models, as described in the analysis section.

Thearchitectural design phase produces output in the form of a static ob-
ject model and dynamic models (interaction diagrams, state transition
graphs and data flow models). These will form the basis for the identifi-
cation of the implementation classes.

Refine the Analysis Object Model

In this activity, new objects, not present in the analysis models, may be
introduced to adapt the system under development to theimplementation
environment. An analysis of the implementation environment should
been donein parallel with analysis, or at |east before the design phaseis
entered [Jac092, p.196]. Other changes may be deleting, splitting or join-
ing objects from analysis. Such changes should be conducted with great
care, asthey often tend to decrease the robustness of the system [Jaco92,
p. 206].

It isimportant for the understanding of aframework to maintain the
traceability between the analysis and design models [Jaco92, p. 117].
Many of the design objects may have been identified in the analysis
phase, and these objects’ names should be the same in both models.

Guideline22: Objects directly transferred from analysis should keep
their names. To understand the framework from a con-
ceptual point of view, the reuser should be able to trace
the objects back to the analysis models.

A class represents an abstraction of the objectsinstantiated fromit. If a
class has many methods, it probably consists of several different abstrac-
tions. The amount of methodsthat indicate alarge classvaries, but more
than 25 qualifies the class for examination [Joh88].

Classes with alarge number of methods are not likely to be shared by
several partsof the design. Parts of aclassthat isexamined, and turns out
to represent several abstractions, might be shared by parts of the design
that did not share the original large class.

Guidedine23: Keep classes appropriately small. Classes with more
than 25 methods should be considered candidates for re-
structuring.

Assign System Responsibilities to Specific Objects

The responsibility of an object or a system has been defined as the
“knowledge to maintain and actionsthat can be performed” [Wirfs90]. In

53

this activity, the system responsibilities shall be distributed among the
objectsidentified in the earlier phases.

During the identification of the operations an object is responsible for
performing, and what knowledge it shall maintain, acommon way to ex-
press similar responsibilities should be used, since this may help identi-
fying abstractions.

Guideline24: State responsibilities as generally as possible. A com-
mon way to express responsibilities may help finding

abstractions.
MoneyContainer
wallet | | Kithy
Deposit();
PutMoney(); | | Bet(); Withdraw();
GetMoney(); Win(); GetAmount();
Count(); Gelimount();
__ _ {
Deposit(); Deposit();
Withdraw(); Withdraw();
GetAmount(); GetAmount();

Figure 3.17 Generally stated responsibilities promote abstraction identification

Responsibilities should be placed where they logically belong, but in
some cases it may not be clear to which class aresponsibility logically
belongs. The designer should then aim to distribute the intelligence to
achieve the highest level of abstraction. If aresponsibility can belongin
several classesfrom alogical point of view, the responsibility should be
placed in the classwhere it allows the designer to identify the largest ab-
straction.

Guideline25: The first concern when distributing the responsibilities
should be to create methods which perform logical op-
erations on instances of the class.

Guideline26: Distribute system intelligence so that abstractions can
be identified. When in doubt, the responsibility should
be placed where it allows for the most abstractions.

3.5.3.3

Identify abstractions, i.e. extract common behaviour into abstract super-
classes. Defining as many abstract classes as possible implies factoring
out as much common behaviour as possible [Karl95, p. 310].

Moving common responsibilities as high up in the inheritance hierarchy
as possible helps finding the most suitable abstractions [Wirfs90].

Guideline27: Create as many abstract classes as possible. Look for
duplicated responsibilities and factor them into abstract
superclasses.

Guideline28: Factor common responsibilities as high in the inherit-
ance hierarchy as possible.

Analyse Collaborations

An object collaborateswith an other object if it hasto invoke one or more
of the other objects methods to fulfil its responsibilities [Karl 95, p.306].
During this activity, the collaborati ons between the objectsin the system
should beidentified. For each object and each responsibility, it should be
found out if the responsibility can be fulfilled by the object itself and, if
not, which objectsit has to collaborate with.

Interaction diagrams, as shown in Figure 3.18, are helpful toolsin defin-
ing how the objects should collaborate in the system [Jaco92, p. 142].

Cup Scheduler Playerl Intelligencs Kitty . Rules ! Playerz
-
POt it ciictony
o
Cl‘iéék‘i‘riéu‘(bé‘t'
maxbet
Placa bef(rix] |
Bet(Amount)
Putin(2)
Reult
Reeultf(Dics) |
Wil
[Withiaraw Amomity
Done i
Playg .
May [continue(0f)
E
O

Figure 3.18 Interaction diagrams are an aid in analysing the collaborations

55

3.5.34

The associations between the objects may have to be changed from anal-
ysis. Thisis probably the most common change to the analysis model.
The actual implementation of associations and synchronization between
processes are examples where the associations may be changed. [Jaco92,
p. 206]

Sincetheintention isto makethe design extensible, no referencesto con-
crete classes should be made. Make sure to define collaborations be-
tween abstract classes, asin Figure 3.19. Though the collaborations
become somewhat abstract, this paves the way for using dynamically
bound methods in the concrete classes.

Abstract -y

object type

Figure 3.19 If the concrete leaves of the framework are referenced, they are no longer
easily interchangeable.

Concrete
object types

Guideline29: Define collaborations between abstract classes. Use
polymorphism to access the methods in the concrete
|eaves of the framework.

Refine the Inheritance Hierarchies and Collaborations

This activity is going on continuously throughout the process. Since all
abstractionsare not likely to beidentified at once, the designers probably
will have to iterate through the previous activities. The guidelines pro-
vided here areintended to promote the identification of abstractions dur-
ing the process.

Following the guidelines in the previously described activities, and ac-
tively seeking to identify abstractions, will provide deep and narrow in-
heritance hierarchies, since the behaviour shared by classes will have
been abstracted into superclasses. Wide and shallow inheritance hierar-
chies indicate that abstractions still are to be found in the hierarchy.

Guideline30: Class hierarchies should be fairly deep and narrow.

Shallow and wide inheritance hierarchies indicate that
abstractions still are to be found in the hierarchy.

56

A major concern when refining the hierarchies and coll aborations should
be to preserve the general and abstract functionality identified in analy-
sis. Further refinement should not violate the conceptual abstractions.

Guideline31: Preserve the abstractions identified in domain analysis
and analysis. Further refinement should not violate the
conceptual abstractions.

One way to start the refinement isto look for subclasses that implement
the same method and try to migrate the method to a new common super-
class[Joh88]. Thisapproach might result in adeep inheritance hierarchy
that might be hard to comprehend, sinceits methodswill be spread inthe
hierarchy. Whenever possible, the inheritance should be replaced by
composition. Try not to extend the inheritance hierarchy too far, but to
extract behaviour into anew class hierarchy and use instances of the new
class hierarchy as components in instances of the first class hierarchy.

~ T =~
Car /| Engine >
/ \
/ /
_ — / —_ - [
Volvo / Volvo I
/ Engine [
A / |
| |] |
Volvo vovo142]| /[B16 B18 B20
Amazon \ /
~ /
~ -
Ve - — —_ — - -~ - = = -
/ \
Volvo Volvo Volvo 142 Volvo 142 \
/ Amazon Amazon w/ Bl18en-| | w/ B20 en-
\ w/Bl6en-| [w/ B18en- gine gine /
gine gine
N /
— o — — — ~
— — . — —

Figure 3.20 A transfer from inheritance to composition. An engineisused as a
component in an instance of acar.

Guideline32: Try not to extend the inheritance hierarchies too far.
Class hierarchies with more than 5 levels of abstraction
should be considered candidates for restructuring. Use
composition to flatten the hierarchies.

Designers should look for classes or methods that have different names,

but provide the same functionality. Renaming these is conceptually sim-
ple, and will makeit easier to see commonalities, but requires quite alot

of text editor work. [Joh95].

57

Guideline33: Make surethingsthat are the same are named the same.

If there are methods or classesthat provide approximately the same func-
tionality, the possibility of parameterizing shall be investigated. If the
differences can be eliminated by passing parameters, similar classesin
different applications can be replaced by one general classin the frame-
work. The classis used with different parameters passed, depending on
the application using the class.

Guideline 34: Eliminate differences by parameterizing. If some class-
es or methods provide approximately the same behav-
iour, the possibility of parameterizing should be investi-

gated.
; Wallet
Container «“ —
unit=$
unit[$, match, ...] |
Deposit(); -
Withdraw(); | Match Kitty
GetNOUnits(); =
Container unit = matches
Money Kitty
L
unit=$
= ’
Money Match
Container Container
[J Wallet]
Kitty Wallet
Money
Kitty

Figure 3.21 Genera propertiesisidentified by renaming and parameterizing.

Johnsson says that iteration seemsinevitable, as all abstractions are not
likely to be found in thefirst try [Joh95]. Thisimpliesthat the class hier-
archieswill be restructured during the design, and a prerequisite for re-
structuring the hierarchiesis to understand them. Understandability can
be achieved either by proper documentation or by simplicity, or by a
combination of both.

58

Guiddline35: Maintain the documentation and models, to ease the un-
derstanding of the class hierarchies.

Multipleinheritance is afeature in some object-oriented languages, e.g.
C++, that makes it possible for a subclass to inherit from more than one
superclass. Taligent recommendsthat a distinction is made between base
classes, that represent logical objects, and mixin classes, that represent
optional functionality [Tal94c]. A class may inherit from zero or one
base classes, plus zero or more mixin classes, and a class that inherits
from abase classisitself abase class. Mixin classes only inherit from
other mixin classes. This approach provides a conventional inheritance
hierarchy of base classes, with add-in mixin classes for optional func-
tionality [Tal94c; Gam94].

If arelationship is realized through multiple inheritance that violates
these guidelines, the motivation should be thoroughly documented. Mul-
tiple inheritance and especially ambiguous multiple inheritance makes
the inheritance hierarchy hard to understand.

Vehicle

Sea Vehicle Land Vehicle

Sea Vehicle Land Vehicle

Amphibious Vehicle

multiple inheritance Amphibious Vehicle

ambiguous
multiple inheritance

Figure 3.22 Multiple inheritance complicates the inheritance structures. Especialy
ambiguous multiple inheritance should be handled with care.

Guideline36: Multiple inheritance should be handled with care. Mul-
tiple inheritance complicates the inheritance structure
and might make the framework design hard to under-
stand.

Future classes derived from the framework should be ableto use any data
representation without fear of conflicting with the oneinherited. In acon-
crete superclass it is easy to make to restrictive assumptions about spe-
cializations. Subclassing a concrete class indicates a faulty design and
should be avoided.

59

3.54

Guideline37: Only the leaves of an inheritance hierarchy in a frame-
work should be concrete. Restructure the hierarchy in-
stead of inheriting from a concrete class.

No new methods should be introduced in the concrete leaves of thein-
heritance hierarchy, as these methods cannot be called through the ab-
stract superclass interface. Cancelling inherited methods imply that the
superclass’ interface is not valid for the subclass. The concept of poly-
morphism isfundamental to framework design and shall not be violated.

Guideline38: Use type preserving inheritance when the concrete
leaves of the framework are derived from its superclass-
es. Both adding and cancelling inherited methods will
violate the polymorphism.

Detailed Design

During the detail ed design phase, all classeswith attributes and methods
are identified and described using the target implementation language
[Karl95, p.283]. The inputs are the objects and the collaborations identi-
fied in architectural design, as represented in the static object model and
the dynamic models, e.g. interaction diagrams and state transition graphs
[Jac092, p. 215].

A method with few parametersismorelikely to be common to morethan
one class than a method with alot of parameters. A method common to
more than one class may be abstracted into a common superclass. Meth-
odswith many parameters should be redefined and possibly divided into
several methods. An exceptionsto this are object constructors. [Jaco92,
p. 215; Joh88]

Guideline39: Methods should have few parameters. Methods with
more than five parameters should be considered candi-
dates for restructuring.

A method should perform only onetask. A method which performsmany
different tasks should be divided into several methods, since parts of the
method may be shared by several classeswhile other parts are unique to
oneclass.

Guideline40: Let one method perform only one task. Parts of a meth-

ods performing several tasks might be common to sev-
eral classes.

60

3.5.5

Classes are abstractions of the objects instantiated from it. Classes with
many methods (more than 25) represent complicated abstractions, and
probably consist of several different abstractions. These abstractions
should have their own classes. Complicated public interfaces are also
hard to understand.

Guideline4l: Keep asmall public interface for a class. Classes with
more than 25 methods should be considered candidates
for restructuring.

New abstractions may be found during detailed design. The abstractions
should be introduced in the models where they belong, to maintain the
structure of the documentation. Conceptual abstractions belong in anal-
ysis.

Guideline42: If new abstractions areidentified, introduce them in the
appropriate model. Conceptual abstractions in the anal-
ysis models, and lower-level abstractions in the design
model.

To allow the identification of further abstractions, method signatures
should be consistent, uniformity should be favoured over specificity.

Guideline43: Keep method signatures consistent. Things that are the
same should be named the same.

Summary

The objective of the design phase isto provide a design of an implemen-
tation that easily can be adapted to provide the specific functionality of
the applications in the domain.

Thedesign shall provide afirm base for theimplementation of the frame-
work, and preserve the abstractions from the earlier phases.

Further abstractions should always be sought, but the hierarchies should
not be extended too far. Composition should replace inheritance when-
ever possible.

“Obvious’ abstractions, and well-known abstractions are quite easy to
find, but steps should be taken to aleviate the finding of new abstrac-
tions. Such steps are having a strategy for expressing responsibilitiesin
agenera way, or strict naming conventions. Design patterns might be
targets when identifying abstractions.

61

Itisof importance to keep up agood framework structure, e.g. with only
the leaf classes of the inheritance hierarchy concrete, since the structure
will change continuously as new abstractions are found. The decisions
and abstraction should also be possible to trace back to the origin in the
analysis models.

Communications and the decision-making during design can be alleviat-
ed by using design patterns, since they provide alevel of abstraction
above objects and classes, and represent proven design solutionsto com-
mon problemsin framework design.

The detailed design shall provide uniform classes with methods that are

as probable as possible to be common to several classes. Meansto
achieve this may be keeping the number of arguments small.

62

3.6

Implementation

“A framework isageneralisation of the implementation of several appli-
cations.”

Ralph E Johnson [John95]

This section covers the Implementation phase of framework devel op-
ment.

"Domain 1| 1
Analysis J< o |
N7
\/

)

Capture
Requirements
and Analysis

Framework
Design

Framework
? Implementation <§
Application
I Analysis | Test
Application
I Design
Application

I mplementation

Figure 3.23 Process roadmap

The section isintended to provide some guidelines to follow when im-
plementing an object-oriented framework. The guidelines are compiled
from the REBOOT project, as documented in [Karl95, p. 315-334], and
revised for the implementation of framework designs. Some of these

63

3.6.1

guidelines are C++ specific and some are general for all object-oriented
languages, and the reader is supposed to have afair knowledge of C++
and its object-oriented constructs.

Implementation Strategy

In the implementation of a framework, atop-down approach should be
the most suitable, with development of the high-level objectsfirst. These
implement the general functionality of the applications, and subcontract
to low-level objects. [Karl95, p. 285]

All low-level objects are not available at the time of the testing of the
framework, so a means of replacing them has to be found. Either code
stubs can be provided, or the calls to the low-level abjects can be simu-
lated. [Karl95, p. 285; Som92, p. 381]

The top-down approach favours prototyping, since the main functionali-
ty isdefined at an early stage [Karl95, p. 285].

Implementation Standards

The implementation standard conventions should either be defined or re-
used. These conventions include the definition of file structures, naming
conventions and rules for references and inline functions and so on
[Karl95, p. 285].

By having a uniform source code, the reading of the code isfacilitated
[Jaco92, p. 239]. To have acodethat is easy to read will facilitate the un-
derstanding of the framework, and shorten the retention timefor the user.

Many companies have defined their own standards, and some are widely
spread, e.g. the Taligent and Ellemtel style guidesfor C++ programming
[Tal94c, Henr92].

Process

The implementation phase follows the detailed design phase, where all
classeswith attributes and methods are identified and described using the
target implementation language [Karl 95, p. 283]. The objective of the
implementation phase is to implement the objects, the relationships and
the collaborations identified in the design phase.

Thereisno strict boundary between detailed design, implementation and
testing, since inconsistencies discovered during implementation require
areturn to detailed design. Components are also often tested during im-
plementation.[Karl95, p. 283]

3.6.2

3.6.2.1

Theinput is adetailed description of the classes, their interfaces and ex-
ternal definitions specified with the formalism of theimplementation lan-
guage. The output is a set of implemented classes, ready to be tested
[Karl95, p. 283].

For each class there are two steps:

» Implementation of theclass' external interface. Theinterface, defined
during detailed design, is completed to include the internal definition
of the class, i.e. protected and private attributes and methods.

« Implementation of the methods, starting with an empty method body
with correct return type. Theinternal behaviour isidentified by exam-
ining the dynamic models, i.e. the interaction diagrams and the state
transition graphs. The interaction diagrams may also contain pseu-
docode, on which theimplementation can be based. The methods' en-
tire behaviour isimplemented in this step.

These steps are usually followed by unit testing. [Karl95, p. 286]

Guidelines

The purpose of these guidelinesis to help preserve the benefits from
making a good framework design, to make the code easy to understand
and to ease the work of the framework user.

Relationships

The relationships between classes identified in the design should be pre-
served or transformed in a standardized manner in aframework imple-

65

mentation. Some transformations and concepts that might be
encountered in a C++ implementation are described in Table 3.1.

Object oriented concept

C++

B “is-a” A, inheritance

Public inheritance.
class A public B {

} ;

A “has-a” or “consists of
B, aggregation

Declare the contained objects as
private or protected attributes.

class A {
pr ot ect ed:

B nyB;

A “knows” or “uses-a” B,
association

Take a reference, or a pointer, to
another class as a parameter.

class A {
voi d Qperation(B* aB);
}

Polymorphism

Declare methods as vi r t ual in the

base classes, while their
implementation is declared in the
subclasses.

class A {
vi rtual
}

class B: public A {
voi d Operation();

voi d Operation();

}
class C public A{

voi d Operation();
}

B:: Qperation() {
//inplenentation B
}

C. :OQperation() {
/1inplenentation C
}

Table 3.1 Object-oriented conceptsin C++

66

Object oriented concept C++

Abstract class By declaring the constructor as

pr ot ect ed and/or by having at least
one pure vi r t ual method, the class
cannot be instantiated

class A {

pr ot ect ed:

AQ);

public:

virtual void Operation() = 0;
/1 pure virtual

}

Encapsulation, Specify attributes as pri vat e
information hiding

Table 3.1 Object-oriented conceptsin C++

Multiple inheritance will complicate the inheritance structure. Thisis
particularly true for ambiguous inheritance structures. Complicated in-
heritance structures are hard to understand without proper documenta-
tion. The ideas behind the framework design hasto be as evident as
possible, in the code as well.

Guideline44: Comment al multiple inheritance thoroughly. Thor-
ough documentation might make up for the complica-
tions multiple inheritance implies.

Explicitly calling amethod lower in a class hierarchy is called casting
down, and introduces dependencies beyond the inheritance structure. A
method lower in the class hierarchy should be implicitly called through
the abstract superclass’ interface, and the run-time system will bind the
call to the appropriate implementation dynamically.

Guideline45: Avoid casting down the inheritance hierarchy. The

methods in a subclass should be accessed through the
superclass’ interface.

67

Thef ri end relationin C++ introducesrelationsin acomponent that are
difficult to follow and handle by the framework user. It allows other
classesto get accessto aclass' private parts and thereby violates encap-
sulation. If possible, it is better to make some member functions

fri ends than to makeawholeclassafri end.

Guideline46: Avoidusingfri end if possible, asthef ri end concept
violates information hiding. It is better to make some
member functionsf ri ends than to make awhole class
afriend.

A subclass should not decide which methods to inherit, as this contra-
dicts the specialization relationships in the inheritance structures. Re-
structure the inheritance hierarchies instead of using type-restrictive
inheritance, i.e. cancelling one or more of the inherited methods, as the
interface of a subclass using type-restrictive inheritance will be unclear.

Guideline47: Restructure the inheritance hierarchies instead of using
type-restrictive inheritance.

class List{

public:
int Count();
s
class Set: private List{
public:
List::Count(); //Mukes the count nethod visible
}

Figure 3.24 Inheritance with cancellation, realized by private inheritance in C++.

Type-redtrictiveinheritanceisrealized by privateinheritancein C++, see
Figure 3.24. Private inheritance is not an object-oriented concept and it
isnot used in any object-oriented design methodology. Private inherit-
ance may confuse the framework user, sinceit is difficult to examine
what isinherited and therefore what is reused.

Guideline48: Do not use privateinheritance. Privateinheritanceisnot
an object-oriented concept.

68

3.6.2.2

Classes and Methods

The the guidelines from the design phase should still apply, and itisim-
portant that the structures from detailed design is transferred into code
with care.

Abstract classes are not intended to be instantiated, and shall be prevent-
ed from being instantiated. Classes can not be declared as abstract in
C++, but the class can not be instantiated if at |east one method is de-
clared aspurevi r t ual , or the constructor is specified as protected. See
Table 3.1.

Guideline49: Inhibit abstract classes from being instantiated

The methods of aframework classthat areintended to beredefined inthe
subclasses should bedeclared asvi r t ual . Defining methodsasvi rt u-
al provideshooksfor changing or extending the behaviour of the frame-
work. Thereisno mechanismin C++ to makeit difficult or impossibleto
overload amethod, and if the decision ismade to redefineanon-vi r t u-
al method, the purpose of the framework is violated and either the prob-
lem should be solved in another way or the framework should be
redesigned.

Guiddine50: All methods intended to be overloaded or redefined in
subclasses must be declared asvi r t ual .

A method with morethan twenty lines of codeisapotential candidatefor
maodification, asmethods should be quite small. Small methodsare easier
to understand and modify, and the behaviour can be changed by redefin-
ing afew small methods, instead of modifying onelarge method. A small
method isalso morelikely to be common to several classes, and can then
be migrated into a common superclass.

Guideline51: Keep methods small, methods with more than 20 lines
should be regarded candidates for modification.

69

By declaring amember method as const , it isimpossible to change its
attributesin theimplementation of the class; that is, member methods de-
clared asconst do not change the state of a class, see Figure 3.25. De-
claring member methods as const ensures aframework designer that
the called method will not change the class' interna attributes. Thereis
therefore no risk of changing the state of an object by calling these meth-
ods. Thisguidelineforcestheframework user toimplement the redefined
methods as the framework developer intended.

Guideline52: Declare member methods const when possible. De-
claring amethod const ensuresthat invoking it will not
affect the state of the object.

cl ass ABCD{
public:
Set (const int newint);
/1 newlnt can not be changed inside the nethod
int Get() const;
/1 this nethod will not change the state of the
cl ass

}

Figure 3.25 Declaring parameters and methods const may help force the intended use of
the framework.

By declaring a parameter or a pointer to a parameter asconst , itisim-
possibleto changeitsvaluein theimplementation of the method, see Fig-
ure 3.25. Declaring parameters as const ensures the framework
designer that the parameters, or pointersto parameters, are not changed
intheimplementation of the method. Thereisthereforenorisk inpassing
aparameter that it isnot intended to change to such amethod. Thisguide-
lineforcestheframework user toimplement the redefined methodsasthe
framework developer intended

Guideline53: Declare parameters const when possible. Declaring a
parameter const ensures that its value will not be
changed in the method.

Use polymorphism instead of explicitly checking the object type. When
checking object types, unnecessary dependencies on other object types
are created. When a new object typesisintroduced in the framework, it
has to be modified by inserting another check. By using polymorphism
instead, the framework can be extended by simply deriving a new sub-

class.

Guideline54: Eliminate explicit type checking on object types

70

Specify attributes as private and provide accessto attributes only through
public methods for external objects, and through protected methods for
subclasses. This hides data representation and keeps the interface stable
evenif thetype of the attributeis changed. Theframework devel oper has
the responsibility of making a suitable interface for the framework user.
By using thisinterface, the framework classes are derived correctly.

Guideline55; Specify attributesaspr i vat e. Specifying attributes as
private hides the data representation and makes the
class interface stable.

Implementation and code in header files violates encapsul ation, use ex-
pliciti nl i ne instead. See Figure 3.26.

class Kitty: public Mney_Container {public:
voi d Deposit(int const nAmount){
nSum = nSumtnAnount ;

}
[l ITmplicit inline
}

[l File: file.h (header file)
class Kitty: public Mney_Container {
public:
voi d Deposit(int const nAmount);
}

/[l File: file.cc (source file):
inline void Kitty::Deposit(int const nAnount) {
nSum = nSum+nAnmount ;

}
/1 Explicit inline

Figure 3.26 Use explicit inline to avoid code in header files.

A framework developer should not lay any restrictions upon the imple-
mentation of a class derived from a framework class. The framework
user should be free to use the implementation and data representation of
his’her choice.

Guideline56: Avoid implicit i nl i ne, as implementation in header

files violates encapsulation. Use explicit i nl i ne in-
stead.

71

3.6.2.3

3.6.3

Constructors and Destructors

To keep the control and to avoid unexpected behaviour when an objectis
created, copied and destroyed, the framework developer should imple-
ment implicitly-generated methods, i.e. constructor, destructor, copy
constructor and assignment, himself, and thereby prohibit the compiler
from implementing them. Thisis especially important for classes with
dynamically allocated memory and classes that have uses-a relations
with other classes.

Guideline57: Implement implicitly generated class methods. The
compiler’s implementations may result in unexpected
behaviour.

To inhibit the framework user from performing unintentional operations
with the class, hide the copy constructor and the assignment operator in
the private part of the class specification, when copying or assignment
makes no sense.

Guideline58: When copying or assignment makes no sense, hide the
copy constructor and the assignment operator in the pri-
vate part of the class specification.

To stress correct deallocation of memory resources, the destructors
should always be made vi r t ual inthe base classes. If the destructors
arenot vi rt ual , only the destructor for the declared object is caled.
The classes in the framework should deallocate their own memory re-
sources, and leave only the deallocation of the derived classes memory
resources to the framework user. By declaring the destructorsvi rt ual
in the base classes the framework users work will be decreased.

Guideline59: Always make destructorsvi rt ual in the base classes.
Classes should deallocate the memory resources they
use themselves.

Summary

The main concernsin the implementation phase are to provide code that
iseasy to understand and to preserve the benefits from agood framework
analysis and design.

A well defined implementation standard makes the framework code easy
to read and understand. Well defined standards have evolved in several
companies, and some areavailablefor use outside the company of origin,
e.g. the Ellemtel style guidesfor C++ programming [Henr92].

72

To maintain a good object-oriented design, no hon-object-oriented spe-
cial features of the implementation language should be used, unlessthey
arevery well motivated. E.g. thef ri end concept in C++ should be
avoided, but f r i end isused in some well-proven design patterns, where
it is thoroughly motivated and documented [Gam94].

A top-down implementation strategy is suitable in framework develop-

ment, since the over all behaviour is defined first. A top-down approach
also favours prototyping.

73

3.7

Verification and Validation

This section covers the Verification and Validation phase of framework
development. The subject Verification and Validation is very wide and
this section isintended to provide a brief overview of the topic.

“Domain 1| (.
: <
Analysis o

N U

\/
v

Capture
Requirements
and Analysis

Framework
Design

Framework
I mplementation

Application
Analysis
I Application
Design

Application
Implementation

Figure 3.27 Process roadmap

The section starts with presenting the concepts of verification and vali-
dation followed by sections 3.8.1 to 3.8.4 which presents the main con-
cepts of the test activities. Section 3.8.5 present the more important
aspects when testing frameworks and the applications developed with
frameworks. The chapter is closed with a short summary.

The verification aimsto verify that the system being under construction
will fulfil the requirements stated in the Domain Analysisor in the Anal-

74

3.7.1

ysis phase [Jac092, p. 307]. The validation aims to check if the product
under construction is the product the procurer really wants.

Two questions which are very common in the literature summarize the
verification and validation activities [Jaco92, p. 307; Karl95, p. 335;
Som92, p. 374:

« Validation - Are we building the correct product?
* Veification - Are we building the product correctly?

The verification and validation activities take up a substantial part (30%
- 50%) of the development costs [Jaco92, p. 308; Marc94, p. 1331]. De-
creasing the need for test will have quite an economical impact on the de-
velopment process.

One activity of the verification and validation phase is the test activity,
Thisactivity isoften categorized into unit testing, integration testing and
regression testing [Jaco92, p. 310; Karl95, p. 339; Marc94, p. 1334;
Som92, p. 376]. Other activitiesin the verification and validation phase
are code inspections and reviews and statistical testing [Jaco92, p. 313;
Marc94, p. 1334].

Thischapter will only briefly present statistical testing. Codeinspections
and reviews are not different for framework development and reuse than
for other software development and will not be further presented in this
chapter.

Unit Testing

When performing aunit test, only one unit istested at atime. A unit may
be an operation, aclass, or amodul e consisting of several classes, maybe
aframework. Theideaisthat awell defined unit with well defined re-
sponsibilitiesistested so it is verified that the unit will fulfil the require-
ments imposed on the unit.

According to Marciniak, Jacobsson and Karlsson there are two methods
for making unit tests [Marc94; Jaco92, p. 316; Karl95, p. 340]:

e Structural testing, which requires knowledge of the unit’s internal
structure, provides knowledge of thetest’s code and branch coverage,
which indicates the unit’s reliability.

» Specification testing, or the functional testing, which only isbased on
the requirements imposed on the unit. No attention is paid to thein-
ternal structure of the module, it isonly of interest how the unit re-
sponds to certain inputs.

75

3.7.2

3.7.3

Integration Testing

Testing how software units work together is called integration testing
[Jaco92; Karl95, p. 340]. An integration test may, at the sametime, bea
unit test, aunit may consist of several sub units. In Ivar Jacobson’s book
Object Oriented Software Engineering, use cases are suggested as good
tools for performing integration tests [Jaco92, p.310].

Thefinal integration test, when all modules are combined to form the fi-
nal system, is sometimes called the system test. The system test verifies
if the system satisfiesthe requirements or not. If the requirementsarefor-
mulated as use cases, the results of a certain use case will directly map
onto the satisfying of a specific requirement. The system test will be the
first possihility to test if the system will satisfy the requirementsimposed
on the system. The earlier integration test will only satisfy requirements
which are derived from the procurer’s requirements, thus the importance
of the system test.

Test Model

It is suitable to use atest model both in the development of the frame-
work and during the reuse of the framework. The test model consists of
test cases and test beds [Karl95, p. 337].

A test bed [Jac092, p. 316] is used to simulate the tested unit's surround-
ing world. The test performs calls to the operations of the tested object.

A test case consists of an action sequence or a sequence of stimulus, to-
gether with a specification of the desired event. If use cases are used in

requirements model they will form agood base from which test casesare
easy to derive. The requirements which are formulated as use cases are

76

3.74

directly verifiable by the execution of the test cases which are derived
from use cases.

Map
Requirement |-a— Use case
onto

Requei/ ‘\R&;ult

Test case Test result

Interaction Interaction

Figure 3.28 Thetest relations.

Frameworks Specifics

There is no substantial difference between testing units of a framework
compared to testing ordinary software systems. However there are some
differences depending on the use of object oriented techniques and the
fact that frameworks are devel oped to be reused.

There are mainly two questionsthat should be answered by the testing of
aframework. Firgt, if the framework really covers the domain as intend-
ed [Joh91, p. 33]. Thisisverified by continuous reuse of the framework.
If the framework is unsuitable for developing an application within the
framework’sdomain, it should be considered if the framework should be
redesigned or, perhaps, if the scope of the domain should be modified.
Existing applications may be used to model scenarios of events that can
be used in alater stage, to test the reusability of the framework [Karl95,
p. 302].

Second, the framework must fulfil the parts of the application’s require-

mentswhich iswithin the framework’s area of responsibility. Thisisver-
ified primarily within the activity of system testing.

77

Jacobson [Jaco92, p. 319] claimsthat polymorphismisagood tool inthe
testing process. If changes are made in asubclass - the server class - there
will be no need to test the client class (the framework). It will be suffi-
cient to test the subclass, verifying that the subclass will respond appro-
priate to the calls from the framework.

The statement above impliesthat if new concrete classes are designed to
configure the framework to a specific application. then each of these new
classes have to be unit tested, but the framework itself do not have to be
tested as a single component again. However, it hasto betested in anin-
tegration test, atest of the complete application, how these new concrete
classes will interact with the framework.

If al of the concrete classes are taken from the framework's library (the
classes have been used before) two cases may occur. The same combina-
tion of these classes and the framework have been used and tested before,
and it will not be necessary to test this combination again. The second
case occurs when the concrete classes have been used before together
with the framework but not in this particular combination. The second
case requires no new separate tests of the concrete classes, but atest of
the compl ete application is necessary.

Thefact that it is not necessary to unit test a reused framework should
save agreat deal of testing effort. A mature framework with al of the
needed concrete classes in the framework's library will of course save
even more testing effort.

Jacobsson [Jaco92, p. 320] also points out some difficulties with poly-
morphism compared to traditional procedure oriented languages. The
difficulties with polymorphism occursin astructural test when different
paths should be covered. When using a CASE statement as in ordinary

78

3.74.1

techniques the possible paths are shown but when using polymorphism
only the invoked unit is displayed.

. “Ordinary” Case statement:
File
store: File
virtua:
Read(); CASE storeitype IS
Write(); DosFile: readDosFile(store);
UnixFile: readUnixFile(store);

PN ENDCASE

DosFile UnixFilg Polymorphism:
PUBLIC: PUBLIC: "s.t'ore: File
Read(); Read();

Write(); Write(); | Store:Read();

Figure 3.29 The differences between polymorphism and an “ordinary” case statement.

Inheritance will decrease the amount of code, but not the amount of test-
ing. Methods inherited from a super class may work finein the super
class, but they must not necessarily work well in the inheriting class
[Jac092, p. 321]. Inherited methods should be tested as well as methods
implemented in the class.

Reliability certification

Before reusing acomponent it is, in most cases, important that the reuser
can make ajudgement of the component's reliability. Reliability is often
critical because afailure of the system will often cost the reuser alarge
sum of money [Som92, p. 403].

The requirements should specify the required reliability level of the sys-
tem [Som92, p. 396].

If itisimpossible or difficult for the reuser to gain confidence of the can-
didate component then the reuser probably will choose another compo-
nent or develop his own.

There exist anumber of reliability metrics possible to provide with the
component. However, different userswill use the component in different
ways. Thereliability metrics of the component are strongly dependent on
how the component is used.

Sommerville [Som92, p. 394] presents some reliability metrics:

79

3.74.2

3.7.5

e Thefirst metric isthe probability failure on demand which is ameas-
ure of the probability that the system will behave in aunexpected way
whenitiscalled.

» Therateof failure occurrenceisthe second metric whichisameasure
of how many times the system will behave unexpected per time unit.
According to Sommerville this metric is the most general one.

e Thethird metric is mean time to failure, which is a measure of the
mean time between two failures occurs on the system.

Availability shows the probability that the system is available for use.
According to these metricsthe rate of error per lines of codeisnot asim-
portant as the actual rate of failure under use.

Statistical Testing

Statistical testing is atest method which provides information of the
probability of error or the probability that the system isavailablefor use.
Sommerville[Som92, p. 398] identify four stepsin the process of statis-
tical testing:

1. Determine the pattern of how the unit is going to be used.

2. Collect and select the test dataidentifying test cases according to this
pattern.

3. Execute the test cases according to the usage pattern. Recording the
execution time until afailure occurs.

4. Compute the software reliability according to the test results.

A framework isreused with the purpose of devel oping new applications.
Different applications may have very different usage patterns, which
may limit the use of statistical testing. However, work which argues for
usage testing as amethod for reliability certification of software compo-
nents has been done. Usage testing may al so be a suitable method to cer-
tify frameworks as well.

Summary

Reducing the need for test will probably have arather significant eco-
nomical impact on the development costs of a software product.

The tests performed during the framework devel opment process are not

different than the testsin an ordinary object-oriented development proc-
€sS.

80

The validation of aframework isdonewhen it is reused.

A reused framework does not have to be unit tested again the framework
has already been tested once.

A matureframework with many reused concrete classes reducesthe need
for testing even more because reused concrete classes are not needed to
be unit tested again.

However, when applications are developed using the framework arein-
tegration tests are always necessary.

81

3.8

Maintenance

3.8.1

3.8.2

Introduction

Every software system of asignificant sizethat will beused duringalong
period of time needs maintenance. Object-oriented frameworks are not
an exception to thisrule. However, an object-oriented framework isa
special type of a software system and will have some specia character-
istics compared to more common software architectures.

Thefirst two sections discuss computer systemsin general. Thefirst sec-
tion, 3.9.2 considers the evolution dynamics of software systems. 3.9.3
argues about how to limit the need for maintenance of software systems.
These general sections are followed by two more framework specific.
3.9.4 discuss the aspects of evolution dynamics of object-oriented frame-
works. The following section argues about how to limit the need for
maintenance of object-oriented frameworks. The chapter is closed with
ashort summary.

Computer System Evolution Dynamics

This chapter intends to discuss the evolution dynamics of computer sys-
tems. All large systems are exposed to changes in the surrounding envi-
ronment leading to modification of the requirements imposed on the
systems. To meet with the changing requirements the system hasto
evolve and thus, the system requires adaptive maintenance. Thereisalso
aneed for corrective maintenance because of undiscovered system errors
and from coding, design and analysis errors. Most of the studies of pro-
gram evolution dynamics has been performed by Lehman and Belady
(1985) resulting in a set of five laws, the Lehman’s laws, which in fact
are hypotheses not laws:

1. Thelaw of continuing change

2. Thelaw of increasing complexity

3. Thelaw of program evolution

4. Thelaw of organizational stability

5. Thelaw of conservation of familiarity

Sommerville clarifies these laws [Som92, p. 534-538].Thefirst law, the
law of continuing change states that a program that is being used in a

real-world environment hasto change with the changing environment or
become less suitable for its purpose. A real-world environment will al-

82

3.8.3

ways change. For example acomputer program for taxation will have to
be modified if the government will change the taxation rules and afire-
alarm systemwill haveto bemodified if anew detector deviceisrequired
by anew customer.

Thelaw of increasing complexity statesthat asystem exposed to changes
will become more complex. The structure of a system that is being
changed is degraded and the structure will become more unclear. Most
often changes are done with avery local perspective and the structural
consequences are not understood. To preserve the quality and under-
standability of the system's architecture extra resources must be provid-
ed, enabling restructuring activities.

Thethird law isthe law of the evolution of large programs and it states
that program evolution is a self-regulating process. System attributes as
system size, the number of found errors and the time between releasesis
approximately the same between each rel ease of the system. Lehman
suggests that the dynamics of the systemis established in an early stage
of the development process. If asystem isof low quality, inhabiting lots
of errors, there will be aneed of corrective maintenance. However,
changesto the systemwill introduce new faultsto the system, which then
requires new actions to be taken and so on. Therefore the error rate will
befairly constant. The constant time between rel eases may be explained
by the bureaucracies of the development organizations, which slows
down the change process.

The law of organizational stability isthe fourth law and it states that the
rate of change over the systems life time is approximately constant and
independent to the resources devoted to system development. Thislaw is
valid in most large programming projects. The law impliesthat large
software devel opment teams are unproductive because of the rapid in-
crease of communication when the size of the development team grows.
A large team needs to devote much effort to the communication.

Thefifth law isthe law of conservation of familiarity, which states that
theincremental system changein each releaseis approximately constant.

Limiting the Need for Software Maintenance

Maintenance of software systemsis hard, mainly because little attention
isdevoted to maintenance requirements during the devel opment process.
Thisresultsin aloss of traceability which makesit hard to trace back to
user requirements or design specifications when making any modifica-
tion or correction to the system [Marc94, p. 621].

Actions should be taken to ensure the traceability from the requirements

through the processes of analysis, design and test down to the mainte-
nance phase. Any modification made to a system shall be traced from a

83

3.8.4

requirement, new or old. Thetest plans from the test phase should be the
foundation from which the maintenance tests are done. It is necessary to
identify if the modifications are of analysis, design or coding natureto be
able to take the correct actions.

To enable traceability the right documents have to be produced. The
analysis phase should produce documents which states the analysis re-
sults. The results of the design phase should be derived from the results
of the analysis phase. The design results as well as the relationship be-
tween theresultsfrom the analysis and the design should be documented.
Every phase should produce documents stating the results and it should
always be possible to trace back the results to the earlier phase. For an
example, to be sure of making the correct tests the test plans should be
traced back to the requirements of the system.

Thethird law of the Lehman’slaws, the law of program evolution, states
as mentioned abovethat therate of faultsremainsfairly constant. The dy-
namics of the system is established in an early stage of the devel opment
process and thisimpliesthat it is very important to do things correct the
first time in software development. The earlier in the development proc-
ess the fault is introduced the more damage it will do and the more ex-
pensive it will be to correct it.

The software should be devel oped with the knowledge of that the system
will be maintained and necessary precautions should be taken to make
maintenance of the system easier. Thisis done by following the design
and coding guidelines of best practice.

Framework Evolution Dynamics

The aspects of software maintenance discussed above are aso valid to
object-oriented frameworks and some of these are even more important.
This chapter will emphasize on these, for frameworks, especially impor-
tant questions.

Lientz and Swanson [Lien80] found that maintenance made to improve
the system but not changing the system’s functionality took up a major
part, 65%, of the maintenance effort, maintenance of corrective nature
about 17% and adaptive maintenance about 18%.

A framework’s internal architecture consists, as mentioned before, of a

structure of abstract and concrete classes. A good framework consists of

afairly deep but narrow inheritance structure. However, inheritance vio-
lates the principle of information hiding. A change implemented in a su-
per class will affect all of the depending subclasses.

A safe way to implement changes in a class hierarchy, in the short per-

spective, isto implement them in a subclass and inherit from the class
which characteristics should be modified. The effects of the changes will

84

3.8.5

then be controlled and the possihilities of unwanted behaviour depending
of unknown dependencies is reduced.

Such modifications will, in the long run, lead to a degeneration of the
class and inheritance structure. Therefore thereis aneed to restructure a
framework regularly [Gam94, p. 353].

A framework is constructed with the intention that it will be used to de-
velop many applications. The usefulness of aframework is reflected by
how many timesit is reused and all these applications are dependent on
the framework. Modifications of interfaces and names are crucial and
will most likely affect the dependent applications.

Much effort should be placed on the interface design to be able to pro-
duce stable interfaces. Naming should be done with great care. Good
names are essential when designing for reuse and improves the under-
standability of the code and the functionality of the framework. Renam-
ing will aswell as changes to the interfaces affect the dependent
applications and should as much as possible be done correctly the first
time.

Yet modifications of names and interfaces will, probably, be necessary.
When any change request is found valid it is better to implement these
changes asfast as possible because more dependent applications may be
devel oped meantime, increasing the number of dependent systems.

Internal modifications of the framework will not, in most cases, affect the
interaction between the framework and the applications. Therefore these
changes are not so crucial.

Each reuser should be notified when a component is modified, and espe-
cialy if faults have been corrected and new versions issued [Karl95, p.
302]. Recording areuse history isimportant, to enable modifications or
validation of quality models and reusability models, as well asfor vali-
dation of development guidelines.

Reusers should give feedback on components. Quality problems must be
identified and dealt with both when devel oping new components and
maintaining existing components [Karl 95, p. 302)].

Summary

Frameworks may reduce the need for maintenance. A framework is, as
mentioned above, common to several applications and the framework is
abig part of each application. Thus, the amount of code to maintainis
reduced compared to the situation of maintaining aset of independent ap-
plications.

85

However, frameworks al so introduces some difficulties. Applications de-
veloped from the framework will be dependent on the framework’sinter-
faces. Modifications such as naming of the methods and parameters, the
number of parametersin a method and possible changes in the methods
services will have a great impact on the dependent applications.

86

FRAMEWORK REUSE

4.1

This chapter is intended to present an overview of the framework reuse
process. The chapter is started with a discussion on how to organize the
organization for reuse and the necessity of collecting reuse experiences
in an organized way, section 4.1. Section 4.2 describes framework reuse
and the necessity of understanding the framework before reusing it. Sec-
tion 4.3 discusses how to introduce reuse in the analysis phase and sec-
tion 4.4 present a brief overview on how to reuse architectural designs
using frameworks. The chapter is concluded with a summary.

Reuse Organization

There are basically two ways to organi ze the staff when applying reuse
of frameworks. Oneisto let the same peopl e both devel op the framework
and reuse it. The other way to organize isto have separate devel opment
and reuse organi zations.

If theintentionisto sell the framework outsi de the associ ation, the choice
of reuse organization is limited. However, we believe that most associa-
tions will use their frameworks internally and the choice of reuse organ-
ization is heavily dependent on the company policies.

If the framework devel opers themselves will use the framework, they
will know the problems and the limitations of the framework. Also, they
will not have any problems of understanding theintentions behind the ar-
chitecture and the solutions. The classical resistance to reusing other
peoples solutionsis also avoided and the well needed feedback from the
usersto the developersis easily achieved.

Devel opment teams should, as much as possible, consist of engineers
with knowledge of the domain, but thisis seldom possible dueto limited
personnel and economical resources. By having separate teams of frame-
work developers and application devel opers, the domain knowledge of
the experienced engineers (the framework devel opers) may be reused by
engineerswith lessdomain knowledge (the application developers). This
is the main argument for separate organi zations.

87

4.2

Reporting

A framework will probably not be completely stable after the first appli-
cation has been developed from it. The framework will probably need
modification thefirst timesit isreused and each timeit is reused it will
grow more and more stable [Joh91].

The reporting activity in the devel opment with reuse process will con-
tribute to the increasing maturity of the framework.

Depending on how the responsibilities for the reuse and devel opment of
the framework is organized the reports looks a little different, but in gen-
eral areuse report should include [Karl95, p. 355]:

» |nformation about the reuse environment.

» Information about difficulties in understanding the framework or the
framework’s library.

 Information about difficulties when adapting the framework.
» The costs of reusing the framework.

 |If any adaptions were needed to modify the framework.

Overview

We have limited our thesisto cover object-oriented frameworks. Howev-
er, there are other reusable components, mainly small components. Most
literature covering the devel opment with reuse phase only address these
small components, and do not cover frameworks.

Reuse with frameworks requires alife cycle different from alife cycle
supporting reuse with smaller components. For example, searching for
suitable components requires a great effort in the case of reusing small
components, but when reusing aframework the effort devoted to search-
ing for frameworks is much less, due to the differencesin size between
components and frameworks.

Another difference between small components and frameworks is that
understanding a framework requires greater effort than it takes to under-
stand a smaller component, due to the framework’s greater complexity.

Reuse will have greater impact if it isintroduced early in the devel op-
ment phase. Reusing aframework, which isan architectural component,
leads to reuse of all associated information, the products of the architec-
tural design, code and test [Karl95, p.344]. If the framework covers a

88

complete domain, parts of the domain analysis of this domain and the
analysisisreused as well.

Understanding the Framework

Theeffort required to understand the framework isaseriouslimitation to
reuse. Without understanding of what the framework does and how the
framework worksit can not be decided if the framework is a suitable so-
lution to the problem. It is very difficult to understand the concepts of a
software component by just reading its specifications [Marc94, p.603].
To gain full understanding of the object, people must seethe object’s stat-
ic context and behaviour and have some knowledge of world surround-
ing the component.

Inthe REBOOT project, two aspects of understanding the component is
considered [Karl95, p. 94]:

» Understanding of the functionality offered by the component. Thefo-
cus should be on the component’sinterface and | ater, if needed, effort
should be put into understanding the component’s internal structure.

» Understanding of the non-functional aspects of the component such
as efficiency, portability, reliability and understandability.

The results from the domain analysis are a good support for understand-
ing a framework within the actual domain.

Guideline60: Usedomain analysis results, if available, to understand
the characteristics of the component [Karl95, p.348].

Any model of the framework is agood support when understanding it

If domain experts, experienced users of the framework or the devel opers
of the framework are available, consult them when needed.

Guideline6l: Consult experienced people and every useful model
[Karl95, p.349].

Understanding of the components that are to be reused isimportant.
Gaining understanding of these components can be costly. It is, however,
essential because there are only limited ways to adapt a framework and
it is necessary that the chosen framework isthe appropriate one [Kar| 95,
p. 349].

Guideline62: Carry out acomplete study of the framework soitisful-
ly understood and the appropriate choice can be made.

89

4.3

Analysis with Reuse

The analysis process aims to capture the requirements imposed on the
system as well as modelling the application world.

Introducing reuse at the analysis stage has a great impact on the contin-
uing development process [Karl95, p. 357]. A good tool to accomplish
reuse of analysisis to reuse domain frameworks.

Guideline63: Identify reuse opportunities during the specification
phase, and identify specific reuse requirements that sup-
port them [NATO91a; NATO91b; Karl95, p. 347].

It isimportant to formulate the requirements as generally as possible
when performing analysis with reuse, because too detailed requirements
will not map onto existing requirements. Different people will solve the
same problem differently and no solution should be proposed in the re-
quirements, since this will obscure the similarities between the require-
ments on existing components and requirements on the component to be
developed [Karl95, p. 347]. To increase the suitability for reuse, only
necessary functionality and performance should be described, since this
will increase the freedom to choose among reusable solutions [Karl 95, p.
359].

Guideline64: Do not over-specify requirements[NATO91a,b, Karl95
p.357].

Several advantages exist when reusing requirements [Karl95, p. 358]:

» Consistency among related systemsis provided.

» De-facto standards are established.

* Proven implementations are used, which increases the reliability.

» Theoveral risk isreduced if the development process of asimilar
component may be studied.

The results from the domain analysis or the scope definition of the do-
main should be used to determineif the required component iscomprised
within adomain aready covered by areusable framework.

Guideline65: Use the products from the domain analysis to under-

stand the context in which the application takes place,
and its dynamics [Karl 95, p. 359].

90

4.4

Guideline66: Usethe domain analysisto determine and validate new
application requirementg Karl95, p. 359].

If the required application is comprised within the domain and there ex-
ists a (almost) suitable framework its generic requirements can be used
in the negotiations of the application’s capabilities with the procurer
[Karl95, p. 359]. The procurer may accept some reduction of the appli-
cation’sfunctionality if thisreduction makesit possible to reuse aframe-
work.

Design with Reuse

The design phase consists of two sub phases, architectural design and de-
tailed design.

Architectural Design with Reuse

The architectural design aimsto define a high-level strategy for solving
the problem and implementing the solution.

Karlsson points out two main difficulties of reuse in the architectural
phase [Karl95, p. 361]:

e Thedifficulty of building up a knowledge of predefined solutions.

» Applying that knowledge to structure the actual problem so it can be
solved by the predefined solutions.

The problem is about knowing what solutions already exist and to iden-
tify solutions suitable to the problem. A framework may be such an ex-
isting solution. It may be necessary to adapt the framework to fully suit
the problem, or it may be necessary to negotiate the capability of the re-
quired application as mentioned in section 4.3.

An adaption of the framework is most likely needed and to make the
framework easier to understand and to adapt, the framework should be
well documented. If there are several framework candidates, choose one
that iswell documented.

Guideline67: Select well-documented frameworks[Karl 95, p. 362].

The selected framework should be evaluated and the framework’s behav-
iour should be understood. A way to achieve this understanding isto car-
ry out a some detailed design in advance [Karl95, p. 362]. This detailed

91

4.5

design will generate knowledge about how to get access to the most cen-
tral functionality of the framework.

When knowledge of how the framework interactswith other components
and how the most central functionality is accomplished the remainder of
the adaption isleft to the phase of detailed design.

Guideline68: Carry out some detailed design of the application in ad-
vance for evaluation of the framework.

I mplementation of new componentsthat adapt the framework should fol -
low the architectural strategy of the framework, since these components
will be added to the framework’s component library. To make it easy to

understand the components in the framework’s library, the components

should be implemented and designed following the standards and strate-
gies of the framework.

Guideline69: Preserve the strategy implemented in the framework
when adapting it [Karl95, p. 362].

Reusing a framework is partly done by inheriting from a set of objects
and classes aready defined by the framework. When making these adap-
tions new objects and classes will be identified. Object-oriented design
isan iterative process but the detail ed objects and classes should be kept
apart from the results from the architectural design phase. These results
may beintroduced in apreliminary version of the detailed design results.

Guideline 70: Keep results from different phases separated
The best way to adapt aframework isrefining it by using inheritance. In-
heritance will let the framework’s internal s be kept unchanged.

Guideline71: Use inheritance to customize a framework [Karl95, p.
363].

Summary

Organizing the reuse process is important, if the framework is reused in-
ternally there are mainly two possibilities to organize the organization.
Separate devel opment and reuse organi zations or not separated organi za-
tions. Separate organi zations makes most use of the experienced engi-
neers by letting them devel op the framework and the less experienced
engineers use the framework to devel op the applications. The drawback
isthe difficulties to reuse other peoples work.

92

A framework will not be stable at once, feedback from the reusers are
necessary to accomplish astable framework. Therefore a processfor col-
lecting the reuse experiences should be established.

Thelife cycle of reuse of aframework is different from the life cycle of
reuse of smaller components. Less search for components is heeded
when reusing a framework and aframework is introduced earlier in the
lifecycle

Understanding frameworks is harder than understanding a smaller com-
ponent, but reuse introduction early in the life cycle will have a greater
impact.

Requirementsimposed on a system should be formulated as generally as
possibleif the system is going to be developed by reusing frameworks,
or if the system itself is developed for reuse.

The scope of adomain framework isimportant information when it
should be established if the framework is suitable for reuse in a special
case or not.

93

94

SUMMARY AND CONCLUSIONS

This thesis provides a process for the devel opment of object-oriented
frameworks. Object-oriented frameworks are a reuse technique claimed
to have high reuse potential.

Our conclusion isthat frameworks do alow for a high degree of reuse,
but are not alwaysthe best alternative from an economical point of view.
Developing frameworksis only recommended if the application domain
and its future evolution are well known.

The development of frameworks is time consuming, but a good frame-

work will pay back when the devel opment time of later applicationsis

reduced. Little public evidence of economical benefits from framework
development exists, but many companies use frameworks internally.

Current object-oriented methodol ogies do not support the identification
of abstractions shared by several applications.

Framework development

Some of the techniques used in framework development may be suitable
to ordinary application development as well. The framework devel op-
ment results in a stable architecture, less sensitive to changesin the re-
quirements.

A thorough analysis of the domain should precede the framework devel-
opment. Theintention isto investigate if developing aframework in the
domain isfeasible, to identify concepts common to the applications and
to define the borders of the domain. It isimportant to define the borders
of thedomain. A very general framework, that can be reused by avariety
of applications, can not capture much of a specific application’sfunction-
ality.

Frameworks should not becometo big, it is better to dividealarge frame-

work into several small frameworks. Small frameworks are easier to re-
use and maintain.

95

Analysis

The analysisteam should have knowledge of the domain, i e knowledge
of each application that isintended to be devel oped from the framework.
The analysis team should a so have knowledge of framework devel op-
ment.

A magjor issue during the capturing of requirementsisto isolate al re-
guirements common to the applications and to | et these requirements be
the requirements imposed on the framework. Use cases are suitable for
framework analysis, since the use case concepts abstract use cases and
extends support the isolation of general requirements.

Design

During the design of the framework, the focus should be on reusing and
designing generic design solutions.

Communications and the decision-making during design can be alleviat-
ed by using design patterns, since they provide alevel of abstraction
above objects and classes, and represent proven design solutionsto com-
mon problems in framework design.

Test, Maintenance and Reuse

A framework’s architecture is validated when the framework is reused
and the framework’s implementation is tested when the applications are
tested.

The amount of code to maintain is reduced when using frameworks, as
large parts of the applications' code isimplemented in the framework.

The scope of the framework isimportant information when establishing
if the framework is suitable for reuse in a special case or not.

Reusing aframework might be hard, due to lack of adequate documen-
tation. There are currently no well-documented techniques for frame-
work documentation, but current research suggests design patterns as a
component.

96

A GUIDELINES

This appendix contains alist of the guidelines provided for framework
development and framework reuse. The section headings are included

for reference.

3 Framework Development

3.4 Capture Requirements and Analysis Phase

¢ Guideline1:

¢ Guideline2:

3.4.1 Capture Requirements

A list of requirements on at |east two applications
should be provided together with alist of require-
ments on the framework.

A list of future requirements on the framework
should be provided.

3.4.1.1 Requirements Process

¢ Guid€eline3:

¢ Guid€eline4:

Include members with knowledge of each appli-
cation area and a member with knowledge of
framework design into the analysis team.

Gather information from as many different sourc-
es as possible to acquire knowledge of which re-
quirements are of importance.

3.4.1.2 Reguirements Specification

¢ Guidelineb:

¢ Guideline6:

3.4.1.3 Use Case Model

Separate the requirements into framework specif-
ic and application specific requirements

The application and framework requirements
should be divided into functional and non-func-
tional requirements dueto the different properties
of the requirements.

97

e Guideline7:

34.2 Anaysis

Separate the use cases into framework specific
and application specific use cases. Thisenablesto
focus on what is general and what is specific be-
tween the given applications.

3.4.2.1 Performing the Analysis

¢ Guideline8:

e Guideline9:

¢ Guideline 10:

¢ Guideline11:

¢ Guideline12:

Remove redundant classes to refine the model
from unimportant information.

Identify high level abstractions preparing for the
identification of the framework.

Examine existing solutions to gain knowledge of
possible frameworks.

Introduce only abstractions which are within the
domain of the framework.

Structure large frameworks into sub frameworks.
Small frameworks are in general more focused
than large ones.

3.4.2.2 Static Object Model

¢ Guideline13:

¢ Guideline 14:

¢ Guideline15:

Abstractions present in the domain model should
be named the same in the static object model en-
suring traceability.

Develop a static object model for each applica-
tion.

Introduce abstractions common to several appli-
cations in the static object model of the frame-
work.

3.4.3 Complementary Results and Models

¢ Guideline 16:

 Guideline17:

3.5 The Design Phase

3.5.1 Object-Oriented Design

e Guid€ine18:

Use graphical notations. Graphical notations
make the models easier to understand.

Present the models clearly visible to all project
members making the models easy to discuss.

Subsystems shall have high cohesion and weak
coupling.

98

3.5.2 The Framework Design Process

¢ Guiddine19:

¢ Guid€dine 20:

¢ Guiddine21:

3.5.3 Architectural Design

Study existing frameworks and generic designs,
and try to reuse al available design knowledge.

Each design problem to which a design pattern
apply shall be solved according to that pattern.

Approve the design solutions by prototyping. If
necessary, go as far as to implementation to vali-
date the design solutions.

3.5.3.1 Refinethe Analysis Object Model

¢ Guid€dine22:

¢ Guid€dine23:

Objects directly transferred from analysis should
keep their names. To understand the framework
from aconceptual point of view, thereuser should
be able to trace the objects back to the analysis
models.

Keep classes appropriately small. Classes with
more than 25 methods should be considered can-
didates for restructuring.

3.5.3.2 Assign System Responsihilities to Specific Objects

¢ Guid€dine 24:

¢ Guid€dline 25:

¢ Guid€dline 26:

¢ Guid€dine 27:

¢ Guid€dine28:

State responsibilities as generally as possible. A
common way to expressresponsibilitiesmay help
finding abstractions.

The first concern when distributing the responsi-
bilities should be to create methods which per-
form logical operations on instances of the class.

Distribute system intelligence so that abstractions
can be identified. When in doubt, the responsibil-
ity should be placed where it allows for the most
abstractions.

Create as many abstract classes as possible. Look
for duplicated responsibilities and factor them
into abstract superclasses.

Factor common responsibilities ashigh in the in-
heritance hierarchy as possible.

3.5.3.3 Analyse Collaborations

¢ Guid€dine 29:

Define collaborations between abstract classes.
Use polymorphism to access the methodsin the
concrete leaves of the framework.

3.5.3.4 Refine the Inheritance Hierarchies and Collaborations

¢ Guid€dine 30:

Class hierarchies should be fairly deep and nar-
row. Shallow and wide inheritance hierarchiesin-

99

¢ Guideline 31:

e Guideline 32:

* Guideline 33:

¢ Guideline 34:

¢ Guideline 35:

¢ Guideline 36:

e Guideline 37:

e Guideline 38:

35.4 Detailed Design

¢ Guideline 39:

e Guideline 40:

* Guideline41:

¢ Guideline42:

dicate that abstractions still are to be found in the
hierarchy.

Preserve the abstractions identified in domain
analysis and analysis. Further refinement should
not violate the conceptual abstractions.

Try not to extend the inheritance hierarchies too
far. Class hierarchies with more than 5 levels of
abstraction should be considered candidates for
restructuring. Use composition to flatten the hier-
archies.

Make sure things that are the same are named the
same.

Eliminate differences by parameterizing. If some
classes or methods provide approximately the
same behaviour, the possibility of parameterizing
should be investigated.

Maintain the documentation and models, to ease
the understanding of the class hierarchies.

Multipleinheritance should be handled with care.
Multiple inheritance complicates the inheritance
structure and might make the framework design
hard to understand.

Only the leaves of an inheritance hierarchy in a
framework should be concrete. Restructurethe hi-
erarchy instead of inheriting from a concrete
class.

Use type preserving inheritance when the con-
creteleaves of theframework are derived fromits
superclasses. Both adding and cancelling inherit-
ed methods will violate the polymorphism.

Methods should have few parameters. Methods
with more than five parameters should be consid-
ered candidates for restructuring.

L et one method perform only one task. Parts of a
methods performing several tasks might be com-
mon to several classes.

Keep asmall public interface for a class. Classes
with more than 25 methods should be considered
candidates for restructuring.

If new abstractions areidentified, introduce them
inthe appropriate model. Conceptual abstractions
in the analysis models, and lower-level abstrac-
tionsin the design model.

100

Guid€eline 43:

3.6 Implementation

3.6.2 Guidelines

3.6.2.1 Relationships

Guideline 44;

Guideline 45;

Guideline 46:

Guideline 47;

Guideline 48:

K eep method signatures consistent. Things that
are the same should be named the same.

Comment all multiple inheritance thoroughly.
Thorough documentation might make up for the
complications multiple inheritance implies.

Avoid casting down the inheritance hierarchy.
The methods in a subclass should be accessed
through the superclass’ interface.

Avoid using friend if possible, as the friend con-
cept violates information hiding. It is better to
make some member functions friends than to
make awhole class afriend.

Restructure the inheritance hierarchies instead of
using type-restrictive inheritance.

Do not use privateinheritance. Privateinheritance
is not an object-oriented concept.

3.6.2.2 Classes and Methods

Guideline 49:
Guideline 50:

Guideline 51;

Guideline 52;

Guideine53:

Guideline 54;
Guideline 55:

Guideline 56:

Inhibit abstract classes from being instantiated

All methods intended to be overloaded or rede-
fined in subclasses must be declared as virtual.

Keep methods small, methods with more than 20
lines should be regarded candidates for modifica-
tion.

Declare member methods const when possible.
Declaring amethod const ensuresthat invoking it
will not affect the state of the object.

Declare parameters const when possible. Declar-
ing a parameter const ensures that its value will
not be changed in the method.

Eliminate explicit type checking on object types

Specify attributes as private. Specifying attributes
asprivate hidesthe datarepresentation and makes
theclass interface stable.

Avoid implicit inline, as implementation in head-

er files violates encapsulation. Use explicit inline
instead.

3.6.2.3 Constructors and Destructors

101

e Guideline57:

¢ Guideline58:

¢ Guideline59:

Framework Reuse

4.2 Overview

* Guideline 60:
e Guideline61:
e Guid€eline 62:

4.3 Anaysiswith Reuse

e Guid€ine63:
e Guid€line 64:
e Guid€line65:
e Guid€line 66:

4.4 Designwith Reuse

 Guideline67:

* Guideline 68:

Implement implicitly generated class methods.
The compiler’ simplementations may resultinun-
expected behaviour.

When copying or assignment makes no sense,
hide the copy constructor and the assignment op-
erator in the private part of the class specification.

Always make destructorsvirtual in the base class-
es. Classes should deallocate the memory re-
sources they use themselves.

Use domain analysis results, if available, to un-
derstand the characteristics of the component
[Karl95, p.348].

Consult experienced people and every useful
model [Karl95, p.349].

Carry out acomplete study of the framework so it
isfully understood and the appropriate choice can
be made.

Identify reuse opportunities during the specifica-
tion phase, and identify specific reuse require-
ments that support them [NATO91a; NATO91b;
Karl95, p. 347].

Do not over-specify requirements [NATO91a,b,
Karl95 p.357].

Use the products from the domain analysisto un-
derstand the context in which the application
takes place, and its dynamics [Karl95, p. 359].

Usethedomain analysisto determineand validate
new application requirementsKarl95, p. 359].

Select well-documented frameworks [Karl 95, p.
362].

Carry out some detailed design of the application
in advance for evaluation of the framework.

102

Guideline 69:

Guid€eline 70:
Guid€eline 71:

Preserve the strategy implemented in the frame-
work when adapting it [Karl95, p. 362].

Keep results from different phases separated

Use inheritance to customize a framework
[Karl95, p. 363].

103

104

CASE STUDY

B.1

The purpose of the case study isto provide asimple working exampl e of
the high-level development of a small framework.

The domain we chose is small and simple enough according to the time
constraints of the thesis. The domain should be well known to both the
readersand the authors of the thesisand requiresno further investigation.
The chosen domain was games of dice, which isasmall domain whose
few concepts are well known to most people.

We decided to devel op three applications of games of dice; The Game of
Greed, Craps and Yatzy. The games were randomly chosen with no re-
gard to similarities between the games or whether they where suitable to
fit into acommon framework or not.

Use cases should be used to describe then entire external behaviour of the
system, but sincethe domainiswell known, we haveonly provided afew
use cases and interaction diagrams. The implementation of the frame-
work is not in the scope of this case study and no consideration is taken
to user interfaces.

Notation

In the interaction diagrams and object models, we have used an OMT-
based notation, defined by Gamma et al. in the Design Patterns book
[Gam94].

105

B.1.1 Class Diagram Notation [Gam94]

object reference
Abstract_Class aggregation one

Operation() Creates / m

Concrete_Class

Il virtual

Concrete_Subclass_1 Concrete_Subclass_2

Operation() ¢ Operation()

/limplementation 1 /I implementation 2 Framework_Class
|
|
|

implementation “

pseudocode

B.1.2 Interaction Diagram Notation [Gam94]

anObject anotherObject

new Object J

(instantiation)

Operation()

»| | DoOperation()

(operation on self)

time
operation active on anObject

106

B.2

The Analysis Phase

B.2.1

B.2.1.1

B.2.1.2

Requirements
We provided requirements on three applications. We also provided re-
quirements on the framework and future requirements on the framework.

Dice Game Framework Requirements

Concept descriptions

Die: Cube. Six sides, numbered from one to six. When thrown it lands
with one side up.

Throw: A dieisthrown upon a surface. The side facing up is the result
of the throw.

Player: A person participating in agame of dice.

Requirements
A player shall be able to throw any number of dice.

There shall be a dice container, dice can be added and removed and all
dice can be thrown at once.

There shall be rulesto agame of dice.

A player can bet, play a game according to the rules, decideif to stop or
continue and throw the dice. He has somewhere to keep hismoney, or his
current score.

Thereisan order of turns. A scheduler shall keep track of whoisinturn.

It shall be possible to see when the game is over and who has won.
Yatzy Requirements

The Yatzy game uses five dice, of which an arbitrary number can be
thrown together.

107

B.2.1.3

A Yatzy protocol looks like this:

Yatzy Axel Niklas
Ones

Twos
Threes

Fours
Fives

Svog
Sum
Bonus

One Pair

Two Pairs
Threesome
Foursome
Small straight
Large Straight
Full House
Chance

R ival
Sum

Two or more players can participate in a game.

The calculation of Yatzy scoresis supposed to be known by the reader.

Rules

When the game starts, the order of turnsis decided upon, and the player
to begin is chosen.

In thefirst throw of aturn, the player throws all five dice. He can chose
to throw an optional number of dice again or to stop. When heissatisfied
or he has thrown three times, he chooses in which row in the protocol to
note the score. The score is calculated according to the chosen row and
noted in the row.

The turn goes to the player to the left of him when he is done.

The game endswhen all squaresin the protocol are full (after 16 rounds)
and the winner is the player with the highest score.

Greed Requirements

The Game of Greed usesfive dice, of which an arbitrary number can be
thrown together.

108

B.2.1.4

A Greed protocol looks like this:

Axel Niklas

Two or more players can participate in agame.

The score of athrow is calculated as follows:

Three 1:s give 1000 points, three n:s give n* 100 points. Single 1:sgive
100 points, single 5:s give 50 points. Each die can only give points once.

Rules

When the game starts, the order of turnsis decided upon, and the player
to begin is chosen.

In the first throw of aturn, the player throws all five dice. If the scoreis
>300 p., he can choose to throw the dice that did not give any points
again or to stop. He continues to throw until the score of athrow isO, or
until he chooses to stop. When finished he notes the score in the current
sguare of his column in the protocol.

The turn goes to the player to the left of him when heis done.

The game ends when aplayer reaches 5000 p and all players have had an
equal number of turns. The player with the highest score wins.

Craps Requirements

The Craps game uses two dice, which are always thrown together.

Two or more players can participate in agame. Each player hasawallet

in which he stores his money, and from which he can take money to bet.

109

B.2.1.5

B.2.1.6

Rules

When the game starts, the order of turnsis decided upon, and the player
to begin is chosen.

Inaround, al players except from the player to throw bets money to the
kitty, saying the thrower will fail. The thrower bets, no more than isin
the kitty, saying he will make it.

The player throws the dice, and if the sum of the eyes of the two dice
(“thesum™) is 7 or 11, hewins. If thesumis 2, 3 or 12 heloses. If the
sumis4, 5, 6, 8, 9 or 10 he gets a second chance. The player to the left
throws the dice, and the player has to throw the same sum as the player
to the left to win, and the sum can not be 7.

If he wins, he can take out twice his bet from the kitty.

The turn goes to the player to the left of him when he is done.

The game ends when one or more of the players goes bankrupt, and the
winner is the player with the most money.

Future requirements

The design shall be possible to extend to a general framework for appli-
cation of games of dice.

The framework should be able to extend into both human and computer
players.

Requirements modifications

Craps
After renegotiations with the customer the requirement:

“The player throws the dice, and if the sum of the eyes of the two dice
(“thesum”) is7 or 11, hewins. If thesumis 2, 3 or 12 heloses. If the
sumis4, 5, 6, 8, 9 or 10 he gets a second chance. The player to the left
throws the dice, and the player has to throw the same sum as the player
to the left to win, and the sum can not be 7.”

is changed to the new requirement:
“The player throws the dice, and if the sum of the eyes of the two dice
(“thesum”) is7 or 11, hewins. If thesumis 2, 3 or 12 heloses. If the

sumis4, 5, 6, 8, 9 or 10 he gets asecond chance, and he hasto throw the
same sum twice in arow to win, and the sum can not be 7.”

110

B.2.2

B.2.2.1

B.2.2.2

The change in the requirement did not have any negative impact on the
functionality of the application. The requirement is changed to let the
Craps application fit better into the framework promoting reuse.

Use Cases

Yatzy Use Cases

Use case: Start of game

Two players start playing with five dice according to Yatzy rules. They
write their names at the top of a column in the Yatzy protocol.

Use case: Oneturn

Thefirst player throw all five dice, and get three fives. He keepsthe fives
and throwsthe other two dice again. He get two morefivesand notesfifty
points at the “ Yatzy” square of his column in the Yatzy protocol.

Use case: End of game

The playerstake turns playing until the protocol isfull, i.e. 16 times. The
first player wins, since he has a score of 362 and the second player hasa
score of 253.

Greed Use Cases

Use case: Start of game

Two players start playing with five dice according to Greed rules. They
write their names at the top of a column each in the Greed protocal.
Usecase: Oneturn 1

Thefirst player throwsall five dice, and get three ones, atwo and athree.
Hekeepsthe ones and throwsthe other two dice again. He get two threes,
and scores zero, which he notesin the current square of hiscolumnin the
Greed protocol.

Use case: Oneturn 2

111

B.2.2.3

B.2.3

The second player throws all five dice, and get two fives, atwo, athree
and aone. Sincethe scoreis 200, and lessthan 300, he scores zero, which
he notes in the current square of his column in the Greed protocol.

Use case: End of game

Thefirst player reaches 5020 p, and the second player getsalast chance.
The second player throws al five dice, and gets three ones, atwo and a
three. He chooses to stop, and scores 1000 p, which he notesin the cur-
rent square of his column in the Greed protocol. Histotal scoreis 5100,
and he wins.

Craps Use Cases

Use case: Start of game

Two players start playing with two dice according to Crapsrules. They
have akitty to place the betsin.

Usecase: Oneturn 1

The second player bets $10 to the kitty, saying the first player will fail.
Thefirst player seesthere are $10 in the kitty and places the maximum
$10 bet. Thefirst player throwsthe two dice and the sumis 7, and he gets
to take $20 from the kitty.

Use case: Oneturn 2

The second player bets $5 to thekitty, saying thefirst player will fail. The
first player seesthere are $5 in the kitty and places a $2 bet, saying he
will makeit. The first player throws the two dice and the sum is 4, and
he gets a second chance. He throws the two dice and the sum is 6. He
throws the two dice and again the sum is 6, and he getsto take $4 from
the kitty.

Use case: End of game

Thefirst player goes bankrupt, and the second player wins the game.

The Object Model
The process of identifying the objects of aframework is started by the

identification of the objects of each application. The object identification
of an application should be donein parallel with the other applicationsto

112

achieve consistency between the applications in naming of similar ob-
jects.

The above also appliesto the design process of the analysis models. One
model should be designed for each application. The analysis model of
each application should be designed in parallel with the other applica-
tions' analysis model sto achieve maximum similarity between the archi-
tectures of the applications. Designing the analysis modelsin parallel
makesit easier to find similariti es between the model s, that can be moved
into the framework.

113

4%’

Analysis

Object
Model

Wallet

Deposit()
Withdraw()
GetAmount()

Dice_Player

Mind
>

Decide()

N

Play()

N

Yatzy_Player

Greed_Player

Craps_Player

Play()

Play()

Play()

Die

|_ | : | . P Kitty
Yatzy_Mind Greed_Mind Craps_Mind
- - - Deposit()
Decide() Decide() Decide() Withdraw()
GetAmount()
I— Scheduler Rules
—
Play_Game() Rule()
Get_Winner()
[|
Yatzy_Rules Greed_Rules Craps_Rules
Rule() Rule() Rule()
Protocol Get_Winner() Get_Winner() Get_Winner()

Note_Score()

N

Cup

Roll()
Get_Side_Up()

Throw()
Get_Result()
Get_No_Dice()

Yatzy_Protocol

Greed_Protocol

Add_Die()
Remove_Die()

Note Score()

Note Score()

B.2.3.1

Yatzy Object Responsibilities

Player
» Beableto participate in agame of Yatzy.
» Beableto perform aturn of the game, according to the rules.

« Beableto read the protocol.

Scheduler

» Keep track of the players participating in around of the game.
e Keeptrack of whoisin turn.

e Judgeif the gameisover.

» Judge who has won.

Die
« Beableto produce arandom integer in [1..6], when thrown.

* Remember the result until thrown again.

Cup
« Contains a number of dice.

» Throw contained dice and tell their result, respectively.

Protocol

» Keep track of the cells of a Yatzy protocol, with 18 rows and n col-
umns.

+« Beableto store and tell the number in each cell.

Rules

» Calculatethe result of athrow, depending on the dice and which row
in the protocol to use.

115

B.2.3.2

» Judgeif the player may continue, depending on the number of throws
he has done in this round.

» Judge who isthe final winner.

Mind

* Make adecision to throw the dice.

» Make adecision which dice to throw again.
» Make a stop/continue decision.

» Make adecision about where to put the result in the protocol.

Greed Object Responsibilities

Player
» Beableto participate in agame of Greed.
» Beableto perform aturn of the game, according to the rules.

» Beableto read the protocol.

Scheduler

See Yatzy.

Die

See Yatzy.

Cup

See Yatzy.

Protocol

o Keep track of the cells of agreed protocol, with n rows and m col-
umns.

 Beableto store and tell anumber in each cell.

116

B.2.3.3

Rules

Be ableto calculate the score for athrow with n dice (according to an
algorithm), and which dice can be thrown again.

Judge if the player may continue, depending on the score and the
number of throws he has done in this round.

Judge who isthe final winner.

Mind

Make a decision to throw the dice.

Make a decision to stop or continue.

Craps Object Responsibilities

Player

Be able to participate in a game of Craps.

Be ableto perform aturn of the game, according to the rules.
Be able to bet money from hiswallet to akitty.

Be able to receive money from kitty to wallet.

Be ableto tell how much money he has got.

Be able to check the amount in the kitty.

Scheduler

See Yatzy.

Die

See Yatzy.

Cup

See Yatzy.

117

B.2.3.4

Kitty
» Beabletoreceive money.

» Beableto pay money.

Rules
* Add upthedice.

» Judgeif the player has won/has|ost/gets a second chance, depending
on the sum and the number of throws he has done.

» Judge who isthe final winner.

Mind
» Make adecision to throw the dice.

e Bet an amount.

Identification of Similar Objects

We found that many classes were common to al three applications.
These classes were moved into the framework. However, some objects
were not completely similar:

Player

This object existsin all three games (and in al other games of dice to).
Some behaviour and attributes is common to all rules and someis not.

Analysis decision:

Commonalities between the rules of the three games are moved into the
abstract class Player. The differences between the applications are
moved into three different specializations: Yatzy Player, Greed Player
and Craps_Player. The class Mind should be moved into the framework.

Protocol
Thisobject doesnot existsin Crapsbut it existsin both Yatzy and Greed.

The object protocol is not completely similar between the games Yatzy
and Greed, but the differences may be modelled through specialisation.

118

Analysisdecision:

The behaviour and attributes that are similar between the two protocol
objectsis moved into the abstract class Protocol. The differencesis
moved into the specializations Yatzy Protocol and Greed_Protocol. The
abstract class is moved into the framework.

Kitty

This object only existsin Craps and it should only be modelled outside
the framework. However, many games of dice use a Kitty and consider-
ing future applications the object Kitty should be moved into the frame-
work.

Analysisdecision:
The aobject Kitty should be moved into the framework.

Rules

This object existsin al three games (and in al other games of dice to).
Some behaviour and attributes is common to al rules and someis not.

Analysisdecision:

Commonalities between the rules of the three games are moved into the
abstract class Rules. The differences between the applicationsare moved
into three different specializations. Yatzy Rules, Greed Rules and
Craps_Rules. The class Rules should be moved into the framework.

Mind

This object existsin al three games (and in all other games of dice to).
Some behaviour and attributes is common to all rules and some s not.

Analysisdecision:

Commonalities between the rules of the three games are moved into the
abstract class Mind. The differences between the applications are moved
into three different specializations. Yatzy Mind, Greed Mind and
Craps_Mind. The class Mind should be moved into the framework.

119

B.3

The Design Phase

B.3.1

B.3.1.1

B.3.1.2

Architectural Design

During this phase it occurred that the object Wallet had the same func-
tionality asthe object Kitty, and a new object was identified and intro-
duced into the design model, the Unit Container.

Framework Solutions

M echanisms are needed to decouple the instantiation of application spe-
cific classes from the framework. The design pattern “ Abstract Factory”
provides away to isolate the instantiation from the framework. For ex-
ample, when a Yatzy gameisinitiated, the Yatzy Player objects should
not beinstantiated inside the Schedul er, asthis couplesthe framework to
one of itsapplications. By using an “ abstract factory”, the Scheduler can
use instances of Yatzy Player without having to know their actual type.

Upon discovering that the Rules classesfor the applications only differed
in the algorithms used by its methods, we saw a possibility to apply the
“Strategy” design pattern. By doing this we discovered further possibil-
ities of generalisation between the Ruler and Mind classes, but these gen-
eralisations are not included in the design models. There are other
possibilitiesto apply the“ Strategy” pattern, e.g. the Play() method in the
Dice Player class hierarchy. Using “ Strategy” makes the Rules classin-
dependent of the algorithms used to “calculate” the decisions.

The Object Model

Interaction diagrams were used to identify the methods of the design ob-
jects.

The design objects are added to the object model, and we have marked
out the design patterns used in the design. How the “ Abstract Factory”
instantiates the application specific classes is exemplified for the Yatzy
factory, and the other applications work in asimilar way.

120

Tct

FDice_Game

Create_Player()
Create_Rules()

Get_Decision();

N

Strategies

. . [

Craps_Mind

Get_Decision();

N
ruIer->Get_Decision()

S

Get_Side_Up()

|
FRules !
|

FEvaluator

Evaluate()

Yatzy_Evaluator Craps_Evaluator Greed_Evaluator
Evaluate() Evaluate() Evaluate()
FRuler

Get_Decision() @
Get_Winner() [¢]
Evaluate() q

Get_First_Result()
Get_Next_Result()
Get_No_Dice()
Add_Die()
Remove_Die()

‘ Create_Protocol() L ' Yatzy_Mind Greed_Mind
* Abstract Create_Kitty() N .
- strac! s — —

Piie Factory ‘ S ' Get_Decision(); Get_Decision();
Yatzy Greed Craps ‘\ FUnit_Container

\ . >

I Create_Player() ~ — - Create_Player() ~ — - Create_Player() | Kitty Deposit();

7 Create_Rules() | ™ 7 Create_Rules() | ~ 7 Create_Rules() Withdraw();
Create_Protocol() | I H Create_Protocol() | I | Create_Protocol() , Get_nUnitst();
Create_Kitty() I, | Create_Kitty() I | lempty ,

Il empty I Jrempty 11 ™ create_Kitty() ,
N 1 [,
FDice_Player FScheduler
Play() ook
Play_Game();
Get_Score() Y- 0 :
|
|
I I I !
Yatzy_Player Greed_Player Craps_Player :
Play() Play() Play() |
|
|
FProtocol [
B 1
Note_Score(); |
|
_________________________ - === b Yatzy_Protocol Greed_Protocol
FDie | FCup Note_Score(); Note_Score();
Roll() Throw()

evaluator->Evaluate()

] N
elector->Get_Winner|

Vl

[Eep—————_ -

Get_Decision()

A

i
-— = Yatzy_Ruler

Craps_Ruler

Greed_Ruler

Get_Decision()

Get_Decision()

Get_Decision()

FElector

Get_Winner()

N

Yatzy_Elector

Craps_Elector

Greed_Elector

Get_Winner()

Get_Winner()

Get_Winner()

B.3.2

B.3.2.1

Interaction Diagrams

We used interaction diagrams to identify the collaborations between the
objectsand to identify the methods. Theinteraction diagrams shows how
the system handles the functionality in the use cases.

Yatzy

Usecase 1. Start of game

Two players start playing with five dice according to Yatzy rules. They
write their names at the top of a column in the Yatzy protocol.

Use case 2: Oneturn

Thefirst player throw all five dice, and get threefives. He keepsthefives
and throwsthe other two dice again. He get two morefives and notesfifty
points at the “Yatzy” square of his column in the Yatzy protocol.

Use case 3: End of game

The playerstake turns playing until the protocol isfull, i.e. 16 times. The
first player wins, since he has a score of 362 and the second player hasa
score of 253.

122

ect

aYatzyProtocol

aYatzyMind[1]

aYatzyMind[2]

aYatzyPlayer[1]

aYatzyPlayer[2]

aScheduler

|

CreatePlayer()
»

Lad
new YatzyPlayer

new YatzyPlayer

v

CreateProtocol()

new Y_Protocol

CreateKitty()

aYatzyFactory

CreatePlayer() I
I

CreateRules() I

new Yatzy_Ruler

aRules

aYatzyRuler aYatzyElector

aCup

new Die

new Die

new Die

new Die

14’

aYatzyProtocol

aYatzyMind[1]

[«

aYatzyMind[2] aYatzyPlayer[1] aYatzyPlayer[2] aScheduler aYatzyFactory aRules aYatzyRuler aYatzyElector aCup Dice 1-5
[[Ll GetﬁDecision(Rourﬂd 1) N
Play(aCup, aYatzy rétocol, Round 1) i
%et_Decision(aCup, Throw 1) L Rule(aCup, Throw
Ll
A Get_Decision(aCup, aYatzyProtocol, Throw 1)
dl
| I}valuate(aCup) o
(-] L
Throw() L[] Roll()
Lad
Roll
oll) .
Roll() L i
Roll() 1]
(]
Roll() L
(]
Get_Side
Get_Side
1]
Get_Side L
1
Get_Side L
- (]
Get_Decision(aCup, Throw 2) Get_Side i
P] Rule(aCup, Throw (]
Get_Decision(aCup, aYatzyProtocol, Throw 2) ule(aCup, 9
M
I‘
: | Evaluate(aCup)
LT P | Evaluator??? .
L
Throw()
P] Roll()
Roll()
Get_Side
Get_Decision(aCup, Throw 3) B
»
»| | Rule(aCup, Throw 2)
4 Get_Decision(aCup, aYatzyProtocol, Throw 3)
d
o
: : Evaluate(aCup) I
»
L1 »| | Evaluator???
»
ote(Score, Row, this, »
]
q Get_Decision(Round 2) T
P»{ | Rule(aCup, Round?2)

| i |

Play(aCup, aYatzyProtocol, Round 1)
I

1
1 1

Get_Decision(Round 17)
y

Get_Winner(aYatZ)!PIayer[l. .2])

t[Rule(aCup, Round17)

'y

Elect(aYatzyPlayer|1..2])

B.3.1.3

Greed

Usecase 1: Start of game

Two players start playing with five dice according to Greed rules. They
write their names at the top of a column each in the Greed protocol.

Usecase 2: Oneturn 1

Thefirst player throwsall five dice, and get three ones, atwo and athree.
He keepsthe ones and throwsthe other two dice again. He get two threes,
and scores zero, which he notesin the current square of hiscolumninthe
Greed protocol.

Use case 3: Oneturn 2

The second player throws al five dice, and get two fives, atwo, athree
and aone. Sincethe scoreis 200, and lessthan 300, he scores zero, which
he notes in the current square of his column in the Greed protocol.

Use case 4: End of game

Thefirst player reaches 5020 p, and the second player gets alast chance.
The second player throws all five dice, and gets three ones, atwo and a
three. He chooses to stop, and scores 1000 p, which he notes in the cur-
rent square of his column in the Greed protocol. His total scoreis 5100,
and he wins.

125

ocT

aGreedProtocol

aGreedMind[1]

aGreedMind[2]

aGreedPlayer[1] aGreedPlayer[2]

aScheduler

|

CreatePlayer()

new GreedPlayer

CreatePlayer()

new GreedPlayer

CreateRules()

CreateProtocol()
new G_Protocol

CreateKitty()

aGreedFactory

new Greed_Ruler

aRules

aGreedRuler

aGreedElector

aCup

new Die

new Die

Dice 1-5__

LcT

aGreedProtocol aGreedMind[1] aGreedMind[2] aGreedPlayer[l] aGreedPlayer[2] aScheduler aGreedFactory aRules aGreedRuler aGreedElector aCup __ Dice1-5__

™ GetﬁDecision(aGre'edPlayer[l..Z]) 1
P{ | Rule(aGreedPlayer[1..2])
'Y
Get_Score
<
Get_Score
Tl
[1¢
Play(aCup, aGreedProtocol, Round 1)
d-
et_Decision(aCup, Throw 1) > Rule(aCup, Throw 1)
L Get_Decision(aCup, Throw 1)
d
(I« Throw() wro Roll()
Ll
]
11 !
| Get_Side
Get_Decision(aCup, Throw 2) []
»
»| | Rule(aCup, Throw 2)
'Y
Evaluate(aCup)
d-
Evaluator???
J #
Get_Decision(aCup, Throw 2) - T
[]< Throw()
P | Roll()
Roll()
Get_Side
Get_Decision(aCup, Throw 2) B
e
Rule(aCup, Throw 2
>
Evaluate(aCup)
l
Evaluator???
>
ote(0, Round, this)
[]
Get_Decision(aGreedPlayer([1..2])
» Rule(aGreedPlaxer[l..Z])
Get_Score
[«
il Get_Score
Tl
l
Play(aCup, aGreedProtocol, Round 1)
— |
et_Decision(aCup, Throw 1) o L Rule(acup, Throw 1)
L Get_Decision(aCup, Throw 1)I v
i]
hal
[J Throw() L Roll)
M]
|
11 !
| Get_Side i
Get_Decision(aCup, Throw 2) pri |_:|
Note(0, Round, this) 11
[1¢ | T
i
(I}
1l

aGreedProtocol aGreedMind[1] aGreedMind[2] aGreedPlayer[l] aGreedPlayer[2] aScheduler aGreedFactory aRules aGreedRuler aGreedElector aCup __ Dice1-5_

1

v

[J
Get_Decision(aGreedPlayer([1..2]) N

Rule(aGreedPlayer|[1..2])
»!

[_u Get_Score
Player 1 has 2 < Get_Score
gooop, th% " Play(aCup, aGreedPlotocol, Round 9)
T?]CIStC;‘]n IS |§0p " et_Decision(aCup, Throw 1) o L Rule(acup, Throw 1)
€ other p ayers L Get_Decision(aCup, Throw 1) "L
geta chance (]« Throw() L Roll)
i
1 1| .
(] Get_Side
Get_Decision(aCt: ~, Throw 2) oL |_JI []
L Get_Decision(aCup, Throw 2) :_JI
[
ote(1000, Round, this)

hi
[« L]

Get_Winner(aGreedPlayer[1..2]) —

Elect(aGreedPlayer[1..2])

h 4

Get_Score
[«
il Get_Score

[1¢

8¢t

B.3.1.4

Craps

Usecase 1: Start of game

Two players start playing with two dice according to Craps rules. They
have a kitty to place the betsin.

Usecase 2: Oneturn 1

The second player bets $10 to the kitty, saying the first player will fail.
Thefirst player sees there are $10 in the kitty and places the maximum
$10 bet. Thefirst player throwsthe two dice and the sumis 7, and he gets
to take $20 from the kitty.

Use case 3: Oneturn 2

The second player bets $5 to thekitty, saying thefirst player will fail. The
first player seesthere are $5 in the kitty and places a $2 bet, saying he
will make it. Thefirst player throws the two dice and the sum is 4, and
he gets a second chance. He throws the two dice and the sum is 6. He
throws the two dice and again the sum is 6, and he gets to take $4 from
the kitty.

Use case 4: End of game

Thefirst player goes bankrupt, and the second player wins the game.

129

aWallet[2]
aWallet[1] aKitty aCrapsMind[1] aCrapsMind[2] aCrapsPlayer[1] aCrapsPlayer[2] aScheduler aCrapsFactory aRules aCrapsRuler aCrapsElector aCrapsEvalua- aCup Die[1] Die[2]

CreatePlayer()

new Crap-

[]4_ - - - - - e - - - CreatePlayer()

new Crap-

[]4_ -1-"-"-"-"ft1-"-"—-"—-"-"""-"—-"—-"—-"—""91-"~""~""="=""~"PrN-"—"=-~-- CreateRules() =

P | new

CreateProto-
CreateKitty()
'Y

new Kitty

0€eT
g
o

______________________________________ new Die

new Die

]
R gl

aWal-

aCrapsRuler

yer[1..2])

aCrapsElector aCrapsEvalua-

aCup

er[1..2])

aWal- aKitty aCrapsMind[1] aCrapsMind[2] aCrapsPlayer[1]aCrapsPlayer[2] aScheduler aCrapsFactory aRules
L
Get_Decision(aCrap-
>
Rule(aCrapsPla)
»
L Get_Amount() L Get_Score()
i .
[J‘ L Get_Amount() e Get_Score()
(1< A
Bet() L
Get_Amount()
[1¢
1 Bet()
g™l
[]<
Deposit()
(1«
1 Play(aCup, aKitty, Round 1)
Get_Amount() «
[1¢
GetAmount()
T«
[14 Bet()
1 Deposit() .
J: Get_Decision(aCup, Throw L Rule(@Cup, Throw 1)
>
Throw() I-] []
. Get_Decision(aCup, Throw w1 Rule(aCup, Throw 2)
y Withdraw() 'L]—’D
[1¢ |
'_\
&\) Get_Decision(aCrap- NE
Rule(aCrapsPla
g
Get_Amount() [Get_Score()
[]: LJ‘Get Amount() Get_Score()
! r'IA
(]« (1€
| Bet() L
Get_Amount() <
[1¢
L Bet()
(1<
Deposit()
[1¢
[
[}

Die[1] Die[2]

Roll()
Roll()

Get_Side

et

aWal-

Die[2]

aWal- akKitty aCrapsMind[1] aCrapsMind[2] aCrapsPlayer[1]aCrapsPlayer[2] aScheduler aCrapsFactory aRules aCrapsRuler aCrapsElector aCrapsEvalua- aCup Die[1]
lll
[
Play(aCup, aKitty, Round 1)
Get_Amount() bl
T
[«
GetAmount()
T
il
[_I: Bet()
1 Deposit()
<
1 Get_Decision(aCup, Throw 1) L Rule(acup, Throw 1)
. 'I-]—’D Evaluate() o
[]4 Get_Decision() i 'L]
Throw() 1 Rol)
Roll()
Get_Side
Get_Decision(aCup, Throw 2) o L Rule(acup, Thro ‘Evaluate()
L
Get_Decision() I.] [J ?[]
(1<
Throw() 1 Roll)
Ll
Roll()
Get_Side
Get_Decision(aCup, Throw 3) « LRule(acup, Thro 3Evaluate()
Lad
(] »
Throw() »1 Roll)
Roll()
Get_Side
Get_Decision(aCup, Throw 4) L Rule(aCup, Thro 4Evaluate()
M (] b
-
1 T win()
Withdraw() <
g™l
[]<
L Deposit()
[J: L Get_Decision(aCrap- e
Lad
Rule(aCrapsPlg_ar[lHZ])
L Get_Amount() e Get_Score()
dl- il
[1¢ L Get_amount) Lo Get_Score()
['IA il
i L
Get_Winner(aCrapsPlayer([1..2]) T
P | Rule(aCrapsPlayer[1..2])
Ll
L Get_Amount() > Get_Score()
ldl- .
M Get_Amount() e Get_Score()
1 I) T |

B.3.3 Detailed Design

In the detailed design, wefully define the public interfaces and attributes
of the framework and application classes. We use a C++ syntax with no
regard to pointers etc.

B.3.3.1 Framework

enum TDeci si on {stop, continue, wn, |ose}

cl ass FDi ce_Pl ayer {

pr ot ect ed:
i nt nThrow,
FM nd aM nd;
FUnit _Contai ner aWall et;

publi c:
FDi ce_Pl ayer ();
virtual int Play();
int Get_Score();

}

cl ass FSchedul er{

private:
FDi ce_Pl ayer array Pl ayers[100];
i nt nRound;

publi c:
FSchedul er (i nt nPl ayers, int nbice,
FDi ceGane aGane);
Play_Game();

}

cl ass FDi e{

private:
int nSi deUp;
public:
int Roll();
int Get_Side_Up();
}
cl ass FCup{
private:
i nt nDice;
public:

133

Throw() ;

int Get_First_Result();
int Get_Next Result();
int Get_No_Dice();
Add_Di e(Di e abDie);
Renove_Die();

}

cl ass FProtocol {

public:
virtual Note_Score(int nScore, int nRow,
FDi ce_Pl ayer aPl ayer);
}

class FRul es {

private:
FRul er aRul er;
FEl ect or anEl ector;
FEval uat or anEval uat or;

public:
FRul es(FRul er aRul er, FEl ector anEl ector,
FEval uat or anEval uator);

TDeci si on Get _Deci si on(FCup aCup, int nRound,
int nThrow,
FPl ayer array Pl ayers);

FPl ayer Get_W nner (FPl ayer array Pl ayers);

i nt Eval uat e(FCup aCup);

cl ass FRul er{

public:
virtual TDeci sion CetDecisi son(FCup aCup,
i nt nRound,
int nThrow,
FPl ayer array
Pl ayers);

}

cl ass FEl ect or{
public:

virtual FPl ayer Get_Wnner (FPl ayer array Pl ayers);
}

cl ass FEval uat or{

public:
virtual int Eval uate(FCup aCup);

134

B.3.3.2

}

cl ass FM nd{
publi c:
virtual TDeci sison Get_Deci si on(FCup aCup,

i nt nRound,
i nt nThrow,
FPl ayer array
Pl ayers);

}

cl ass FDi ce_Gang{

publi c:
virtual FPlayer Create_Pl ayer();
virtual FRules Create_Rules();
virtual FProtocol Create_Protocol ();
virtual FUnit_Container Create Kitty();

Yatzy
class Yatzy_ Player: public FD ce_Pl ayer{

publi c:
Yat zy_Pl ayer () ;
int Play();

}

class Yatzy_Protocol: public FProtocol {

publi c:
Not e_Score(int nScore, int nRow,
FDi ce_Pl ayer aPl ayer);
}

class Yatzy_ Ruler: public FRuler{

publi c:
TDeci si on Get _Deci si on(FCup aCup, int nRound,
i nt nThrow,
FPl ayer array Pl ayers);

}

class Yatzy_Elector: public FEl ector{
publi c:

FPl ayer Get_W nner (FPl ayer array Pl ayers);
}

class Yatzy_Eval uator: public FEval uator{

135

B.3.3.3

public:
i nt Eval uat e(FCup aCup);
}

class Yatzy_Mnd: public FM nd{

public:
TDeci si son Get _Deci si on(FCup aCup, int nRound,
int nThrow,
FPl ayer array Pl ayers);

}

class Yatzy: public FDi ce_Game{

public:
FPl ayer Create_Pl ayer();
FRul es Create_Rules();
FProt ocol Create_Protocol ();
FUnit _Container Create_Kitty();

[l empty

Greed
class Greed_Player: public FDi ce_Pl ayer{

public:
G eed_Pl ayer();
int Play();
}

cl ass Greed_Protocol: public FProtocol {

public:
Not e_Score(i nt nScore, int nRow,
FDi ce_Pl ayer aPl ayer);
}

class Greed_Rule: public FRul er{

public:
TDeci si on Get _Deci si on(FCup aCup, int nRound,
i nt nThrow,
FPl ayer array Pl ayers);

}

class Greed_El ector: public FEl ector{

public:
FPl ayer Get W nner (FPl ayer array Pl ayers);

136

B.3.3.4

cl ass Greed_Eval uator: public FEval uator{

publi c:
i nt Eval uat e(FCup aCup);
}

class G eed_M nd: public FM nd{

publi c:
TDeci si son Get _Deci si on(FCup aCup, int nRound,
i nt nThrow,
FPl ayer array Pl ayers);

}

class Greed: public FD ce_Game{

publi c:
FPl ayer Create_Pl ayer();
FRul es Create_Rul es();
FProt ocol Create_Protocol ();
FUnit _Contai ner Create_Kitty();

Il enpty

Craps
class Craps_Player: public FDice_Player{

publi c:
Craps_Pl ayer();
int Play();
}

class Craps_Protocol: public FProtocol {

publi c:
Not e_Score(int nScore, int nRow,
FDi ce_Pl ayer aPl ayer);
}

class Craps_Rul e: public FRuler{
publi c:
TDeci si on CGet _Deci si on(FCup aCup, int nRound,

i nt nThrow,
FPl ayer array Pl ayers);

}

class Craps_Elector: public FEl ector{

publi c:

137

FPl ayer Get_W nner (FPl ayer array Pl ayers);
}

cl ass Craps_Eval uator: public FEval uator{

public:
i nt Eval uat e(FCup aCup);
}

class Craps_M nd: public FM nd{

public:
TDeci si son Get _Deci si on(FCup aCup, int nRound,
int nThrow,
FPl ayer array Pl ayers);

}

class Craps: public FDi ce_Game{

public:
FPl ayer Create_Pl ayer();
FRul es Create_Rules();
FProt ocol Create_Protocol ();
[l empty
FUnit _Container Create_Kitty();

138

C GLOSSARY

FILE s
abstract | - read [\
. - write \ Niklas' | -
// - copy \ Jogin / \
- Axe’'s |
classes‘/ objects A oain /
. / . -login
\ inheritance ;- \\ S
1 | DOSFILE UNIX-FILE
concrete | - read - read instances of UNIX-FILE
- Wwrite - write

Figure 5.1 The relationships between abstract classes, concrete classes and objects.

Abstract Class An abstract class is a class without instances (objects).
Objectsareonly created from subclassesto the abstract class. An abstract
classisatemplate for its subclasses, see Figure 5.1.

Abstract Use Case See section 3.4.1.3.

Actor A use case concept, see section 3.4.1.3.

Architectural design Inthe architectural design activity the objectsand
their collaborations are defined.

Attribute The values of the attributes describe the state of the object.
Also called member attribute.

Base Class A base class according to Taligent is a class which represent
alogical object, see also mixin class[Tal94c].

Class A classisatemplate for acollection of objectsthat share the same
data structure and support the same operations, see Figure 5.1.

ClassHierarchy A class hierarchy isatree of classesrelated by inherit-
ance. Commonalities between classes are extracted to common super-

139

classes. For instance, a subclass should be a specialization of its
superclass.

ClassLibrary A classlibrary contains several common classes, for
strings, lists et cetera. An example of aclasslibrary are the Microsoft
Foundation Classes.

Collaboration An object collaborates with another object if it hastoin-
voke one or more of the other objects methodsto fulfil itsresponsibilities
[Karl95, p. 306].

ConcreteClassA concrete classwill provide theimplementations of the
abstract (virtual) operations of its abstract superclass, see Figure 5.1.

Concrete Use Case A use case concept, see section 3.4.1.3.

Coupling The coupling is used as a measure of dependency between
classes. Either many different messages are passed, or one message is
frequently passed.

Design pattern See section .

Detailed Design In the detailed design activity the classes and their
methods and attributes are fully defined in the terms of the implementa
tion languages.

Domain A domain is an application area for software products.
Dynamic Binding See section 2.1.2.

Extends A use case concept, see section 3.4.1.3.

Functional Requirement The functional requirements specify the serv-
ices which should be provided by the system to the user.

I nheritance See section 2.1.2.

Non-functional Requirement The constraints imposed on the system
which could not be categorized within the functional requirementsis de-
scribed in the non-functiona requirements.

Method A method is the implementation of an operation in a class.
Methods are also called member functions.

Mixin class A mixin class according to Taligent isaclassthat represents
optional functionality. The concepts of base- and mixin classes support
multiple inheritance. Taligent states that an optional number of mixin
classes may be inherited but only one base class. The reason for inherit-
ing amixin classisto achieve its functionality. [Tal94c]

140

Multiple Inheritance Inheritance from more than one classis caled
multiple inheritance. Use of multiple inheritance may obscure the inher-
itance hierarchies.

Object An object is adata abstraction unit which encapsul ates the asso-
ciated operations. An object issaid to beaninstance of aclass, seeFigure
5.1

Operation An operation on an object is used when an object shall be ma-
nipulated or extracted information from. Also called message.

Polymor phism See section 2.1.2.

Prototyping The development of an experimental version of some as-
pect of the system isreferred to as prototyping [Mark94, p. 472].

Responsibility The responsibility of an object is defined as the knowl-
edge it maintains and the actions it can perform [Wirfs90].

Stakeholder A stakeholder isaperson or an organisation which havere-
quirements or interest on the system. A typical stakeholder isthe future
user or the financier of the system.

SubclassClassB isasubclass of classA if B inheritsfrom A, see Figure
5.1.

SuperclassClass A issaid to be asuperclass of classB if B inheritsfrom
A, seeFigure 5.1.

Use Case See section 3.4.1.3.

Virtual Operation A virtual operation is defined in a superclass but im-
plemented in a subclass.

141

142

REFERENCES

[Boo94] Grady Booch. Designing an Application Framework. Dr. Do-
bb’'s Journal 19, No. 2, 1994.

[EST95a] Reuse and object-oriented frameworks, EST Frameworks,
1995

[EST95b] Sate-of-the-art components Frameworks and Patterns, EST
AB, 1995.

[Gam94] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Design Patterns - Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley, Reading, MA, 1994.

[Grif95] William G. Griffin. Lessons learned in software reuse. |IEEE
Software, July 1995

[Heni80] Heninger K.L., Specifying software requirements for complex
systems. New techniques and their applications. |IEEE Transactions on
Software Engineering 6 (1), p. 2-13, 1980.

[Henr92] Mats Henricsson, Eric Nyqgvist. Programming in C++, Rules
and Recommendations. Ellemtel Telecommunication Systems Libraries,
1992.

[Jaco92] Ivar Jacobson et. al. Object-Oriented Software Engineering, A
Use Case Driven Approach. Addison-Wesley, 1992.

[Joh88] Ralph E. Johnson, Brian Foote. Designing Reusable Classes.
Journal of Object-Oriented Programming, June/July 1991.

[Joh91] Ralph E. Johnson, Vincent F. Russo. Reusing Object-Oriented
Designs. University of Illinois tech. report UIUCDCS 91-1696, 1991.

[Joh92] Ralph E. Johnson. Documenting frameworks using patterns.
OOPSLA '92 Proceedings, 1992.

[Joh95] Ralph E. Johnson. How to devel op frameworks. Notes for
OOPSLA '95, 1995.

143

[Karl95] Even-André Karlsson (editor). Software Reuse, A Holistic Ap-
proach, John Wiley & Sons, 1995

[Laj94] Richard Lgjoie, Rudolf K. Keller. Design and Reuse in Object-
Oriented Frameworks: Patterns, Contracts and Motifsin Concert. Pro-
ceedings of the 62nd Congress of the Association Canadienne Francaise
pour I’ Avancement des Sciences, Montreal, Canada, May 1994.

[Lar92] Johan Larsson. Object-oriented frameworks. REBOOT Consor-
tium, 1992

[Lien80] Lientz B.P and Swansson E.B. Software Maintenance Manage-
ment. Reading MA: Adison-Wesley.

[Louc95] Loucopoulos P. and Karakostas V. System Requirements Engi-
neering. Mc.Graw-Hill international series in Software Engineering.
1995.

[Marc94] J. J. Marciniak. Encyclopedia of Software Engineering, 1994

[Matt95] Michael Mattsson. Draft for 3rd chapter of thesis. August
1995.

[Mey88] Ware Meyers. Interview with Wilma Osborne. | EEE Software
5(3): 104-105, 1988.

[Mey94] Bertrand Meyer. Reusable Software - The Base Object-Orient-
ed Component Libraries. Prentice Hall, 1994.

[Mil95] H. Mili, F. Mili, A. Mili. Reusing software: Issues and research
directions. |EEE Transactions on Software Engineering, Vol. 21, No. 6,
June 1995.

[NATO91a] Nato Communications and Information Systems Commit-
tee. Software Reuse in NATO, 1991.

[NATO91b] Contel corporation, Sandard for Softwarereuse procedures,
NATO contract number 5957-ADA, 1991.

[Ohl93] Lennart Ohlsson. The next generations of OOD. Object Maga:
zine, May-June 1993.

[Rumb91] James Rumbaugh et al. Object-Oriented Modelling and De-
sign, Prentice Hall. 1991.

[Som92] lan Sommerville. Software Engineering. Addison-Wesley,
1992.

[Tal944a] Building object-oriented frameworks, Taligent, Inc., 1994

144

[Tal94b] Leveraging object-oriented frameworks, Taligent, Inc., 1994

[Tal94c] Taligent’s Guide To Designing Programs. Well-mannered Ob-
ject-Oriented Design In C++, Taligent, Inc., 1994

[Will91] H. Willars. Amplification of Business Cognition through Mod-

elling Techniques. Proceedings of the 11th IEA Congress, Paris, July
1991.

[Wirfs90] R. J. Wirfs-Brock, R. E. Johnsson. Surveying current research

in object-oriented design. Communication of the ACM, 33(9), pp. 104-
124, September 1990.

145

146

