
1

Enhancing the Understanding of Customer Requirements in Business Software
Engineering

W. Al-Karaghouli, S. AlShawi, M. Elstob
University of Westminster, Brunel University, Brunel University, UK

A major cause of the failure of information technology system (ITS) projects is the problem
of fully understanding customer requirements. In this paper we introduce the idea of a
Knowledge Requirement System (KRS) as an approach to overcoming the customer
requirements problem. This approach combines in a novel way techniques from operational
research (OR) and soft systems methodology (SSM). In particular, it is shown how Venn
Diagrams may be used to clarify and establish the relationships and gaps existing between the
customer’s and the software engineer’s knowledge, understandings, and expectations.

Keywords: information technology systems (ITS), customer requirements, specifications,
Venn diagrams, knowledge requirement system (KRS), brainstorm, operational research
(OR), rich picture, soft systems methodology (SSM).

1. Introduction

In many large and complex information technology systems projects (ITS), the need
for clear understanding of customer requirements has often been underestimated, and
this has led to an undermining of the success of vital and expensive projects. Just
considering the UK, we have for example: the London Stock Exchange automated
trading system, Taurus, which after great expenditure had to be withdrawn before ever
going live [12]; and [6]; The London Ambulance Service computerised despatch
system which failed disastrously forcing the Service to revert to the old system [23];
and more recently the new UK air traffic control centre at Swanwick, which is still not
operational three years after its planned completion and is very greatly over budget,
[10] and [14].

The problem of failed software is not a characteristic of the UK software industry
alone. Early international cases of software failures have not been reported in the past,
unless one searches very hard. It is a global problem, for example, Sauer, [26]
extensively discusses the famous case of the Australian Public Service Mandata
system, which started in the 50s and continued throughout the 70s, eventually being
terminated in April 1981 with full cost not revealed. In the United States, where the
software industry is flourishing in Silicon Valley, many large-scale systems have
ended in disasters, as discussed by Laudon and Laudon [19] and Sloane [28].

A number of authors, including Schmitt and Kozar [27]; Rudelius, Dickson, and
Hartley [25]; Wise and Debons [31]; Sommerville [29]; Sauer [26]; Tiller [30]: and
Flowers [12] draw attention to many factors that lead to software failures. Several
reasons exist for such failures (figure 1), for example cost and time overruns due to
poor initial specification, obsolescence due to rapidly changing work environment



2

[24], and inadequate requirements analysis and problem definition. Macaulay [21] and
Gleick [13] argue that some ITS failures are the result of mutual misunderstanding
between the customer and the software engineers about vital aspects of the project’s
requirements. It is this area which represents the focus of our research.

Figure 1 Factors Contributing to the High Rate of Software Project Failures

The total quality management (TQM) notion of prevention rather than correction can
be applied successfully in software engineering, just as it has been effectively applied
in many areas, see for example, Al-Karaghouli [2]. We believe that getting the
customer “requirement” right first time during the initial stage of the life cycle
(Definition of Requirements), rather than at a later stage, will save both the customer
and the software engineer (s.e.) time and money, see Ishikawa [15], and Crosby [11].

Thus, intensive and continuos communications between the customer and the
software engineer is extremely important to establish a clear understanding of the
business need which the proposed system must support in order to get things right
first time Juran [16], but in most of the cases this is not happening in the real-world as
it has been indicated by Kelly [17] who quotes the software guru “Ivar Jacobson
saying:

“ Two generations of developers have been lost to bad habits. They do the coding and then
debug. They should get it right from the beginning”.

Many organisations never had the chance to talk to one another about their new ITS

Software Project Failure

Unclear Internal
Customer

Requirement

Speed of I.T.
Developments

Legacy of
HW & SW

X
Factors

Poor Quality
of SW

Unskilled
S.E.

Leads to

Req.ÿ Spec.

Change to Project Management Size of the Project

Continuous Change
of Customer Habits

High Competition
e.g. loyalty cards

X?

Euro &
Y2K

State of the
Economy



3

were suddenly they find themselves integrated by the so called efficiency system. In
fact, most of the ITS which built in this way had almost worked against the
development of such a culture, the reader is referred to Cavell [7], and List [20] for
recent work on the implementation of such ITS in the retail sector.

Land [18], and Abdel-Hamid & Madnick [1] also highlight the importance of learning
from failures, and of the vital need of the software engineers to clearly understand the
customer’s requirements. We take a slightly broader view in that we see the problem
not only being that the software engineers often fail to understand the customer’s
business and needs, but that the customers in turn often do not sufficiently appreciate
the realities of software development, or what the software people are offering. Our
aim is to develop techniques and tools to help overcome this set of problems. On the
one hand we are developing methods to help identify and make mutually apparent the
gaps that exist between the understanding that each side in the project has, and on the
other hand we have techniques aimed at facilitating and accelerating the generation of
understanding to close these gaps, see Al-Karaghouli [3] & [4].

Building and developing future business software should be viewed a sort of self-
service; the actual development of the product should not be framed out to the
customer. What we are preaching (if the word “preach” is the correct terminology)
here is how the world has changed from 50 years ago when the 1st computer system
has been built, as international boarders between countries become blurred so the
difference between business (customer) and the software engineer (developer) is
getting blurred too.

2. Identifying the Understanding Gap (UG)

Venn Diagrams have been used successfully for some time in the management
science [5], as well as, of course, in their traditional areas of logic and computing. In
our work we have found that they are highly effective as a pictorial technique for
illustrating the gaps in understanding that exist at the requirements stage. They are
extremely easy to understand and can be manipulated by both sides to make particular
points. For example, by re-negotiating the overlaps it is easy to indicate how good or
bad current agreements are on particular matters. The technique can be made more
precise and quantitative by, for example, creating a matching score of specific terms
noted in attribute lists drawn up by the two sides.

The following diagrams and discussion give some indication of the ways in which we
have found Venn diagrams can be particularly helpful.

GENERAL CASE:

Customer RS Software Engineer
(R) (S)

Requirement (customer)ÿ Specification (software engineer)



4

What the above diagram clearly illustrates is that the customer and the software
engineer have different perceptions and understandings of what the system is to
deliver and what it will be like. Each circle is supposed to indicate all the various
features, factors, values, etc. understood and expected of the project by each side.

At the initial stage of discussion about the project, no attempt is made to specify the
detailed content of each circle, although later it is very useful to draw up specific lists.
At this early stage, it is recommended that each side draw their own overlapping Venn
diagram to indicate what they believe the level of mutual understanding currently is.
These two diagrams then provide a clear starting point for further discussion with
attention being focused on why there is disagreement between each side’s view, and
on the nature of the current mismatch between requirements and specification. This
discussion should then lead to the development of specific further activities to obtain
better understanding, from each side, so as to increase the overlap and agreement. A
scenario approach is useful to enrich the communications between both parties [21],
[22], & [24]. Because of the simplicity and clarity of the Venn diagram, which is
especially helpful to the customer, it is recommended that the above process is
repeated frequently throughout the requirements definition stage of the project’s life
cycle.

Venn diagrams, however have many additional uses in the requirements definition
process. For example, they can be used by the software engineer to illustrate various
undesirable situations that may arise and which both sides need to avoid. Two such
cases are shown in the diagrams below.

CASE 1:

Specification

Requirement

Specification greatly exceeds requirement.

This may lead to the customer greatly over spending on the project for facilities and
equipment that are not needed.



5

CASE 2:

Requirement

Specification

Specification meets only part of the requirement, but does not include any
unneeded facilities and equipment.

This is a less worse situation than Case 1, but it is still unsatisfactory since there are
important customer requirements that have not been met.

A more complex situation that often arises and is sometimes not well understood by
customers is illustrated in figure 2 below.

System
Cost

System Richness

Figure 2 The Conceptual Paradigm of System and Customer Requirements
Correlation

This shows the relationship between system costs and the breadth and depth of the
features of the proposed system. It is possible to have a low cost system meeting
basic requirements with little possibility of adaptation and expansion, see ‘lower

Req. = Spec.
(lower features)

Req. = Spec.
(higher features)

Req. ÿ Spec.

Generic Software
(medium features) Bespoke

(tailored)



6

features’ Venn diagram. Alternatively, a ‘higher features’ bespoke system can be
produced at much greater cost, however with possibly lower system lifetime costs and
certainly much greater flexibility for expansion and development, in both cases the
“lower features” and the “higher features”, we can identify a strong correlation
between system costs and the features of the proposed systems as a measure of
customer requirement being satisfied by the ITS. Finally, there is the common
generic software problem, as shown by the ‘medium features’ Venn diagram. In such
a case a fairly fully featured packaged system is available that seems to offer excellent
value for money. However, such packages often leave many important customer
requirements unsatisfied.

3 Knowledge Requirements System (KRS)

Clearly, the Venn diagram technique, although very useful, is limited in its ability to
stimulate deeper understandings and reveal major areas of disagreement and
mismatch of goals, values, and expectations. Our overall approach, which we refer to
as the KRS approach, as illustrated in figure 3, is aimed at generating the knowledge
and understanding needed in both the customer and the software engineers to enable
the development of a sound, agreed, and fully effective project requirements
definition. The key principle that drives our approach is the belief that both sides must
work together to generate knowledge and understanding of one another’s worlds and
that both have a lot of learning to do. We reject the view that the customer already
knows fully exactly what they want of the system, and we also reject the view that the
software engineer knows fully about the customer’s business and what is needed of
the system. We believe that the only way to get good requirements definition is
through partnership and mutual understanding.

Customers generally either get too enthusiastic about technology and hopelessly over-
estimate the technology’s capacity to change the world, or they never hang around
long enough to get “up to speed” with technology. ITS engineers must adapt to a
world in which many business models are different from those they know. There are
several messages to the ITS engineers, one would be to look at the engineering of the
product (software) without boundaries. Developing large ITS is complex task, we
need everybody to work as engineers (the customer plus the software engineer), it has
to be done this way in order to make things which are complex work.

KRS consists of four major levels and a total of ten processes within these levels, one
tool namely Brainstorming is used across all the four different levels, that contain the
processes. In addition, two extra tools are used in the second level to achieve the
needed and already specified quality requirements.

KRS in contrast to normal technical systems, such as Database Management System
(DBMS), KRS is a sociotechnical approach deals mainly with social (human)
interactions between the customer and the software engineer. After all the process of
customer requirements elicitation involves human-human communications (e.g.
various interview techniques) with the aim of setting up the proper technical
specifications of the proposed systems, i.e. getting specific customer requirements
right first time is a sociotechnical issue which KRS approach provides a feasible
solution.



7

Figure 3 Structure of the Knowledge Requirement System (KBS)

KRS uses several techniques at present, and we are also exploring the use of further
methods. The purpose of all of these tools is to generate, in the various parties
involved in a project, the knowledge and understanding needed to create an effective
requirements definition. One of the techniques that we have used successfully is the
well-known Soft Systems Methodology (SSM) and in particular the Rich Picture
technique [8], as illustrated in figure 4. SSM focuses, and concerns with the entire
project-changing environment, it resolves conflicts which are not addressed by most
formal analysis approaches.

CustomerRequirement
(businessinformation)

SoftwareEngineer
(skills&preferences)

Requirement

Initial
Requirement

Evaluating
Requirement

Enrich
Requirement
Discussions

Stimulating
Discussion

Increment
Knowledgeof
Requirement

1

2

3

4

5

Clear
Understanding

of
Requirement

ImprovedClear
Understandingof

Requirement

Specific&Rigorous
Requirement

RichPicture

QualityRequirement
(Final&Complete)

Successful
QualitySoftware

6

7

8

9

10

Level One Level Two Level Three Level Four

Brainstormin g



8

Software Engineer Customer
(Specification) (Requirements)

Key to the above rich picture:

Possible conflict:

Figure 4 A Simple Rich Picture Illustrating a Possible Gap Between the Software
Engineer and the Customer

The Rich Picture methodology is much more extensive than the above figure indicates
and in KRS we are employing the full range of its techniques.

ÿ How much disk storage required?

ÿ How long the program & debugging
will take to perform this system?

ÿ What is the best way of storing &
processing the data?

ÿ Will the software deliver the
format required for my business?

ÿ How fast can I access the
business information?

ÿ How easily can I retrieve &
update my business information?

ÿ How many persons will I need to
enter the data & maintain running
the system?

ÿ How will the new software fit
into my current business?

ÿ What are the strategic benefits
from the new system?

Externally
regulated body

Externally interested party:

Major concern:



9

4 Conclusion

In this paper we have introduced the use of Venn diagrams as a convenient and
powerful pictorial aid to developing shared understanding and knowledge between the
customer and the software engineer in ITS projects.

This technique is part of a larger programme of research, called the Knowledge
Requirement System approach, which is aimed at producing a range of tools and
methods to elicit, and facilitate the effective execution of the requirements definition
stage of projects. The work is ongoing and at present includes methods drawn from
Soft Systems Methodology, Brainstorming, and diagrammatic modelling.

The authors wish to thank the University of Westminster for their support; MBA;
DMS students at Westminster Business School; and large UK retail organisations for
their participation in this research.

References:

[1] T.K. Abdel-Hamid, and S.E. Madnick, ‘The Elusive Silver Lining: How we Fail to
Learn from Software Development Failures’, Sloan Management Review, 39, 1990
pp.39-48.

[2] W. Al-Karaghouli, ‘Total Quality the Way Forward: Implementation,
Achievements and Success’, Total Quality Conference, The Polytechnic of Central
London, May, England, 1991.

[3] W. Al-Karaghouli, ‘£ Millions Lost on Software Engineering: Myth or Reality?’,
Unpublished Seminar Notes- Research Seminar Series, Westminster Business
School, University of Westminster, June, England, 1997.

[4] W. Al-Karaghouli, ‘Failures of Software Engineering in Retail: The Story So Far’,
Unpublished Seminar Notes- Research Seminar Series, Westminster Business
School, University of Westminster, February, England, 1998.

[5] D.R. Anderson, D.J. Sweeney, and T. A. Williams, ‘Quantitative Methods for
Business’, 6th Edition, West Publishing Company, New York, 1995.

[6] P. Beynon-Davies, ‘Information Systems: Failures and How to Avoid Them’,
Financial Times Management Briefings, Pitman, England, 1996.

[7] S. Cavell, ‘Salespeople Buck the System: Survey Finds Software Fails to Take
Account of Culture’, Computing 25th February, 1999, pp.16.

[8] P. Checkland, and J. Scholes, ‘Soft Systems Methodology in Action’, Wiley &
Sons, Chichester, England, 1997.

[9] Computing, ‘Stock Exchange Kills Projects to Focus on Taurus’, UK, 2nd,
November, 1989, pp.1.

[10] Computing, ‘Swanwick Air Traffic Centre Set for More Delays’, UK, 22nd

October, 1998, pp.23.
[11] P. Crosby, ‘Quality Improvement Through Defect Prevention’, Philip Crosby
Associates, Inc., New York, 1985.
[12] S. Flower, ‘Software Failure: Management Failure’, John Wiley, England, 1996.
[13] J. Gleick, ‘Chaos: Making a New Science’, Penguin Books, Harmondsworth,

1998.



10

[14] L. Hatton, ‘Swanwick Bug Fixes not Good Enough’, UK, Computer Weekly 7th

January, 1999, pp.11.
[15] K. Ishikawa, ‘What is Total Quality Control? -The Japanese Way’, Translated by

D.J. Lu. Prentice Hall, New York, 1985.
[16] J.M. Juran, ‘Juran on Leadership for Quality: An Executive Handbook’, 4th ed.

McGraw-Hill Book Company, USA, 1989.
[17] L. Kelly, ‘Developers Bark up Wrong Tree’, Computing 4th March, 1999, pp.14.
[18] F. Land, ‘Adapting to Changing User Requirements’, Information and

Management, 5, 1982, pp.59-75.
[19] K.C. Laudon, and J.P. Laudon, ‘Management Information Systems’, Prentice

Hall, New Jersey, 1996.
[20] B. List, ‘Managing Software Development and Maintenance’, OR/MS Today,

February, 1999, pp.69.
[21] L. A. Macaulay, ‘Requirements Engineering’, Springer-Verlag, London, 1996.
[22] N.A.M. Maiden, S. Minocha, M. Ryan, K. Hutchings & K. Manning, ‘A Co-

operative Scenario-Based Approach to Acquisition and Validation of System
Requirements: How Exceptions can Help!’, Proceedings Workshop on Errors in
Systems Development, University of Glasgow, Scotland March 20-22, 1997.

[23] D. Page, P. Williams, and D. Boyd, ‘Report of the Inquiry into the London
Ambulance Service’, Southwest Thames Regional Authority- February, England,
1993.

[24] Rolland C., C. Souveyet, and C.B. Achour, ‘Guiding Goal Modelling Using
Scenarios’, IEEE Transactions on Software Engineering: Special Issue on
Scenarios Management, Vol.24, No.12, December 1998.

[25] W. Rudelius, G.W. Dickson, and S.W. Hartley, ‘The Little Model That Couldn’t:
How a Decision Support System for Retail Buyers Found Limbo, Systems,
Objectives, Solutions’, 1982, Chapter 2, pp.15-124.

[26] C. Sauer, ‘Why Information Systems Fail: A Case Study Approach’, Alfred
Waller, Henley-on-Thames, UK, 1993.

[27] J.W. Schmitt, and K.A. Kozar, ‘Management’s Role in Information Systems
Development Failures: A Case Study’, MIS Quarterly, 2nd June, Vol.22, 1978,
pp.7-16.

[28] S.B. Sloane, The Use of Artificial Intelligence by The United States Navy: Case
Study of a Failure, AI Magazine, Spring, (1991) 80-92.

[29] I. Sommerville, Software Engineering. Addison-Wesley, 1992, USA.
[30] A. Tillier, Smartcards Fail to Impress French GPs, Computing 18th February,

(1999) 16.
[31] J.A Wise, and A. Debons, Information Systems: Failure Analysis, NATO

Advance Science Institute, Series F: Computer and Systems Sciences, 32 (1987)
Springer-Verlag. Berlin. Heidelberg.


