
Acceptance Testing

Roy W. Miller
Software Developer

RoleModel Software, Inc.
342 Raleigh Street

Holly Springs, NC 27540 USA
+1 919 557 6352

rmiller@rolemodelsoft.com

Christopher T. Collins
Senior Software Developer
RoleModel Software, Inc.

342 Raleigh Street
Holly Springs, NC 27540 USA

+1 919 557 6352
ccollins@rolemodelsoft.com

ABSTRACT
Software acceptance testing is an industry best practice.
Most development teams do it poorly. This is because
teams often misunderstand what acceptance testing is and
why it is important. Furthermore, these teams often do not
have an extensible framework for automated acceptance
testing. In this paper, we define acceptance testing and
discuss why it is important, and we describe our custom
automated acceptance testing framework.

Keywords
Testing, acceptance testing, unit testing, test automation,
framework.

1 WHAT IS ACCEPTANCE TESTING?
Developers write unit tests to determine if their code is
doing things right. Customers write acceptance tests
(sometimes called functional tests) to determine if the
system is doing the right things.

Acceptance tests represent the customer’s interests. The
acceptance tests give the customer confidence that the
application has the required features and that they behave
correctly. In theory when all the acceptance tests pass the
project is done.

What does an acceptance test look like? It says, “Do this to
the system and check the results. We expect certain
behavior and/or output.” For example, suppose the team is
building a user interface that lists the items in an open
order. An acceptance test could check that deleting an item
is reflected correctly in the list for the order.

2 WHY ACCEPTANCE TESTING IS IMPORTANT
User stories are basically “letters of intent” for developers
and customers to work on a problem together. They are
commitments to a future conversation. The outputs of that
conversation are detailed understand of the story, estimates
of the amount of effort each task will take, intermediate
candidate solutions, and ultimately acceptance tests.
Acceptance tests are a “contract” between the developers
and the customer. Preserving those tests, running them
frequently, and amending them as requirements change,
proves that there has been no breach of contract.

Acceptance tests do three things for a software
development team:

1. They capture user requirements in a directly
verifiable way, and they measure how well the
system meets those requirements.

2. They expose problems that unit tests miss.

3. They provide a ready-made definition of how “done”
the system is.

Capturing Requirements
We agree that understanding user requirements is critical to
the success of a project. If your system doesn’t do what
users want, it may be technically elegant but practically
worthless. The problem is in assuming, as many
methodologies do, that exhaustive specifications will help.

One study showed that typical requirements specifications
are 15% complete and 7% correct, and that it was not cost
effective to complete or correct them [1]. There is strong
support for the idea that exhaustive requirements
specifications are impossible. Even if exhaustive
specifications were possible, they do not guarantee that
your system will do what users want. Perhaps worst of all,
you also cannot verify those specifications directly. On
most projects, someone still has to translate those
specifications into use cases and test cases. Then either an
army of testers execute those tests and document results, or
your customers have to do the job.

Acceptance tests address both issues. First, acceptance tests
can grow as the system grows, capturing user requirements
as they evolve (which they always do). Second, acceptance
tests can be validated directly – if a test passes, the system
meets the user requirements documented in that test.

Unless you can verify directly that your software does what
users want in the way they want it done, you cannot prove
that the system works. Acceptance tests provide that
validation. Beck says in Extreme Programming Explained,

“Any program feature without an automated test
simply doesn’t exist” [2].

 2

We agree with the sentiment, and we believe automation is
wise. However, it is important to note that having
acceptance tests is more important than automation.

System Coverage
In Testing Fun? Really?, Jeff Canna describes acceptance
(or functional) tests this way:

“Unit tests alone do not give the team all the
confidence it needs. The problem is, unit tests miss
many bugs. Functional tests fill in the gap. Perfectly
written unit tests may give you all the code coverage
you need, but they don’t give you (necessarily) all the
system coverage you need. The functional tests will
expose problems that your unit tests are missing” [3].

Without acceptance tests, your customer cannot have
confidence in the software. In the end, the developers
cannot either. All the classes might “work”, but a business
transaction might not do what the user wants. You will
have engineered a fine house nobody wants to live in.

Knowing When You’re Done
How do you know when your system is “done”? Many
software development teams say they’re finished when
time runs out, or when they think they’ve caught all of the
bugs. Acceptance testing gives you a better yardstick than
that.

Your system is done when it is ready for release. It is ready
for release when the acceptance tests deemed “must-have”
by the customer pass. No other definition makes sense.
Your system is not done when you have written all the
code, or run out of time or money. What does “seventy
percent done” mean? Without acceptance tests, you have to
guess. With a maintainable suite of acceptance tests that
you run automatically on a daily basis, you can know
without doubt how done you are at any point.

3 HOW TO DO ACCEPTANCE TESTING
Acceptance testing sounds simple, but it can be a challenge
to do it right. The major issues to address are who writes
tests, when they write tests, when tests are run, and how to
track tests.

Who Writes the Tests
The business side of the project should write tests, or
collaborate with the development team to write them. The
“business side” of the project could be the XP customer,
other members of the customer’s organization (such as QA
personnel, business analysts, etc.), or some combination of
the two. The XP customer ultimately is responsible for
making sure the tests are written, regardless of who writes
them. But if your project has access to other resources in
your customer’s organization, don’t waste them!

Business people should be able to write them in a language
that they understand. This metalanguage can describe
things in terms of the system metaphor, or whatever else
makes the customer comfortable. The point is that the

business people should not have to translate their world
into technical terms. If you force them to do that, they will
resist.

When To Write the Tests
Business people should write acceptance tests before
developers have fully implemented code for the features
being tested. Recording the requirements in this directly
verifiable way minimizes miscommunication between the
customer and the development team. It also helps keep the
design simple, much as writing unit tests before writing
code does. The development team should write just enough
code to get the feature to pass.

It is important for business people to write tests before the
“final product” is done, but they should not write them too
early. They have to know enough about what is being
tested in order to write a good test. More on this in “How
We Have Done Acceptance Testing” below.

When To Run the Tests
Tests should be able to run automatically at a configurable
frequency, and manually as needed. Once the tests have
been written, the team should run them frequently. This
should become as much as part of the team’s development
rhythm as running unit tests is.

Tracking the Tests
The team (or the Tracker if there is one) should track on the
daily basis the total number of acceptance tests written, and
the number that pass. Tracking percentages can obscure
reality. If the team had 100 tests yesterday and 20 passed,
but they have 120 today and 21 pass, was today worse than
yesterday? No, but 20% of the tests passed yesterday and
17.5% pass today, simply because you had more tests.
Tracking numbers overcomes this problem.

How We Have Done Acceptance Testing
At the client where we have been doing acceptance testing
longest, we have seen acceptance testing proceed as
follows:

1. The XP customer writes stories.

2. The development team and the customer have
conversations about the story to flesh out the details
and make sure there is mutual understanding.

3. If it is not clear how an acceptance test could be
written because there is not enough to test it against
yet, the developer does some exploration to
understand the story better. This is a valid
development activity, and the “deliverable” does not
have to be validated by an acceptance test.

4. When the exploration is done, the developer writes a
“first cut” at one or more acceptance tests for the
story and validates it with the customer. He then has
enough information to estimate the completion of the
remainder of the story. He runs the test until it

 3

passes.

5. Once the customer and the developer have agreed on
the "first cut" acceptance test(s), he hands them over
to business people (QA people on our project) to
write more tests to explore all boundary conditions,
etc.

We have found this highly collaborative approach to be
most effective. Developers and business people learn about
the system, and about validation of the system, as it
evolves. Stories evolve into acceptance tests. Many stories
require only one test, but some require more. If developers
get the ball rolling, but the customer ultimately drives,
things seem to work better.

4 A FRAMEWORK FOR AUTOMATED
ACCEPTANCE TESTING

Writing a suite of maintainable, automated acceptance tests
without a testing framework is virtually impossible. The
problem is that automating your acceptance testing can be
expensive.

We have heard it suggested that the up-front cost for
software testing automation can be 3 to 10 times what it
takes to create and execute a manual test effort [4]. The
good news is that if the automation framework is reusable,
that up-front investment can save an organization large
sums of money in the long run.

In a nutshell, we saw a market need here. If we had a
reusable automated acceptance testing framework that we
could use on our projects, we could save our customers
money and increase the verifiable quality of our software.
For example, one of our customers is subject to regulatory
approval by the FDA for all software systems. We
anticipate that having automated acceptance testing in place
will reduce the time for FDA validation at this client from
five months to several weeks (more on this in “How We
Have Used Our Framework” below).

Why We Built Our Own Framework
It would be nice to find a JUnit equivalent for acceptance
testing, but we have not found it yet. There are many
products on the market to facilitate acceptance testing.
They suffer from two problems:

1. They do not test enough of the system.

2. They are not extensible.

Existing record/playback tools test user interfaces well.
Other tools test non-user interface services well. We have
not found a tool that tests both well.

Existing tools also suffer from the “shrink wrap” problem.
They may be configurable, but they are not extensible. If
you need a feature that the product does not have, you have
two options. You can hope they include it the next release
(which is probably too late for your project), or you can
build your own feature that interacts with the off-the-shelf

product in a somewhat unnatural way.

We wanted a tool to test user interfaces and other modes of
system interaction (such as a serial connection to a physical
device). We also wanted the ability to modify that tool as
necessary to reflect the lessons we learn about testing. So,
we chose to build our own acceptance testing framework to
support testing Java applications.

An Example of How To Use the Framework
The following screenshot of our JAccept™ Editor (Figure
1) should help you follow this example.

Figure 1: JAccept™ Editor screenshot

Suppose the development team is adding a story to track
orders to an existing application. The team calls it Order
Tracker. The story has a user interface with a text field to
enter a customer ID. When a user hits the Find Customer
button, the application queries a database for open and
fulfilled orders for that customer and displays them in a
scrolling list. When the user clicks on an order in the list,
the application displays details for that order at the bottom
of the window.

The team is just starting a new iteration. How would the
team use our automated framework to create and execute
acceptance tests for the Order Tracker story?

Setting Up the Environment
The customer meets with a developer and a business person
to discuss the new story. The business person has some
experience writing tests with our JAccept™ framework, so
the mechanics are not a problem. After a brief discussion,
the developer does some exploration to determine how he

 4

might implement the story. He writes a first cut of an
acceptance test to validate it, and he runs the test to make
sure the script will test the known interaction points. Part of
that exercise is to modify the JAccept™ framework to
recognize the new “application” that will be added to the
system, but just enough to allow tests to be written.

Creating the Test
The developer now has enough information to estimate his
tasks. He gives the QA person the initial acceptance test to
serve as a pattern for the QA person to expand upon. He
will need to be collaborating with the developers to make
sure they know when things aren’t working as desired, and
with developers and business people to make sure they are
testing the right things.

He opens the JAccept™ Editor (see Figure 1 above). He
chooses “Order Tracker” from a combo box listing
available applications to test. Then he adds some Actions
that will interact with the Application programmatically to
determine if the it behaves as required. He adds an “Enter”
Action to populate the “Customer ID” text field. For that
Action, he adds a Property to put a valid customer ID in the
field. He then enters the following additional Actions with
the appropriate Properties:

• A “Click” Action to click the “Find Customer”
button

• A “CheckDisplay” Action to confirm that the
order list contains the expected number of orders

• A “Click” Action to select the second order in the
list

• A “CheckDisplay” Action to confirm that the
appropriate details are displayed

When he is done entering Actions, he clicks the “Save
Scenario” button. The JAccept™ framework creates an
XML file to represent the Scenario.

Running the Test
At midnight, a batch job starts up the framework. It cycles
through all of the Scenario files in the input directory,
processes them, updates the results for each Action in each
file, and creates an XML output file.

Verifying the Test
The next day, the customer opens his web browser and
checks the output, formatted by an XSLT. The XSLT
added a column to file to display whether a particular
Action row passed or failed. The “CheckDisplay” Action
row failed, and the failing Properties are highlighted. The
customer talks to his developer partner and determines that
he did not make an error in writing the test. The developer
takes ownership of the bug and fixes the offending code.
The QA analyst reruns the test manually to see if the fix
worked.

Key Points
Note some interesting things about this description:

1. The customer (in cooperation with the developer)
writes the test before the development team
implements the story.

2. The customer creates Scenarios in a language he can
understand (Actions and Properties).

3. Once the application is defined to the framework, the
customer can create tests to cover any permutation
of Actions.

4. The tests can run automatically at a configurable
frequency.

5. Anybody can run the tests manually at any point.

The Kernel
We built the JAccept™ framework around five core
concepts:

1. Scenarios, which are structured list of Actions.

2. Actions, which specify something in the application
to be interacted with (e.g. input from a serial port)
and what to do there (e.g. parse the input).

3. Properties, which are key/value pairs that specify a
name for something in the application to be
interacted with and the value to set there or the value
to expect from there.

4. Strategies, which encapsulate the things in the
application that can be interacted with, and can
perform valid actions on those things
programmatically.

5. Interpreter, which loops through all the Actions in a
Scenario and uses reflection to determine the
application things to execute each Action on and the
values to set or check.

The JAccept™ suite of tools includes an editor that allows
a user to create and edit Scenarios, enter/delete/reorder
Actions in those Scenarios, and enter/delete/reorder
Properties for each Action. The framework converts
Scenarios to XML when a user saves them from within the
JAccept™ Editor.

The framework uses a utility class called the
ScenarioBuilder to load Scenarios from XML files. When a
user opens an existing Scenario within the editor, the
ScenarioBuilder uses an XML SAX parser to build an in-
memory Scenario instance that the framework can use.
Scenario files look like this, which tests the JAccept™
Editor itself:

 5

Figure 2: JAccept™ XML Input File

The framework supports running Scenario files individually
or in groups. The JAccept™ Runner user interface allows a
user to choose a directory and run all the files there, or pick
single file to run. When the user clicks the “Run” button,
the framework executes all of the selected input files and
shows a running count of files executed, files that passed,
and files that failed.

Once all the files have been run, the JAccept™ Runner
window lists files that failed. A user can click on any file in
the list and display the output in a browser, formatted with
an XSL style sheet.

Defining Applications To the Framework
Developers have to define new applications to the
framework before tests can be run against them. Defining
an application involves the following:

• creating a Context class for the application which
contains an instance of the application to test

• creating new Actions/Strategies as necessary

• adding the new application to the existing
Application Dictionary in the framework

This setup effort could take anywhere from one-half day to
a few days, or even longer, depending on the complexity of
the application.

The Context for an application holds an instance of the
application to be tested. It also defines the “root strategy”
for the application (more on this below). Here is the
Context for a sample application named TF_SampleApp:
import java.awt.*;
import com.rolemodelsoft.jaccept.*;
import

com.rolemodelsoft.jaccept.strategies.*;
import javax.swing.*;

public class TF_AcceptanceTestContext
extends TF_AbstractAcceptanceTestContext

{
protected TF_SampleApp sampleApp =

new TF_SampleApp();
protected JFrame frame = new JFrame();

}

protected void initialize() {
frame.setContentPane(sampleApp);

}

protected ViewStrategy
getDefaultRootStrategy() {
return

new
TF_SampleAppViewStrategy(sampleApp);

}

The ViewStrategy for an application defines a map of
strategies for each of the components of the application to
be interacted with programmatically. The ViewStrategy
for TF_SampleApp looks like this:
import javax.swing.*;
import

com.rolemodelsoft.jaccept.strategies.*;
import

com.rolemodelsoft.jaccept.strategies.swin
g.*;

public class TF_SampleAppViewStrategy
extends AbstractCompositeViewStrategy {

protected TF_SampleApp sampleApp;
}

protected ViewStrategyMap
defaultSubViewStrategyMap() {

ViewStrategyMap map =
super.defaultSubViewStrategyMap();

map.put(new ButtonViewStrategy(
sampleApp.getJButton1()));

map.put(new ButtonViewStrategy(
sampleApp.getJButton2()));

map.put(new ButtonViewStrategy(
sampleApp.getJButtonMinus()));

map.put(new ButtonViewStrategy(
sampleApp.getJButtonPlus()));

 6

map.put(new ButtonViewStrategy(
sampleApp.getJButtonEquals()));

map.put(new ButtonViewStrategy(
sampleApp.getJButtonClear()));

map.put(new TextFieldViewStrategy(
"display",
sampleApp.getJTextField()));

return map;
}

The ViewStrategyMap for TF_SampleApp defines a
hierarchy of strategies for each widget (in this case) to be
interacted with programmatically. Each of those strategies
holds an instance of the widget to be tested, and defines the
programmatic interaction behavior to be executed when the
JAccept™ framework interacts with it. A Swing
ButtonStrategy, for example, looks like this:
import javax.swing.*;
import

com.rolemodelsoft.jaccept.utilities.*;

public class ButtonViewStrategy
extends ComponentViewStrategy {
protected AbstractButton button;

}

public void click() {
if (!button.isEnabled())

throw new RuntimeException("Unable to
click the button because it is

disabled.");
button.doClick();

}

The standard set of Strategies in the framework is rather
comprehensive, especially for standard Swing components,
but it does not cover every possibility. Although the time to
create new strategies can vary, most new strategies require
about an hour to create. This would increase setup time by
one hour per new Strategy.

Extensions
By the time this paper is published, we should have
finished extending the JAccept™ framework to support
testing web applications. This includes integration with
HttpUnit, additional Strategies and Actions for web page
“widgets”, etc.

In the future, we plan to extend the framework to support
testing for small spaces (cell phones, PDAs, etc.). One of
the authors (Chris) created a unit testing framework for
J2ME applications that we might reuse entirely or in part to
support this extension.

How We Have Used Our Framework
The JAccept™ framework arose out of the need one our
customers had to verify their new software for regulatory
approval by the FDA. The typical verification period is
roughly five months. The client has not released yet, but we

anticipate that JAccept™ will reduce this verification
period to several weeks.

Two “validators” from the internal testing organization
write acceptance tests at this client. The team tracks the
pass/fail percentage and the development team fixes bugs.
The client plans to use the documented output from
JAccept™ to satisfy FDA regulatory requirements.

Our experience with applying JAccept™ at clients is not
large, so we are careful not to extrapolate too far. Based on
this experience, though, we have found the following:

• This client has been willing to contribute people
from their existing testing organization to write tests.
They used to do this anyway. Now they don’t have
deal with the mundane and error-prone exercise of
running the tests.

• If we want the business side of the project to use the
tool at all, ease of use is a must.

• Non-QA people resist writing tests, no matter how
easy the tool is to understand.

We also encountered other issues:

• It was difficult to get developers, the QA
organization, and other business people in synch
about acceptance testing. As a result, the framework
was developed late in the project.

• The customer has an established testing organization
that is new to XP. It was difficult to establish
effective collaboration between that group and the
development team.

• It has been difficult to write tests at the right time so
that they are not as volatile.

There was little we could do about the first issue. The
alternative was not to have an acceptance testing
framework. We believe creating the framework was worth
it in the short and long term.

The second issue also was unavoidable. Once the QA
organization and the development team ironed out the
collaboration issues, the process started to run smoothly.
Now, both groups work together effectively.

The third issue was a simple matter of having the team
learn. In the beginning, it was difficult to know when to
write tests. If the team wrote them too early, based on
certain assumptions that turned out to be wrong, it was a
big effort to go back and modify all of the tests. There
cannot be hard and fast rules about this.

5 CONCLUSION
Acceptance testing is critical to the success of a software
project. An automated acceptance testing framework can
provide significant value to projects by involving the
customer, and by making acceptance testing part of an XP

 7

team’s development rhythm. The initial investment of time
and effort to create such a framework should pay off in
increased customer confidence in the system the team
builds. This is one of the keys to customer satisfaction.

ACKNOWLEDGEMENTS
We knew acceptance testing was critical to our project’s
success, so we wanted to do it right. We hired Ward
Cunningham to help create the first iteration of the
JAccept™ framework over one year ago. The framework
has grown significantly since then, but it would not have
been possible without some of his ideas.

Many thanks to the rest of the RoleModel software team for
their comments and suggestions on this paper. Specifically,
thanks to Adam Williams, Ken Auer, and Michael Hale for
technical input, and to Jon Vickers for research help.

REFERENCES
1. Highsmith, J. Adaptive Software Development,

Information Architects, Inc. (2000), presentation at
OOPSLA 2000 quoting a study by Elemer Magaziner.

2. Beck, K. Extreme Programming Explained: Embrace
Change, Addison Wesley (2000).

3. Canna, J. Testing Fun? Really?, IBM developerWorks
Java Zone (2001).

4. Kaner, C. Improving the Maintainability of Automated
Test Suites, paper presented at Quality Week ’97
(1997).

