
Software Engineering for Security: Towards Architecting Secure
Software

Doshi Shreyas
Information and Computer Science Dept.

University of California, Irvine
CA 92697, USA.
+1 949 824 8438
doshi@acm.org

ABSTRACT

Since the advent of distributed systems, security of
software systems has been an issue of immense concern.
Traditionally, security is incorporated in a software
system after all the functional requirements have been
addressed. This paper argues for the need for security
concerns to be an integral part of the entire software
development life cycle. Different research areas that lie at
the confluence of Software Engineering and Security are
surveyed. Finally, the paper focuses on the use of
Software Architecture to solve certain problems that are
faced in the engineering of secure systems.

Keywords

Software Engineering, Security, Software Architecture,
Secure Software Architecture.

1. INTRODUCTION

As society becomes more and more reliant on software
systems for its smooth functioning, software security is
emerging as an important concern to many in the field of
Computer Science. Since security attacks can cause
anything from losses worth millions of dollars in business
to intrusion into defense systems, the repercussions of
such security attacks can be quite grave. However, it is
not only large organizations and governments that are
susceptible to security attacks. Today, security has also
become a concern for the average citizen. Citizens are
becoming increasingly aware about the security threats
over computer networks, encouraging them to take
adequate steps to protect their credit card numbers and
personal information over the Internet. Though such
preventive steps by ordinary citizens and organizations
are necessary, they do not offer long-term solutions to the
problem of security of software systems. It is known fact
that the wily hacker [CB94] can find ways to get around
these steps. What then is the solution?

Doshi Shreyas
Term paper for ICS 121

Much of the work so far in the area of security of software
systems has come from the Cryptography community.
While other areas of Computer Science like Computer
Networks and Theory have also contributed to the
solution to the problem of security of software systems,
we found that the area of Software Engineering has made
very little contribution. This is quite ironic considering
the fact that the problem is that of how ‘software’ systems
can be made more secure. These software systems are an
outgrowth of some Software Engineering process
presumably with Software Engineering principles applied
in their development. It is fair to deduce that we might be
able to make systems more secure by incorporating
security considerations explicitly in the Software
Engineering process and by applying certain Software
Engineering principles to solve problems faced in the
engineering of secure software. However, several
impediments lie along this path.

Security is a non-functional requirement [CN95]. Since
developers grapple with the problem of getting the
functionality right without overrunning schedules or
budgets, security is not the utmost concern for system
developers- even in systems where security threats might
be easily perceptible. Hence, software system security is
typically an afterthought [Gas88], i.e. security may be
considered seriously if the functional requirements are
met and the project is within the schedule and budgets. As
observed in [Bro87], this is seldom, if ever, the case.

In this paper, we shall look at the different research areas
that lie at the confluence of the fields of Software
Engineering and Security. More specifically, we shall
look in detail how research in the area of Software
Architecture [PW92] can help solve the problems that lie
in the path of development of secure software systems.
Before we delve further into the topic, it is worthwhile to
examine what security really means and the different
dimensions of security.

Security of a software system is a multi-dimensional
concept [BSW01]. The multiple dimensions of security
are:

� Authentication- The process of verifying the identity
claimed by an entity.

� Access control- The process of regulation of the kind
of access (e.g.- read access, write access, no access)
an entity has to the system resources.

� Audit trail- A chronological record of events leading
up to a specific security-relevant system state. This
record can later help in the examination or
reconstruction of the specific security scenario of
interest.

� Confidentiality- The property that deals with making
certain information unavailable to certain entities.

� Integrity- The property that information has not been
modified since its inception from the source.

� Availability- The property of the system being
accessible and usable for an authorized entity.

� Non-repudiation- The property that places confidence
regarding an entity’s involvement in certain
communication.

Security can mean different things at different times.
Generally, when security is referred to, it essentially
implies one or more of the above dimensions of security.
For example
� Security in E-mail communication might involve

ensuring confidentiality, non-repudiation and
integrity.

� Security in online shopping would involve ensuring
authentication, confidentiality, integrity and non-
repudiation.

A security attack (or simply an attack) is an attempt to
adversely affect one or more of the above security
dimensions of the system. When an attack is successful,
the security of a system is said to have been
compromised. Throughout this paper we use the term
secure system. We define a secure system as one that has
the requisite type and amount of security to be able to
counter the potential threats it may face. In the remainder
of the paper, we shall use the above security-related terms
frequently. We shall also use certain terms from the
related area of cryptography. Readers unfamiliar with the
basic terms in cryptography are referred to [Sch96].

This paper is organized as follows. In section 2, we
identify and classify research areas in the fields of
Software Engineering and Security. In section 3, we look
at the use of software architecture for engineering secure
software systems. Section 4 presents a summary of the
contributions of this paper and section 5 concludes the
paper by raising some points for discussion.

2. SOFTWARE ENGINEERING AND SECURITY

We categorize research in the area of Software
Engineering and Security into two research directions-
� Software Engineering for Security- This area

explores Software Engineering research and
principles that can be used in the engineering of

secure systems, or to enhance the security of software
systems.

� Security for Software Engineering- This refers to
research in the areas of security and cryptography
that helps solve problems in different areas of
Software Engineering.

We shall now look at each of the above categories and
also identify research directions that lie therein.

2.1 Software Engineering for Security

Software Engineering research for Security can roughly
be structured around the waterfall model as follows.

� Security requirements engineering- Eliciting security

requirements is a critical step in adopting a security-
oriented software development approach early in the
life cycle. Security requirements should be
determined after the functional requirements have
been ascertained [DS00], since they are intimately
dependent on the kind of functional requirements that
have been gathered. Generic security requirements
for systems have taken the form of security models or
policies [BP75] [GM82] [McL94]. More recent work
[VKP01] has attempted to study trust assumptions of
software developers regarding how the users will use
the system. According to [VKP01], erroneous trust
assumptions of developers regarding the manner in
which the system will be used usually result in
compromise of security. Though developers make
such assumptions throughout the software
development life cycle, the two main reasons for
dangerous and erroneous trust assumptions are:
• Incomplete requirements and
• Miscommunication between developers.
Hence, it is necessary to elicit accurate trust
assumptions during the requirements analysis phase.
We believe that research in the area of requirements
engineering for security needs to be focused in this
direction. Such an approach could also be useful to
the developer of a secure system in that the
identification and articulation of trust assumptions
can be used as a security guideline for later stages of
software development.

� Formal Analysis of security protocols- The security
protocols that developers choose to use in their
system are not necessarily as secure as the developers
might perceive them to be. For example, flaws have
been found in almost every authentication protocol
that has been published to date. Hence, we believe
that before developers can place trust in a particular
security protocol, it is necessary that the trust be
justified explicitly and formally. This can be done
only by a formal analysis of candidate security
protocols. For example, [Kem89] describes how an
encryption protocol can be formally analyzed using
the Ina Jo [LSS+80] specification language. While
Ina Jo is a generic specification language, several

techniques have been developed specifically for
formal analysis of security protocols (e.g.- [BAN90]).
We believe that it is necessary for software engineers
to make a decision about the security protocol they
will use in their system only after formal analysis of
the protocol puts sufficient confidence in the
correctness and security of the protocol. Such formal
analysis could be done by a trusted external agency
or by the software engineers themselves.

� Architecting/Designing secure software- According

to [DS00] there is an emergent need for integrating
security policies with the design of systems. For
example, a research direction would be [DS00] to
extend standards such as UML [RSC97] so as to
include the explicit modeling of security dimensions
like authentication, access control, etc. identified
earlier. We believe that software architectures can
play a vital role in the development of secure
systems. The use of principles of Software
Architecture in solving security-related problems in
distributed systems and in making software systems
more secure forms the focus of this paper.

� Programming languages and programming

paradigms for secure software- According to
[VBC01], programming language designers have
until recently ignored security primitives that
programmers should have at their disposal. In fact,
security risks are known to have been uncovered in
several programming languages (e.g.- C, C++
[VBC01]). In this regard, the Java security
architectural extensions [WBD+97] [Gon97] are a
step in the right direction. A related development in
this area is the emergence of the aspect-oriented
programming paradigm (AOP) [KIL+97]. The object
oriented programming paradigm models security very
poorly since invocations to security methods are
typically scattered throughout the application code,
making it difficult to abstract the security aspect of
software. AOP can provide a separation of the
security aspect of the system from all other aspects
like reliability, fault-tolerance, etc. This can be very
useful in programming security into an application,
since all security concerns can be programmed
together and later dispersed through the actual code
using an aspect weaver [KIL+97]. Emerging
technologies are posing several challenges to
programming languages, requiring them to adapt
their security mechanisms so as to secure the
applications running on the technologies. For
example, [GS01] describes the security risks in WML
posed by the mobile e-commerce technology.

� Security testing- For any system where security

concerns are sufficiently large, it is necessary to test
the system to determine explicitly whether it satisfies
the security requirements. We believe that testing for
functionality is significantly different from testing for

security. This is because security, unlike
functionality, is not an externally observable
property. Hence, we believe that existing testing
strategies that work well for testing functionality
need to be extended in order to accommodate explicit
security testing. A conventional approach to security
testing has been the hiring of a security expert who
would try to attack the system and exploit any
potential weaknesses of the system. Though this
approach is a very attractive one, we believe that
more needs to be done. Since testing is a phase
during which budget and schedules are tight, it is
necessary to devise automated security testing
mechanisms which can test the security of the system
with less effort (time and cost) than the manual
security testing approach described above. For
example, [FL94] and [FKA+94] describe a semi-
automated approach for security testing. [DWW99]
describes the reasons for not relying on conventional
testing strategies for testing security and recommends
the promotion of open security testing to increase
confidence in the security of software.

We now look at how research in the area of security can
help solve certain problems in software engineering.

2.2 Security for Software Engineering

Security can solve the following problems faced in
Software Engineering.

� Secure Software Deployment and Configuration

Management- Several privacy and security issues
[DGS99] surface in post-deployment configuration
management [HW96]. [DGS99] discusses these
issues and attempts to find solutions to the problems
faced in this area. According to [DGS99],
cryptographic techniques emerge as an important
solution to these issues.

� Component test coverage claims- Vendors of

Commercial Off the Shelf (COTS) components are
faced with the challenge of assuring their customers
that adequate testing has been done on their
components without actually revealing source code,
test cases, etc. Revealing this might convey vital
information about the component. If such information
is revealed, it is possible that the component may be
created by a competitor thereby making the vendor
lose its competitive advantage. In [DS99], a
cryptographic technique by which the test coverage
claims of a component can be verified without
revealing essential information about the component
is described.

� Protection of software- Piracy of software is a source

of tremendous losses to the software industry. Hence,
efforts to effectively counter the software privacy
problem are necessary. Both software (e.g.- [HP87])
and hardware-based (e.g.-[MM84]) solutions to the

problem have been proposed. Most of the software-
based approaches proposed this far use cryptography.
So far, however, not many solutions to the problem
have been effective because of the adversarial
economics [DS00] involved.

In this section, we looked at the confluence of the areas of
Software Engineering and Security from two
perspectives:
� Software Engineering for Security and
� Security for Software Engineering.
To engineer secure software, the first perspective is more
useful and we shall be looking at this perspective in the
remainder of this paper. Within this perspective, we shall
be focusing on the use of Software Architecture for
engineering secure software.

3. SOFTWARE ARCHITECTURE FOR SECURITY

We believe that research in the field of Software
Architecture can help solve several problems that lie in
the path of developing secure software. In the next
subsection, we describe CORBA security as an example
of the security considerations involved in a component-
based distributed system. We describe in sections 3.2
through 3.6 several aspects of software architecture and
how they can be used to tackle specific problems in
engineering secure software. Finally, in subsection 3.7 we
look at how the convergence of Aspect-Oriented
Programming (AOP) and Software Architecture may be a
promising area for future research.

3.1 CORBA Security

According to [WWW1], Common Object Request Broker
Architecture (CORBA) is an architecture and
specification for creating, distributing, and managing
distributed program objects in a network. It allows
programs that may be developed by different vendors and
may be situated at different locations to communicate in a
network through an interface broker [WWW2]. Various
security issues emerge in a scenario described above.
Here we will describe the basic Object Management
Architecture and ORB architecture. With these
foundations, we shall describe the security requirements
in CORBA and the possible solutions to the security
requirements. This will serve to articulate the security
issues involved in Software Architecture and describe at a
high level how they can be solved. [Chi98] gives further
details regarding the CORBA Security Service. More
information about CORBA may be found in [WWW2].

Figure 1. Object Management Architecture, printed from [Chi98]

Figure 1 shows a model of distributed object computing
with the Object Management Architecture (OMA) of
CORBA. At the center lies the Object Request Broker
(ORB) which serves the purpose of connecting
heterogeneous software components in arbitrary
configurations. Four basic types of software components
are identified in OMA:
� Object Services- provides basic services that are

needed by other components in the distributed
system.

� Horizontal Facilities- that are needed through by all
users in the distributed system and may be used by
components in the vertical facilities.

� Vertical Facilities- that provide capabilities for
specific types of businesses.

� Application objects- which combine all other
components and provide enterprise-specific services.

The need for developing a specification for the Object
Request Broker resulted in the creation of the Common
Object Request Broker Architecture or CORBA. Since
clients and objects in a distributed system may be
heterogeneous, it is necessary to devise means by which
they may be able interact in a language and platform
independent manner. In order to accomplish this, the
interface to objects is defined using a standard OMG
Interface Definition Language (IDL). Using such a
standard interface, it is conceivable that clients and object
implementations would be able to translate transparently
between different programming languages, operating
systems, data formats, etc. Such a scheme is depicted in
figure 2.

Table a. Security issues and possible countermeasures in CORBA

Issue Countermeasures

Authorized user gaining access to unauthorized information

Control of access to
� Interfaces
� Subsets of implementation of an interface
� Interface operations
Non-repudiation measures
Security audit log mechanism

A user masquerading as another user

User authentication and mutual authentication between the client and the
object implementation.

Eavesdropping on a communication channel and tampering with
communication between objects

Cryptographic measures like encryption and hashing

Bypass of security controls

Delegation mechanisms controlled by clients and object implementations

Figure 2. OMG IDL in CORBA, printed from [Chi98]

As described in [Chi98], the major security issues that
emerge in case of the architecture described above are
shown in Table a.

3.2 The Role of Software Architecture

Having seen the possible countermeasures against the
security problems that arise in component based
distributed systems, we will describe here specific ways
in which we can deal with them by exploiting existing
features of Software Architecture and by proposing new
features, when necessary. The field of software
architecture [PW92] provides a clear separation between
components and their interactions. In this framework, an
architecture description language (ADL) allows the
specification of system in terms of the following
abstractions [BI97]:
1. Components- define computational units written in

any programming language.
2. Connectors- describe the type of interactions between

components.
3. Configuration- defines a system structure in terms of

interconnection of components through connectors.
Software architecture can be extremely helpful in
engineering secure software systems in three distinct
ways, depending on the scenario of the problem at hand.

� Definition of secure architectures using an ADL
[MQR+97] [ML97].

� Integrating security for COTS based systems [BS98]
[BS99].

� Resolution of complex security-related interactions
between heterogeneous software components [BI97].

Apart from these benefits, use of principles of software
architecture also provides the following additional
benefits to the developer of a secure system
� Reuse of security-related code across different

systems [JH98] [Dam98]
� Use of architectural patterns [YB97]
� Creation of autonomous security agents [FL96]

[BGS+98] [QS98] [TOH99]

In the following subsections, we shall describe
representative research from each of the above areas. We
also look at a related topic in this section: the use of
aspect oriented programming [KIL+97] in abstracting the
security aspect of systems.

3.3 Definition of secure architectures

A promising approach to secure system design is the
incorporation of security considerations into the software
architecture. Software architecture can be used to define
and model the security requirements of a software system
in order to assist in
� Subsequent system development and
� Checking the implementation for compliance with

the security requirements.

In order to model security requirements in the form of
architecture, we may express them using an ADL. The
problem of using an ADL to include security
considerations in the overall software architecture has
been addressed in [MQR+97] and [ML97]. In [MQR+97],
the authors Moriconi et al. describe the use of SADL (an
Architecture Description Language) in the formalization

of their Secure Distributed Transaction Processing
(SDTP) system. The authors use a formal approach to
software architecture [AG94] to incorporate security
requirements by means of three steps [MQR+97]:
1. Formalizing the system architecture in terms of

common architectural abstractions.
2. Specialization of the system architecture into

different architectures, each depending on different
assumptions regarding the security of system
components.

3. Proving that every implementation corresponds to the
system architecture or one of its specializations and
thereby satisfies the security requirements.

In this subsection, we will discuss in detail, the approach
described in [ML97] by Meldal and Luckham. In [ML97]
the authors describe the use of the RAPIDE ADL [LV95]
to define a reference architecture for the description of
NSA’s MISSI (Multilevel Information System Security
Initiative) architecture. According to [ML97]

A reference architecture is an architecture
used to define references against which
implementations can be checked for
compliance.

The use of reference architectures is useful in that it
provides an elegant way to obtain separation of concerns
in the system. That is, one reference architecture for a
system may be used to specify the security requirements
of the system, while another may be used to specify its
fault-tolerance requirements. We shall see later in this
section how similar separation of concerns can be
obtained using the aspect-oriented programming
paradigm [KIL+97].
According to [LV95]

RAPIDE is a concurrent event-based
simulation language for defining and
simulating the behavior of software
architectures.

The authors use RAPIDE to capture two aspects of the
MISSI reference architecture:
1. Structures- describes the arrangement of the different

components of the system at the following levels of
abstraction
� Global level focuses on the main components

and constraints on the interactions between the
components.

� The concept of operations or conops level
focuses on the functional decomposition of the
architecture.

� The execution level focuses on the dynamic,
physical structure of the system

2. Information flow integrity- describes the adherence of
the interactions to certain policies and procedures as
determined by the reference architecture.

The formal capture of the architecture, according to
[ML97] involves three steps.
1. Identifying components
2. Identifying how they are connected and

3. Identifying how the connections are used.

These steps are applied to the system structures
successively at the three levels of abstraction defined
above: the global, conops and execution levels. The first
two steps are self-explanatory, however, the last step
deserves explanation. By identifying how the connections
are used, it is possible to determine operational security
constraints on the components and the their interactions.
This is a convenient way of specifying for example, the
conditions under which an interaction will occur between
components and the conditions under which an interaction
will not occur. Figures 3, 4 and 5 depict the application of
steps 1, 2 and 3 respectively on the MISSI reference
architecture at the global level of abstraction. The reader
is referred to [ML97] for the details and explanation.

Figure 3. Components of the MISSI Reference Architecture, printed

from [ML97]

Figure 4. Connecting Architectural Components, printed from [ML97]

Figure 5. Security Constraint, printed from [ML97]

Once the three steps are applied at different levels of
abstraction, RAPIDE maps can be used to relate
components and interactions at one level of abstraction to
components and interactions at another level of
abstraction. The approach outlined here provides a

convenient way of specifying the security aspects of a
system. The following benefits may be accrued by an
approach of the kind described above:
� Convenient separation of the security-related aspects

of the system
� Explicit formal modeling of the security-related

aspects in the form of the software architecture
� Verification of the implementation with respect to the

architecture and the verification of the architecture
with respect to the requirements, by means of proofs.

� Providing a model to reason about the security
properties of the system.

We shall now look at another problem; that of integrating
security into COTS based systems.

3.4 Integrating security in COTS based systems

The use of Commercial off the shelf software (COTS)
components is a very attractive choice faced by software
development organizations for economical software
development and reducing the time-to-market. Since
COTS components are intended to work in varied
environments that may have different security
requirements, security is not typically not ‘programmed
into’ these components. Hence, no or very limited generic
security services are typically provided by COTS
components. However, since most of these components
are meant to work in a distributed environment, they
system using these components would be susceptible to
various security risks. It is therefore necessary to
somehow incorporate security for the particular system at
hand that uses these components.

This problem presents another area of research for the use
of Software Architecture for engineering secure software
systems. In fact, the problem is exacerbated due to the
fact that the non-testability of some COTS components
might actually pose major security threats to the system
that uses such components [MV99]. [BS98] and [BS99]
address the problem architectural approaches for
integrating security in COTS based distributed systems. In
[BS98] the authors describe the CERT HLA/RTI
distributed interactive simulation environment that is
developed using COTS components with security
integrated into the system later. The RTI architecture is
depicted in figure 6.

Figure 6. RTI architecture, printed from [BS99]

In the architecture, a federate (e.g.- Fed1) denotes an
individual simulation. Each federate interacts with the
RTI Ambassador (RTIA) component which exchanges
messages over the network, in particular with the RTI

Gateway (RTIG) component. RTIG uses the Federate
Object Model (FOM) that describes the classes of data
exchanged by federates during execution. In [BS98], two
security threats are identified in this architecture.
� Attacks on the communication links between the

components or the RTI and
� Attacks via misuse or unauthorized use of RTI

services.

The first threat is countered by creating a secure
connection that ensures secrecy and authenticity of the
data that is transmitted between the RTIA and RTIG. The
second threat is countered by adding access control
mechanisms within RTI services. Figure 7 shows the
architecture of the system after having made provisions
for countering the threats.

Figure 7. RTI security architecture, printed from [BS99]

To secure the communication between the RTIA and
RTIG processes, GSS API [Lin97] is integrated within the
RTIA and RTIG by extending the socket class that is used
to exchange messages within RTI. GSS API (Generic
Security Services Application Programming Interface)
[Lin97] is a standard that defines the cryptographic
services that can be used to secure a client-server
application. Access control mechanisms are integrated
within the RTIG and security labels are associated with
federates and objects of the federation. [BS99] describes
one more example of how security is integrated using a
software architecture in systems using COTS based
components.

Though this approach might look attractive at first, we
believe it has a severe limitation- it requires the
modification of the COTS components. According to us,
the option of modifying the components themselves in
order to incorporate security considerations is not a viable
one because
� This inhibits the future reusability of the component
� In situations in which the source code of the

component is not provided, it is not possible to
modify the component at all.

� The effort involved in modifying the component
might well exceed the effort that would be required to
develop the component from scratch.

� Modification of components would entail regression
testing [RH96] of the components. Without access to
the source code such testing cannot be carried out
faithfully.

� In some cases, legal restrictions against modifying
their COTS components are imposed by the
component manufacturers.

Apart from [BS99] and [BS98], very little work exists in
this area. The limitations of the approach in [BS98] and
[BS99] suggest that this is an area worth exploring by
further research in Software Architecture. In the next
section, we will look at a connector-oriented approach
that might be a more pragmatic approach towards tackling
such a problem.

3.5 Resolution of mismatched security-related
interactions of heterogeneous software components

The problem of architectural mismatch [GAO95] is a
major hindrance to the reuse of software. This problem
occurs due to the mismatches in the assumptions of the
reusable component about the system that it is to be a part
of. In the context of security for a distributed software
system with heterogeneous components, this problem
manifests itself in the form of differing Quality of Service
(QoS) requirements [BI97]. In [BI97], the authors Bidan
and Issarny attempt a solution to the problem of grappling
with complex security requirements of components in
open distributed systems. Software Architecture is used to
specify security requirements. After specification of the
security requirements of each component, it is possible to
build customized connectors (at compile time) that meet
the security requirements of both the components
involved in the connection. This is described in figure 7.

Figure 7. Security requirements and customized connectors, printed

from [BI97]

The authors of [BI97] use this approach to specify the
following categories of security requirements of
components:
� Encryption requirements
� Authentication requirements
� Access control requirements
Each of these categories of requirements can widely vary
from component to component. The challenge is to
compare and compose these requirements so that
heterogeneous components can talk to each other using
the customized connector shown in figure g. We shall
illustrate here how this challenge is addressed for the
encryption requirements. Authentication and access
control requirements are described in detail in [BI97].

Specifying the security properties related to encryption
involves the specification of
� The encryption algorithm used
� The nature of parameters used by the encryption

algorithm that is chosen

With heterogeneous components, mismatches can arise at
either level- for the choice of the encryption algorithm as
well as due to the nature of parameters used by the
encryption algorithm. To handle these mismatches, the
developer must first specify the different acceptable
requirements for encryption as shown in figure g.

Figure g. Specifying security requirements, printed from [BI97]

Since each component can have a different set of
encryption requirements like the one in figure g., it
becomes necessary to compose and compare the
encryption requirements. Since encryption and decryption
functions are generally symmetric, a primary requirement
for composition is that the encryption algorithm should be
the same at both ends of a connector. This means that if
we consider a connector as composed of two sub-
connectors, one for each component, then the encryption
algorithm should be the same for each of the two sub-
connectors. In order to achieve the similarity of the
encryption algorithm, the application developer is
responsible for specifying a list of encryption algorithms
in the two sub-connectors, along with the associated trust
degree of the algorithm. Then, the encryption algorithm of
the connector is that algorithm which belongs to both sub-
connectors and has the highest trust degree. After the
selection of the encryption algorithm, the parameters can
be also selected according to this strategy. That is, a trust
degree is associated with the parameters of the encryption
algorithms and the parameters chosen are the ones that
correspond to the highest trust degree and are specified in
both the sub-connectors. A similar approach is adopted
for the selection of authentication algorithms and access
control mechanisms.

The above technique is a simple and effective way of
resolving security-related architectural mismatch between
components. An architecture-oriented approach is both
intuitive and elegant and ensures that the security
concerns are addressed early in the software development
life cycle. This approach also lends itself well to resolving
the security mismatches of legacy systems and
components, a problem described in [DS00]. [FBF99]
discusses a wrapper-based approach to the same problem.

In the next subsection, we shall have an overview of some
benefits that can be accrued by the software developer by
using principles of software architecture. The key
distinction between the issues discussed in this section
and those in the next section is that while the former
focuses on architectural solutions to security problems,
the latter essentially describes the benefits that can be
obtained by developers of secure systems by using
software architectures. These benefits may not necessarily
contribute to enhance the security of the system.

3.6 Other Benefits obtained by using software
architectures

The first benefit that can be obtained by using software
architectures is the reuse of security-related code. It is an
observation that security-related code of a software
system does not generally lend itself well to reuse [JH98].
This is due to the fact that
� this code is typically embedded along with the

functional code of the system and
� security-related code is typically specific to the

particular system for which it was developed.

As described in [JH98] and [Dam98], abstracting security
considerations to the level of software architecture by
methods described in the section 3.5 enables the reuse of
security-related code across varied applications. By
managing the security considerations outside components,
and in the connectors, the security and the functional
aspects are made independent of each other, thereby
facilitating reuse. As we shall see later, such separation of
concerns can also be obtained using the Aspect Oriented
Programming paradigm [KIL+97].
Architectural patterns are defined in [OR98] as

fundamental organizational descriptions of
common top-level structure observed in a
group of software systems.

Architectural patterns capture and express earlier
experiences in the design and development of software. In
this manner, they provide a guideline for system
developers during early stages of the software lifecycle.
In [YB97], several architectural patterns for the security
aspect of applications are presented. These patterns can be
applied by the system developer both to serve as a
security guideline for developers and reason about
application security. Apart from [YB97], not much work
has been done in this promising area. However, [BRD98]
describes a pattern language for a generic object-oriented
cryptographic architecture.

We believe that the use of software architecture concepts
would also aid the developer in the development of
security agents. According to [FL96], security agents are

ubiquitous, communicating, dynamically
confederating agents that monitor and
control communications among the
components of preexisting applications.

Software agents that implement security controls are
described in [BGS+98] and [FL96]. The concept of
software security agents as described in [FL96] is that
agents can be implemented to monitor and perform access
control, authentication, etc. by wrapping insecure
components. These agents are called SafeBots in [FL96].
SafeBots have a certain level of intelligence associated
with them in that they can adapt their actions to local and
global context. Programming agents may be a promising
step towards monitoring security of a distributed system.
However, the programming of such agents is a very
difficult task. This is due to the following reasons
[TOH99]:
� Mobile agents might act in remote hosts with varied

environments. This makes the task of predicting their
behavior difficult.

� It is difficult to program agents that act in different
platforms especially since the platforms themselves
are being rapidly changed.

To counter these problems, in [TOH99], the authors
propose an architecture oriented agent system
development method based on agent patterns. A layered
system architecture is defined in order to investigate a
systematic agent development process. Furthermore,
behavior patterns that correspond to the individual layers
are devised in order to make the development of the
layers easy. Behavior patterns are documentation of good
past experiences in the development and behavior of
agents. The layered agent system architecture is shown in
figure 8.

Figure 8. Layered agent system architecture, printed from [TOH99]

In the above figure, the macroarchitecture layer represents
the outline of the system configuration. The
macroarchitecture layer is independent of specific agent
platforms. The microarchitecture layer describes the detail
of system configuration and the agent behaviors
specialized in each agent platform. The object level
represents the implementation of the system depending on
the design of the upper two layers. Behavior patterns that
correspond to the individual layers described above are
then determined. Finally, the three layers are designed in
a top down fashion using these behavior patterns. Using
such an architecture-based approach along with agent
behavior patterns, it becomes easier for the developer to
develop agent systems efficiently. The approach in
[TOH99] is described for generic agents but it can be
applied to the development of security agents. Related

work in the area of security agents can be found in
[BGS+98] and [QS98].

3.7 Aspect Oriented Programming

The use of Software Architecture is one approach to
constructing systems with evolutionary and reusable
security. Another related approach, as identified in
[DS00], is the use of the aspect oriented programming
(AOP) paradigm [KIL+97]. The AOP paradigm explicitly
provides for separation of concerns. In AOP, the different
aspects of the system are programmed in their most
natural form and then these different aspects are woven
together to produce the executable code. Such an
approach lends itself well to the separation of the security
concerns (or the security aspect) from the functional
features of the system. The AOP approach can be used to
separate low-level security concerns as well high-level
security concerns from the other concerns. While high-
level security concerns refers to security risks that are
external to the application (like intruders), low-level
security concerns are those that refer to the application
itself behaving in a insecure manner, possibly due to an
attack (like buffer overflows).

In [VBC01], the authors Viega et al. describe the use of
AOP to program security applications. They illustrate this
by using an example of a language developed by them
that extends the C programming language in order to
support AOP. Such an extension can then be used to
abstract security concerns outside the program proper.
According to [VBC01], this would be helpful from the
security point of view in a number of ways:
� Insecure function calls may be replaced by secure

function calls.
� Buffer overflow can be prevented.
� Security audit trail and logging is possible.
� Generic socket code can be replaced by SSL socket

code.
� Privileged sections of a program can be specified.
According to [DS00], the confluence of the field of
software architecture and AOP is a promising prospective
research area for engineering secure software.

4. SUMMARY

Very little work that specifically addresses the problem of
engineering secure systems exists in the area of Software
Engineering. In this paper, research in two seemingly
independent areas- Software Engineering and Security-
has been assimilated in order to
� demonstrate the solution of some problems in

engineering secure systems and
� point to some research directions in the area of

software engineering that would aid in the
engineering of more secure systems.

With the understanding that principles of software
architecture can be useful in solving many problems
encountered in the development of distributed systems,

we identified the work that has been done in the area of
architecting secure systems. We categorized and
abstracted certain common features among these
approaches. We also identified certain problems with the
existing approaches and presented some future research
avenues that could be explored.

5. DISCUSSION

As pointed out earlier, the benefits that can be accrued by
adopting a security-centered software engineering effort
are enormous. However, we do not intend to imply that a
software engineering effort should focus more on security
than on other software qualities. But we do believe that
security is not a quality that can be ‘pasted’ onto software
once it is completed. If the software system that is being
engineered is to be secure, security must be a concern
throughout the software development life cycle. While
efforts to attain software qualities like correctness and
maintainability in a software product are being applied
throughout the software development life cycle, security
lags far behind in this respect. For example, a large
amount of effort during software development does not
contribute largely to the development task directly. A
significant part of this effort is directed towards making
the product more maintainable i.e. to induce the
maintainability quality in the software. In fact, many
software development organizations have begun to adopt
specific tools and programming languages like Java in
order to make their software more maintainable. This
concern for software maintainability throughout the
software development life cycle is justified, since if the
software product is more maintainable, lesser
maintenance costs will be incurred. In recent times,
security attacks have also led to huge costs for the
software user as well as the developer. Unfortunately,
security has not received as much attention during
software development as software maintainability has.
We are not attempting to indicate that software
organizations are careless about security. However, it is a
known fact that not many software engineers have a
formal background of security concepts. Also, a large
impediment to the adoption of a security-centered
approach to software development is the lack of adequate
software engineering tools and techniques that help
follow this security-centered approach. This may be
attributed to the fact that the field of Software
Engineering for Security is a relatively young field.
However, we believe that in spite of a few limitations, the
kind of work that has been surveyed in this paper is
certainly a step in the right direction.

ACKNOWLEDGEMENTS

The author would like to thank Prof. David Rosenblum
for the comments and suggestions provided by him during
the course of writing this paper. The author would also
like to thank Eric Dashofy for the discussion that led to
the selection of this topic.

REFERENCES

[AG94] R. Allen, D. Garlan. Formalizing Architectural
Connection. Proceedings of the 16th International
Conference on Software Engineering. May 1994.

[BAN90] M. Burrows, M. Abadi, and R. Needham. A
Logic of Authentication. ACM Transactions on Computer
Systems, 8. February 1990.

[BI97] C. Bidan, V. Issarny. Security benefits from
software architecture. Proceedings of
COORDINATION’97: Coordination Languages and
Models. 1997.

[BP75] D. E. Bell, L. J. LaPadula. Secure Computer
system: Unified Exposition and Multics Interpretation.
Technical Report MTR-2997, MITRE Corporation,
Bedford, MA. July 1975.

[BRD98] A. M. Braga, C. M. F. Rubira, R. Dahab.
Tropyc: A Pattern Language for Cryptographic Software.
In 5th Pattern Languages of Programming (PLoP’98)
Conference, 1998.

[Bro87] F. P. Brooks, Jr. No Silver Bullet; Essence and
Accidents of Software Engineering. IEEE Computer
20(4). April 1987.

[BS98] P. Bieber, P. Siron. Design and Implementation of
a Distributed Interactive Simulation Security
Architecture. Proceedings of the 3rd International
Workshop on Distributed Interactive Simulation and
Real-Time Applications. 1998.

[BS99] P. Bieber, P. Siron. Security Architectures for
COTS Based Distributed Systems. Available at
http://www.cert.fr/francais/deri/bieber/papers/ist11/

[BSW01] I. Bashir, E. Serafini, K. Wall. Securing
Network Software Applications: Introduction.
Communications of the ACM 44, 2. February 2001.

[CB94] B. Cheswick, S. Bellovin. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley.
1994.

[Chi98] D. Chizmadia, A Quick Tour Of the CORBA
Security Service. Information Security Bulletin.
September 1998.

[CN95] L. Chung, B. A. Nixon, "Dealing with Non-
Functional Requirements: Three Experimental Studies of
a Process-Oriented Approach." Proeedings of the 17th
ICSE, Seattle, WA, U.S.A. April 1995.

[Dam98] Christian Damsgaard. Secure Software
Architecture. Jensen Project SIRAC, IMAGINRIA 655.
Avaliable at citeseer.nj.nec.com/10161.html. 1998.

[DGS99] P. Devanbu , M. Gertz , S. Stubblebine. Security
for Automated, Distributed Configuration Management.
In Proceedings, ICSE 99 Workshop on Software
Engineering over the Internet. 1999.

[DS99] P. Devanbu, S. Stubblebine. Cryptographic
Verification of Test Coverage Claims. IEEE Transactions
on Software Engineering. 1999.

[DS00] P. Devanbu, S. Stubblebine; Software
Engineering for Security: A Roadmap. Proceedings of the
conference on The future of Software engineering. 2000.

[DWW99] A. Dima, J. Wack, S. Wakid. Raising the Bar
on Software Security Testing. IT Professional. Vol. 1, No.
3, May/June 1999.

[FBF99] T. Fraser, L. Badger, M. Feldman. Hardening
COTS Software with Generic Software Wrappers. IEEE
symposium on Security and Privacy. 1999.

[FKA+94] G. Fink, C. Ko, M. Archer, K. Levitt. Toward
a Property-based Testing Environment with Application
to Security Critical Software. Proc. of the 4th Irvine
Software Symposium. April 1994.

[FL96] R. Filman, T. Linden, SafeBots: a Paradigm for
Software Security Controls. Proceedings of New Security
Paradigms Workshop, Lake Arrowhead, CA USA. 1996.

[GAO95] D. Garlan, R. Allen and J. Ockerbloom.
Architectural Mismatch or Why it’s hard to build systems
out of existing parts. Proceedings, 17th International
Conference on Software Engineering, Seattle WA. April
1995.

[Gas88] M. Gasser. Building a Secure Computer System.
Van Nostrand Reinhold - New York, NY. 1988.

[BGS+98] J. Balasubramaniyan, J. O. Garcia-Fernandez,
E. H. Spafford, D. Zamboni. An Architecture for
Intrusion Detection using Autonomous Agents.
Department of Computer Sciences, Purdue University;
Coast TR 98-05. 1998

[GM82] J.A. Goguen and J. Meseguer. Security Policy
and Security Models. Proceedings of the 1982 IEEE
Symposium on Research on Security and Privacy, IEEE
Press. 1982.

[Gon97] L. Gong. New security architectural directions
for Java. Proceedings of COMPCON ’97. 1997.

[GS01] A. K. Ghosh, T. M. Swaminatha. Software
Security and Provacy Risks in Mobile E-commerce.
Communications of the ACM 44, 2. February 2001.

[FL94] G. Fink, K. Levitt. Property-based testing of
privileged programs. In Tenth Annual Computer Security

Applications Conference, pages 154--163. IEEE
Computer Society Press. December 1994.

[HP87] A. Herzberg, S. S. Pinter. Public Protection of
Software. ACM Transactions on Computer Systems,
5(4):371—393. November 1987.

[HW96] D. Heimbigner, A. L. Wolf. Post-Deployment
Configuration Management. Software Configuration
Management: ICSE'96 SCM-6 Workshop Selected Papers
(Berlin, Germany). 1996.

[JH98] C. Jensen, D. Hagimont Protection
Reconfiguration for Reusable Software Proceedings of the
2nd Euromicro Conference on Software Maintenance and
Reengineering (CSMR’98). 1998.

[Kem89] R. A. Kemmerer. Analyzing encryption
protocols using formal verification techniques. IEEE
Journal on Selected Areas in Communications, 7. 1989.

[KIL+97] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier,
C. V. Lopes, C. Maeda, A. Mendhekar. Aspect-Oriented
Programming. A Position Paper from Xerox PARC. 1997.

[Lin97] J. Linn. Generic Security Service Application
Programming Interface. Internet RFC 2078. January
1997.

[LSS+80] R. Locasso, J. Scheid, D. V. Schorre, P. R.
Eggert. The Ina Jo Reference Manual. Technical Report
TM-(L)-6021/001/000, System Development Corporation,
Santa Monica, California. 1980.

[LV95] D.C. Luckham, J. Vera. An Event Based
Architecture Definition Language. IEEE Transactions on
Software Engineering Vol. 21, No 9, September 1995.

[McL94] J. McLean. Security Models. J. Marciniak,
editor, Encyclopedia of Software Engineering. Wiley
Press. 1994.

[MQR+97] M. Moriconi, X. Qian, R. Riemenschneider,
and L. Gong. Secure Software Architecture. Proceedings
of the IEEE Symposium on Security and Privacy. 1997.

[ML97] S. Meldal and D. Luckham. Defining a Security
Reference Architecture. Technical Report CSL-97-728
Program Analysis and Verification Group Report No. 76
Computer Systems Laboratory Stanford University. 1997.

[MM84] T. Maude, D. Maude. Hardware protection
against software piracy. Communications of the ACM,
27(9). September 1984.

[MV99] G. McGraw, J. Viega. Why COTS Software
Increases Security Risks. ICSE Workshop on Testing
Distributed Component-Based Systems. May 1999.

[OR98] J. Ortega-Arjona, G. Roberts. Architectural
Patterns for Parallel Programming. Proceedings of the 3rd
European Conference on Pattern Languages of
Programming and Computing. 1998.

[PW92] D. E. Perry, A. L. Wolf. Foundations for the
Study of Software Architecture. ACM SIGSOFT Software
Engineering Notes, 17. October 1992.

[QS98] Q. He, K. P. Sycara. Towards a Secure Agent
Society. ACM AA'98 Workshop on Deception, Fraud and
Trust in Agent Societies. 1998.

[RH96] G. Rothermel, M. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on Software
Engineering, 22(8). August 1996.

[RSC97] Rational Software Corporation. The Unified
Modeling Language. Documentation Set Version 1.0,
Santa Clara, CA. January 1997.

[Sch96] B. Schneier. Applied Cryptography, Protocols,
Algorithms, and Source Code in C. Second Edition, John
Willey & Sons. 1996.

[TOH99] Y. Tahara, A. Ohsuga, S. Honiden. Agent
System Development Method Based on Agent Patterns
Proceedings of The Fourth International Symposium on
Autonomous Decentralized Systems. 1999.

[VBC01] J. Viega, J.T. Bloch, P. Chandra. Applying
Aspect-Oriented Programming to Security. Cutter IT
Journal. February, 2001.

[VKP01] J. Viega, T. Knono, B. Potter. Trust (and
MisTrust) in Secure Applications. Communications of the
ACM. February 2001.

[WBD+97] D. S. Wallach, D. Balfanz, D. Dean, E. W.
Felten. Extensible Security Architectures for Java.
Technical Report 546-97, Department of Computer
Science, Princeton University. April 1997.

[WWW1] http://www.whatis.com

[WWW2] OMG. The Common Object Request Broker
Architecture (CORBA). http://www.omg.org/

[YB97] J. W. Yoder and J. Barcalow. Architectural
Patterns for Enabling Application Security. In Proc. 4th
Pattern Languages of Programming, Monticello, IL,
September 1997. Available as Washington University
Technical Report WUCS--97—34. 1997.

