
Introducing Risk Management Techniques Within Project Based
Software Engineering Courses

 Barry Boehm Daniel Port
 University of Southern California University of Southern California
 Department of Computer Science Department of Computer Science
 Center for Software Engineering Center for Software Engineering
 Los Angeles, CA 90028 USA Los Angeles, CA 90028 USA
 213-740-8163 213-740-7275
 boehm@sunset.usc.edu dport@sunset.usc.edu

ABSTRACT
In 1996, USC switched its core two-semester software
engineering course from a hypothetical-project, homework-
and-exam course based on the Bloom taxonomy of
educational objectives (knowledge, comprehension,
application, analysis, synthesis, evaluation). The revised
course is a real-client team-project course based on the
CRESST model of learning objectives (content
understanding, problem solving, collaboration,
communication, and self-regulation). We used the CRESST
cognitive demands analysis to determine the necessary
student skills required for software risk management and
the other major project activities, and have been refining
the approach over the last four years of experience,
including revised versions for one-semester undergraduate
and graduate project course at Columbia.

This paper summarizes our experiences in evolving the risk
management aspects of the project course. These have
helped us mature more general techniques such as risk-
driven specifications, domain specific simplifier and
complicator lists, and the schedule as an independent
variable (SSIV) process model. The largely positive results
in terms of review pass/fail rates, client evaluations,
product adoption rates, and hiring manager feedback are
summarized as well.

Keywords
Software engineering education, project courses, risk
management, process models, product models, property
models, success models

1 MOTIVATION & CONTEXT
 The increasing pace of change in information
technology (IT) makes one-size-fits-all, cookbook solutions
increasingly inadequate. Yet students are largely educated

on cookbook solutions to set-piece problems (e.g., compiler
design and development). Applying cookbook solution
approaches to current IT applications frequently leads to:

• Good solutions to the wrong problems;

• Large amounts of late rework;

• Overemphasized or underemphasized activities
through inability to determine “how much is
enough?”

 A good education in risk management provides
skills and methods for dealing with these problems.

• Addressing the risks of building the wrong system
focuses software engineers on understanding the
stakeholders’ objectives and context while
exploring solution approaches;

• Resolving risks early avoids extensive late rework;

• “How much is enough” questions are best
addressed by considering the risks of doing too
much or too little.

Educating students in risk management is not easy.
Usually risk-management skills take years to acquire. The
major challenges are learning how to recognize and deal
with particularly risky personal tendencies and external
constraints. These include:

• A desire to please, which leads to risky over
commitments. For example, in Weinberg’s
celebrated experiment [11], five teams were asked
to build a software system while optimizing a
different criterion (effort, size, memory, program
clarity, output clarity). Each team ranked first (or
in one case, tied for first) in what they were asked
to optimize. LEAVE BLANK THE LAST 2.5 cm (1”)

OF THE LEFT COLUMN ON THE FIRST PAGE
FOR THE COPYRIGHT NOTICE.
Preserve these six lines in some
cases, but make their contents
blank in your text.

• A tendency to focus on a single criterion (budget,
schedule, performance, features, correctness) at
the risk of seriously underemphasizing others. For
example, in the Weinberg experiment, the team
asked to minimize effort did so, but in the process,
the finished last in program clarity, next-to-last in

mailto:dport@sunset.usc.edu

size and memory, and third in output clarity.

• Inappropriate solution paradigms, such as “Do the
easiest parts first, and the hard parts will get
easier.” This works fine for crossword puzzles,
jigsaw puzzles, and some simple computer
programs. But the strategy, “Let’s do the easy
parts first, and add fault-tolerance and computer
security later,” has been a consistent failure.

• Risk-insensitive progress metrics, such as “finish
the requirements by Day X (even if they haven’t
been verified for feasibility);” “Drive down the
number of problem reports as fast as possible (do
the easiest first).”

• The thrills of crisis management. The joys and
habits established by students pulling all-nighters
to finish term projects are easy to see later on in
the “Wyatt Earp syndrome” of the cowboy
programmer galloping in and working around the
clock to save the project community from disaster.

Thus, there are significant advantages to be gained, and
formidable challenges to address, in educating software
engineering students to manage risk. Section 2 presents our

overall course approach and set of educational strategies for
addressing these challenges, including a Cognitive
Demands Analysis relating project tasks to risk
management skills needed. Section 3 provides details on
particular course practices, organized around the tasks in
the Cognitive Demands Analysis. Section 4 summarizes
our results and conclusions to date.

2 COURSE APPROACH AND EDUCATIONAL
STRATEGIES

We have evolved several key risk-management educational
strategies over 8 years of offering a 2-semester software
engineering course. A primary strategy is to involve the
students in a full life cycle (through product transition)
team project with real clients. This gives the students first-
hand personal experience in the effects of making risky
decisions on their team’s performance and on the clients’
satisfaction with their product.

Another primary strategy is to use a risk-driven process
model for the project. We use an extension of the spiral
model called Model-Based (System) Architecting and
Software Engineering (MBASE) [1;4]. The biggest risk is
for the team to deliver an unsatisfactory architecture
package (defined later) within 12 weeks in the fall semester

• Selec
 form te

• Plan

• Achi

• Form
 of ope

• Mana

• Deve

• LCO

* MBASE LCO (Lif

Table 1. Cognitive Demands Analysis: Early Risk Management Skills

Project Tasks Risk Management Skills
- Skill-building activities

t projects;
ams

• Project risk identification
• Staffing risk assessment and resolution

- Readings, lectures, homework,
 case study, guidelines

early phases • Schedule/budget risk assessment, planning
• Risk–driven processes (spiral, MBASE)

- Readings, lectures, homework,
 guidelines, planning and
 estimating tools

eve stakeholders’ shared vision • Simplifier/complicator analysis
• Prototyping as buying information to reduce risk

- Readings, lectures, homework,
 prototype, WinWin tool

ulate, validate concept
ration

• Risk-driven level of detail
 - Readings, lecture, guidelines, project

ge to plans • Risk monitoring and control
 - Readings, lecture, guidelines, project

lop, validate LCO* package • Risk assessment and prioritization
- Readings, lecture, guidelines, project

 Architecture Review • Risk-driven review process
• Review of top-N project risks

-Readings, lecture, case studies, review

e Cycle Objectives) package includes Operational Concept Description, Prototype, Requirements
Description, Architecture Description, and Feasibility Rationale
2

and to deliver and transition an unsatisfactory product
within 12 weeks in the spring. In this case, the best process
model is a variant of Rapid Application Development
(RAD) called “schedule as independent variable (SAIV),”
in which the size of the prioritized feature set to be
delivered becomes a dependent variable [8].

For risk management and other key skills, we use a
cognitive demands analysis to determine which individual
skills are important to learn, and what sequence of
educational experiences (reading, lectures, homework, case
studies, project guidelines, decision aids, tools, project
feedback) are likely to be most effective in helping the
students learn the skills. Our risk management framework
is an extension of the risk assessment (identification,
analysis, prioritization) and risk control (planning,
resolution, and monitoring) framework [12]; supplemented
by the SEI risk taxonomy [13] and the project risk
techniques in [14]. The cognitive demands analysis is a
key feature of the CRESST (Center for Research on
Evaluation, Standards, and Student Testing, UCLA) model
of learning, organized around Content Understanding,
Problem Solving, Collaboration, Communication, and Self-

Regulation [6; 7]. We have found that the CRESST
model’s emphasis on collaboration and self-regulation
skills makes it a better framework of learning objectives for
software engineering project courses than the classical
Bloom taxonomy [5]. The CRESST approach addresses the
organizational and behavioral concerns in software
engineering in a similar way to the Context Understanding
and Strategic Thinking approaches in [18]; as contrasted to
the more traditional computer-science Knowledge Units
emphasized in [19].

We use several reflection-in-action techniques to provide
students with feedback and the opportunity to reflect on the
risk aspects of their project actions. These include
inspections, architecture review boards [50], grading
criteria, monitoring of their risk management plans, student
critiques of their project experiences, and client
evaluations.

Cognitive Demands Analysis Overview
Every software engineering project course has a
tremendous challenge to fit in all the skills that seem to be
needed during the first week of the project. These include

Source of Risk

1. Personnel shortfalls

2. Schedules, budget
process

3. COTS, externa
components

4. Requirements mismatch

5. User interface mismatch

6. Architecture, performance
quality

7. Requirements changes

8. Legacy software

9. Externally-performed
tasks

10. Straining computer
science

Table 2. Software Risk Management Techniques

Risk Management Techniques

• Staffing with top talent; key personnel agreements; team-building;
training; tailoring process to skill mix; walkthroughs.

s, • Detailed, multi-source cost and schedule estimation; design to
cost; incremental development; software reuse; requirements
descoping; adding more budget and schedule; outside reviews.

l • Benchmarking; inspections; reference checking; compatibility
prototyping and analysis

• Requirements scrubbing; prototyping; cost-benefit analysis; design
to cost; user surveys

• Prototyping; scenarios; user characterization (functionality; style,
workload); identifying the real users

, • Simulation; benchmarking; modeling; prototyping;
instrumentation; tuning

• High change threshold: information hiding; incremental
development (defer changes to later increments)

• Reengineering; code analysis; interviewing; wrappers; incremental
deconstruction

• Pre-award audits, award-fee contracts, competitive design or
prototyping

• Technical analysis; cost-benefit analysis; prototyping; reference

checking

3

software processes, requirements, domain understanding,
client interaction, team selection and teambuilding, project
organization and planning, and the use of various project
tools, methods, and guidelines. How can one fit risk
management in as well?

We do this by using techniques that involve the students in
problem-solving activities requiring combinations of
needed skills. Thus, stakeholder win-win negotiations

involve client interaction, teambuilding, and domain
understanding; they produce spiral model objectives,
constraints, and alternatives, plus the beginning of a
requirement specification. And risk management can be
combined with many of the required skills, as seen in Table
1, which shows the early risk management portions of our
cognitive demands analysis. Drafts of the LCO package
material are completed in Week 6; the LCO ARB reviews
are in Week 7-8. Examples in Table 1 include

Table 3: Process Model Decision Table

Objectives, Constraints Alternatives
Growth
Envelope

Understanding
of
Requirements

Robustness Available
Technology

Architecture
Understanding

Model Example

Limited COTS Buy COTS Simple
Inventory
Control

Limited 4GL,
Transform

 Transform or
Evolutionary
Development

Small
Business-DP
Application

Limited Low Low Low Evolutionary
Prototype

Advanced
Pattern
Recognition

Limited
To Large

High High High Waterfall Rebuild of old
System

 Low High Risk
Reduction
Followed by
Waterfall

Complex
Situation
Assessment

 High Low High-
Performance
Avionics

Limited
to
Medium

Low Low-
Medium

 High Evolutionary
Development

Data
Exploitation

Limited
to Large

 Large
Reusable
Components

Medium to
High

Capabilities-
to-
Requirements

Electronic
Publishing

Very
Large

 High Risk
Reduction
& Waterfall

Air Traffic
Control

Medium
To Large

Low Medium Partial
COTS

Low to
Medium

Spiral Software
Support
Environment

Conditions for Additional Complementary Process Model Options

Design-to-cost or Design-to-schedule Fixed Budget or Schedule Available

Incremental Development
(only one condition is sufficient)

Early Capability Needed
Limited Staff or Budget Available
Downstream Requirements Poorly Understood
High-Risk System Nucleus
Large to Very Large Application
Required Phasing With System Increments

 4

combinations of risk management and project selection,
staffing, planning, stakeholder negotiation, operational
concept formulation, etc. These will be elaborated in
Section 3, following the order of project tasks in Table 1.

3 COURSE PRACTICES
Project Startup
The initial team project tasks shown in Table 1 are
selecting a project and forming a team. The first lecture
and readings in the course include material on project and
staffing risk identification.

One main topic covered by the lecture is a top-level risk
identification checklist from the MBASE Guidelines
(shown as Table 2). This is a 1995 update of the 1989
survey of the top-10 sources of software risk given in [12].
The top two sources of risk in 1995 were still personnel
shortfalls and unrealistic schedules and budgets (unrealistic
processes were added in 1995). External-component risks
were #7 in 1989; with the proliferation of variable-quality
commercial-off-the-shelf (COTS) products, this risk had
escalated to #3 in 1995. Other increasing sources of risk in
1995 were risks associated with software architecture (#6)
and legacy software (#8).

For experience in assessing project risks, a homework
assignment is given to risk-analyze a case study of a failed
project using Table 2. For assessing project staffing risks,
additional lecture material is provided. It summarizes the
experience of previous years’ projects that the most
significant sources of staffing risks were, in priority order:
lack of commitment (most often with final-semester
students), interpersonal compatibility, critical project skills
(both technical and management), and communication
(e.g., teams involving students from the USA, Brazil,
France, India, and Korea).

The students can then use these risk-sources to guide their
selection of project teammates, and subsequently reflect on
how well they had been applied in their post-project
critiques. The number of critiques expressing regret at not
addressing these risk sources more carefully is decreasing,
but has not yet reached zero.

Early Project Planning
Early project planning highlights the #2 risk in the course:
an inflexible 12-week period to complete a Life Cycle
Architecture (LCA) package, consisting of definitive
versions of each of the artifacts contained in preliminary
form in the LCO package described at the bottom of Table
1. It also highlights the fact that only 12 weeks are
available in the spring semester to develop an Initial
Operational Capability (IOC) and transition it to the clients.
This is a particularly risky prospect, as the students
generally disappear at the end of the semester, and the
clients must fully assimilate the product.

The COCOMO II model [10] is covered as an estimating
tool by the COCOMO II book as textbook, along with

associated lecture material and a homework exercise. The
UCS COCOMO II tool also has a risk analyzer, which
warns estimators about risky combinations of COCOMO
cost driver ratings [20]. Figure 2 provides an example.
Another key risk assessment and planning asset in the
MBASE guidelines is the Process Model Decision Table
shown in Table 3. It provides process choices that
minimize the risk of a model clash between the process
model selected and characteristics of the system’s product
models (available technology, understanding of product
requirements and architecture), property models
(robustness, fixed budget or schedule), or success models
(growth envelope, phasing with system increments).

The fixed schedules in the fall and spring indicate in the
conditions at the bottom of Table 3 that a design-to-
schedule or schedule-as-independent variable (SAIV)
process model will minimize the risk of a project overrun.
Specific SAIV techniques included in the lectures and
guidelines involve having clients prioritize features and
identify a core capability buildable in an estimated 60-70%
of the available schedule; architecting the software for ease
of dropping or adding low-priority features; and planning
an incremental development. This would establish the core
capability as increment 1 and add features as appropriate
with the remaining schedule.

Figure 2. Example COCOMO II Risk Outputs

 5

Achieve Stakeholders’ Shared Vision
The course projects currently use the Easy WinWin
collaboration tool to help negotiate and prioritize
requirements and achieve a shared vision. This is a
recently-developed commercial version of earlier WinWin
tools [16], based on GroupSystems.com’s collaboration
infrastructure [17]. It helps identify risks by having
stakeholders assess the relative value and difficulty of
achieving a given win condition. High-risk win conditions
have either uniformly high difficulty ratings or a lack of
consensus on their ratings. Easy WinWin is also used to
prioritize features for defining the core capability in the
risk-driven SAIV process model. Prototypes are developed
concurrently with EasyWinWin negotiations to reduce the
risk of mis-understanding user operational requirements.

A particularly effective tool used to reduce the risk of client
overexpectations is a simplifiers and complicators (S & C)
list. An example is shown in Figure 1 for a particular
digital library subdomain of projects: multimedia archives.
Figure 1 shows a baseline architecture for multimedia
archives, and lists of features that make a project more
simple (low-risk) or complex (high-risk). Providing these
S & C lists to project teams, along with lectures and a

homework exercise, reduced the LCO review failure rate
from about 25% in 1996 and 1997 to about 5% in 1998 and
1999 [2]. Figure 3 shows an example project S & C
analysis for a multimedia archive of Asian films. It helped
the librarian and students avoid such high-risk features such
as natural language processing and over-sized film clips.

Formulate, Validate Concept of Operation
MBASE has a set of invariants such as stakeholder win-win
(win-lose usually turns into lose-lose), the LCO, LCA, and
IOC milestones, and a principle that the content of MBASE
artifacts is risk-driven. This is the best way we have found
of answering the “how much is enough?” question for
prototyping, specifying, testing, configuration management,
etc.

As an example, for the specification of system
requirements or operational concepts, this invariant
principle translates into:

If it’s risky not to specify precisely, Do

(e.g., a safety-critical hardware-software interface)

If it’s risky to specify precisely, Don’t

 6

Figure 3a. Asian Film Database Simplifiers Analysis
Specific Simplifier Risks and Trade-offs

Uniform Media Formats
All video clips are stored using an open file format for
video/audio (e.g., MPEG). All film stills are stored using an
open image file format (e.g., JPEG). The inverse complicator
is to store film clips using streaming video technologies

This means that we may have to convert existing digital assets or
digitize the original media, which may be costly.
A unique file format limits the user base to those who have viewers
for that particular file format The chosen file format may not be the
most efficient for the various types of media (in terms of
compression rates, quality, etc...)

Use Standard Query Languages
Organize catalog and archive relationally so that queries will
be limited to standard search formats

May not be as effective for "discovering" assets in the archive: users
must know what they’re looking for, in order to search for it

Use Standard COTS
Use a standard Relational Database Management System
(RDBMS) that supports storing multi-media asset

A Relational Database Management System may not be most suited
for archival of multimedia assets, may have high initial,
implementation, or administration costs

Figure 3b. Asian Film Database Complicators Analysis
Specific Complicator Risks and Trade-offs

Natural Language Processing
Store the information only in one language (e.g., English) and
provide dynamic translation into Chinese, Japanese and
Korean The inverse simplifier is to store the same
information
in 4 different languages (English, Chinese, Japanese and
Korean).

The first approach is a complex, error-prone, expensive natural
language processing issue
The second approach will require more storage space, in addition to
acquiring the translations

Digitizing Large Archives
Digitizing film clips from the entire collection of films
(which
grows at a very fast rate of 800 films per year for Indian films
alone)

If each film’s clips require around 100 MB, then the rate of growth of
the database will be of 80 GB a year (excluding the size of the
metadata
or catalog information)

Integration of "Legacy" Systems
Do not require Real-Video plug-in for Web browsers to allow
users to view streamed film clips, as legacy systems do not
support them.

We cannot use more effective multi-media formats, which are
becoming standard technologies

(e.g., a GUI layout that can be easily evolved to match
uncertain user needs with a GUI-builder)

We have found this risk-driven specification approach
much more effective for rapid-development web-based and
multimedia systems than the traditional ideal of a complete,
consistent, traceable, testable requirements specification. It
takes some time for the students to get used to, as they are
initially concerned that anything incomplete will reduce
their grade. But our grading criteria penalize over-
specification as well as under-specification.

Manage to Plans
The most effective technique we have found for monitoring
risk management progress is the Top-N Risk Item List. An
example from one of the student projects is shown as Table
4. It provides a compact, easily updated, and highly
management-relevant summary of which risk items are
growing or decreasing in criticality, and which ones are
more and less rapidly getting resolved. Each week, the
students submit an updated Risk Item List as part of their
weekly progress report.

Continuous Risk Assessment and Control
Effective risk management requires continuous feedback
and control from initial project inception to construction,
transition and support. With the understanding that all
project tasks involve risk and require risk management

skills (as indicated in Table 1), students follow MBASE
guidelines in utilizing a “mini” spiral cycle [3] of risk
identification, risk assessment, and risk tracking throughout
the project. The cycle begins by proactively identifying
possible sources of significant risks and management
approaches for their project with the aid of table 2. The
cycle continues either by resolving the risk or by
addressing its resolution in the risk management plan. This
plan is monitored and updated, with re-scoping activities
undertaken when risks are too hard to resolve. An
elaboration of the basic spiral cycle is:

1. Identify new risks
2. Identify affects of risks
3. Assess risk exposure; reconcile risks with project

goals, constraints, objectives
4. Evaluate risk reduction alternatives and risk reduction

leverage
5. Take corrective action; assess decision points to invoke

contingency plans
6. Perform top-N Risk Item Tracking (See Table 4)

a. Identify top-N Risk Items
b. Highlight these in regular project reviews (focuses

review on manager-priority items)
c. Focus on new entries and slow-progress items

7. Reassess top-N risks

Table 4. Example top-N risk item list.
Weekly Ranking Risk Items

Current Previous # Weeks

Risk Resolution Progress

COTS mismatch 1 5 8 Push for early installation of all
COTS packages and test its
functionalities

Availability of Rational
Clearcase 4.0 for NT and
Microsoft Access database
for on time delivery

2 10 4 Contacted Rational regional
representative and notified him
that we are on a time-constraint
schedule

Schedule—an independent
variable, delivery in 12
weeks

3 2 4 Prioritize requirements and use
stage delivery to avoid schedule
crunch

Budget—man-hours to be
put in by the project team

4 3 4 Use familiar tools, use COTS
packages, and add additional
team member

One team member will not
be available for one week in
March, 2000, and another in

May 2000

5 6 4 Let other team members help in
his area

Poor communication with
customers

6 9 3 Schedule weekly meetings. Use
teleconferences, emails to
facilitate communication

Requirement mismatch 7 6 2 Provide updates to stakeholders
and collect inputs during reviews

 7

4 PROJECT RESULTS AND CONCLUSIONS
Project Results
Table 5 summarizes three years’ experience to date in
applying and refining MBASE on an annual selection of
real-client digital library projects.

A few explanatory comments on Table 5 are in order. The
USC Fall course has a much larger enrollment than the
Spring course, as the former is a core course for the USC
MS in computer science. In 1996-97, the subset of projects
to be continued in the Spring were primarily those having
students continuing from the Fall course. After we found
that most of the 1996-97 products went unused, we
performed a critical success factor analysis, and determined
a set of Spring project selection criteria (e.g., library
commitment to product use; empowered clients) which
increased the project adoption rate. Even then, the
inevitable changes in Library infrastructure and
organizational responsibilities have caused some
applications' usage to be overtaken by events.

Almost every team so far has developed an acceptable LCA
or IOC package on time and passed its final review. We
credit this to three major MBASE emphases. (1) The strong
MBASE emphasis on risk management, with the highest
risk identified as missing the LCA and IOC delivery dates.
(2) The MBASE stakeholder win-win orientation, which
encourages student and librarian stakeholders to cooperate
on prioritized desired capabilities and agreeing on core
capabilities with low risk of on-time delivery. (3) Using a
SAIV process model which avoids model clashes among
the project’s process model, product model (feature set),
and property model (top priority on schedule-to-complete).

Our annual rework of the MBASE guidelines [9] including

increasing emphasis on risk management has resulted in a
number of improvements. The 1998-99 reduction in teams
failing their LCO reviews resulted primarily from our
introduction of the S & C expectations management
activity as described earlier. The reduction in size of the
LCO and LCA packages between 1996-97 and 1997-98
resulted from eliminating a number of redundancies in the
package guidelines. A further reduction in size for the
Columbia in the Fall 99 course is attributed to the
enforcement of explicit “risk based documentation
guidelines” according the “do/don’t” principle expressed
earlier. Here package scores were discounted if they
included superfluous or confusing material.

The effect of the risk based documentation principle is
more pronounced within the graduate F99 projects as they
were developed from scratch and the teams had the
opportunity to apply the principle directly as they
developed the models (and they generally had some
experience in determining relevance of information). Note
that the undergraduate F99 LCA average package size did
not significantly decrease. A explanation for this is that
these undergraduate team projects are “recycled” whereby
the current undergraduate projects are taken from previous
graduate course project. The previous project LCA package
is given to the undergraduate team as a guide for their
project. In this the undergraduates are likely “risk
managing” with respect to the previous graduate team LCA
package by being sure to include the same level of detail
(under the risky assumption that the previous team’s
success would directly translate to their project).

Involving the clients in risk management activities
throughout (e.g. WinWin, S & C) clearly contributed to

M e tr ic U S C
1 9 9 6 -
9 7

U
1
9

F a ll S e m e s te r :
 L C A P a c k a g e

 T e a m s 1 5 1
 S tu d e n ts 8 6 8
 A p p lic a t io n s 1 2 1
 T e a m s fa il in g L C O
r e v ie w

4 4

 T e a m s fa il in g L C A
r e v ie w

0 0

 P a g e s , L C O p a c k a g e 1 6 0 1

 P a g e s , L C A p a c k a g e
C lie n t

2 3 0 1

E v a lu a t io n
(1 -5 , 5 b e s t)

4 .4 6 4

S p r in g S e m e s te r : I O C
P a c k a g e

 T e a m s 6 5
 S tu d e n ts 2 8 2
 A p p lic a t io n s 8 5
 T e a m s fa il in g IO C
a c c e p ta n c e r e v ie w

0 0

A p p lic a t io n s s a t is fy in g c lie n ts
(* te a m s)

5 5

A p p lic a t io n s n o t o v e r ta k e n b y
e v e n ts

6 4

A p p lic a t io n s c o n t in u e d 3 3
A p p lic a t io n s u se d 1 3
C lie n t e v a lu a t io n - 4

Table 5: USC and Columbia Project Results
8

S C
9 9 7 -
8

U S C
1 9 9 8 -
9 9

U S C
1 9 9 9 -
0 0

C o lu m b ia
U -g r a d . S 9 9

C o lu m b ia
G r a d . S 9 9

C o lu m b ia
U -g r a d . F 9 9

C o lu m b ia
G r a d . F 9 9

6 1 9 2 2 2 0 1 3 1 0 7
0 1 0 2 1 0 0 1 0 7 5 9 4 4 2 6
5 1 7 2 2 1 0 1 0 1 0 7
 1 1 1 0 6 5 1

 0 0 0 1 1 0

0 3 1 1 4 - 1 2 4 1 1 6 1 0 7 9 5

5 4 1 6 7 - 1 4 2 1 4 2 1 4 0 1 0 9

.6 7 4 .7 4 4 .4 8 - - - -

 6 8
3 2 8 3 5
 6 8

R e m a in e d th e s a m e s in c e p ro je c ts w e re o n ly o n e s e m e s te r
lo n g

 0 1 0 0 1 0

 6 7 2 0 * 1 2 * 1 0 * 7 *

 4 4 1 0 9 1 0 6

 4 4 2 3 1 2
 3 5 1 0 5 7 3
.1 5 4 .3 4 .7 5 4 .4 4 4 .2 1 3 .9 4 .3 8

virtually all delivered applications being rated as
satisfactory by the clients. Note that in Table 5 the USC
measure for this is the actual application being satisfactory
whereas at Columbia it is the number of teams that
delivered a satisfactory application as it is common for
multiple teams to develop the same application.

Another notable result is the number of applications that
were actually used by the clients after the course ended.
The undergraduate projects had a significantly higher
percentage of applications used. Once again this is due to
reducing risk factors as resulting from the undergraduate
projects being recycled from previous graduate projects.
The projects precedence reduces the risk of an undesirable
outcome on many fronts. For example the project is more
clearly defined and many of the design risks have already
been identified and perhaps resolved. Furthermore clients
for recycled projects only choose ones that they already
feel are of value to them. Often it is the same client for the
previous project and they know what changes need to be
made for it to be used this time whereas previously the
project may have been more exploratory. These factors and
many more reduce the overall risk that the project will not
deliver an application that will be used. In contrast, the
graduate projects are typically unprecedented

Overall a particularly satisfying result of teaching risk
management is the feedback we get from the students,
clients, and hiring managers that have employed our
students. Here are some examples:

Student: “ I hate to waste time. The risk-driven specs idea
helped me focus on the stuff that was really needed.”

Client: “Discussing the simplifiers and complicators was an
eye-opener for me. It’s helped me understand what is
reasonable to expect from information technology.”

Hiring Manager: “It was remarkable to have summer
student interns who knew how to manage risk.”

The hiring manager feedback on risk management-skills
has been particularly stronger since we switched in 1996
from a Bloom-taxonomy, homework-and-exam approach to
risk management current CRESST-model, project oriented
approach.

We are continuing to strengthen our risk management
guidelines based on both course project and industry
experience. For example, we have extended the risk
management techniques to organizational and system-level
risk management in our CeBASE Method, developed un
concert with the University of Maryland and their
Experience Factory and Goal-Question-Metric approach
[21].

Conclusions
We have found that the Cognitive Demands Analysis and
its associated educational activities have has helped
students become effective not only in risk management, but

also in such skills as process definition, client interaction,
requirements negotiation, software and system architecting,
project organizing and planning, and product validation and
transition.

Most importantly, the students do not just learn risk
management in their head with lectures, readings, simple
exercises, and tests. They also learn risk management in
their heart via stakeholder win-win negotiations to resolve
initial risks, and via top-N risk item lists to track risk
resolution progress and to apply corrective actions. And
they learn risk management in their gut by overcoming
their built-in desires to please, desires to do the easy things
or fun things first, and desires to avoid confrontation in
face-to-face discussions with clients to convince them that
there are serious risks that need to be addressed. In a world
where the bearers of bad tidings are often subject to the
“Shoot the messenger” syndrome, it takes real gut
knowledge and courage to convince reluctant clients that
they will be better off acknowledging and dealing with
their risks early and well.

REFERENCES
1. B. Boehm, A. Egyed, D. Port, A. Shah, J. Kwan, R.

Madachy, "A Stakeholder Win-Win Approach to
Software Engineering Education", Annals of Software
Engineering, April 1999.

2. B. Boehm, M. Abi-Antoun, J. Kwan, A. Lynch, and D.
Port, "Requirements Engineering, Expectations
Management, and the Two Cultures," Proceedings,
1999 International Conference on Requirements
Engineering, June 1999.

3. B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, R.
Madachy, "Using the WinWin Spiral Model: A Case
Study", IEEE Computer, July 1998, pp. 33-44

4. B. Boehm, D. Port, "Escaping the Software Tar Pit:
Model Clashes and How to Avoid Them ", ACM
Software Engineering Notes, January 1999, pp. 36-48.

5. B. Bloom, Taxonomy of Educational Objectives:
Handbook I: Cognitive Domain, David McKay, New
York, 1956.

6. C. L. Baker, P. Aschbacher, D. Niemi, and E. Sato,
"CRESST performance assessment models: Assessing
content area explanations," Los Angeles, University of
California, National Center for Research on
Evaluation, Standards, and Student Testing, 1992.

7. H.F. O'Neil, Jr., K. Allred, and E. L. Baker, "Design of
teacher-scored measures of workforce readiness
competencies," in H.F. O'Neil, Jr. (Ed.), Workforce
readiness: Competencies and assessment, Mahwah, NJ:
Lawrence Erlbaum Associates, 1997.

 9

8. B. Boehm, “Making RAD Work for Your Project,”
USC-CSE Technical Report 99-512. Abridged version
in IEEE Computer, March 1999, pp. 113-117.

9. B. Boehm, D. Port, M. Abi-Antoun, and A. Egyed,
"Guidelines for the Life Cycle Objectives (LCO) and
the Life Cycle Architecture (LCA) deliverables for
Model-Based Architecting and Software Engineering
(MBASE)",
http://sunset.usc.edu/TechRpts/Papers/usccse98519/us
ccse98-519.pdf

10. B. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark,
E. Horowitz, R. Madachy, D. Reifer, and B. Steece,
Software Cost Estimation with COCOMO II, Prentice
Hall, 2000.

11. G. M. Weinberg, E. M. Schulman, “Goals and
Performance in Computer Programming,” Human
Factors, 1974, 16(1), 70-77.

12. B. Boehm, Software Risk Management, IEEE-CS
Press, 1989

13. M. Carr, S. Konda, I. Monarch, F. Ulrich, and C.
Walker, “Taxonomy-Based Risk Identification,”
CMU/SEI-93-TR=6, Software Engineering Institute,
Pittsburgh, PA 15213, 1993.

14. E. M. Hall, Managing Risk, Addison Wesley
Longman, 1998.

15. AT&T, “Best Current Practices: Software Architecture
Validation,” AT&T, Murry Hill, NJ, 1993.

16. B. Boehm, P. Bose, E. Horowitz, and M. J. Lee,
“Software Requirements as Negotiated Win
Conditions,” Proceedings, ICRE 94, April 1994, pp.
74-83

17. P. Gruenbacher, Easy Win Win Process Guide, Group
Systems.com and USC-CSE, 2000

18. S. R. Faulk, "Achieving Industrial Relevance with
Academic Excellence: Lessons from the Oregon
Master of Software Engineering," Proceedings, ICSE
2000, June 2000, pp. 293-302.

19. W. R. Adrion, "Developing and Deploying Software
Engineering Courseware in an Adaptable Curriculum
Framework," Proceedings, ISCE 2000, June 2000, pp.
284-292.

20. R. Madachy, “Heuristic Risk Assesment Using Cost
Factors,” IEEE Software, May 1997.

21. B. Boehm, V. Basili, “The CeBASE Model of
Strategic Software Development and Evolution,”
Proceedings, 3rd International Workshop on
Economics-Driven Software Engineering Research,
May 2001, p. 13.

 10

http://sunset.usc.edu/TechRpts/Papers/usccse98

 11

	ABSTRACT
	Keywords

	MOTIVATION & CONTEXT
	COURSE APPROACH AND EDUCATIONAL STRATEGIES
	Cognitive Demands Analysis Overview

	COURSE PRACTICES
	Project Startup
	Early Project Planning
	Achieve Stakeholders’ Shared Vision
	Formulate, Validate Concept of Operation
	Manage to Plans
	Continuous Risk Assessment and Control

	PROJECT RESULTS AND CONCLUSIONS
	Project Results
	Conclusions

	REFERENCES

