
Introduction to Software Engineering

Neelam Gupta

The University of Arizona
Department of Computer Science

2Definitions

The application of engineering to software

Field of computer science dealing with software
systems

• large and complex
• built by teams
• exist in many versions
• last many years
• undergo changes

3Definitions

•Application of a systematic,
disciplined, quantifiable approach to the
development, operation, and
maintenance of software (IEEE 1990)

•Multi-person construction of multi-
version software (Parnas 1978)

4History

•The field of software engineering was born in
1968 in response to chronic failures of large
software projects to meet schedule and
budget constraints

• Recognition of "the software crisis"

•Term became popular after NATO
Conference in Garmisch Partenkirchen
(Germany), 1968

5Role of software engineer

Programming skill not enough

Software engineering involves "programming-
in-the –large"

• understand requirements and write specifications
• derive models and reason about them

• master software
• operate at various abstraction levels
• member of a team

• communication skills
• management skills

6Software lifecycle- Waterfall Model

Requirements analysis
and specification

Design and specification

Code and module
testing

Integration and
system testing

Delivery and
maintenance

waterfall model

7Software Qualities

•Software is built to meet a certain
functional goal and satisfy certain
qualities

•Software processes also must meet
certain qualities

8Software product

Different from traditional types of products
• intangible

• difficult to describe and evaluate
• malleable
• human intensive

• involves only trivial “manufacturing” process

9
Classification of software qualities

Internal vs. external
• Externalàà visible to users
• Internalàà concern developers

Product vs. process
• Our goal is to develop software products
• The process is how we do it

Internal qualities affect external qualities

Process quality affects product quality

10

Correctness

Software is correct if it satisfies the
functional requirements specifications

If specifications are formal, since
programs are formal objects, correctness
can be defined formally

• It can be proven as a theorem or disproved by
counterexamples (testing)

11Reliability

• informally, user can rely on it
• can be defined mathematically as “probability
of absence of failures for a certain time
period”

• if specs are correct, all correct software is
reliable, but not vice-versa (in practice,
however, specs can be incorrect …)

12Robustness

• software behaves “reasonably”
even in unforeseen
circumstances (e.g., incorrect
input, hardware failure)

13Performance

Efficient use of resources
-memory, processing time, communication

Can be verified
-complexity analysis
-performance evaluation (on a model, via
simulation)

Performance can affect scalability
-a solution that works on a small local network
may not work on a large intranet

14Usability

The ease of use of the system by
expected users

Other term: user-friendliness

Rather subjective, difficult to evaluate

15Verifiability

How easy it is to verify properties
• mostly an internal quality

-use of monitors to verify constraints
on traffic between components

• can be external as well (e.g., security
critical application)

16Maintainability

Maintainability: ease of maintenance

Maintenance: changes to software after release

Maintenance costs exceed 60% of total cost of
software

Three main categories of maintenance
• corrective: removing residual errors (20%)
• adaptive: adjusting to environment changes (20%)
• perfective: quality improvements (>50%)

17Maintainability

Can be decomposed as
• Repairability

• ability to correct defects in reasonable time
• Evolvability

• ability to adapt sw to environment changes and to
improve it in reasonable time

18Reusability

Existing product (or components) used (with
minor modifications) to build another product

• (Similar to evolvability)

Also applies to process

Reuse of standard parts measure of maturity
of the field

19Portability

Software can run on different hardware
platforms or ssoftware environments

Remains relevant as new platforms and
environments are introduced (e.g. digital
assistants)

Relevant when downloading software in a
heterogeneous network environment

20Understandability

Ease of understanding software

Program modification requires program
understanding

21Typical process qualities

Productivity
• denotes its efficiency and performance

Timeliness
• ability to deliver a product on time

Visibility
• all of its steps and current status are documented

clearly

22Software Engineering Principles

• Principles form the basis of methods,
techniques, methodologies and tools

• Seven important principles that may be
used in all phases of software
development

• Apply to the software product as well
as the development process

23Key principles

1. Rigor and formality

2. Separation of concerns

3. Modularity

4. Abstraction

5. Anticipation of change

6. Generality

7. Incrementality

241. Rigor and formality

Software engineering is a creative design
activity,

BUT

It must be practiced systematically

Rigor is a necessary complement to
creativity that increases our confidence in our
developments

Formality is rigor at the highest degree

25Examples:

Product:
Formal-Mathematical analysis of program
correctness

Rigorous-Systematic test data derivation

Process:
Rigorous- detailed documentation of each
development step in waterfall model

Formal- automated transformational process
to derive program from formal specifications

262. Separation of concerns

To dominate complexity, separate the
issues to concentrate on one at a time

-"Divide & conquer"

Supports parallelization of efforts and
separation of responsibilities
Example:
Process: Go through phases one after the other as in
waterfall Model

• Does separation of concerns by separating activities
with respect to time

27Separation of concerns

Examples:

Process: Go through phases one after the
other as in waterfall Model

• Does separation of concerns by separating
activities with respect to time

Product: Keep different types of product
requirements separate

• Functionality discussed seperately from the
performance constraints

283. Modularity

A complex system may be divided into
simpler pieces called modules

A system that is composed of modules
is called modular

Supports application of separation of
concerns

• when dealing with a module we can ignore details
of other modules

29Cohesion and coupling

Each module should be highly cohesive
• module understandable as a meaningful unit
• Components of a module are closely related to one

another

Modules should exhibit low coupling
• modules have low interactions with others
• understandable separately

30An Example

(a) (b)

high coupling low cohesion low coupling high cohesion

314. Abstraction

Identify the important aspects of a phenomenon
and ignore its details

-Special case of separation of concerns

-The type of abstraction to apply depends on
purpose

Example : the user interface of a watch (its
buttons) abstracts from the watch's internals for
the purpose of setting time; other abstractions
needed to support repair

32Abstraction ignores details

Example: equations describing complex circuit
(e.g., amplifier) allows designer to reason
about signal amplification

Equations may approximate description,
ignoring details that yield negligible effects
(e.g., connectors assumed to be ideal)

33Abstraction yields models

For example, when requirements are analyzed
we produce a model of the proposed
application

The model can be a formal or semiformal
description

It is then possible to reason about the system
by reasoning about the model

34Abstraction in process

When we do cost estimation we only take
some key factors into account

We apply similarity with previous systems,
ignoring detail differences

355. Anticipation of change

Ability to support software evolution
requires anticipating potential future
changes

-It is the basis for software evolvability

366. Generality

While solving a problem, try to discover if it
is an instance of a more general problem
whose solution can be reused in other cases

Sometimes a general problem is easier to
solve than a special case

-Carefully balance generality against
performance and cost

377. Incrementality

Process proceeds in a stepwise fashion
(increments)

Examples (process)
• deliver subsets of a system early to get early

feedback from expected users, then add new features
incrementally

• deal first with functionality, then turn to performance

38Case study: compiler

Compiler construction is an area where
systematic (formal) design methods have been
developed

• e.g., BNF for formal description of language syntax

39Separation of concerns example

When designing optimal register allocation
algorithms (runtime efficiency) no need to
worry about runtime diagnostic messages (user
friendliness)

40Modularity

Compilation process decomposed into phases
• Lexical analysis
• Syntax analysis (parsing)
• Code generation

Phases can be associated with modules

41

Representation of modular structure

Lexical
analysis

Parse
tree

Source
code

Symbol
table

Object
code

“Tokenized”
code

Parsing Code
generation

Lexical
diagnostic
s

Syntax diagnostics
boxes represent modules
directed lines represent interfaces

42
Module decomposition may be
iterated

Intermediate
code generation Parse

tree

Object
code

Code
genration

Intermediate
code

Symbol table

Machine code
generation

further modularization of code-generation module

43Abstraction

Applied in many cases
• abstract syntax to neglect syntactic details such as

begin…end vs. {…} to bracket statement sequences
• intermediate machine code (e.g., Java Bytecode) for

code portability

44Anticipation of change

Consider possible changes of
• source language (due to standardization

committees)
• target processor

45Generality

Parameterize with respect to target machine
(by defining intermediate code)

Develop compiler generating tools (compiler
compilers) instead of just one compiler

46Incrementality

Incremental development
• deliver first a kernel version for a subset
of the source language, then increasingly
larger subsets

• deliver compiler with little or no
diagnostics/optimizations, then add
diagnostics/optimizations

