

153

Chapter 5

Customizing Class Loading

Chapter 2 described using the class loaders installed by the Java launcher and
also using your own instances of

URLClassLoader

. These techniques solve
many of the class loader problems you are likely to face. However, there are
times when it would be nice to use a custom class loader. For instance, you may
want to distribute classes with a protocol other than http, load classes from an
object database, or extract classes from a version control system. More inter-
estingly, you may want to modify the semantics of class loading. You might in-
sert additional information, such as instrumentation for debugging, profiling, or
auditing, or you might want to process custom metadata that you have added to
the binary class format. In these situations, you will want to customize class
loading.

This chapter will present two different techniques for customizing class load-
ing. The first, and most obvious, is writing your own subclass of

ClassLoader

.
Your own class loader implementation is free to choose any strategy it wants for
mapping class names to class bytes, but you must be careful about security.
Class loaders tell the security architecture where code came from, and the secu-
rity manager uses this information to grant permissions. So before I show you
how to write a custom class loader, I will take a brief detour through the security
architecture. You will see that in most cases, you should subclass

Secure-

ClassLoader

, not

ClassLoader

.
The second option for customizing class loading splits the security and re-

source-resolution tasks into separate classes, leveraging the core API. A stan-
dard

URLClassLoader

 instance manages the details of Java security, and a

5003_05.fm Page 153 Friday, November 9, 2001 2:12 PM

154

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Java class called a

protocol handler

resolves resources by parsing a customized
URL protocol string, like

objectdb://server/MyClass.class

instead of

http://server/MyClass.class

This separation of concerns provides two benefits over simply extending

SecureClassLoader

. First, the protocol handler can be implemented in rela-
tively untrusted code since the

URLClassLoader

 handles security. This is use-
ful because though you might trust a piece of unknown code to go and find other
classes that it needs, you certainly would not trust it to tell you what permissions
those classes should have! Second, the protocol handler can request any kind
of resource, not just binary classes.

§5.4 explains how to create and use class loaders in a secured environment.
Most application code in a secured environment does not have permission to
create a class loader because of the sensitive role that class loaders play in as-
signing permissions to classes as they are loaded. However, you will often want
the ability to request a specific class loader from application code. There are
several ways to work around this issue. Usually application code does not need
to

create

 a class loader; all it needs is

access

to a class loader pointed at the
correct classes. Instead of attempting to instantiate a class loader directly, you
call back into more trusted code, requesting a class loader that uses a resource
resolution strategy defined by you. You can write code to do this yourself, or you
can use

URLClassLoader,

 which includes a factory method specifically de-
signed to handle this problem.

§5.5 shows you how to modify the class bytes after you have compiled a
class. You can use this technique to insert or remove debugging information,
performance instrumentation, or optimization hints. In combination with a cus-
tom class loader, you can modify classes as they are loaded, or you can simply
change the binary classes offline in the file system or whatever other repository
you use. To illustrate the power of this technique, I create a new custom class at-
tribute that tracks version dependencies between packages and then implement

5003_05.fm Page 154 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING

155

a

URLClassLoader

 subclass that always finds the correct version of depen-
dent classes.

Writing a custom class loader is an interesting exercise, but you should not
reinvent the wheel. The core API already handles the most common class load-
ing scenarios. Before you write a custom loader, you should study the source for

SecureClassLoader

 and

URLClassLoader

 to ascertain that you cannot ac-
complish your purpose simply by leveraging these classes.

5.1 Java 2 Security

Brace yourself for some massive simplification;

1

 it’s time to talk about Java secu-
rity. In Java 2 security, classes are assigned

permissions

based on their

code
source

. A permission is simply a description of some secured operation that you
might want to perform. Permissions are defined as subclasses of

java.secu-

rity.Permission

, and have optional targets and actions. For example, a class
might have the

FilePermission

 permission with target

<<ALL FILES>>

 and
action

delete

. This means exactly what you think it means—that the class can
delete any or all files.

A code source contains the URL a class came from, plus any certificates
used to sign the code. These two data items are stored in an instance of

java.security.CodeSource

. An instance of

java.security.Policy

manages the mapping between code sources and permissions.
The reference implementation of

Policy

 is file-based. If you wanted to give
your code permission to delete all files, you would create a policy file like the
one in Listing 5–1. Both the

signedBy

 and

codeBase

 attributes are optional. If
you omit

signedBy

 or

codeBase

 then the permissions are granted regardless
of signer or location, respectively.

Listing 5–1 A Simple Policy File

//file your.policy

grant signedBy "you" codeBase "file:/yourclassdir" {

 permission java.io.FilePermission "<<ALL FILES>>", "delete";

};

1. See [Gon99] for the full story.

5003_05.fm Page 155 Friday, November 9, 2001 2:12 PM

156

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

//command line to use your.policy

>java –Djava.security.manager \

 –Djava.security.policy=your.policy MainClass

A class’s permissions come into play at runtime when a security manager is
installed and the class attempts to perform an operation that is protected by the
security manager. Consider the

SelfDestruct

 class, shown in Listing 5–2,
which attempts to destroy its own class file on the local file system. If you run
this class from the folder where the file is located, it will delete itself and be un-
available for future runs. However, if you turn on Java security with the
-

Djava.security.manager

 flag but do not specify a policy file, your code will
run with a minimal set of permissions

2

 and you will see the exception trace
shown in Listing 5–3. The security manager rejects the call to

File.delete

because the

SelfDestruct

 class does not have the necessary permission.
The standard security manager will grant permission only if

all

the classes on the
call stack have the requisite permission.

3

Listing 5–2 The SelfDestruct Class

import java.io.*;

public class SelfDestruct {

 public static void main(String[] args) {

 try {

 File f = new File("SelfDestruct.class");

 System.out.println("deleted file? " + f.delete());

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Listing 5–3 Blocked by the Security Manager

$ java -Djava.security.manager SelfDestruct

java.security.AccessControlException: access denied

 (java.io.FilePermission SelfDestruct.class delete)

2. The default behavior of the security manager can be modified by editing the java.security and
java.policy files in your ${JAVA_HOME}/jre/lib/security directory.
3. The default behavior of checking the entire call stack can be modified with privileged scopes.

5003_05.fm Page 156 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING

157

at java.security.AccessControlContext.checkPermission(…)

at java.security.AccessController.checkPermission(…)

at java.lang.SecurityManager.checkPermission(…)

at java.lang.SecurityManager.checkDelete(…)

at java.io.File.delete(…)

at SelfDestruct.main(SelfDestruct.java:6)

In the call stack shown in Listing 5–3, the

SelfDestruct

 class is the only
problem because all the other classes on the call stack were loaded by the boot-
strap loader and are exempt from permission checks. In order to give

SelfDe-

struct

 the requisite permission, you could reference a policy file similar to the
one in Listing 5–1. You would accomplish this by removing the

signedBy

 field
and setting the

codeBase

 value to a file URL where the

SelfDe-

struct.class

 is located.
The permission granted by the policy file does not have to exactly match the

permission listed in the

AccessControlException

. The policy file in Listing
5–1 grants

FilePermission, <<ALL FILES>>, delete

, but the security
manager in Listing 5–3 is looking for

FilePermission, SelfDestruct.

class, delete

. This difference causes no confusion because the permission
architecture supports

implication

. Each permission subclass defines its own no-
tion of implication, so for example, the

FilePermission

 class knows that

<<ALL FILES>>

 implies any particular file name. The built-in permission
classes support implication without any special effort by the developer.

That’s Java 2 security in brief. When you deploy an application, you deter-
mine the permissions that code will need, and you associate those permissions
with code locations and signers in the policy file. The default policy implementa-
tion then extracts these permissions when the class is loaded. When the security
manager wants to check an operation, it verifies that every class on the call
stack has the necessary permission, directly or by implication. The relationships
between the players are shown in Figure 5–1. There is only one thing missing:
What does all of this have to do with class loaders?

5.1.1 The Role of Class Loaders
Class loaders are the bridge between the policy and the security manager. A
class loader takes a code source and permissions pair from the policy and binds

5003_05.fm Page 157 Friday, November 9, 2001 2:12 PM

158 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

them into an instance of java.security.ProtectionDomain. The class
loader then hands the protection domain to the virtual machine via Class-
Loader’s native method defineClass. When the security manager wants to
verify a call stack, it extracts all the protection domains for classes on the stack
via a native method of java.security.AccessControlContext. The Java
2 security architecture depends on honest class loaders telling the truth when
they define classes.

The key role that class loaders play in security has two consequences for
application developers. First, you should rarely grant the RuntimePermission
createClassLoader. Code with this permission can create a class loader that
lies about protection domains in an attempt to compromise security. Second,
because you cannot allow untrusted code to create class loaders, you may need
to provide some other mechanism to help untrusted code find the classes and

Figure 5–1 The Java 2 security architecture

Policy AccessController

1. Get array of
classes on call
stack with SM’s
getCallContext.

3. Get array of
permissions from
the protection
domain.

2. Get array of code
sources with Class‘s
getProtectionDomain.

4. Permit the
call if every set
of permissions
implies p.

SecureClassLoader
caches codesource to
permissions mapping in a
ProtectionDomain.

grant ---- {
 ---;
 ---;
};

checkPermission(p)

Policy object

Codesource Permissions

Implies?
p

Implies?
p

Implies?
p

Implies?
p

5003_05.fm Page 158 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 159

resources it needs. §5.2 presents the basics of custom class loaders, and §5.4
shows how to make class loading services available to untrusted code without
compromising security.

5.2 Custom Class Loaders
The rules for writing class loaders have changed over time, but the principle has
remained basically the same. You implement a subclass of ClassLoader that
knows, given a class name, how to create or find a byte array that is the class
bytes for that class.

5.2.1 Pre-Java 2 Custom Class Loaders
Prior to SDK version 1.2, the relevant methods were loadClass, define-
Class, and resolveClass, as shown in Listing 5–4. To implement a custom
loader, you override the abstract method loadClass. Using the name argu-
ment, you find or create an array of bytes that has the correct binary class for-
mat, and then you pass these bytes to the defineClass method.
ClassLoader’s defineClass implementation then calls to native code inside
the virtual machine that loads the class. If the resolve flag is set, your sub-
class should also call resolveClass after defineClass completes. Class-
Loader’s resolveClass makes the class ready for use by verifying,
resolving, and initializing the class.4

Listing 5–4 Pre-Java 2 Custom Class Loader APIs

package java.lang;

public class ClassLoader {

protected abstract Class loadClass(String name,

 boolean resolve);

protected final Class defineClass(byte[] data, int offset,

 int length);

protected final Class defineClass(String name, byte[] data,

 int offset, int length);

protected final void resolveClass(Class c);

//other methods omitted for clarity

}

4. This process is described in detail in [Ven99].

5003_05.fm Page 159 Friday, November 9, 2001 2:12 PM

160 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

5.2.2 Class Loading since SDK 1.2
The pre-1.2 method of implementing class loaders worked, but it suffered from
two important flaws. First, there was no mechanism for passing security infor-
mation from the Policy implementation into the virtual machine. Second, there
was no guarantee that custom class loaders would follow the rules for class
loaders laid out in Chapter 2.5 An overridden loadClass method could cheat
by either refusing to delegate to its parent loader, or by reloading classes that
had already been loaded.

The 1.2 Java SDK introduced several modifications to the ClassLoader
class to address these problems. The 1.2 ClassLoader includes a new
overloaded form of defineClass that passes security information to the VM via
a ProtectionDomain argument. 1.2 also provides a concrete implementation
of loadClass that enforces the basic rules of class loading. Developers should
no longer override loadClass; instead, they should override a new method,
findClass. The findClass method is called only after loadClass fails to
find the class from a parent class loader or the current loader’s cache. The
changes to the 1.2 ClassLoader API are summarized in Listing 5–5.

Listing 5–5 SDK 1.2 Enhancements to ClassLoader

package java.lang;

public class ClassLoader {

//only new/changed methods shown here

protected final Class defineClass(String name, byte[] b,

 int off, int len, ProtectionDomain pd);

//override this instead of loadClass

protected Class findClass(String name)

 throws ClassNotFoundException

{

 throw new ClassNotFoundException(name);

}

5. A more historically accurate account would acknowledge that both the Policy and the class
loader rules did not exist in SDK 1.1 either, so there was no way that ClassLoader could work
with them. In my account, I am following the tradition that winners get to rewrite history so that the
outcome appears obvious and inevitable.

5003_05.fm Page 160 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 161

//do not override this method

protected synchronized Class loadClass(String name,

 boolean resolve) throws ClassNotFoundException

{

 // First, check if the class has already been loaded

 Class c = findLoadedClass(name);

 if (c == null) {

 try {

 if (parent != null) {

 c = parent.loadClass(name, false);

 } else {

 c = findBootstrapClass0(name);

 }

 } catch (ClassNotFoundException e) {

 // If still not found, then call findClass in order

 // to find the class.

 c = findClass(name);

 }

 }

 if (resolve) {

 resolveClass(c);

 }

 return c;

}

The 1.2 API represents a big improvement over previous incarnations of
ClassLoader. The loadClass method pulls all the common code into the
core API where it belongs, so all you have to worry about is finding or creating
the class bytes. Notice, however, that loadClass is not marked final. You
could still override loadClass and implement an old-style class loader. This
loophole was left in deliberately to preserve binary compatibility with existing
code. In a world without legacy software, loadClass would be final, and you
should treat it as such when writing new programs.

The various signatures of defineClass are also a concession to legacy
code. You should always use the version that takes a ProtectionDomain argu-
ment so that code loaded by your class loaders can participate fully in the Java 2
security model. An easy way to accomplish this is to always extend the 1.2 class
java.security.SecureClassLoader. SecureClassLoader provides yet

5003_05.fm Page 161 Friday, November 9, 2001 2:12 PM

162 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

another defineClass method, as shown in Listing 5–6. This version of
defineClass takes a CodeSource instance, and the getProtectionDo-
main method manages a cache of ProtectionDomains for efficiency. If you
are going to write a custom class loader, your best bet is to subclass Secure-
ClassLoader and override findClass to call the CodeSource-aware version
of defineClass.

Listing 5–6 SecureClassLoader’s defineClass Implementation

protected final Class defineClass(String name, byte[] b,

 int off, int len, CodeSource cs)

{

 if (cs == null)

 return defineClass(name, b, off, len);

 else

 return defineClass(name, b, off, len,

 getProtectionDomain(cs));

}

5.2.3 A Transforming Class Loader
As an example of a custom class loader, consider a TransformingClass-
Loader. This loader is very similar to a URLClassLoader, except that it may
perform arbitrary transformations on the bytes of a class before handing them
off to the virtual machine. These transformations could modify the class bytes to
add logging, profiling, debugging, or other services. Since the transforming
loader needs to handle URLs anyway, it will extend URLClassLoader, and
thereby implicitly extend SecureClassLoader.

The transforming loader and related classes are shown in Listing 5–7. The
ResourceTransformer class defines the various transformations that might
be made. For now, the interesting method is transformClassBytes, which
modifies an array of class bytes after the URLClassLoader retrieves the bytes
but before they are passed to defineClass. The TransformingClass-
Loader repeats all the constructors of URLClassLoader but with a Re-
sourceTransformer parameter added. The transformer implementation will
get a chance to modify the class bytes before they are used to define a class.

5003_05.fm Page 162 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 163

Listing 5–7 The TransformingClassLoader and Related Classes

//class com.develop.xload.ResourceTransformer

package com.develop.xload;

import java.io.IOException;

import java.net.URL;

import java.util.Enumeration;

public interface ResourceTransformer {

 public byte transformClassBytes(byte[] inout,

 int start, int len);

 public URL transformResourceURL(URL resource);

 public Enumeration transformResources(Enumeration resrcs);

}

//class com.develop.xload.TransformingClassLoader

package com.develop.xload;

import java.io.*;

import java.lang.reflect.*;

import java.net.*;

import java.security.*;

import java.util.jar.*;

import java.util.jar.Attributes.*;

import sun.misc.*;

public class TransformingClassLoader extends URLClassLoader {

 private final ResourceTransformer xr;

 public TransformingClassLoader(URL[] urls,

 ResourceTransformer xr) {

 super(urls);

 this.xr = xr;

 }

 public TransformingClassLoader(URL[] urls,

 ClassLoader parent,

 ResourceTransformer xr) {

 super(urls, parent);

 this.xr = xr;

 }

 public TransformingClassLoader(

 URL[] urls, ClassLoader parent,

5003_05.fm Page 163 Friday, November 9, 2001 2:12 PM

164 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 URLStreamHandlerFactory fact,

ResourceTransformer xr)
 {

 super(urls, parent, fact);

 this.xr = xr;

 }

 private URL getURLBase(URL url) {

 URL[] urls = getURLs();

 int length = urls.length;

 String stringForm = url.toExternalForm();

 for (int n=0; n<length; n++) {

 if (stringForm.startsWith(urls[n].toExternalForm())) {

 return urls[n];

 }

 }

 return null;

 }

 protected Class findClass(final String name)

 throws ClassNotFoundException

 {

 String className = name.replace('.', '/') + ".class";

 URL url = super.getResource(className);

 if (url == null) {

 return null;

 }

 URL urlBase = getURLBase(url);

 if (urlBase == null) {

 throw new Error("url has no base");

 }

 InputStream is = null;

 try {

 is = url.openStream();

 if (is == null) { return null; }

 ByteArrayOutputStream baos =

 new ByteArrayOutputStream();

 for (int ch=0; -1 != (ch=is.read());)

 baos.write(ch);

 byte[] classbytes = baos.toByteArray();

 xr.transformClassBytes(classbytes, 0,

classbytes.length);

 return defineClass(name, classbytes, 0,

 classbytes.length, new CodeSource(urlBase, null));

5003_05.fm Page 164 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 165

 }

 catch (IOException ioe) {

 return null;

 }

 }

}

The meat of the example is the findClass implementation. First, findClass
takes the string class name passed into it and turns it into a relative URL string
by replacing occurrences of ‘.’ with ‘/ ’ and then appending ‘.class’. Then, the su-
perclass’s getResource method locates the URL for the class. The method
then opens a stream to the URL and reads it into an array of bytes. Before these
bytes are passed to defineClass, the call to xr.transform converts the
bytes, using whatever algorithm the transformer implements.

The helper method getURLBase returns the base URL; for instance,

http://server/MyClass.class

would have a base URL of

http://server/

The base URL is used to construct a CodeSource, which is then passed to the
security-aware version of defineClass. The TransformingClassLoader
has most of the abilities of a URLClassLoader,6 and it adds the ability to plug
in arbitrary transformations as code is loaded.

As a simple transformation example, consider a ClassNotter that de-
crypts a binary class that was encrypted by NOTting every bit in the binary
class format. Such encryption is not very secure, but it is easy to implement for
a quick example. The ClassNotter is shown in Listing 5–8. ClassNotter
extends NoOpResourceTransformer, which is an adapter class that pro-
vides empty implementations of ResourceTransformer methods. This al-
lows the ClassNotter to implement only the method(s) of interest, in this

6. Notice that this implementation passes null as the second argument to the CodeSource
constructor. This loses any signer information, so this implementation supports location-based
security only—not digital certificates. The design of URLClassLoader does not encourage
inheritance-based reuse because it does not make the certificate information easily available to
derived classes. It is tucked away in private members of URLClassLoader and requires some
classes in the sun.misc package. Since you should not use sun.misc code, a certificate-
aware version of TransformerClassLoader would be nontrivial.

5003_05.fm Page 165 Friday, November 9, 2001 2:12 PM

166 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

case transformClassBytes. The ClassNotter implementation inverts ev-
ery bit in the class byte array.

The test harness test.TestTransformingLoader creates a Trans-
formingLoader that uses the ClassNotter to transform bytes after they are
loaded from the file system and before they are handed off to the virtual ma-
chine. If you encrypted your classes as part of deployment, then anyone trying
to use a standard URLClassLoader would be unable to interpret the class and
would see a ClassFormatError (bad magic number).

Of course, this encryption is very simple, and would be defeated by any but
the most casual adversary.7 The point here is that the TransformingLoader
enables any transformation you can imagine. You focus on the transformation
process, and let the built-in capabilities of URLClassLoader take care of cor-
rectly setting your ProtectionDomain.

Listing 5–8 ClassNotter, a Very Simple ResourceTransformer

package com.develop.xload;

import java.io.IOException;

import java.net.URL;

import java.util.Enumeration;

public class NoOpResourceTransformer

 implements ResourceTransformer {

 public byte[] transformClassBytes(byte[] inout,

 int start,

 int length) {

 return inout;

 }

 public URL transformResourceURL(URL resource) {

 return resource;

 }

 public Enumeration transformResources(

 Enumeration resources) {

 return resources;

 }

}

7. In fact, even far more complex “unbreakable” encryption schemes are easily defeated unless you
have physical control over every box in which the decryption will occur. Otherwise, an adversary can
simply use debugging tools to grab the class bytes after they are decrypted without troubling to
attack the encryption head-on.

5003_05.fm Page 166 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 167

package test;
import com.develop.xload.NoOpResourceTransformer;

public class ClassNotter extends NoOpResourceTransformer {
 public byte[] transformClassBytes(byte[] inout,

 int start,
 int len) {

 int end = start+len;
 for (int n=start; n<end; n++) {
 inout[n] = (byte)~inout[n];
 }
 return inout;
 }
}

package test;
import com.develop.xload.*;
import java.io.*;
import java.net.*;

public class TestTransformingLoader {

 public static void main(String [] args) {
 try {
 if (args.length != 4) {
 System.out.println("usage: test.TestTransformingLoader " +
 " url1 url2 cls1 cls2");

 System.exit(-1);
 }
 URL u1 = new URL(args[0]);
 URL u2 = new URL(args[1]);
 URLClassLoader cl = new TransformingClassLoader(
 new URL[]{u1,u2}, new ClassNotter());
 System.out.println(cl);
 URL[] urls = cl.getURLs();
 Class cls1 = Class.forName(args[2], true, cl);
 System.out.println(cls1);
 Class cls2 = Class.forName(args[3], true, cl);
 System.out.println(cls2);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

5003_05.fm Page 167 Friday, November 9, 2001 2:12 PM

168 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

5.3 Protocol Handlers
In most cases, writing your own custom class loader is overkill, thanks to yet an-
other feature of the ubiquitous URLClassLoader—pluggable URL protocols
called protocol handlers. If you look at the code for the java.net.URL class,
you will see that it doesn’t actually do very much. URL includes code to parse a
URL string into its component parts: protocol, host, port, and file. Everything
else is delegated to helper classes called protocol handlers, or synonymously,
stream handlers. Protocol handlers can be used with any URL, so you can use
them for other purposes besides just class loading.

The Java 2 platform comes with several protocol handlers built in, including
handlers for the all-important http and file protocols. In addition to these, you
can install your own protocol handlers to do any sort of resource lookup that you
want. Integration with Java security is automatic. The policy file already under-
stands URL syntax, so you can combine your custom handler with a standard
URLClassLoader and policy file.

To demonstrate protocol handlers in action, I will rebuild the simple encryp-
tion scheme from the previous example, this time using a protocol handler. The
first step is to define the custom URL protocol stream to use. The syntax for us-
ing the sample protocol not is shown in Listing 5–9. Notice that the second ex-
ample syntax does not include the hostname. This follows the convention for
URL syntax, where the host name defaults to localhost, if it is omitted. This be-
havior is built into the URL class parsing logic, and it will be available for free to
the not stream handler.

Listing 5–9 The ‘not’ Custom Protocol

'not' URL syntax:

 not://host:port/file/

example xform for NOTting every byte:

 not://localhost/d/halloway/src/

 not:/halloway/src

5003_05.fm Page 168 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 169

5.3.1 Implementing a Handler
To create a protocol handler, you must create at least two classes: a
java.net.URLStreamHandler subclass that understands your protocol syn-
tax, and a java.net.URLConnection subclass that the handler can return to
clients. Annotated listings for these base classes appear in Listing 5–10.

Listing 5–10 URLStreamHandler and URLConnection

package java.net;

public abstract class URLStreamHandler {

 //always override this method:

 abstract protected URLConnection openConnection(URL u)

 throws IOException;

 //override these only if your URL syntax differs from

 //standard URLS:

 protected void parseURL(URL u, String spec,

 int start, int limit);

 protected String toExternalForm(URL u);

 //NOT SHOWN: several other methods you might override

}

package java.net;

//All listed methods can throw IOException

public abstract class URLConnection {

 //probably override these

 abstract public void connect();

 public InputStream getInputStream();

 public OutputStream getOutputStream();

 //remainder omitted for brevity

}

The URLStreamHandler class does two things. First, it parses the proto-
col string into a URL in the parseURL method. Then, it creates a connection for
that URL in the openConnection method. The URLStreamHandler class
should always be named Handler, and its full package name should be

{arbitrarypkgs.}protocolname.Handler

If your URL protocol has syntax similar to HTTP URLs, then the handler is trivial
to implement; all it needs to do is return your custom connection class. The han-
dler for the not protocol is shown in Listing 5–11.

5003_05.fm Page 169 Friday, November 9, 2001 2:12 PM

170 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 5–11 Handler for the not Protocol

package test.not;

import java.io.*;

import java.net.*;

public class Handler extends URLStreamHandler {

 protected URLConnection openConnection(URL u)

 throws IOException

 {

 return new NotConnection(u);

 }

}

The URLConnection subclass for a protocol handler provides connection se-
mantics. Because the design is inspired by HTTP, the notion of connection se-
mantics feels very much like HTTP. The URLConnection class is full of
methods that are relevant to setting and extracting common HTTP headers,
such as getContentType, getExpiration, setExpiration, and get-
Date. These methods will often be irrelevant in a custom connection.

The three key methods of URLConnection were shown previously in List-
ing 5–10. The connect method should actually begin a communication with the
resource. If the resource is across the network, this will typically involve opening
a socket, speaking the correct wire protocol, and verifying that somebody is lis-
tening. If the resource is local, then connect may do nothing. The getInput-
Stream and getOutputStream methods enable two-way communication with
the resource. If the resource is across the network, then these calls may return
the socket streams directly, or they may preprocess them in some way, such as
by reading and interpreting headers first. If the resource is local, then these
streams might be file streams or some custom stream class.

The NotConnection implementation is straightforward and is shown in
Listing 5–12. Because the not URL does not access a network resource, the
connect method does nothing. Also, communication is unidirectional; there is
no need to send anything to a not URL. All the information to locate a class is in
the URL itself, so there is no need to implement getOutputStream. The inter-
esting method is getInputStream, which opens a file stream and then wraps
it with a filter stream NotInputStream that inverts each byte.

5003_05.fm Page 170 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 171

Listing 5–12 The NotConnection Class

package test.not;

import java.io.*;

import java.net.*;

public class NotConnection extends URLConnection {

 private InputStream is;

 private Object lock = new Object();

 public NotConnection(URL u) {

 super(u);

 }

 public void connect() throws IOException {

 }

 public InputStream getInputStream() throws IOException {

 synchronized (lock) {

 if (is == null) {

 String file = getURL().getFile();

 FileInputStream fis = new FileInputStream(file);

 is = new NotInputStream(fis);

 }

 return is;

 }

 }

}

5.3.2 Installing a Custom Handler
Once you have created a handler and supporting classes, the trick is to get the
runtime to recognize them. By default, the Java SDK uses only handlers that
have a package prefix sun.net.www.protocol, a package suffix name
matching the protocol, and the name Handler. For example, when you use an
http URL, the runtime uses reflection to load the class

sun.net.www.protocol.http.Handler

and create an instance. Then the runtime casts the instance to type URL-
StreamHandler and uses it to parse and connect to the URL.

The Java license forbids creating your own classes in the sun.*

namespace, so do not bother trying to install your handlers this way. Instead,
there are two hooks you can use to install your own custom handler. The URL
class has a setURLStreamHandler factory that allows you to install your own

5003_05.fm Page 171 Friday, November 9, 2001 2:12 PM

172 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

mapping from protocols to handlers. It takes as its argument an instance of URL-
StreamHandlerFactory, an interface whose one method takes a protocol
name and returns a handler.

The URLStreamHandlerFactory code is shown in Listing 5–13. You can
install a stream handler factory once per VM, and the factory will be used prior
and in addition to consulting the standard handlers.8 In Listing 5–14, the Not-
URLReader class installs a factory that understands the not protocol, and then
it outputs a hex dump of the data found at a URL passed on the command line.

Listing 5–13 URLStreamHandlerFactory

//from java.net.URLStreamHandlerFactory

public interface URLStreamHandlerFactory {

 public URLStreamHandler createURLStreamHandler(

 String prot);

}

//from java.net.URL

public static void

setURLStreamHandlerFactory(URLStreamHandlerFactory fac);

Listing 5–14 The NotURLReader Class

package test;

import com.develop.util.*;

import java.io.*;

import java.net.*;

public class NotURLReader implements URLStreamHandlerFactory

{

 public URLStreamHandler createURLStreamHandler(String prot)

 {

 if (prot.equals("not")) {

 return new com.develop.handlers.not.Handler();

 }

 return null;

 }

8. Because your custom handler is consulted first, you could replace the standard handlers for
http et al. if you wanted to.

5003_05.fm Page 172 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 173

 public static void main(String [] args) throws Exception {

 if (args.length != 1) {

 System.out.println("usage: test.NotURLReader url");

 System.exit(-1);

 }

 URL.setURLStreamHandlerFactory (new NotURLReader());

 URL u = new URL(args[0]);

 InputStream is = u.openStream();

 byte[] buf = new byte[4096];

 int length = 0;

 while (0 < (length = is.read(buf))) {

 System.out.println(HexFormatter.convertBytesToString(

 buf, 0, length, 16, true));

 }

 }

}

Though it is possible to install new handlers from within Java code as shown
above, it is typically more convenient to give control of handlers over to an ad-
ministrator. To this end, you can set a property that specifies where to look for
custom handlers. The java.protocol.handler.pkgs property contains a
list of “|”- delimited package prefixes. The URL class attempts to create handlers
based on custom package prefixes after checking the installed URLStream-
HandlerFactory but before checking the standard sun.net.www.proto-
col handlers.

Given a command line as shown in Listing 5–15’s Example 1, the URL class
would try the following steps until one succeeded:

1. If a URLStreamHandlerFactory is installed, see if it supports not.

2. Try to use an instance of foo.not.Handler.

3. Try to use an instance of bar.not.Handler.

4. Try to use an instance of sun.net.www.protocol.not.Handler.

5. Report a MalformedURLException: unknown protocol: not.

Listing 5–15, Example 2, shows the correct command line to locate the not
handler from Listing 5–11.

5003_05.fm Page 173 Friday, November 9, 2001 2:12 PM

174 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 5–15 Specifying URLStreamHandlers on the Command Line

Example 1.

java –Djava.protocol.handler.pkgs=foo|bar MainClass

Example 2.

java –Djava.protocol.handler.pkgs=test.not

MainClass

5.3.3 Choosing between Loaders and Handlers
At first glance, writing your own protocol handler may appear to be a lot more
work than just writing your own custom class loader. After all, you have to write
at least two classes, and probably more. The simple not handler required the
Handler, NotConnection, and NotInputStream classes. However, these
classes are mostly boilerplate code, and they factor the process of locating a re-
source process into the following distinct pieces:

1. Protocol handlers parse URLs and return connections.

2. Connections manage communication and return streams.

3. Streams read and write data and possibly apply transformations.

Moreover, stream handlers can be used to connect to any resource, whereas
custom class loaders can be used only to load classes and other co-located re-
sources. Finally, stream handlers leverage the security features already built into
the URLClassLoader. And, because they can be installed on the command
line, you can make the presence of stream handlers completely transparent to
the rest of your code.

The only downside of stream handlers comes when you try to handle a URL
whose string format is radically different from http syntax. For example, con-
sider the hypothetical URLs shown in Listing 5–16. These URLs do not map to
the standard

protocol://host:port/file

format, and to implement them, you would have to hack around the fact that the
URL class pretty much assumes this format. Your stream handler would be
much more complex, implementing at least the parseURL method and possibly
several others. Except in cases like these where the semantics of your class

5003_05.fm Page 174 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 175

loader are very difficult to express as a URL, you should prefer stream handlers
to custom class loaders.

Listing 5–16 Some Hypothetical Custom URLs

For connecting to a database:

 db://hostname:port/user=stu;pwd=hmph;table=ORDERS

A URL that applies a transform to data from a wrapped URL:

 xform://xformtype/xformargs/http://localhost/file

 xform://xformtype/xformargs/http://localhost/file

5.4 Getting Past Security to the Loader You Need
In the situations discussed so far, only two levels of trust are involved in class
loading. Trusted code launches the process and chooses security settings, and
then it instantiates class loaders to load less trusted code. Less trusted code
may have a greater or lesser degree of permissions, but it will almost never
have permission to create a ClassLoader instance. If it did, it might lie about
the ProtectionDomain of classes that it loaded, thereby subverting the secu-
rity model.

To give your less-trusted code the ability to use class loaders, authors of
trusted code (such as J2EE containers) need to provide a callback mechanism
whereby you can request a specific class loader. The trusted code can then cre-
ate a class loader that meets your specifications for how class bytes are lo-
cated. Note that this does not compromise security in the slightest. The security
is not in locating the class, but in assigning its ProtectionDomain. The
trusted code keeps this prerogative for itself.

As an example of where this might be useful, consider a servlet container
run by an application hosting company. The container is the process owner. It is
highly trusted and will activate Java security to protect itself (and other custom-
ers) from damage that your code might cause. Your code is less trusted than
the container code, but you still might want to customize class loading. For ex-
ample, you might write a custom class loader that checks for new versions of
classes on your development server and then makes them available to the serv-
let container based on some criteria you define. You cannot simply create a
class loader in your code because the application hosting company will not give
you the necessary security permission.

5003_05.fm Page 175 Friday, November 9, 2001 2:12 PM

176 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

You can see the problem by simply turning on Java security for any program
that creates a class loader. If you try this, the program will fail as soon as it at-
tempts to instantiate the ClassLoader, as shown in Listing 5–17. Fortunately,
the URLClassLoader class includes code specifically designed to address this
problem. You should rarely instantiate a URLClassLoader directly. Instead, use
one of the static factory methods named newInstance.

Listing 5–17 Instantiating a Class Loader in a Secure Process

java -Djava.security.manager UseAClassLoader

 java.security.AccessControlException: access denied

 (java.lang.RuntimePermission createClassLoader)

 ...

 at java.lang.ClassLoader.<init>(ClassLoader.java:234)

 ...

The code for newInstance is shown in Listing 5–18. Without delving too
deeply into the security model, you can see the basic idea. The field acc saves
away the protection domains that are current when the call begins. The code in-
side the PrivilegedAction runs with the permissions of the URLClass-
Loader class, ignoring possibly untrusted classes higher on the call stack.
This makes it possible to create the class loader, and it is secure because the
privileged action has been carefully coded not to do anything that would com-
promise security.

Listing 5–18 Swapping Access Control Contexts

package java.net;

public class URLClassLoader extends SecureClassLoader {

public static URLClassLoader

newInstance(final URL[] urls, final ClassLoader parent)

{

 // Save the caller's context

 AccessControlContext acc = AccessController.getContext();

 // Need a privileged block to create the class loader

 URLClassLoader ucl = (URLClassLoader)

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 return new FactoryURLClassLoader(urls, parent);

5003_05.fm Page 176 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 177

 }

 });

 // Now set the context on the loader using the one we saved,

 // not the one inside the privileged block...

 ucl.acc = acc;

 return ucl;

}

//remainder omitted for brevity

}

Remember that using a class loader does not open a security hole, but in-
stantiating one does. Once the class loader has been created, it is assigned the
set of protection domains acc that were on the stack when newInstance was
called. When you later attempt to use this class loader, it will have to pass es-
sentially two separate security checks: the one implied by acc, plus whatever
classes are on the call stack at the time of the call.

The important point here is that you should use the newInstance method
to create URLClassLoaders; otherwise, you are likely to get an AccessCon-
trolException when somebody attempts to execute your code in a secured
environment. If you write your own custom class loader, you will need to add a
factory method similar to newInstance if you want untrusted code to be able
to create an instance of your loader.

5.5 Reading Custom Metadata
The Java binary class format provides a standard set of extensions for adding
custom data to binary classes. However, to take advantage of any custom class
data at runtime, you must write a custom class loader that is aware of your ex-
tensions to the class format. In this section, you will see a custom extension to
the class format that includes extra version information, and you will see a cus-
tom class loader that uses this information to locate the correct versions of
classes that it will load.

Before you jump into the example or apply this technique in your own code,
you need to be very careful that your additions to the class do not violate the
Java license agreement. You cannot create modified classes that require a spe-
cial class loader or virtual machine because this would violate Java’s “Prime

5003_05.fm Page 177 Friday, November 9, 2001 2:12 PM

178 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Directive”—code must be able to run on any compliant Java platform. The rele-
vant section of [LY99] begins:

Compilers are permitted to define and emit class files containing new
attributes in the attributes tables of class file structures. Java virtual
machine implementations are permitted to recognize and use new
attributes found in the attributes tables of class file structures. How-
ever, any attribute not defined as part of this Java virtual machine spec-
ification must not affect the semantics of class or interface types. Java
virtual machine implementations are required to silently ignore
attributes they do not recognize.

Any semantics that your custom metadata enables must be optional semantics,
that is, your classes could function just fine without them. The versioning infor-
mation I am going to introduce here is a good example of this. If a virtual ma-
chine does not recognize the custom version information in the binary class, it
will still be able to load and execute the class.

5.5.1 Example: Version Attributes
The versioning problem is a fundamental one. Java’s class loading architecture
does not attempt to verify the version of a class being loaded. If class A refer-
ences class B, then A’s class loader delegation will attempt to find a definition
for B. Standard class loaders such as URLClassLoader will load the first
matching definition of B. This will cause deployment headaches if different com-
ponents rely on different versions of B.

JAR sealing (§3.6.3) can help some. If you deploy all of your classes in
sealed JAR files, and you are careful with your build process, you can guarantee
that all the classes in a package are from the same build. However, this does not
help with cross-package dependencies. When JAR files are sealed, the runtime
can identify potential version problems by throwing an exception, but it cannot
automatically locate the correct version.

Package reflection (§3.6) also helps some, but not enough. After a class B is
loaded, you may be able to use package reflection to discover the version of B
you have found. Unfortunately, this information arrives too late to be of use. If B

5003_05.fm Page 178 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 179

turns out to be the wrong version, that’s too bad. You have already loaded it, and
you cannot now unload it short of creating a new class loader and starting over
entirely. As with JAR sealing, package reflection simply identifies the problem,
and leaves you to solve it.

Here are design goals for a simple version authority that can automatically
locate the correct versions of Java classes:

1. The version authority tracks version information for a loaded class. This
includes the version of the class and the versions of any other classes that
the class depends on.

2. Before a class is loaded, the version authority checks the candidate class’s
version against the requirements of all the classes already loaded by this
loader. If the version does not match, the candidate is rejected and the
class loader can continue to search for additional matches.

3. The binary format of the version information and the definition of a version
“match” can be customized.

4. The presence of version information is transparent at runtime. Code that
uses version information does not look any different from code that does
not.

Java’s custom metadata is suitable for implementing such a design. The version
information is stored in a custom class attribute, which can be accessed via
command-line tools during development. At runtime, a special class loader
reads and caches the version information and then uses it to rule out classes
that do not match.

5.5.2 Serializable Classes as Attributes
The version information needs to take two different forms. The binary class for-
mat stores version information as a byte array, but other Java code accesses
the version information as a Java object. The obvious approach to writing a
Java object that can be converted to and from a byte array is to simply use a
Serializable object. The SerializableAttribute class shown in List-
ing 5–19 represents a class attribute that is also a Java object.

5003_05.fm Page 179 Friday, November 9, 2001 2:12 PM

180 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 5–19 The SerializableAttribute Class

package com.develop.classfile;

import com.develop.util.*;

import java.io.*;

public class SerializableAttribute extends Attribute

{

 private final Object info;

 private final byte [] packet;

 public SerializableAttribute(Object info)

 throws IOException {

 super("ser." + info.getClass().getName());

 this.info = info;

 packet = writePacket();

 }

 private SerializableAttribute(String name, short index,

 Object info, byte[] packet) {

 super(name, index);

 this.info = info;

 this.packet = packet;

 }

 public static Attribute read(String name, ClassFile cf,

 short name_index, int length)

 throws IOException

 {

 DataInputStream dis = cf.getStream();

 byte[] packet = new byte[length];

 dis.readFully(packet);

 ObjectInputStream ois = new ObjectInputStream(new

 ByteArrayInputStream(packet));

 Object info = null;

 try {

 info = ois.readObject();

 }

 catch (ClassNotFoundException cnfe) {

 return new CustomAttribute(name, packet);

 }

 return new SerializableAttribute(name, name_index,

 info, packet);

 }

5003_05.fm Page 180 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 181

 private byte[] writePacket() throws IOException {

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 ObjectOutputStream oos = new ObjectOutputStream(baos);

 oos.writeObject(info);

 return baos.toByteArray();

 }

 public Object getObject() {

 return info;

 }

 public int getLength() {

 return packet.length;

 }

 public void writeToStream(DataOutputStream ds)

 throws IOException {

 super.writeToStream(ds);

 ds.write(packet);

 }

 public String toString() {

 return "Attribute " + getName() + "\n" + info;

 }

}

The SerializableAttribute class simply holds two different representa-
tions of the same information: info holds a Java object, and packet holds the
serialized form of that same object.

SerializableAttribute, and the rest of the code in this section, comes
from the Java Class File Editor, an open source project developed by the author
(see [JCFE] for details). Classes that are not listed in full here, such as Serial-
izableAttribute’s base class Attribute, are JCFE classes that deal ge-
nerically with the binary class format, and they are not specific to the current
discussion.

The SerializableAttribute class, though originally written for this ex-
ample, is entirely generic and can store any Serializable Java object as a
custom class attribute. To construct a SerializableAttribute that stores
version information, you will pass in an instance of VersionInfo, shown in
Listing 5–20. The version field contains the version of a particular class, in
whatever format you find meaningful. The requiredVersions field records
the versions of other packages that this class depends on. The keys are pack-
age names, and the values are version objects in some format that you choose.

5003_05.fm Page 181 Friday, November 9, 2001 2:12 PM

182 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 5–20 The VersionInfo Class

package com.develop.version;

import java.io.*;

import java.util.*;

public class VersionInfo implements Serializable {

 private final Object version;

 private final Map requiredVersions;

 public VersionInfo(Object version, HashMap requiredVersions)

 {

 this.version = version;

 this.requiredVersions = requiredVersions;

 }

 public VersionInfo(Object version, String pkgRequired,

 Object versionRequired) {

 this.version = version;

 requiredVersions = new HashMap();

 requiredVersions.put(pkgRequired, versionRequired);

 }

 public Object getVersion() {

 return version;

 }

 public Map getRequiredVersions() {

 return Collections.unmodifiableMap(requiredVersions);

 }

 public String toString() {

 StringBuffer result = new

 StringBuffer("VersionInfo: ").append(version);

 Set s = requiredVersions.entrySet();

 for (Iterator it = s.iterator(); it.hasNext();) {

 Map.Entry e = (Map.Entry) it.next();

 result.append("\t").append(e.getKey())

 .append(": ").append(e.getValue());

 }

 return result.toString();

 }

}

5003_05.fm Page 182 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 183

5.5.3 Reading Attributes during Class Loading
To take advantage of this version information at runtime, you need a class
loader that reads the version attribute before loading a class and then com-
pares that version with the requiredVersions of all previously loaded
classes. Figure 5–2 demonstrates the idea. A VersioningLoader searches
multiple code sources, and it rejects class versions that do not match the ver-
sion required by the client.

Listing 5–21 shows the VersioningLoader class. The meat of the class
is the findClass method. Rather than loading a class from a single URL that
matches the desired class name, the VersioningLoader uses URLClass-
Loader’s findResources method to return an enumeration of all potential
matches, possibly one for each URL searched by the loader. Then, the loader

Figure 5–2 Applying a versioning policy

Loads

CLIENT

ClientSession
(needs

Account 1.1.4,
Customer 3.0)

VersioningLoader
(SERVER1,
SERVER2)

SERVER1

Account
(Version 1.1.4)

Customer
(Version 2.5)

SERVER2

Customer
(Version 3.0)

Account
(Version 1.1.3)

Loader skips
Customer,

version does
not match

5003_05.fm Page 183 Friday, November 9, 2001 2:12 PM

184 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

compares each of these classes with the version requirements of previously
loaded classes.

Listing 5–21 The VersioningLoader Class

package com.develop.version;

import com.develop.classfile.*;

import java.io.*;

import java.net.*;

import java.security.CodeSource;

import java.util.*;

public class VersioningLoader extends URLClassLoader {

 private static boolean auditHit;

 private static boolean auditMiss;

 private static boolean auditFail;

 static {

 String audit =

 System.getProperty("com.develop.version.audit");

 if (audit != null) {

 if (-1 != audit.indexOf("hit")) auditHit = true;

 if (-1 != audit.indexOf("miss")) auditMiss = true;

 if (-1 != audit.indexOf("fail")) auditFail = true;

 }

 }

 private final VersionMatcher vm;

 private static class RequiredVersions {

 HashMap pkgToVersion = new HashMap();

 public List getPackageRequirements(String pkgName,

 boolean create) {

 List l = (List) pkgToVersion.get(pkgName);

 if (l == null && create == true) {

 l = new ArrayList();

 pkgToVersion.put(pkgName, l);

 }

 return l;

 }

 }

 RequiredVersions rv = new RequiredVersions();

 public VersioningLoader(URL[] urls, VersionMatcher vm)

 {

 super(urls);

 this.vm = vm;

5003_05.fm Page 184 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 185

 }

 public VersioningLoader(URL[] urls, ClassLoader parent,

 VersionMatcher vm) {

 super(urls, parent);

 this.vm = vm;

 }

 public VersioningLoader(URL[] urls, ClassLoader parent,

 URLStreamHandlerFactory fact, VersionMatcher vm)

 {

 super(urls, parent, fact);

 this.vm = vm;

 }

 private URL getURLBase(URL url) {

 URL[] urls = getURLs();

 int length = urls.length;

 String stringForm = url.toExternalForm();

 for (int n=0; n<length; n++) {

 if (stringForm.startsWith(urls[n].toExternalForm())) {

 return urls[n];

 }

 }

 return null;

 }

 private byte[] getClassBytes(URL url) throws IOException {

 InputStream is = url.openStream();

 if (is == null)

 return null;

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 for (int ch=0; -1 != (ch=is.read());)

 baos.write(ch);

 return baos.toByteArray();

 }

 private Class defineClass(String name, URL url,

 byte[] bytes) {

 URL urlBase = getURLBase(url);

 if (urlBase == null) {

 throw new Error("url has no base");

 }

 return defineClass(name, bytes, 0, bytes.length,

 new CodeSource(urlBase, null));

 }

 private static VersionInfo getVersionInfo(ClassFile cf) {

 SerializableAttribute sa = (SerializableAttribute)cf

5003_05.fm Page 185 Friday, November 9, 2001 2:12 PM

186 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

getAttribute("ser.com.develop.version.VersionInfo");

 if (sa == null) return null;

 return (VersionInfo)sa.getObject();

 }

 private boolean versionMatches(String name, VersionInfo vi)

 {

 int lastDot = name.lastIndexOf('.');

 String pkgName = (lastDot == -1) ? "" :

 name.substring(0,lastDot);

 List l = rv.getPackageRequirements(pkgName, false);

 Object version = vi.getVersion();

 if (l == null) return true;

 for (Iterator it = l.iterator(); it.hasNext();) {

 if (!vm.verify(it.next(), version)) {

 return false;

 }

 }

 return true;

 }

 private void updateVersionInfo(VersionInfo newInfo) {

 if (newInfo == null) return;

 Set newEntries = newInfo.getRequiredVersions()

.entrySet();

 for (Iterator it = newEntries.iterator(); it.hasNext();)

 {

 Map.Entry entry= (Map.Entry) it.next();

 List l=rv.getPackageRequirements(

(String)entry.getKey(),

true);

 l.add(entry.getValue());

 }

 }

 protected Class findClass(final String name)

 throws ClassNotFoundException

 {

 String className = name.replace('.', '/') + ".class";

 try {

 for (Enumeration e = findResources(className);

 e.hasMoreElements() ;) {

 URL url = (URL) e.nextElement();

 byte[] bytes = getClassBytes(url);

 ClassFile cf = new ClassFile(bytes);

 VersionInfo vi = getVersionInfo(cf);

 if (versionMatches(name, vi)) {

5003_05.fm Page 186 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 187

 //must update version info before resolving class

 updateVersionInfo(vi);

 Class cls = defineClass(name, url, bytes);

 if (auditHit) {

 String vers = (vi == null) ? "" :

 vi.getVersion().toString();

 System.out.println("VL: Loading " + name + " "

 + vers + " from " + url);

 }

 return cls;

 }

 if (auditMiss) {

 System.out.println("VL: Missed match " + name

 + " at URL " + url);

 }

 }

 }

 catch (IOException ioe) {}

 if (auditFail) {

 System.out.println("VL: could not load " + name);

 }

 return null;

 }

}

For each candidate class, the loader uses the helper method getVersion-
Info to extract the class’s custom version attribute. Next, the version-
Matches method compares the candidate’s version information with the
requirements of previously loaded classes. The RequiredVersions nested
class manages the cache of requirements. Note that there can be more than
one requirement and that the candidate class must match all requirements. If the
candidate is satisfactory, then its requirements are added to the cache via a call
to updateVersionInfo. Finally, the class is loaded into the VM by define-
Class. The ordering of these last two steps is very important. The version infor-
mation must be cached before the new class is loaded because loading the
class will probably trigger requests for other classes.

The VersioningLoader supports a flexible notion of “matching” ver-
sions. The actual work of matching version metadata is performed by an imple-
mentation of the VersionMatcher interface. The interface, plus a trivial

5003_05.fm Page 187 Friday, November 9, 2001 2:12 PM

188 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

implementation that requires an exact match, is shown in Listing 5–22. You can
write your own VersionMatcher implementations for other common version-
ing strategies. For example, you can store a standard dotted version number
and always insist upon the highest-numbered version, or you can require a spe-
cific major version but accept any minor version. The JCFE functions for adding
version attributes to a binary class could easily be integrated into a build pro-
cess, which would make the use of version metadata transparent to application
developers.

Listing 5–22 The VersionMatcher Interface

package com.develop.version;

public interface VersionMatcher {

 public boolean verify(Object requiredVersion,

 Object matchVersion);

}

package com.develop.version;

public class ExactMatcher implements VersionMatcher {

 public boolean verify(Object requiredVersion,

 Object matchVersion) {

 return requiredVersion.equals(matchVersion);

 }}

5.5.4 Debugging Support
One final aspect of the VersioningLoader deserves mention. During its static
initializer, the loader inspects the system property com.develop.ver-

sion.audit looking for the strings hit, miss, and/or fail. If the property in-
cludes any of these strings, debugging output is sent to System.out. The hit
output logs classes that are loaded, and the miss output logs classes that are
skipped because their version data does not match. The fail output logs a
complete failure to load a class, which means that either no classes were found,
or that none of them were of the correct version. This debugging information is
very helpful to application developers because the only time they are likely to en-
counter this infrastructure code is when something goes wrong. The idiom of us-
ing a system property to turn on various logging options is borrowed from other
infrastructure projects in the Java platform itself, including both security and RMI.

5003_05.fm Page 188 Friday, November 9, 2001 2:12 PM

CUSTOMIZING CLASS LOADING 189

Listing 5–23 shows audit output from the VersioningLoader. In this ex-
ample, the loader is searching five URLs. First, the loader finds the Caller
class with version information “Version1” at loc1. Then, the loader begins to
seek for a matching version of a class named Callee. Each of the five URLs
has a Callee class, but only the final URL at loc5 has the correct version. So,
the loader considers and rejects the other Callee binaries, finally accepting the
correct one at loc5.

Listing 5–23 Audit Output from VersioningLoader

VL: Loading test.version.Caller Version0 from

file:/E:/jcfe/testout/loc0/test/version/Caller.class

VL: Missed match test.version.Callee at URL

file:/E:/jcfe/testout/loc0/test/version/Callee.class

VL: Missed match test.version.Callee at URL

file:/E:/jcfe/testout/loc1/test/version/Callee.class

VL: Missed match test.version.Callee at URL

file:/E:/jcfe/testout/loc2/test/version/Callee.class

VL: Missed match test.version.Callee at URL

file:/E:/jcfe/testout/loc3/test/version/Callee.class

VL: Loading test.version.Callee Version0 from

file:/E:/jcfe/testout/loc4/test/version/Callee.class

While the VersioningLoader is valuable in itself, it is intended to be illus-
trative rather than definitive. There are many other ways to approach versioning
on the Java platform. You might want to use JAR metadata in addition to or in-
stead of class metadata. You would almost certainly want to consider versioning
relationships across multiple class loaders. The important point of this example
is that custom class metadata provides a way to extend the platform itself.
Rather than working around problems in the Java platform, you may be able to
augment the Java platform to fit the way you work.

5.6 Onward
Custom class loaders allow you to define your own strategy for locating code
and resources. You can make your own rules, as long as you can take a Java
class name and turn it into a byte array in the binary class format. With custom
class loaders you might load classes from an object database, from source con-
trol, or over a custom network protocol.

5003_05.fm Page 189 Friday, November 9, 2001 2:12 PM

190 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Protocol handlers split the responsibility of class loading into two distinct
tasks. A URLClassLoader instance performs security work, assigning the
CodeSource that will be used to associate the class with its runtime permis-
sions. A protocol handler defines a URL protocol for locating resources that you
can plug in anywhere the Java platform uses URLs. For many custom class load-
ing tasks, you could use either a custom loader or a protocol handler, but proto-
col handlers have the advantage of being used to locate other resources
besides classes.

Custom class loaders have advantages as well. A custom loader can pro-
cess custom attributes added to a binary class. You can use custom attributes
to extend the behavior of the Java classes in arbitrary ways, which are not di-
rectly correlated to the Java language itself. The VersioningLoader of this
chapter is a powerful example; it shows that you can add valuable customiza-
tions to the process of Java class loading without changing the appearance of
the platform to application developers.

5.7 Resources
There are several resources that cover different aspects of custom class load-
ing. For a thorough treatment of the Java 2 security model, see [Gon99]. If you
are writing custom class loaders, [New00] has some interesting examples. If
you are writing a custom protocol handler, look at [Mas01], which describes a
protocol handler for the Win32 registry.

If you are interested in custom attributes, and the loaders that read them,
download the source code at [JCFE], which is a generic architecture for extend-
ing class loading and reflection to handle custom attributes.

5003_05.fm Page 190 Friday, November 9, 2001 2:12 PM

