

243

Chapter 7

Generative Programming

Generative programming (GP) is code reuse via the automation of code develop-
ment. Instead of writing Java code directly, you describe a problem in a specifi-
cation language tailored to the problem space, and then you employ a tool to
generate the necessary Java source code or bytecode. Java is widely hailed as
a language suitable for object-oriented development, but it is equally suited for
GP. In fact, object-oriented programming and GP are complementary, and many
of the most exciting technologies in the Java world today combine the two. This
chapter has four purposes:

1. Present the motivations for using GP.

2. Develop a taxonomy of the binding times and modes that are possible in
Java and the tools that each employs.

3. Demonstrate how GP is already in wide use in the Java world, especially
J2EE.

4. Present examples of GP that will jump-start your thinking on how to use GP
in your own projects.

7.1 Why Generate Code?

The reason to generate code is simple: to efficiently capture and reuse knowl-
edge of a problem domain. [Cle01] provides several useful terms to describe

do-
main analysis,

the design process that often leads to a GP implementation.
Domain analysis identifies the

commonalities

 and

variabilities

 of a family of re-
lated software systems. Commonalities are standard features that are coded
into the system and shared by all permutations of the system. Variabilities are

5003_07.fm Page 243 Tuesday, November 6, 2001 10:33 AM

244

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

features that can differ in various products, or in different invocations of the
same product. At some point in the lifecycle of a system, you must make a
choice, or

specification,

 for each variability. The point in time that a choice is
made is the

binding time

.
For example, consider the simple online bidding system depicted in Figure

7–1. The commonalities shown in the figure are the relationships between auc-
tioneers, bidders, sellers, and items to be sold. You can imagine some of the
variabilities: legal bid increments, number of bidding rounds, and the types of in-
formation available about each item. Choices can be binary (Does the item have
a picture?), numeric (How many bidding rounds will there be?) or something
much more complex. The binding time for each choice depends on the imple-
mentation, as you will see.

7.1.1 Object-Oriented Approaches to Modeling Variabilities

In a traditional object-oriented design, variabilities are modeled with a combina-
tion of inheritance and parameterization. The code in Listing 7–1 shows frag-
ments of two different approaches to implementing an

Auctioneer

 interface,
which is responsible for enforcing the number of bidding rounds and the legal
bid increments. The

ThreeRoundFiveDollar

 implementation uses inheritance

Figure 7–1 A simple online bidding system

Auctioneer

-sellers : Seller
-bidders : Bidder

Seller

-forsale : Item

Item

Bidder

-purchases : Item

1

1

1

1*

*

*

*

5003_07.fm Page 244 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING

245

to model each choice. With this approach, each combination of the number of
rounds and the minimum bid increment would result in a distinct concrete imple-
mentation.

The second example,

AuctioneerImpl

, models all possible

Auctioneer

s
with a single implementation class. The specification of rounds and minimum bid
increment are made explicitly at runtime by passing in parameters.

Listing 7–1 Modeling Auctioneer with Inheritance and Parameterization

//using inheritance to model every variability

public class ThreeRoundFiveDollar implements Auctioneer {

 public void runAuction(Item i) {

 for (int n=0; n<3; n++) {

 runBidRound(i, 5);

 }

 }

 //etc.

}

//using parameters to model every variability

public class AuctioneerImpl extends Auctioneer {

 public AuctioneerImpl(int rounds, int minIncrement) {

 this.rounds = rounds;

 this.minIncrement = minIncrement;

 }

 public void runAuction(Item i) {

 for (int n=0; n<rounds; n++) {

 runBidRound(i, bid);

 }

 }

 //etc.

}

In this example, the

AuctioneerImpl

 is obviously the better design; be-
cause the choices are across a range of values, the first approach might require
an unlimited number of subclasses. Since the choices do not imply different
logic or storage requirements, the

AuctioneerImpl

 class can trivially encode
the choices as parameter values.

One can just as easily concoct a scenario that favors inheritance over pa-
rameterization. Imagine that the

Item

s being sold can have text information, a

5003_07.fm Page 245 Tuesday, November 6, 2001 10:33 AM

246

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

picture, or a movie. This situation favors inheritance, as Listing 7–2 demon-
strates. Each choice in Listing 7–2 is binary—either the media is present or it is
not. The number of possible classes in an inheritance-based solution is therefore
bounded. Because each choice implies different storage and logic, the parame-
terized implementation is inefficient. The

ItemImpl

 must keep fields for each
possible data type, and it must execute branching logic each time through its
display method. Real problems and real designs tend to fall between the two ex-
tremes and employ parameterization and inheritance in tandem.

Listing 7–2 Modeling Items with Inheritance and Parameterization

//using inheritance to model every variability

public class ItemWithText implements Item {

 Text t;

 public void display() {

 t.print();

 }

}

//using parameterization to model every variability

public class ItemImpl implements Item {

 Text t;

 Image i;

 Movie m;

 public void display() {

 if (t) t.print();

 else if (i) i.draw();

 else if (m) m.play();

 }

}

7.1.2 Thinking in Terms of Bind Time

Now consider the bind times implied by each approach. With the inheritance-
based solution, each different specification is instantiated as a different concrete
class. Therefore, the specification is bound during development, which is often
called compile-time binding.

This has important consequences. The

developer

 must choose the specifica-
tion since the choice is made during development. Of course, the developer

5003_07.fm Page 246 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING

247

could be acting on detailed instructions from an end user, but the important
point is that the end user cannot change the specification later, after the devel-
oper is gone.

For the parameterized solution, the specification is bound at runtime by
passing in parameters. This implies that an end user can choose the specifica-
tion at runtime if the program yields control of the parameters. In general, later
binding gives more flexibility to the user, but earlier binding may offer better per-
formance. The compiler can optimize code based on your specifications only if
the specifications are available before the compiler runs.

The Java development world has four obvious bind times.

1. Compile-time binding happens when the compiler runs.

2. Design-time binding happens when a designer configures the initial state of
an already compiled component. JavaBeans are designed specifically with
design-time binding in mind; designers often use a visual tool to examine
and modify bean properties.

3. Deployment-time binding occurs when components are installed onto the
network where they will be used. Deployment-time binding is distinct
because even though the developer may no longer be present, a system
administrator will be.

4. Runtime binding occurs after an application starts to execute.

To the generative programmer, bind time is a very important issue that
needs to be treated separately from the actual specification that is bound.

7.1.3 Separating Specification from Bind Time

The online bidding examples discussed earlier suffer from a basic flaw. The pure
Java approach hopelessly tangles the binding time with the specification chosen.
A single object design cannot elegantly handle both issues simultaneously, as
the examples demonstrate. Changing the specification requires only small edits,
but switching from inheritance to parameterization requires a wholesale rewrite
of the code.

To take a generative approach to the auction simulation, you need to sepa-
rate these two concerns into distinct artifacts: a specification document that enu-
merates the choices for each variability, and a set of

generators

 that process the

5003_07.fm Page 247 Tuesday, November 6, 2001 10:33 AM

248

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

specification document and produce the application code. An example specifica-
tion document for the auction simulation is shown in Listing 7–3. This specifica-
tion describes an entire bidding system, and it will be processed by one or more
generators, as shown in Figure 7–2. The generators manufacture the program
that will actually run the simulation. The specification document encodes the
choices, and the generators select the binding times.

Listing 7–3 Specification Document for the Auction Simulation

auction.rounds=3

auction.minIncrement=5

item.1=text

item.2=movie

The separation of specification data into a separate layer lets you experi-
ment with different binding strategies. From the same specification, you could
generate any number of different implementations, including the examples
above. You could have separate generators that prioritized readability of the

Figure 7–2 Generating an auction from a specification

Pure Java approach

Generative approach

Written by developer

Generated

ItemWithText.java

AuctioneerImpl.java AuctioneerImpl.class

ItemWithText.class

ItemWithText.java

AuctioneerImpl.java AuctioneerImpl.class

ItemWithText.class

Auction Generator
for parameterized
implementations

Auction Generator
for inheritance

implementations

JAVAC

JAVAC

JAVAC

Auction
Spec

5003_07.fm Page 248 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING

249

generated code, fast performance, small code size, or any other measure that
you value. If your bind-time priorities change, the critical domain knowledge of
your specification is not lost. You simply reuse it with a new generator.

Object designs have other issues besides binding time that tend to

cross-cut

object hierarchies. A cross-cutting issue does not fit neatly into a single class.
Synchronization, transactions, security, and auditing are notorious cross-cutters.
Dealing with them tends to litter small amounts of code across many of the
classes in your design. With a separate specification, you can hoist these con-
cerns out of your code into a single place, and then you can generate the code
that interleaves them.

7.1.4 Choosing a Specification Language

The generative approach has a number of other desirable properties as well.
While the configuration document in Listing 7–3 is in the format of a Java proper-
ties file, you can choose the format most convenient to your problem domain
(just remember that your generators will have to read this format). You do not
have to use the same language for the generators and for the generated code,
so everything you have seen so far applies equally well to any programming lan-
guage. Nor are generators limited to creating application code. You could also
generate documentation, test scripts, and deployment instructions. Generating
all these project artifacts from a shared configuration document makes it much
easier to keep various elements of your project in sync.

7.1.5 Reuse Requires More Than One Use

The primary disadvantage to a generative approach, as with other reuse ap-
proaches, is that you must build more than one system for the initial effort to
pay off. If you only plan to build one application within a problem domain, then
analyzing commonalities and variabilities will be valuable, but the effort to de-
velop a suite of generators will not. Fortunately, many development projects do
belong to a large family of similar tasks. The online auction in Figure 7–1 is a
good example, as is an online shopping cart, and several other kinds of online
transactions.

5003_07.fm Page 249 Tuesday, November 6, 2001 10:33 AM

250

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

7.1.6 A Little Domain Analysis Is a Dangerous Thing

This has been a lightning introduction to generative programming. In the interest
of space, I have been economical with the truth. Domain analysis can be far
more intricate than it is when you use it to simply identify variabilities, and it of-
ten leads to implementation strategies other than GP. If you want to know more,
[Cle01] provides a gentle introduction to GP using Java and XML, and [CE00]
stands to be the bible of this emerging field. The purpose of the remainder of
this chapter is not to rehash these books in capsule form; instead, the objective
is to look at the possible relationships between GP and the component services
described earlier in this book. Class loading, type information, and metadata ex-
plode the simplistic notion of binding time presented thus far, and they greatly
enhance the utility of GP on the Java platform.

7.2 Why Generate Code with Java?

Since the principles of generative programming apply to other languages as
well, why use Java? One could argue that Java is not particularly well suited to
code generation. After all, C++ has built-in support for code generation with
macros and templates. Scripting languages like Perl are very good with string
operations and might be better suited for writing generators. Despite these valid
objections, Java is particularly suited to GP for five reasons:

1. High quality type information acts as a valuable implicit specification docu-
ment.

2. Flexible class loading supports any combination of binding times and bind-
ing modes.

3. Java source files are simple to read and generate.

4. Java bytecode files are simple to read and generate.

5. Generated code can provide dramatic performance improvements which
can obviate the overhead of the VM.

7.2.1 Type Information Acts as a Free Specification Document

High quality type information and reflection can act as a specification document
for GP. Best of all, you do not even have to write the document since it is implicit
in all Java classes. Many services can be generated from type information alone.

5003_07.fm Page 250 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING

251

As a very small example, consider your Java IDE. Most IDEs have an “implement
interface” wizard that creates a new class to implement some interface. The wiz-
ard uses reflection to build a Java file with all the method signatures already in
place and just waits for you to fill them in. This is a tiny but useful example of GP.

7.2.2 Class Loading Supports Flexible Binding Modes

The class loading architecture makes it easy to load new classes on-the-fly at
runtime. This shatters the simplistic assumptions made about bind time in the
previous section. In order to capture the possibilities opened by dynamic class
loading, you need to augment bind time with the notion of

bind mode

. Bind time
is

when

a decision is encoded, while bind mode is

how

that decision is encoded.
At one extreme, static bind mode means that decisions are frozen into the code.
At the other extreme are dynamic bindings, which are encoded as runtime
branches, perhaps via a parameter or virtual method invocation. With dynamic
class loading, you can bind specifications at runtime and still have excellent per-
formance by generating a class that statically binds the specification.

Because class loading is so flexible, generators can create classes that effi-
ciently encode binding decisions at runtime. Dynamic proxies are one example;
they use type information to generate an implementation of a batch of interfaces
specified at runtime. Another example is JavaServer Pages (JSP). JavaServer
Pages have their own, presentation-oriented configuration document. You write
your code as a JSP page and then drop it into a JSP container. The container
acts as a generator and converts this format into a normal Java source file,
which it then compiles and loads dynamically.

7.2.3 Java Source Is Easy to Generate

The simplicity of Java syntax encourages code generation projects. It is easy to
write a program that will emit a valid Java source file. Because Java source files
do not have macros or templates, it is also easy to use a Java file as input to a
generator or even to write a generator that modifies a file in-place. On the minus
side, since macros and templates are not supported, you are forced to build
your own generation schemes to mimic these capabilities.

5003_07.fm Page 251 Tuesday, November 6, 2001 10:33 AM

252

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

7.2.4 Java Binary Classes Are Easy to Generate

The class file format is also straightforward, so you can write a generator that
emits valid Java class files, and omits the source code step entirely. This feature
is crucial if your generator will execute at runtime in an environment where a
compiler may not be available. The portability of the class file format also guar-
antees that your generated code will work on any compliant Java platform.

7.2.5 Code Generation Boosts Performance

Perhaps the most important motivation for GP in Java is the potential for perfor-
mance gains. These performance gains come from two sources. First, your
code generators are free to generate efficient code regardless of readability.

1

Your domain knowledge is stored in the specification file and in the generators,
so these are the artifacts that need to be readable and maintainable. Second,
you can get late binding semantics with early binding performance.

In general, early binding makes for better performance. For example, if you
could hard-code

all

 your choices during development, your code would not need
conditional statements or virtual methods at all, and it would be blazingly fast. Of
course, many choices must be made at runtime. Generative techniques allow
you to use runtime binding with a static binding mode, which enables you to gen-
erate the code once and reuse it for future iterations. For example, Java serial-
ization uses reflection every time you read or write a Java instance. You could
write a generator that uses reflection only once during development to generate
a helper class that binds statically to the field values.

2

7.2.6 Levels of Commitment to Code Generation

It is useful to divide code generation schemes by scale. Code generation in-the-
large is a complete commitment to code generation for an application. Here, the

1. This is true only up to a point since you may need to read the generated code when you are
debugging. Ideally debugging tools can relate the generated code back to the specification, but this
will not always be the case.
2. This would also require that the fields be at least package-protected instead of private, and it is
an argument in favor of small packages with shared access to class fields. With some additional
effort you could even optimize access to private fields by modifying classes as they were being
loaded.

5003_07.fm Page 252 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING

253

entire architecture assumes that generation is being used, and in fact, it may
only accept specification files as inputs. Helper components are provided to ser-
vice the generated code, and they may not even be documented or accessible
for direct programmer consumption. This style of code generation is widely
used in the J2EE architecture. For example, JavaServer Pages (JSPs) and Enter-
prise JavaBeans (EJBs) are worthless without a code generation step that cre-
ates the code that the client will actually invoke.

Code generation in-the-small suggests techniques that can be used within
part of a project, at the class, method, or field level. Code generation in-the-
small can enhance your development process in a more encapsulated way, with-
out binding you to a particular architecture such as J2EE. This chapter will lever-
age J2EE for examples of generation in-the-large, and it will introduce some
custom examples for generation in-the-small.

7.3 A Taxonomy of Bind Times and Modes

The flexibility of Java class loading means that you can bind your specifications at
any time and in any mode. Table 7–1 categorizes some generative programming
techniques by bind time and mode. Notice that the divisions are somewhat arbi-
trary. Because Java preserves full type information in its compiled class file for-
mat, most of these techniques

could

be used at any time. Deployment time and
runtime have been combined in the table because dynamic class loading makes it
straightforward to redeploy at runtime. I have listed each technique where it is
most likely to be used today. Some of these divisions will change in the future; for
example, future versions of

rmic

 might generate stubs at runtime.

Table 7–1 Generative Programming in Java by Bind Time and Mode

Static Bind Mode Dynamic Bind Mode

Development time

IDE wizards,

rmic

,

JavaBeans

Default serialization

Design time

JavaBeans

Deployment/runtime

JSP, EJB EJB, dynamic proxies

5003_07.fm Page 253 Tuesday, November 6, 2001 10:33 AM

254

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

In general, as you move up in the table, you have more services available,
both human and software. At development time you have access to developers,
high-end developer machines, and end users. At runtime you have only end us-
ers and whatever software they install. As you move left in the table, you

need

more services because there is more code to generate, but the resulting code
can be faster if the overhead of generating the code is affordable.

Start from the top of the table and work down. IDE wizards run at develop-
ment time and produce code that is compiled into the application. The RMI stub
compiler (

rmic

) also runs during development and produces implementations
that are specific to a particular remote object, while default serialization is more
dynamic. Although field types are bound during development, they are traversed
reflectively at runtime. JavaBean property types and names are chosen during
development, but their values can be dynamically modified at design time. Java-
Server Pages are translated into servlets, which are then statically compiled at
runtime.

Table 7–1 lists EJB under both static and dynamic bind mode. The Enter-
prise JavaBeans specification is flexible; EJB functionality can be produced by
generating static code or by passing parameters through dynamic code. Dy-
namic proxies are, of course, dynamic. The dynamic proxy architecture gener-
ates an in-memory class file that forwards all of its interfaces to an

InvocationHandler

, which almost always uses dynamic invocation to forward
the call to another object.

Another way to characterize various styles of generative programming is by
inputs and outputs. In the Java world, inputs might be any combination of Java
source code, Java class files, and non-Java vocabularies suited to the problem
domain. Outputs are typically Java source or class files. Table 7–2 organizes
some common Java technologies by inputs and outputs. Generators that work
only with Java class files use Java type information to build connectors. RMI
stubs connect objects in different virtual machines, and dynamic proxies con-
nect objects through an intermediary handler. JSP defines its own file format that
includes embedded Java code, and EJB includes both Java code and XML-based
deployment descriptors. SOAP is an XML specification for describing request

5003_07.fm Page 254 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING

255

and response methods in a language-neutral way. SOAP generators take the
XML description of types and generate language-specific mappings.

Note that source files are easier to generate than class files. In fact, most of
the technologies that output class files “cheat” by emitting and compiling a
source code file. The only example listed in Table 7–2 that goes directly to byte-
code is dynamic proxies, which can run on client-side machines that do not have
access to a compiler.

Subsequent sections of this chapter describe RMI, JSP, and EJB in more
detail. Dynamic proxies are described earlier in the book in §3.4.

7.4 Code Generation in RMI

Java Remote Method Invocation (RMI) uses code generation to build

stubs

 and

skeletons

. A stub implements a remote interface by serializing method calls into
a stream and forwarding that stream to the actual implementation class, often
on a different physical machine. RMI clients never hold a direct reference to an
implementation class; instead they use a local stub class, which forwards the
call to the implementation. A skeleton receives stream-encoded method calls
from a stub, converts them back into call stacks, and invokes the corresponding
methods. Figure 7–3 shows an RMI call passing through a stub and skeleton to
the implementation class.

To create RMI stubs and skeletons, you run the Java RMI stub compiler

rmic, passing in the name of a remotable class—one that implements the Re-
mote marker interface. This ties stub generation to development time, or de-
ployment time at the latest, since you cannot expect clients to have (or correctly

Table 7–2 Generative Programming in Java by Inputs and Outputs

Inputs/Outputs Source Files Class Binaries

Java class binaries RMI stubs, IDE wizards RMI stubs, dynamic proxies

Non-Java data SOAP

Mixed data JSP, EJB EJB

5003_07.fm Page 255 Tuesday, November 6, 2001 10:33 AM

256 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

use) rmic. The rmic tool reads the remote class’s type information to discover
method signatures, which it then uses to generate the stubs and skeletons.

The RMI stub compiler does not generate class files directly (although this
is certainly possible in theory). Instead, it first generates a Java source code
file, and then it invokes the compiler on it. Unlike the situation with dynamic
proxies, generating a source file first is a reasonable approach because rmic
is installed along with the compiler. Normally, rmic deletes the source file so
that you never see it, but the -keep option allows you to see the Java code for
the stubs if you like.

If you refer back to Table 7–1, you will see that rmic is listed as a compile-
time use of code generation. However, the RMI stubs and skeletons are driven
entirely by type information and require no additional semantic knowledge of the
interfaces being implemented. This sounds like a situation tailor-made for reflec-
tion, and indeed it is. Skeletons can be replaced entirely by a single generic skel-
eton that uses the Method class’s dynamic invocation capabilities to invoke the
correct method at runtime. Similarly, dynamic proxies can be generated at run-
time to take the place of specific stubs, requiring only a single generic stub that
knows how to serialize arguments and communicate over the network. This
would move RMI stub generation down two rows in the table, into the “runtime”
category.

In fact, RMI is moving toward this more dynamic approach to stubs and skel-
etons. In SDK 1.2, RMI added the ability to use generic skeletons, as discussed

Figure 7–3 RMI calls pass through stubs.

Client

Stub

Server

AccountImplSkeleton

<<send>> <<call>>

Account Account

5003_07.fm Page 256 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 257

above. A future version of RMI will probably allow dynamic proxies to be used in
place of stubs, and [Öbe00] demonstrates how to trick the SDK 1.3 implementa-
tion of RMI into using dynamic proxies.

Automating the generation of stubs at runtime is a big win for developers.
Because stubs are generated at runtime, there is no need to figure out how to
make stub classes available to clients—an exercise in class loading gymnastics
that often stymies rookie RMI developers. The potential disadvantage of runtime
stub generation via dynamic proxies is that dynamic proxies use reflection,
which imposes a performance penalty on every method call. In the case of RMI,
this performance issue is a red herring. Dynamic proxies are hundreds of times
faster than the simplest RMI calls across machines, especially when network la-
tency and likely file operations are taken into account.

7.5 Code Generation in JSP
JSP represents an entirely different use of code generation. JSP provides a
web-content-oriented language that can include escapes to blocks of Java
code. The idea is that web developers experienced with HTML and XML can de-
sign pages that have a substantial amount of static content, and then they can
occasionally use escape sequences to introduce blocks of Java code. These
blocks of Java code execute when the page is accessed and can add dynamic
content to the page.

A JSP engine converts JSP syntax into a normal Java source file containing
the code for a Java servlet, which it then compiles and executes. Listing 7–4
shows a simple Hello.jsp servlet that displays a greeting. Normal text in the
page is sent directly to the client as HTML by default. The text bracketed by
<% %> represents special instructions to be evaluated by the JSP engine.

Listing 7–5 shows the servlet generated by this simple JSP page; it has
been edited for space and for readability on the printed page.3 The generated
servlet is simply normal Java code. When a page request arrives at the servlet
container, it locates an instance of the appropriate servlet and invokes its doGet

3. I used Tomcat to generate this servlet. Tomcat is open source and is the reference implementa-
tion for servlets. See http://jakarta.apache.org for more details. If you want to see the servlets gen-
erated by your JSPs, they are the Java files with funky names in the tomcat/work directory.

5003_07.fm Page 257 Tuesday, November 6, 2001 10:33 AM

258 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

method. The servlet doGet method is forwarded to the generated servlet’s
_jspService method, which then writes back to the client through the out
variable. If you look through the generated servlet, you can find Java code corre-
sponding to each line in the JSP. The page import directive becomes a simple
import statement. Normal text blocks are simply written through the out vari-
able. Code in an expression, delimited by <%= expr %>, is evaluated, and the
result is written back through the out variable.

Listing 7–4 A Simple Hello.jsp

<%@ page import = "java.util.*" %>

<h1>Hello</h1>

Hello, you have reached this page at

<%= new Date().toString() %>. Have a nice day.

Listing 7–5 Servlet Generated from Hello.jsp

import javax.servlet.*;import javax.servlet.http.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

import java.io.PrintWriter;

import java.io.IOException;

import java.io.FileInputStream;

import java.io.ObjectInputStream;

import java.util.Vector;

import org.apache.jasper.runtime.*;

import java.beans.*;

import org.apache.jasper.JasperException;

import java.util.*;

public class _0002fhello_0002ejsphello_jsp_2

extends HttpJspBase {

public void _jspService(HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 JspFactory _jspxFactory = null;

 PageContext pageContext = null;

 HttpSession session = null;

 ServletContext application = null;

 ServletConfig config = null;

 JspWriter out = null;

 Object page = this;

 String _value = null;

5003_07.fm Page 258 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 259

 try {

 _jspxFactory = JspFactory.getDefaultFactory();

 response.setContentType("text/html;charset=8859_1");

 pageContext = _jspxFactory.getPageContext(this, request,

 response, "", true, 8192, true);

 application = pageContext.getServletContext();

 config = pageContext.getServletConfig();

 session = pageContext.getSession();

 out = pageContext.getOut();

 // HTML // begin [file="E:\\gj\\jakarta-tomcat-\

 //3.2.1\\webapps\\ROOT\\hello.jsp";from=(0,34);to=(4,0)]

 out.write("\r\n\r\n<h1>Hello</h1>\r\nHello, you have reached

 this page at \r\n");

 // end

 // begin [file="E:\\gj\\jakarta-tomcat-\

 //3.2.1\\webapps\\ROOT\\hello.jsp";from=(4,3);to=(4,26)]

 out.print(new Date().toString());

 // end

 // HTML // begin [file="E:\\gj\\jakarta-tomcat-\

 //3.2.1\\webapps\\ROOT\\hello.jsp";from=(4,28);to=(6,0)]

 out.write(". Have a nice day.\r\n\r\n");

 // end

 } catch (Exception ex) {

 if (out.getBufferSize() != 0) out.clearBuffer();

 pageContext.handlePageException(ex);

 } finally {

 out.flush();

 _jspxFactory.releasePageContext(pageContext);

 }

}

}

The JSP in Listing 7–4 and the servlet in Listing 7–5 are functionally equiva-
lent. However, Listing 7–4 is much easier to read. In this example, code genera-
tion enables a syntax that is more suited to a specific problem domain than Java.
For web content that is mostly text, the JSP syntax is simpler than a servlet with
hundreds of calls to out.write.

JSP code generation is different from dynamic proxies or RMI stubs in that
type information is not needed to generate the code. The transformations are
based mostly on the JSP text. In fact, programming syntax errors in the JSP will

5003_07.fm Page 259 Tuesday, November 6, 2001 10:33 AM

260 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

pass undetected through the servlet generation stage, only to be detected when
the servlet is compiled.

The JSP conversion is also more performance sensitive than dynamic proxy
invocation. Fortunately, there is no need to convert the JSP every time a request
comes in. The conversion and compilation can take several seconds. However,
the conversion needs to be done only once. The JSP engine only translates the
page and compiles the resulting servlet once when the page is first accessed,4

and then it caches the class to service future requests. If you direct your
browser to a JSP that has not yet been compiled, you will see a substantial
pause before the page is returned. Subsequent requests for the same page will
return instantaneously.5

7.6 Code Generation in EJB
The most interesting use of code generation in the J2EE environment is Enter-
prise JavaBeans. Despite the similar names, EJBs are completely unrelated to
JavaBeans.6 An EJB represents data and logic that executes in a server environ-
ment. There are two primary kinds of EJBs. Session beans represent short-lived
conversational state between a client and server, and entity beans represent
long-lived data, often in a back end database.

For our purpose here, the interesting thing about EJBs is that they leverage
generated code to add semantics beyond the semantics specifically encoded in
Java classes. Most importantly, EJBs can acquire transactional semantics at de-
ployment time. Developers write their Java code as normal, and application de-
ployers describe the transactional requirements of the beans in an XML-based
deployment descriptor.

To build an Enterprise JavaBean, you specify the following four things:

1. The home interface specifies how clients find or create the bean.

2. The remote interface defines business methods that clients call.

4. The JSP page could also be compiled on application startup, or it could be recompiled when the
source on the disk changes, but the basic point remains the same.
5. Well, maybe not instantaneously, but any delays you experience will not be related to converting
the page.
6. There are only so many coffee metaphors, so the coolest ones have to be reused.

5003_07.fm Page 260 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 261

3. The bean object contains implementation code.

4. The deployment descriptor describes services the deployer wants to make
available to the bean.

Listing 7–6 shows fragments from each of these text files. The home inter-
face and remote interface delineate separate interfaces for creating, finding,
and using an object. The bean object executes a simple transfer operation by
withdrawing from one account and adding to another.

Listing 7–6 Relevant Fragments of an EJB

//home interface

public interface TellerSessionHome extends EJBHome {

 public TellerSession create() throws CreateException,

java.rmi.RemoteException;

}

//remote interface

public interface TellerSession extends EJBObject {

 public boolean deposit(Money m, Account a)

throws java.rmi.RemoteException, TellerException;

 public boolean transfer(Money m, Account a1, Account a2)

throws java.rmi.RemoteException, TellerException;

}

//bean

public class TellerSessionBean implements SessionBean {

 //several other methods omitted

 public boolean transfer(Money m,Account a1, Account a2) {

 a1.withdraw(m);

 a2.deposit(m);

 }

}

<!-- deployment descriptor -->

<ejb-jar>

 <enterprise-beans><session>

 <ejb-name>Teller</ejb-name>

 <transaction-type>Container</transaction-type>

 </session></enterprise-beans>

 <assembly-descriptor>

 <container-transaction>

 <method>

5003_07.fm Page 261 Tuesday, November 6, 2001 10:33 AM

262 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 <ejb-name>Teller</ejb-name>

 <method-intf>Remote</method-intf>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

 </container-transaction>

 </assembly-descriptor>

</ejb-jar>

What happens if transfer fails halfway, for instance, withdraw succeeds
but deposit fails? Ideally, the entire operation should rollback, and the client
should receive an exception indicating that the operation failed. Of course, this
could be accomplished by explicit transaction programming, but the code would
be much more complex, as Listing 7–7 shows (additions to the original code are
in bold). The transfer method must begin by looking up a transaction object
via the Java Naming and Directory Interface (JNDI). Then, all data access in the
rest of the method should enlist on this transaction, specifying that if the trans-
action fails, any changes should be rolled back.

Listing 7–7 EJB-Like Code, but with Manual Transaction Programming

public class TellerSessionBean implements SessionBean {

 //several other methods omitted

 public boolean transfer(Money m,Account a1, Account a2) {

 Context ctx = new InitialContext();

 UserTransaction tx = (UserTransaction)

 ctx.lookup("java:comp/UserTransaction");

 tx.setTransactionTimeout(30);

 tx.begin();

 try {

 a1.withdraw(m, tx);

 a2.deposit(m, tx);

 catch (Throwable t) {

 tx.rollback();

 throw t;

 }

 tx.commit();

 }

}

5003_07.fm Page 262 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 263

Ironically, an encapsulated design makes it difficult to know where data ac-
cess might be occurring. To be safe, you must recode all the methods on the
Money and Account objects to take a transaction object as a parameter. This
changes interfaces as well as implementations, as the extra parameter to
withdraw and deposit demonstrates. There are other concerns as well. If a
method throws an uncaught exception, then the transaction should abort quickly
so that any resources associated with the transaction are released as soon as
possible.

Transaction programming is a concern that cross-cuts traditional object de-
signs. As Listing 7–7 shows, the transactional code is interleaved with the code
that executes the business logic. All of the other classes, such as Money and
Account, would need similar interleaving. This spreads transactional code
throughout an application, making it difficult to extend and maintain.

7.6.1 The Deployment Descriptor
EJB attacks the cross-cutting problem by separating the transactional aspect of
the system into a separate XML file called a deployment descriptor. In Listing
7–6, the container-transaction element specifies that the remote meth-
ods of Teller should always be protected by a transaction. This causes the
container to generate or otherwise simulate the bolded code from Listing 7–7.
Whenever a client calls a method on Teller’s remote interface, the container
will create a transaction object. If Teller then calls out to other objects such
as Money and Account, the container will propagate the transaction to these
components as well. As a result, all of the work done on behalf of a Teller re-
mote method can be bound to the same transaction, even if dozens of other
objects are involved.

Thanks to the deployment descriptor, control of the transaction is situated in
a single location that is easy to maintain. There are other transaction settings,
not shown here, that allow components to block the flow of a transaction, or to
start a different transaction even if one transaction is already in process. The de-
ployment descriptor also supports other cross-cutting aspects, such as security
roles, and more aspects may be added in the future.

5003_07.fm Page 263 Tuesday, November 6, 2001 10:33 AM

264 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

In order to create transactions and to guarantee that transactions flow from
one component to another as specified by the descriptor, the EJB container
needs to intercept all calls into an EJB. Containers typically do this by generating
additional classes, either at deployment time or possibly even on-the-fly at run-
time. Figure 7–4 shows the classes typically generated by an EJB container and
their relationship to classes that you author.

EJB generates stubs and skeletons that are similar to RMI stubs and skele-
tons. These classes are generated from type information and handle forwarding
method calls around the network. EJB containers use the information in the de-
ployment descriptor to generate the EJB home and EJB object, which handle as-
pects such as transactions and security before invoking the business logic of
the bean itself. Clients make RMI connections to the EJB home and EJB object,
never to the bean itself.

Relate Figure 7–4 back to the definition of a component given at the begin-
ning of the book: “an independent unit of production and deployment that is

Figure 7–4 Classes generated by an EJB container

Client EJB container

Home
stub

Home

EJB
home

Home

EJB
object

Remote

Home
skeleton

Bean

Remote
stub

Remote

Remote
skeleton

Developer code

Generated code

Deployment descriptor used to generate
EJB home and EJB object

<<send>>

<<send>>

<<call>>

<<call>>

<<call>>

<<call>>

5003_07.fm Page 264 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 265

combined with other components to assemble an application.” An EJB is a sin-
gle component that contains the following nine classes:

1. Home interface*

2. Remote interface*

3. Home stub

4. Remote stub

5. Home skeleton

6. Remote skeleton

7. EJB home

8. EJB object

9. The bean itself*

Of these nine classes, you only need to write the three labeled with aster-
isks—the interfaces and the bean. The other classes are generated from type in-
formation and from the data in the deployment descriptor. In other words, much
of the work of authoring an EJB component is not writing Java code at all. In-
stead, you write some Java code, write some XML, and the container builds
most of the Java code that eventually executes on both the client and the server.

7.6.2 Alternate Implementations
Not all EJB containers function exactly as described above. Many of the services
provided by generated classes could also be provided in other ways. Figure 7–5
shows an EJB container that makes minimal use of code generation. The client-
side stubs must be generated, but they could be generated at runtime using dy-
namic proxies. All of the generated classes on the server side have been re-
placed with generic classes that perform the same operations.

This is very different from the previous figure because the generic classes
are not specific to any bean. Instead, they use reflection’s Method.invoke to
call any EJB in a generic fashion. From a generative programming perspective,
the difference is one of bind mode. The container architectures in Figure 7–4
and Figure 7–5 both bind the deployment descriptor during deployment (hence

5003_07.fm Page 265 Tuesday, November 6, 2001 10:33 AM

266 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

the name), but the former uses a static binding mode, and the latter uses a dy-
namic binding mode. Given that both designs accomplish the same thing, why
go to the trouble of generating the additional classes shown in Figure 7–4?

There are two reasons why all containers will use at least some code gener-
ation and many containers will rely heavily on it. First, code generation is neces-
sary to preserve Java syntax on the client. Clients expect to call methods on the
home and remote interfaces, which means that stubs must be generated. The
only real question is the binding time.

Second, code generation permits optimizations that are difficult or impossi-
ble with generic code. This is the crux of the matter. If the container provides a
generic service layer for components, as in Figure 7–5, then the deployment de-
scriptor must be bound into the code by passing parameters at runtime. Pass-
ing and interpreting these parameters takes time, possibly on every method
invocation. If the container generates the code instead, then it has to deal with
the specifics of the component only once, at generation time.

Actually writing performance tests to compare different techniques for im-
plementing an EJB container would be an interesting task, but it would take us
very far afield. Instead, the next examples will evoke similar issues within a

Figure 7–5 EJB without code generation

Client EJB container

Dynamic
proxy

Home

Generic
EJB

home

Home

Generic
EJB

object

Remote

Generic
skeleton

Bean

Dynamic
proxy

Remote

Generic
skeleton

Deployment descriptor used to parameterize
generic EJB home and EJB object

<<send>>

<<send>>

<<call>>

<<call>>

<<call>>

<<call>>

5003_07.fm Page 266 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 267

scope amenable to some simple performance tests. You will see techniques to
statically bind strongly typed collections and serialization, both of which are nor-
mally dynamically bound in Java. In both of these examples, code generation will
replace generic code with code specifically tuned to the task at hand. This will
boost performance by eliminating repetitive tasks at runtime.

If you plan to use code generation to improve the performance of an appli-
cation, you should beware of the possible tradeoffs. In theory, generated code
can run faster because you can hard-code values that might otherwise be pa-
rameters, or remove levels of indirection that would otherwise be implemented
as virtual methods. However, these benefits must be offset against the addi-
tional effort to generate code, and the increased memory footprint if you gener-
ate several blocks of very similar code. Which of these factors will predominate
is project and virtual machine dependent, but for many simple tasks code gen-
eration provides a clear performance advantage. Also, it is often easier to gen-
erate a specific solution than to code the logic needed to implement a generic
solution.

7.7 Generating Strongly Typed Collections
As a simple example of the performance tradeoffs that drive a GP design, con-
sider the collection classes in the java.util package. The various collec-
tions (ArrayList, HashMap, etc.) are all of type Object—in other words, the
collections are entirely generic. If you want to use a collection in a type-safe
fashion, then you must write additional code to enforce type safety at runtime,
as shown here:

// Must pay runtime cost of casting to String

// also possible that cast might fail

String value = (String) stack.pop();

One workaround to this problem is to write your own strongly typed collec-
tions, such as hand-coded StringStack, IntStack, and so on. Such work is
tedious, error-prone, and better suited to code generation. Since all the conceiv-
able strongly typed Stacks look mostly the same, it is straightforward to gener-
ate the source code for them. One approach is to write a JSP page based on the
source code for the generic version of the collection. Listing 7–8 shows a JSP

5003_07.fm Page 267 Tuesday, November 6, 2001 10:33 AM

268 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

page that extracts parameters from an HTTP query string and uses them to gen-
erate a specific stack class. Because the source code for different stack
classes is similar, most of the JSP page is simply static text.

Listing 7–8 JSP Page That Generates Strongly Typed Stack Classes

<%

response.setContentType("text/plain");

String packageName = request.getParameter("package");

String type = request.getParameter("type");

String name=request.getParameter("name");

if ((packageName == null) || (type == null) || (name == null)) {

 throw new Error("must specify package, name, and type");

}

%>

package <%= packageName %>;

import java.util.*;

/**

 * This stack class was generated by StronglyTypedStack.jsp.

 *

 * @author Stuart Halloway

 */

public

class <%= name %>Stack extends Vector {

 public <%= name %>Stack() {

 }

 public <%= type %> push(<%= type %> item) {

addElement(item);

return item;

 }

 public synchronized <%= type %> pop() {

<%= type %> obj;

int len = size();

obj = peek();

removeElementAt(len - 1);

return obj;

 }

 public synchronized <%= type %> peek() {

int len = size();

if (len == 0)

 throw new EmptyStackException();

5003_07.fm Page 268 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 269

return (<%= type %>) elementAt(len - 1);

 }

 public boolean empty() {

return size() == 0;

 }

 public synchronized int search(<%= type %> o) {

int i = lastIndexOf(o);

if (i >= 0) {

 return size() - i;

}

return -1;

 }

}

The specification that drives this generator is simply three text strings: the
package name, the new class name, and the name of the class that the stack
holds. To generate a StringStack class in the com.develop package, you
would install the JSP page in a JSP engine, and then browse to the site with the
following HTTP request:

http://yoursite/yourwebapp/StronglyTypedStack.jsp?

package=com.develop&type=java.lang.String&name=String

Then, you would simply paste the text content of your browser into a Java
source code file and compile. To complete this example, you would want to auto-
mate the entire process from a build tool. You could eliminate the browser from
the equation by writing your own simple HTTP client that automates connecting
to the server, retrieving the source code, and saving it to file.

Strongly typed stack classes have two potential advantages over the ge-
neric java.util.Stack class. First, they enforce correct usage at compile
time by type-checking the references involved in the push and pop operations.
Second, the generated classes can be made more efficient than the generic
Stack class. The generator shown in Listing 7–8 can provide the former, but
not the latter. The generated code leverages the weakly typed Vector class so
that it still has to execute a type cast for every pop operation.

Of course, nothing limits you to a single flavor of generator. Now that you
have defined a specification, you could create a second generator that provides
both advantages. This second generator would generate a strongly typed

5003_07.fm Page 269 Tuesday, November 6, 2001 10:33 AM

270 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Vector base class that uses a strongly typed array as its backing store. This
would avoid type casts and provide a slight performance advantage over the
standard API classes. Of course, the advantages of the generated code must be
weighed against increased memory usage. The generated Stack and Vector
classes take extra space in memory, possibly quite a bit of space if you gener-
ated dozens or hundreds of different varieties.

I am not going to evaluate the various arguments for and against strongly
typed collections here. The weight you give to the various pros and cons will de-
pend strongly on the specifics of your project. The important issue here is not
which option you choose, but rather that you have multiple options available.
Code generation makes it easy to try the various possibilities without having to
hand code them all. The JSP example shown earlier generates only a single
class, but you could design an entire project to include a parameterized genera-
tion step as part of the build process. If you have a compiler available, you could
even generate different versions of your component at runtime based on the
specifics of the current environment.

7.7.1 Code Generation Language versus Target Language
The environment you use to generate code need not have anything in common
with the environment you are generating code for. In this example, using JSP as
the generator language for Java code has several advantages. JSP has a well-
known syntax, and implementations are freely available.7 Also, JSP is more con-
venient than using Java to generate code, especially when the generation is
driven mostly from a static template.

JSP also has several noteworthy disadvantages stemming from the fact that
the language was not originally intended for code generation. As used here, JSP
requires a separate server process, expects arguments to be passed as HTTP
GET parameters, and returns a single source file. For generating source code,
you might prefer to have a tool that runs as part of a build process, provides a
convenient (or even customizable) syntax for the specification, and returns an
entire collection of files. With additional effort you could coerce a JSP engine to

7. The reference implementation of JSP is open source; see [Jakarta].

5003_07.fm Page 270 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 271

do all of these things, or you might consider just writing your generator from
scratch. The next section gives an example of a simple generator written in
straight Java code.

7.8 Generating Custom Serialization Code
Serialization is the perfect example of a generic service. Simply mark your ob-
ject as Serializable, and at runtime the ObjectOutputStream class and
friends will use reflection to extract/construct your object’s instance state. Un-
fortunately, default serialization’s heavy use of reflection imposes a performance
penalty that is noticeable in some situations. In Chapter 4, you saw several op-
tions for manually customizing serialization. Some of these options could be
used to improve serialization performance, but they would require you to hand-
author the serialization code.

Generative programming offers an attractive middle ground. A generator
can use reflection to generate custom code that is more efficient than default
serialization. If done properly, this provides the best of both worlds. The serial-
ization code is fast because it is compiled into the object, and it is error-free be-
cause it is generated directly from type information.

Consider the Externalizer class shown in Listing 7–9. Externalizer
uses reflection to analyze a preexisting class and generate appropriate source
code for readExternal, writeExternal, and serialVersionUID. The se-
rialVersionUID is calculated trivially by calling an accessor method on serial-
ization’s ObjectStreamClass representation of the class. The readExternal
and writeExternal methods are calculated by iterating over a class’s serializ-
able fields to produce the appropriate calls to read and write methods. The base
class GeneratorBase (not shown in the listing) provides helper methods that
open a Java file and insert the generated code.

Listing 7–9 The Externalizer

package com.develop.generators;

import java.io.*;

import java.lang.reflect.*;

5003_07.fm Page 271 Tuesday, November 6, 2001 10:33 AM

272 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

public class Externalizer extends GeneratorBase {

 public String primitiveName(Class cls) {

 if (!cls.isPrimitive()) {

 throw new IllegalArgumentException(cls +

 " is not primitive");

 }

 String name = cls.getName();

 return name.substring(0,1).toUpperCase() +

 name.substring(1);

 }

 public void readExternal(Class cls, Field[] fields) {

 indentPrint("public void readExternal(ObjectInput oi) " +

 throws ClassNotFoundException, IOException {", 0);

 if (cls.getSuperclass() != Object.class)

 indentPrint("super.readExternal(oi);", 1);

 for (int n=0; n<fields.length; n++) {

 Field f = fields[n];

 if (0 != (f.getModifiers() &

 (Modifier.STATIC + Modifier.TRANSIENT)))

 continue;

 Class fldClass = f.getType();

 if (fldClass.isPrimitive()){

 indentPrint(f.getName() + " = oi.read" +

 primitiveName(fldClass) + "();", 1);

 } else if (fldClass == String.class) {

 indentPrint(f.getName() + " = oi.readUTF();", 1);

 } else {

 indentPrint(f.getName() + " = oi.readObject();", 1);

 }

 }

 indentPrint("}", 0);

 }

 public void writeExternal(Class cls, Field[] fields) {

 indentPrint("public void writeExternal(ObjectOutput oo) "+

 "throws IOException {", 0);

 if (cls.getSuperclass() != Object.class)

 indentPrint("super.writeExternal(oi);", 1);

 for (int n=0; n<fields.length; n++) {

 Field f = fields[n];

 if (0 != (f.getModifiers() &

 (Modifier.STATIC + Modifier.TRANSIENT)))

5003_07.fm Page 272 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 273

 continue;

 Class fldClass = f.getType();

 if (fldClass.isPrimitive()){

 indentPrint("oo.write" + primitiveName(fldClass) +

 "(" + f.getName() + ");", 1);

 } else if (fldClass == String.class) {

 indentPrint("oo.writeUTF(" + f.getName() + ");", 1);

 } else {

 indentPrint("oo.writeObject(" + f.getName() + ");", 1);

 }

 }

 indentPrint("}", 0);

 }

 public void serialVersionUID(Class cls) {

 ObjectStreamClass ocs = ObjectStreamClass.lookup(cls);

 indentPrint("private final static long serialVersionUID="

 + ocs.getSerialVersionUID() + "L;", 0);

 }

 public void generate(Class cls, PrintStream out) {

 this.out = out;

 beginGenerated();

 serialVersionUID(cls);

 Field[] fields = cls.getDeclaredFields();

 writeExternal(cls, fields);

 readExternal(cls, fields);

 endGenerated();

 }

}

Listing 7–10 shows a simple SerializeMe class after it was modified by
the Externalizer. The code generated by the Externalizer is shown here in
bold. The modified version of SerializeMe will serialize and deserialize more
efficiently than the original version because there is no need to use reflection at
runtime to access the class’s type information or instance fields. At the same
time, you can rely on the correctness of the code because it is generated di-
rectly from type information. If you want to use a large number of Externaliz-
able classes in your application, you should take the Externalizer (or
something like it) and make it part of your build process.

5003_07.fm Page 273 Tuesday, November 6, 2001 10:33 AM

274 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 7–10 SerializeMe after Modification by Externalizer

import java.io.*;

public class SerializeMe implements Externalizable {

 public SerializeMe() {

 i = 1;

 f = 10;

 l = 100;

 d = 1000;

 s = "serialize me ";

 }

 int i;

 float f;

 long l;

 double d;

 String s;

//{{@@ BEGIN CODE GENERATION BY class Externalizer @@}}

//edit at your own risk...

private final static long serialVersionUID=

 -2726536721571465800L;

public void writeExternal(ObjectOutput oo) throws IOException {

 oo.writeInt(i);

 oo.writeFloat(f);

 oo.writeLong(l);

 oo.writeDouble(d);

 oo.writeUTF(s);

}

public void readExternal(ObjectInput oi)

 throws ClassNotFoundException, IOException {

 i = oi.readInt();

 f = oi.readFloat();

 l = oi.readLong();

 d = oi.readDouble();

 s = oi.readUTF();

}

//{{@@ END CODE GENERATION BY class Externalizer @@}}

}

Another approach to generating serialization code is shown in Listing 7–11. This
version of SerializeMe contains serialization code from a different generator.

5003_07.fm Page 274 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 275

The UnreflectiveSerialize generator8 uses the GetField and PutField
hooks to modify default serialization. With these hooks, metadata is included in
the stream format just as if the class had been serialized using the default mech-
anism.

Listing 7–11 SerializeMe after Modification by UnreflectiveSerialize

import java.io.*;

public class SerializeMe implements Serializable {

 public SerializeMe() {

 i = 1;

 f = 10;

 l = 100;

 d = 1000;

 s = "serialize me ";

 }

 int i;

 float f;

 long l;

 double d;

 String s;

//{{@@ BEGIN CODE GENERATION BY class UnreflectiveSerialize

//edit at your own risk...

private final static long serialVersionUID=

 -2726536721571465800L;

private static final ObjectStreamField[] serialPersistentFields =

{

 new ObjectStreamField("i", int.class),

 new ObjectStreamField("f", float.class),

 new ObjectStreamField("l", long.class),

 new ObjectStreamField("d", double.class),

 new ObjectStreamField("s", java.lang.String.class),

};

private void writeObject(ObjectOutputStream oos)

 throws IOException {

 ObjectOutputStream.PutField pf = oos.putFields();

 pf.put("i", i);

 pf.put("f", f);

8. The UnreflectiveSerialize generator is not shown here for brevity, but it is included
with the book’s source code.

5003_07.fm Page 275 Tuesday, November 6, 2001 10:33 AM

276 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 pf.put("l", l);

 pf.put("d", d);

 pf.put("s", s);

 pf.write(oos);

}

private void readObject(ObjectInputStream ois)

 throws ClassNotFoundException, IOException {

 ObjectInputStream.GetField gf = ois.readFields();

 i = gf.get("i", 0);

 f = gf.get("f", 0.0f);

 l = gf.get("l", 0L);

 d = gf.get("d", 0.0);

 s = (java.lang.String) gf.get("s", null);

}

//{{@@ END CODE GENERATION BY UnreflectiveSerialize @@}}

}

The UnreflectiveSerialize generator is helpful if you need to support
multiple versions of a class over time. Imagine that you have a large data class
with a few dozen fields. If only a few fields change, most of the code in readOb-
ject and writeObject will look exactly like the code generated by Unreflec-
tiveSerialize. You could generate the basic code, and then hand-edit only
the few lines that need to change. This demonstrates a general principle: Code
generation during development is flexible because you can fix problems by hand.
Therefore, a 90 percent solution is far better than nothing at all. By contrast,
code generation at runtime must be exact, since no developer is present to ad-
just it.

7.9 Onward
In this chapter you have seen several widely different examples of generative
programming. In all the examples, the goal is to reuse your knowledge of the
problem domain. GP works in tandem with, not in opposition to, traditional OO
techniques for reuse. Some generative schemes build bytecode, like dynamic
proxies. Others build source code, like the serialization example. Some code
generation tools bind your choices at runtime, like JSP. Others bind at deploy-
ment time or compile time, like the RMI stub compiler.

5003_07.fm Page 276 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 277

Sometimes your commitment to generative programming is pervasive and
tied into special support libraries. For example, a component either is an EJB,
and it requires all the associated container goo, or it is not. On the other end of
the spectrum, you may use simple code generation helpers like interface wiz-
ards at the level of a single file, without any implication for your overall applica-
tion architecture. Code generation inputs range from existing Java classes
(dynamic proxies), to classes plus additional metadata (EJB), to custom lan-
guages (JSP).

Given the wide array of options, you need some way to impose order onto
chaos and choose generative techniques that are appropriate for your own appli-
cations. This section will make some suggestions as to when code generation is
useful, and how you should decide which types of tools to employ.

The most obvious example of when code generation is useful is in providing
generic service components. A generic service component is a component that
can add functionality to other components without having compile-time knowl-
edge of the components that it will be working with. Many of the examples in this
chapter fit this description. Dynamic proxies are generated at runtime to imple-
ment interfaces that were not previously known. Serialization streams the state
of an object without advance knowledge of the object’s fields. EJB containers
add transactional semantics to objects without knowing in advance what meth-
ods the objects may have.

Consider EJB first. EJB requires code generation in order to ensure type
safety. Refer back to Figure 7–4. Without the generated stubs, clients would be
forced to use some sort of generic invocation mechanism. With the generated
stubs, clients are able to communicate via a well-known interface instead.

EJB code generation tools can be used at any time during the component
lifecycle. Depending on your container, you might generate the support classes
during development, at deployment, at runtime, or some combination of all
three. The reason for this flexibility is that EJBs are server-side code. The only
client-side components are stubs, which can be downloaded dynamically from
the server anyway. Because EJB is a server-side technology, you can reasonably
expect access to a compiler and whatever other tools you may need to gener-
ate the stubs, EJB home, and EJB object. These tools are available throughout

5003_07.fm Page 277 Tuesday, November 6, 2001 10:33 AM

278 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

the component lifecycle, up to and including runtime. Since a compiler is avail-
able, you do not have to worry about generating bytecode directly. You can gen-
erate source code and then run it through the compiler.

Dynamic proxies, by contrast, are much more constrained. Because they
are part of the core API, proxies must work in all sorts of Java environments. A
compiler will not always be available, so proxies cannot count on compiling
source code. Instead, they must generate bytecode directly. This makes dy-
namic proxies much more difficult to generate than the EJB support classes.9

Also, dynamic proxies must be generated at runtime since they are created in re-
sponse to an API call at runtime. Generating code later in the development cycle
is more flexible for the user but more difficult for the developer.

As another example of this principle, consider the simple serialization code
generators shown in §7.8. In all likelihood, you would use these tools at develop-
ment time. This is more convenient for the developer since the generated code
does not even have to be 100 percent correct—you can always edit it to fix
small problems. However, it is less flexible for users of the object because seri-
alization semantics are frozen into the object during development. By contrast,
JSP code generators often execute at runtime. This allows even a web adminis-
trator to make cosmetic changes to the appearance of a page, without shutting
down the web server.10

Another issue to consider is the type of inputs required by a code generation
scheme. Many of the examples in this chapter require only the type information
that is available to any Java object. However, some of the examples add their
own metadata as well. EJB functionality is controlled by external XML deploy-
ment descriptors, and JSP provides an entire separate syntax with occasional
escapes to Java code. In general, code generation schemes that build Java
code from non-Java data have one or more of the following properties:

1. A problem domain that is well understood and repetitive

2. Syntaxes more expressive than Java in solving the problem

3. Special support libraries that are called from generated code

9. Consider how many programmers write in bytecode instead of Java. Or, compare the number of
dynamic proxy implementations with the number of EJB implementations.
10. Whether this is a good idea or not is a site management decision.

5003_07.fm Page 278 Tuesday, November 6, 2001 10:33 AM

GENERATIVE PROGRAMMING 279

Both EJB and JSP have the first property. EJBs repeat the same sequence
over and over: check security, acquire transaction, use data, commit/abort. All
of the steps other than “use data” are well understood and repetitive to code.
JSP pages tend to do the same things again and again, such as generating a
standard HTML structure to fill in with user-requested content. JSPs are also a
good example of the second property. If most of the work on a page is static
content, then Java code degenerates into a boring sequence of write instruc-
tions. EJB exemplifies the third property. You do not need to explain how the sup-
port libraries should implement transactions or security checks; instead, you
need only declare the parameters to be used. Switching from a functional to a
declarative approach also changes the locus of decision-making. Changing a de-
clarative setting does not require a programmer since no code changes.

7.10 Resources
The examples in this chapter only scratch the surface of generative program-
ming. Moreover, they are biased toward services that can leverage type informa-
tion. For a gentle, general introduction to generative techniques using Java and
XML see [Cle01]. For a more complete treatment not limited to Java, see [CE00].

5003_07.fm Page 279 Tuesday, November 6, 2001 10:33 AM

5003_07.fm Page 280 Tuesday, November 6, 2001 10:33 AM

