

191

Chapter 6

Interop 1: JNI

This chapter introduces you to the essentials of using the Java Native Interface
(JNI) to integrate Java code with platform-specific code. For further coverage of
how to use JNI to build a more intuitive, robust communication layer between
Java and Win32/COM components, see Appendix A.

6.1 Why Interoperate?

A key goal of Java is to provide a consistent platform and API over the specific
hardware and software of a particular machine. To the extent that this platform
functions correctly and delivers services needed by programmers, Java
achieves its objective of being write-once, run-anywhere (WORA). Developers
write a single code base, which functions correctly across multiple processors
and operating systems, saving the cost of redeveloping the same basic logic
over and over again for different platforms. Organizations that adopt Java often
value cross-platform code so highly that they insist that

all

new development be
done in Java. In this brave new world, there is no need to interoperate with other
languages or environments because Java replaces everything else.

Now, back to the real world. While 100 percent pure Java is a laudable ob-
jective on some kinds of projects, it is usually unrealistic. No single tool, even
Java, is perfect for every task. Single-tool aficionados should heed Mark Twain’s
warning: “When all you have is a hammer, all problems start to look like nails.”
Here are several tasks for which Java is ill-suited:

• Direct access to system memory. Java deliberately prevents direct access
to system memory, which in most situations is a great benefit in reducing

5003_06.fm Page 191 Tuesday, November 6, 2001 10:33 AM

192

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

bugs. However, some hardware devices are queried and controlled through
direct access to memory.

• Accessing platform-specific resources. Java provides a standard API for ser-
vices that most operating systems provide, such as file and network
access. However, by definition, Java cannot provide a cross-platform API to
a platform-specific service, such as the Windows Registry.

• Accessing code libraries not written in Java. Many organizations already
have a large base of well-understood, field-tested code. Even if they wanted
to port all this code to Java, the development time and cost would likely be
prohibitive.

• Hand-tuned, peak performance code. Java’s performance is sufficient for
many types of applications being written today. However, there always have
been, and probably always will be, certain code paths that need to be hand-
tuned in a systems programming language, such as C++, or even in an
assembly language.

All of these examples share a common theme, which is the occasional need
to escape the confines of the virtual machine. A well-designed hybrid system
gets the best of both worlds: 90 percent of the code lives inside a virtual ma-
chine, where it enjoys the comforts of runtime type safety, memory protections,
and discretionary access control. The remaining 10 percent visits the hostile
space outside of the virtual machine, but only long enough to provide some spe-
cialized service.

A poorly designed hybrid system, on the other hand, experiences all the
problems of both Java and native code: the overhead of the virtual machine plus
the mysterious failures endemic to systems programming. Managing the bound-
ary between Java and native code requires careful attention to preserving the
benefits of each environment.

JNI allows a Java virtual machine to share a process space with platform na-
tive code, typically written in C or C++. From Java, you can find, load, and in-
voke a native language method, free of the rules of the virtual machine. The
converse is also true; from a native language, you can start a virtual machine
and then find, load, and invoke methods on Java classes.

5003_06.fm Page 192 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI

193

JNI itself is a cross-platform standard that is provided by any compliant Java
virtual machine. However, the things that you

do

with JNI are usually platform-
specific. For purposes of this chapter, I am going to use C++ and the Microsoft
Windows platform for JNI examples. This choice of language and OS probably
represents the most common use of JNI, but the examples should be represen-
tative of issues you encounter with other languages or platforms as well.

Because C++ and Java are radically different development environments,
there are several subtleties to consider when crossing the border between the
virtual machine and native code. This chapter will cover the most important of
these: the dangers of native code, loading native code, method invocation, error
handling, and resource management.

6.2 The Dangers of Native Code

The dangers are the easiest part to understand. When you leave the virtual ma-
chine, you leave behind all its built-in protections. Java’s memory protections do
not apply in native code, so native methods can corrupt memory or the VM it-
self. Java’s security checks do not apply in native code, so your native methods
operate with essentially “all permissions.” Type safety is a fiction in native code,
so feel free to treat a

CArm

 like a

CLeg

 if you like.

1

Once you internalize the fact that the virtual machine has no control over the

behavior of native code, other JNI design decisions make more sense. For ex-
ample, JNI allows native code to bypass language protection modifiers and to in-
voke methods nonvirtually. This would seem horribly dangerous if you had not
accepted that JNI is

innately

 a dangerous environment when compared to pure
Java.

Since JNI is so dangerous, why use it at all? In general, you should avoid it.
If Java provides a service, there is typically no reason to reimplement that ser-
vice in native code. Most of the services you will need are already in the Java
APIs: files, sockets, databases, user interfaces, security, and so on. But when

1. In a type-safe world, your

CHand

 would get tired and callused. In native code, such a type gaffe
will cause a memory fault—if you are lucky.

5003_06.fm Page 193 Tuesday, November 6, 2001 10:33 AM

194

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

you do need JNI, you

really

need it. Simply make sure that you enter a relation-
ship with JNI with your eyes open. JNI will make your Java projects more expen-
sive to develop and maintain. Poorly written native code can make an otherwise
excellent Java system totally unreliable. JNI puts the entire native platform under
your control; use that power sparingly and wisely.

6.3 Finding and Loading Native Code

Bridging between Java and native code is both a logical and a physical problem.
The logical problem is one of disparate naming and typing systems. To solve this
problem, JNI defines a complete, unambiguous mapping from Java names and
types to C++ names and types.

2

 The physical problem is finding and loading the
appropriate native binary. The process of finding and loading native code is very
similar to the process of loading Java classes. Both processes are well defined,
but they tend to produce cryptic errors and be poorly understood by developers.
This section covers the logical and physical mapping between Java and native
code, and it shows how to troubleshoot the most common problems.

JNI is normally used to provide native implementations of methods declared
in Java. The

native

 keyword indicates that a particular method has a native im-
plementation, as shown in the

getAnswer

 method of Listing 6–1.

Listing 6–1 The native Keyword

package com.develop;

public class UltimateQuestion {

 public static native int getAnswer();

}

When the virtual machine encounters a call to

getAnswer

, it will expect that
the method has already been successfully coded, compiled, linked, located, and
loaded. JNI does not provide an implicit mechanism such as the class loader ar-
chitecture, so you must manually execute each of these steps.

2. JNI does

not

define a complete mapping from C/C++ names and types back into Java.

5003_06.fm Page 194 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI

195

6.3.1 Name Mappings

JNI defines a specific name mapping from Java method names to C++ library
entry points. For a simple method call, the C++ name should be

Java_

packagename

_

classname

_

methodname

So, a C++ implementation of

getNative

 would have the name

Java_com_develop_UltimateQuestion_getNative

Return and parameter types pose a more complex problem. In Java, the size
of every type is well defined, but in C++ type sizes can vary from platform to
platform. JNI introduces a layer of indirection to deal with this. For every Java
primitive type

foo

, JNI declares a C++ type

jfoo

 in a platform-specific header
file. The platform header uses a

typedef

 to map

jfoo

 to the matching sized
C++ type on that platform. For example, Listing 6–2 shows how JNI handles

int

 on a Win32 platform.

Listing 6–2 Platform-Specific Native Mapping of Java int Type

//from jni.h, located in ${JAVA_HOME}/include

#include "jni_md.h"

//jni_md.h is a platform-specific header file

//this is from the version in ${JAVA_HOME}/include/win32

typedef long jint;

On all platforms, the JNI representation of

int

 will be called

jint

. As you
can see here, the Win32 implementation of

jint

 is simply a

long

. Other plat-
forms might define

jint

differently.

6.3.2 Type Mappings

JNI disposes of language differences in the primitive types with ease. It is
when you look at passing object references between Java and C++ that you
begin to see how different the languages really are. C++ allows arbitrary
pointer indirection, distinguishes between structures and classes,

3

 permits

3. The distinction between the

struct

 and

class

 keywords is minimal: Structures default to
public access while classes default to private. However, structs and classes tend to be used in dif-
ferent ways, and there is no obvious way to capture this in Java.

5003_06.fm Page 195 Tuesday, November 6, 2001 10:33 AM

196

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

multiple inheritance, and supports passing parameters by reference or by
value. Java has no pointers, has no notion of a structure as distinct from a
class, allows only single implementation inheritance, and always passes pa-
rameters by value. These differences cause major problems for any generic
mapping between Java and C++ objects:

• Since Java does not permit multiple inheritance, there is no easy way to rep-
resent an arbitrary C++ class hierarchy in Java.

• Although Java always passes parameters by value, the value that is copied
onto a method stack is a reference to the object. Methods have their own
copy of the reference, but they share access to the referenced object. As a
result, changes made through the reference are visible outside the method.
This is usually desirable for C++ “classes” that encapsulate complex behav-
ior and state, but it may be inappropriate for simple C++ “structs” that are
simply typed collections of data.

4

• If a C++ parameter contains multiple levels of indirection, or if it is used to
return information to the caller, it is often unclear what the corresponding
Java method declaration should look like.

Many of these difficulties stem from the ambiguities permitted by the C++
type system. Consider the following C++ method declarations:

void foo(char** arg);

void bar(void* arg);

Each of these methods has many possible interpretations. The argument to

foo

might be a two-dimensional array of characters, an array of null-terminated
strings, or an address that the method will assign to point to a single null-termi-
nated string. The argument to

bar

 could be anything at all. From a Java per-
spective, the problem is a lack of metadata.

There are many possible solutions to the problem of mapping types be-
tween different languages such as Java and C++. The most complete solutions

4. Remember that the C++ keywords

class

 and

struct

 do not mandate this distinction in
intended usage.

5003_06.fm Page 196 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI

197

supplement the metadata available at the language level with additional meta-
data to resolve ambiguities between language-level type systems. CORBA and
DCOM are examples of this approach; both use an interface definition language
(IDL) to completely describe method types and provide a suite of tools to gen-
erate the appropriate language mappings.

For better or worse, JNI takes a much simpler approach. JNI does not define

any mapping at all

 from C++ types to Java types. JNI defines a complete but
minimalist mapping from Java types to C++ types. Instead of representing Java
objects as C++ classes or structures, JNI maps Java objects to opaque han-
dles, which are declared as type

jobject

 and subclasses. From C++, you can
pass these handles to helper functions implemented by a VM-provided object
called the JNI environment pointer. The JNI environment pointer, typed as

JNIEnv*

, is a C++ vtable of callback functions that allow reflective manipula-
tion of Java objects.

The

jobject

 and

JNIEnv

 types are covered in §6.4. For now, the impor-
tant detail is that every Java native method translates to a C++ method with two
extra arguments: the

JNIEnv*

 for calling back into the VM, and the

jobject

this

 reference for the method. For example, the declaration for the native im-
plementation of the

getAnswer

 method from Listing 6–1 is

JNIEXPORT jint JNICALL

Java_com_develop_UltimateQuestion_getAnswer(JNIEnv*,jclass);

The

int return type in Java has been converted to a C++ jint, as ex-
pected. The Java method declared no arguments, so the C++ implementation
has only the two “extra” arguments mandated by JNI. Note that since the
method was declared static, there is no this and the second argument is a
jclass subtype of jobject, which references the UltimateQuestion
class. Additional arguments, if there had been any, would have followed these
two. The JNIEXPORT and JNICALL macros are platform-specific and are used
to hide the platform-specific details of correctly exporting an entry point that the
VM can link dynamically.

5003_06.fm Page 197 Tuesday, November 6, 2001 10:33 AM

198 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

6.3.3 Overloaded Names
The naming and type-mapping convention described thus far is fine for most
methods, but it breaks down for overloaded methods with the same name. For
such methods, JNI defines an additional name-mangling scheme, whereby the
method parameters are encoded as valid C++ name characters and tacked
onto the end of the method name. For example, consider the following over-
loaded Java methods:

public native void causeConfusion(String arg);

public native void causeConfusion(int[] arg);

For overloaded methods, arguments are encoded in a multistep process:

1. Append a double underbar (__) to the nonoverloaded version of the type
name.

2. Select the type name used internally by the VM, as shown in Table 6–1.

3. Escape any characters that would be illegal in C++ names, using the
escape codes shown in Table 6–2.

Table 6–1 Virtual Machine Type Names

Java Type VM Name

int I

float F

long J

double D

byte B

boolean Z

short S

char C

anytype[] [anytype

somepkg.SomeClass Lsomepkg.SomeClass;

5003_06.fm Page 198 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 199

The correct JNI method declarations for the causeConfusion methods
look like this when wrapped to fit the printed page:

JNIEXPORT void JNICALL

Java_com_develop_UltimateQuestion_causeConfusion__Ljava_lang_Stri

ng_2(JNIEnv *, jobject, jstring);

JNIEXPORT void JNICALL

Java_com_develop_UltimateQuestion_causeConfusion___3I(

JNIEnv *, jobject, jintArray);

This gets ugly fast—they don’t call it name mangling for nothing. Fortu-
nately, you do not need to generate these method declarations by hand. The
Java SDK includes a command-line tool, javah, that extracts the metadata for
the native methods in a list of classes and generates an appropriate header file.
For example, the javah command

javah -d ../cpp com.develop.UltimateQuestion

uses the metadata in the UltimateQuestion class to generate the header file
../cpp/UltimateQuestion.h. To avoid errors when you are linking to na-
tive code, you should always use javah to generate the correct method names.

6.3.4 Loading Native Libraries
The naming conventions, plus the mappings for primitive and object types, solve
the logical problem. The remaining problem is a physical one; that is, where
does the virtual machine look to find implementations of native methods? The
first important point is that there is no association between the native library

Table 6–2 JNI Name Mangling of non-C++ Type Names

Character Mangled Form

_ _1

; _2

[_3

Unicode with hex value XXXX _0XXXX

5003_06.fm Page 199 Tuesday, November 6, 2001 10:33 AM

200 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

name and the methods it contains. It is reasonable and common to implement
Foo’s native methods in a library named Foo. However, it is equally reasonable
to group all native methods for an entire application in a library named App. It is
perverse, but still legal, to place the implementation of Foo’s native methods in
a library named Bar, or to spread them across several libraries. No matter, the
virtual machine will automatically match C++ entry points to Java methods using
the naming conventions described above. The only thing you have to do is call a
JNI load API that loads the requisite native library before a particular native
method is actually invoked.

The lowest-level load API is Runtime.load, which takes a full path to the
shared library. Assuming that you have compiled a C++ implementation of the
UltimateQuestion methods into a d:\shared directory on a Win32 ma-
chine, the Java code in Listing 6–3 would cause the library to be loaded:

Listing 6–3 Linking with Full Paths

//EXAMPLE ONLY. DO NOT USE HARD-CODED PATH NAMES!

public class HardPathClient {

 public static void main(String [] args) {

 UltimateQuestion uq = new UltimateQuestion();

 Runtime.getRuntime.load(

 "d:/shared/UltimateQuestion.dll");

 System.out.println(uq.causeConfusion("babble"));

 }

}

Notice that the call to load occurs after an UltimateQuestion instance
has already been created. Native methods can be loaded at any time: before
loading the associated Java class, while loading the class, or after creating in-
stances of a class. Native methods can even be loaded after a prior attempt to
invoke them throws an error.

Despite its simplicity, the code above is unmaintainable and should be
avoided. The placement of a hard-coded path in the Java source code ties
method loading to a compile-time decision, which is contrary to the spirit of
Java. Avoid Runtime.load.

The preferred approach to loading native code is the System.

loadLibrary method. Although loadLibrary takes a string argument, just

5003_06.fm Page 200 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 201

as Runtime.load does, the argument is interpreted very differently. The string
passed to loadLibrary is a library name, not a full path. In fact, path names and
extensions are illegal in strings passed to loadLibrary. With loadLibrary,
you specify only the short name of the library, and the path to search is controlled
through virtual machine options. In order to make library dependencies more
clear, and to guarantee that native libraries are loaded in time to service native
method calls, you typically place the call to loadLibrary in a static initializer for
the class that declares the native methods, as shown here:

public class UltimateQuestion {

 static { System.loadLibrary("UltimateQuestion"); }

 //as before…

}

This style has several advantages over the approach that used
Runtime.load. Because the native library is loaded in a static initializer of the
declaring class, clients of UltimateQuestion do not have to worry about
loading the native methods. The use of the short form name of the library allows
the virtual machine to apply an appropriate name translation for the current plat-
form, for example, UltimateQuestion.dll for Win32, libUltimateQuestion.so for
UNIX, and so on. Most importantly, the short form name leaves the exact load
path as a runtime configuration issue.

The native library load path is specified by the java.library.path sys-
tem property. You can specify this property yourself on the command line for the
Java launcher, like this:

java –Djava.library.path=../UltimateQuestion/ \

UltimateQuestionClient

If you do not specify a library path, the virtual machine will establish a search
path in a platform-dependent fashion. Currently, on Solaris the Sun virtual ma-
chine uses the value of the environment variable LD_LIBRARY_PATH, and on
Win32 it uses the value of PATH. Do not rely on these environment settings in a
production system. Environment variables are subject to deliberate or accidental
modification by users and other programs; so far, the history of Java has seen a
constant shift away from environment variables and toward explicit arguments to

5003_06.fm Page 201 Tuesday, November 6, 2001 10:33 AM

202 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

the command- line tools. In Java, environment variables are a useful crutch for
beginners, but nothing more. Minimize the potential for confusion by always
specifying the load path on the command line or from a shell script.

6.3.5 Class Loaders and JNI
Native code has a complex relationship with the class loader delegation model.
System.loadLibrary delegates to the current class loader to actually load
the library; the code that analyzes java.library.path actually lives in the
ClassLoader class. Class loaders add three wrinkles to the basic native load-
ing story: the findLibrary method, the sun.boot.library.path option,
and the handling of multiple libraries.

First, a class loader can override the findLibrary method, shown in
Listing 6–4, to augment the normal library search algorithm.

Listing 6–4 The find Library Method

package java.lang;

public class ClassLoader {

 protected String findLibrary(String libname) {

 return null;

 }

 //remainder omitted for clarity

}

If a class loader implementation overrides this method and returns a full path,
then that path is passed to Runtime.load to load the library.

Second, ClassLoader checks another path before consulting java.li-
brary.path. Class loaders first check findLibrary, then the paths listed on
sun.boot.library.path, and only after these checks fail does it resort to
checking java.library.path. Neither findLibrary nor the boot path are
widely used. Most class loaders do not override findLibrary, and
sun.boot.library.path is intended not for loading application libraries, but
for customizing native code used by the virtual machine itself. Use
sun.boot.library.path to specify alternate locations for VM code such as
JIT compilers, and use java.library.path to locate application native code.

5003_06.fm Page 202 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 203

The third, and most important, wrinkle introduced by class loaders is the
treatment of multiple versions of native code. Remember that class loader dele-
gations define namespaces (§2.4.4). Classes loaded by a more senior class
loader are visible to all subordinate class loaders, allowing code to be shared.
Classes loaded by junior class loaders are not visible to each other, thus allow-
ing multiple implementations of the same class to coexist.

Unfortunately, JNI makes a brutal simplification of these delegation rules. In
early versions of Java, native libraries ignore the delegation model and are visi-
ble across all class loaders. This causes problems since two different versions
of a class will get the same native implementations whether they want to or not,
as shown in Figure 6–1.

Versions of the Java SDK from 1.2 onward partially fix this problem by mak-
ing native code visible only to a class loader delegation. This prevents unrelated
classes from accidentally or maliciously linking with the wrong native methods.
However, the specification now says that the same JNI library cannot be loaded
into more than one class loader at any given time (see Figure 6–2). This makes it
difficult to dynamically update classes with native methods. If the class loads its

Figure 6–1 Prior to Java 2, multiple class loaders shared the native cache.

OS process

Virtual machine

Applet
class loader 1

Applet
class loader 2

Shared
native
library
cache

Class Foo

Class Foo

FooLib

5003_06.fm Page 203 Tuesday, November 6, 2001 10:33 AM

204 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

own native methods, then no other class loader can load the same library, at
least not until the first class is garbage collected.

There are three workarounds for JNI’s weak handling of multiple native library
versions:

1. Load native code via a senior class loader (such as the application loader)
that is not involved in hot deployment. The downside is that while the
classes can be updated on-the-fly, the native methods can never change.

2. Always make sure that an old version of a native library gets unloaded. This
requires careful discipline so that a class loader can be garbage collected,
plus a virtual machine with an aggressive, reliable implementation of Sys-
tem.gc and System.runFinalization functionality.

3. Build your own scheme that avoids collisions by incrementing the library
name each time a native library is redeployed.

All of these are gross hacks when compared to the elegance of Java class
loading. The unfortunate truth is that interoperability is a fairly low priority, and
JNI has evolved just enough to (partially) deflect criticism from developers.

Figure 6–2 Post Java 2, each delegation has its own native libraries.

OS process

Virtual machine

Applet
class loader 1

Applet
class loader 2

Class Foo

Class Foo

FooLib

STOP!
until

FooLib1
unloads

5003_06.fm Page 204 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 205

6.3.6 Common Errors Loading Native Libraries
There are several errors associated with loading and linking to native code. The
most basic problem is failing to call loadLibrary before executing a native
method, which leads to a fairly obvious UnsatisfiedLinkError at the point
where you attempt to invoke the method. In Listing 6–5, the ForgetToLoadL-
ibrary class demonstrates this problem:

Listing 6–5 Forgetting to Call loadLibrary

public class ForgetToLoadLibrary {

 public static native void neverLoaded();

 public static void main(String [] args) {

 neverLoaded();

 }

}

>java ForgetToLoadLibrary

>java.lang.UnsatisfiedLinkError: neverLoaded

at ForgetToLoadLibrary.neverLoaded(Native Method)

If loadLibrary fails to find a library file matching the name specified, a dif-
ferent error is thrown at the point of the loadLibrary call, as shown by the
LoadNonExistentLibrary example in Listing 6–6:

Listing 6–6 Loading a Non Existent Library

public class LoadNonExistentLibrary {

 public static native void neverLoaded();

 public static void main(String [] args) {

 System.loadLibrary("DoesNotExist");

 neverLoaded();

 }

}

>java LoadNonExistentLibrary

>java.lang.UnsatisfiedLinkError: no DoesNotExist in

java.library.path

at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1312)

Both of the problems generate an UnsatisfiedLinkError, which is an
unchecked subclass of Error. The javadoc documentation for Error states
that an Error “indicates serious problems that a reasonable application should
not try to catch.” UnsatisfiedLinkError is an obvious exception to this

5003_06.fm Page 205 Tuesday, November 6, 2001 10:33 AM

206 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

rule. It is entirely reasonable to write an application that checks to see if some
native-based service is available and then continues down a different path if the
service cannot be loaded.

A subtler problem occurs if you make one or more successful calls to
loadLibrary, but none of them loads an entry point that matches the signature
of the native method you are calling. This causes the same UnsatisfiedLink-
Error that you saw in Listing 6–5, as shown by the LoadTheWrongLibrary
example in Listing 6–7:

Listing 6–7 Loading the Wrong Library

public class LoadTheWrongLibrary {

 public static native void neverLoaded();

 public static void main(String [] args) {

 //load some unrelated library

 System.loadLibrary("UltimateQuestion");

 neverLoaded();

 }

}

>java –Djava.library.path=UltimateQPath LoadTheWrongLibrary

>java.lang.UnsatisfiedLinkError: neverLoaded

at LoadTheWrongLibrary.neverLoaded(Native Method)

Old symptom, but new problem. The error does not occur until the native
method invocation; this indicates that loadLibrary found a library but not one
that contained the neverLoaded method. There are three likely ways that this
problem can occur, all involving abuse of the javah tool:

1. If you misspell method or type names in the native method declaration, the
JNI naming algorithm will not be able to locate the method. Avoid this prob-
lem by obtaining the declaration from the .h file that javah generates.

2. If you are using a C++ compiler, the compiler may do its own name man-
gling, changing the names to a form that is unrecognizable by the VM. Wrap-
ping your method declarations or implementations in an extern "C"

block prevents this, and #includeing the javah-generated .h file does
this for you automatically.

3. There is a bug in javah’s handling of packages. The native declaration for
a method should include a prefix based on the package name, as shown in

5003_06.fm Page 206 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 207

Listing 6–8. However, javah infers the package structure from the current
directory instead of from the package name. Inexperienced Java program-
mers tend to navigate all the way to a class’s directory before running
javah. Instead of generating an error, javah produces a corrupt .h file
that does not include the package names, as shown in Listing 6–9 below.
Listing 6–8 shows the correct usage.

Listing 6–8 Correct Handling of Package Names

package com.develop;

public class PackageDweller {

 public native void nativeMethod();

}

>cd classes

>javah com.develop.PackageDweller

//excerpt from com_develop_PackageDweller.h

//with correct package names

JNIEXPORT void JNICALL

Java_com_develop_PackageDweller_nativeMethod

(JNIEnv *, jobject);

Listing 6–9 Incorrect Handling of Package Names

>cd classes/com/develop

>javah PackageDweller

//excerpt from PackageDweller.h.

//Note package names missing from method

JNIEXPORT void JNICALL Java_PackageDweller_nativeMethod

(JNIEnv *, jobject);

6.3.7 Troubleshooting Native Loading
There are some tools that can help to diagnose JNI-related bugs. Just as with
class loading, Java provides a debugging flag specific for JNI. The ver-
bose:jni flag tells the runtime to generate (among other things) console output
for every native method loaded. Unfortunately, it does not tell where the method
was loaded from or what files were attempted when a native load fails. It would be
straightforward to write a custom version of java.lang.ClassLoader that

5003_06.fm Page 207 Tuesday, November 6, 2001 10:33 AM

208 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

produces a more complete log of native activity and then install the custom ver-
sion by setting the bootclasspath as described in Chapter 2. Finally, most operat-
ing systems have debugging tools that allow you to monitor both file access and
loading of shared libraries.

Resorting to any of these techniques is probably overkill because native
loading is not nearly as complex as class loading. Now that you are armed with
the short list of problem cases above, you should be able to troubleshoot most
JNI loading problems by inspection.

The process of loading native code is the source of many beginner head-
aches, but it is not terribly complex once you know the basics. The naming and
search process are important, but arbitrary, details. The one place where the
loading process intersects with more significant issues is in the type mappings
between Java objects and jobject handles. This design decision greatly cur-
tails how JNI can be used, and it is covered more thoroughly in §6.4.

6.4 Calling Java from C++
Once you have crossed the boundary into a native method implementation, you
can stay there and do whatever the underlying platform will allow. However, to
do anything significant, you will probably need to call back into the virtual ma-
chine. Any Java object that is passed into native code appears as an opaque
jobject handle, not as a C++ structure or vtable. Therefore, the only way to
access fields or methods on a jobject is to call back into the virtual machine
through the provided JNIEnv pointer. Also, because the jobject type is
opaque at compile time, there is no direct invocation of Java methods or direct
access of Java fields. Instead, the JNIEnv* provides a set of functions similar
to the Field, Method, and Constructor objects in Java reflection.

All JNI access to the virtual machine is reflective. This makes calling back
into the virtual machine both tedious to code and slow to execute. The essence
of good JNI design is to understand the expense of the boundary crossings be-
tween native code and the virtual machine and to minimize them.

As a simple example of the problems at the Java/native boundary, consider
the NativePoint class as shown in Listing 6–10.

5003_06.fm Page 208 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 209

Listing 6–10 The NativePoint Class

public class NativePoint {

 private int x;

 private int y;

 public String toString() {

 return "x= " + x + " y= " + y;

 }

 public void move(int xinc, int yinc) {

 x += xinc;

 y += yinc;

 }

 public native void nativeMove(int xinc, int yinc);

}

In order to implement the nativeMove method, you must access the Native-
Point class, use reflection to discover fields x and y, then use reflective ac-
cess to extract the old value of each field, and then use reflective access to set
the new value of each field. In total, this requires seven trips from native code
back into the virtual machine, as shown here in Listing 6–11.

Listing 6–11 A Simple Native Method Implementation

//error handling omitted for brevity

JNIEXPORT void JNICALL Java_NativePoint_nativeMove

 (JNIEnv *pEnv, jobject obj, jint xinc, jint yinc)

{

 jclass cls = pEnv->GetObjectClass(obj);

 jfieldID fldX = pEnv->GetFieldID(cls, "x", "I");

 jfieldID fldY = pEnv->GetFieldID(cls, "y", "I");

 int x = pEnv->GetIntField(obj, fldX);

 int y = pEnv->GetIntField(obj, fldY);

 pEnv->SetIntField(obj, fldX, x + xinc);

 pEnv->SetIntField(obj, fldY, y + yinc);

}

If you allow for the omnipresent JNIEnv* and for stylistic differences be-
tween C++ and Java, this code looks very similar to reflective access code
written in Java. This example shows manipulation of integer fields; all the
other primitive types have similar methods as summarized in Listing 6–12.

5003_06.fm Page 209 Tuesday, November 6, 2001 10:33 AM

210 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

For field access, there are only three substantive differences between JNI and
Java reflection:

1. The GetFieldID method takes an extra parameter that specifies the type
of field. The type must be specified using the virtual machine’s internal nam-
ing scheme, as shown in Table 6–1 earlier in this chapter.

2. All the handle types in the jobject family have special lifetime constraints
dictated by the needs of the garbage collector. Unless otherwise noted, JNI
references to Java objects are method local and thread local. The reasons
for this are discussed in more detail under §6.6.

3. JNI does not make the distinction between public and nonpublic fields
implied by reflection’s getField and getDeclaredField methods. JNI-
style reflection ignores language-level protections at all times.

Listing 6–12 JNI APIs for Field Access

struct JNIEnv {

//introspection:

jfieldID GetFieldID(jclass clazz, const char *name,

 const char *sig);

jfieldID GetStaticFieldID(jclass clazz, const char *name,

 const char *sig);

//access: in the following declarations, replace type with

//object, int, float, long, double, boolean, short, byte, char

jtype GetTypeField(jobject obj, jfieldID fieldID);

void SetTypeField(jobject obj, jfieldID fieldID, jtype val);

jtype GetStaticTypeField(jclass clazz, jfieldID fieldID);

void

SetStaticTypeField(jclass clazz, jfieldID fieldID,jtype val);

//remainder omitted for clarity

};

The C++ implementation of nativeMove is much more tedious and error-
prone to write than the Java implementation of move, which does essentially the
same task. However, C++ programmers are expert in using macros to hide
such tedium, so in the long run, this might not be a significant issue.

More important is the performance penalty for making so many crossings
back into the virtual machine. In a simple test, the move method took approxi-
mately 40 nsec, while the nativeMove method took 5,000 nsec, which is over

5003_06.fm Page 210 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 211

100 times slower. For comparison, you can run the same test on your own con-
figuration using the TimePoint and TimeNativePoint classes included on
the website for this book [Hal01]. The relative numbers can vary widely depend-
ing on your virtual machine and hardware, but the native method should always
be slower.

There are two conclusions to be drawn from this result. First, you should not
use JNI to try to speed up small-grained methods. Even if your C++ implementa-
tion of an algorithm runs faster than the same algorithm in Java, the overhead of
crossing the JNI boundary will overwhelm any language difference for small
methods. Second, you should write your code to minimize the number of round
trips from Java to native code.

6.4.1 Minimizing Round Trips
Look back at the implementation of nativeMove from Listing 6–11, and you
will see that the last four method calls are unavoidable. However, the jfieldID
values are valid for the lifetime of a class, so these values can and should be
precalculated. As of SDK 1.2, JNI provides the perfect hook for this, via the
JNI_OnLoad method. Listing 6–13 demonstrates an improved nativeMove
implementation that precalculates the jfieldIDs when the library is loaded.

Listing 6–13 Improving JNI Performance by Precalculating jfieldIDs

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* vm, void* reserved) {

 JNIEnv* pEnv;

 if (JNI_OK != vm->GetEnv((void **)&pEnv, JNI_VERSION_1_2))

 {

 return JNI_EVERSION;

 }

 jclass cls = pEnv->FindClass("NativePoint");

 s_fldX = pEnv->GetFieldID(cls, "x", "I");

 s_fldY = pEnv->GetFieldID(cls, "y", "I");

 return JNI_VERSION_1_2;

}

JNIEXPORT void JNICALL Java_NativePoint_nativeMove

 (JNIEnv *pEnv, jobject obj, jint xinc, jint yinc)

{ //use the fieldIDs precalculated in JNI_OnLoad

 int x = pEnv->GetIntField(obj, s_fldX);

 int y = pEnv->GetIntField(obj, s_fldY);

5003_06.fm Page 211 Tuesday, November 6, 2001 10:33 AM

212 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 pEnv->SetIntField(obj, s_fldX, x + xinc);

 pEnv->SetIntField(obj, s_fldY, y + yinc);

}

The documented purpose of JNI_OnLoad is to return the version of JNI that
the library expects, in this case JNI_VERSION_1_2. The method also provides
a perfect place to cache values that will be useful for the lifetime of the library,
such as jfieldIDs. On my test machine, this new version of nativeMove is
five times faster than the original (but still twenty times slower than the all-Java
move method).

Given this performance disparity, you will probably only use JNI for tasks that
are simply impossible to perform in Java. For example, imagine that the Na-
tivePoint class actually controls the location of a robot on a grid. The custom
software for controlling the object is only exposed as a C-style API, so you can-
not move the robot directly from Java. Listing 6–14 shows a version of na-
tiveMove that could be used to move the robot.

Listing 6–14 Using JNI to Call a C-Style API

static jmethodID s_methMove;

//stubbed-out robot API

void moveRobot(int xinc, int yinc) {

}

JNIEXPORT void JNICALL Java_NativePoint_nativeMove

 (JNIEnv *pEnv, jobject obj, jint xinc, jint yinc)

{

 moveRobot(xinc, yinc);

 pEnv->CallVoidMethod(obj, s_methMove, xinc, yinc);

}

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* vm, void* reserved) {

 JNIEnv* pEnv;

 if (JNI_OK != vm->GetEnv((void **)&pEnv, JNI_VERSION_1_2)) {

 return JNI_EVERSION;

 }

 jclass cls = pEnv->FindClass("NativePoint");

 s_methMove = pEnv->GetMethodID(cls, "move", "(II)V");

 return JNI_VERSION_1_2;

}

5003_06.fm Page 212 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 213

There are several new things transpiring here. Notice that instead of calling
back into the virtual machine four times to get and set x and y, the native-
Point implementation is simply leveraging the Java implementation of move.
Just as with field access, JNI method access looks very similar to reflection. The
GetMethodID method returns a jmethodID, which should be cached just as
jfieldIDs are. The CallVoidMethod callback is used to invoke the method,
and it is one of a large family of similarly named methods that vary by the return
type and by the C++ notation for passing an unknown number of arguments (see
Listing 6–15).

Listing 6–15 JNI APIs for Method Access

struct JNIEnv {

//introspection:

jmethodID GetMethodID

 (jclass clazz, const char *name, const char *sig);

jmethodID GetStaticMethodID

 (jclass clazz, const char *name, const char *sig);

//access: Replace type with one of object, int, short, long,

//float, double, boolean, char, int, or void

//(exception to the rule: there is no jvoid, just void)

//three types of each method, for different C/C++ styles

//of passing multiple arguments.

jtype CallTypeMethod(jobject obj, jmethodID methodID, ...);

jtype CallTypeMethodV

 (jobject obj, jmethodID methodID, va_list args);

jtype CallTypeMethodA

 (jobject obj, jmethodID methodID, jvalue * args);

jtype CallStaticTypeMethod(jclass c, jmethodID mid, ...);

jtype CallStaticTypeMethodV

 (jclass c, jmethodID mid, va_list args);

jtype CallStaticTypeMethodA

 (jclass c, jmethodID mid, jvalue * args);

jtype CallNonvirtualTypeMethod(jclass c, jmethodID mid, ...);

jtype CallNonvirtualTypeMethodV

 (jclass c, jmethodID mid, va_list args);

jtype CallNonvirtualTypeMethodA

 (jclass c, jmethodID mid, jvalue *args);

5003_06.fm Page 213 Tuesday, November 6, 2001 10:33 AM

214 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

6.4.2 Performance Comparisons
Table 6–3 summarizes the performance of the various examples shown previ-
ously in this chapter. The tests were run on a 1.3 HotSpot VM. Beware that dif-
ferent VMs will have radically different characteristics. If you are using JNI in a
performance-sensitive application, you will need to profile your code separately
for each target VM.

These numbers contain a surprise: Using the move method turns out to be
slower (7000 nsec) than crossing the JNI boundary four times and manipulating
the fields directly (1000 nsec). So, in this particular test case, calling a method
back in the virtual machine was more expensive than accomplishing the same
thing by four reflective field accesses. You might still choose the callback
method since it is cleaner and requires less native code.

In many cases the performance variations may not matter at all. For exam-
ple, if it takes a millisecond to move the robot, then moving the robot will dwarf
all the JNI implementation differences. Even if you do care about performance
differences in the microsecond range, you should take these results with a large
cube of salt. The performance of various JNI services will vary dramatically
across virtual machines.

6.4.3 Differences between JNI and Reflective Invocation
Although JNI method invocation and reflective method invocation are similar,
there are a few differences. First, JNI invocation never needs special permission
to access private or protected class members; there is no JNI equivalent to

Table 6–3 Performance of NativePoint Implementation Strategies

Implementation Time (nsec)

Java move implementation 40

nativeMove, no caching 5000

nativeMove, cached jfieldIDs 1000

nativeMove, cached jmethodIDs 7000

5003_06.fm Page 214 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 215

reflection’s AccessibleObject class. JNI code has complete access to all
class members, regardless of Java access modifiers.

JNI’s lax rules for reflection are reasonable when you remember that the vir-
tual machine has no real control over native code anyway. If you introduce native
code into your process space, that code can do anything. Once allowed inside
the native boundary, a determined hacker can bypass any defense the virtual
machine might mount, so respecting access modifiers within JNI would provide
only a false sense of security.

A second difference between JNI invocation and reflective invocation is that
JNI does not have to respect virtual methods. In Java code, a method is either vir-
tual or it is not. Private, static, and some final methods are not virtual; all other
methods are virtual.5 This is true both of direct invocation and reflection. There is
no way in the Java language to bypass these rules, although you can chain back
up to the immediate base class implementation with the super keyword. In JNI,
you can choose to ignore the virtualness of a method. For every normal JNI invo-
cation API, there is a corresponding nonvirtual invocation call that resolves to the
exact class used to get the jmethodID, as shown in Listing 6–16.

Listing 6–16 Virtual and Nonvirtual Invocation

jclass cls = pEnv->FindClass("NativePoint");

jmethodID mid = pEnv->GetMethodID(cls, "move", "(II)V");

//normal virtual call

pEnv->CallVoidMethod(obj, s_methMove, xinc, yinc);

//this will always call NativePoint's method, even on a

//subclass instance that overrides the method

pEnv->CallNonvirtualVoidMethod(obj, s_methMove, xinc, yinc);

It is difficult to imagine a use of this feature that is not a hack, in the disparaging
sense of the term. Bypassing Java’s notion of virtual methods could violate the
expectations of a derived class, leading to arcane bugs. Because of this, you
should avoid the Nonvirtual forms wherever possible.

5. Of course, a clever virtual machine implementation such as HotSpot can treat a virtual method
as nonvirtual if there is only one implementation of the method currently visible. However, this is a
performance optimization that would have to be undone if another class’s implementation of that vir-
tual method ever did get loaded.

5003_06.fm Page 215 Tuesday, November 6, 2001 10:33 AM

216 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Most JNI code manipulates the fields and methods of existing instances. JNI
also provides functions to manipulate class loaders and create new instances,
similar to the services of the java.lang.ClassLoader and java.lang.
reflect.Constructor classes. The most important class loader and con-
struction functions are summarized in Listing 6–17.

Listing 6–17 JNI Class Loader and Construction Functions

struct JNIEnv {

jclass DefineClass(const char *name, jobject loader,

 const jbyte *buf, jsize len);

jclass FindClass(const char *name);

//plug in primitive type names to generate array API decls:

jtypeArray NewTypeArray(jsize len);

jobject NewObject(jclass clazz, jmethodID methodID, ...);

jobject AllocObject(jclass clazz);

//remainder omitted for clarity

}

DefineClass is equivalent to ClassLoader.defineClass. Find-
Class is similar to Class.forName, and it will find any class visible to the sys-
tem class loader. The array constructor methods are straightforward, taking the
form NewTypeArray, where Type is replaced by the name of a primitive or by
object. NewObject is similar to Constructor.newInstance.

Notice that NewObject borrows the jmethodID from JNI method invoca-
tion; there is no distinct jconstructorID type. In order to find the correct
jmethodID for a constructor, use the JNI method APIs plus the virtual ma-
chine’s internal name for a constructor, which is <init>, and a phony return
type of void. For example, to call a constructor for NativePoint that takes
two int arguments you would use the syntax shown in Listing 6–18.

Listing 6–18 Calling a Java Constructor from Native Code

jmethodID cons = pEnv->GetMethodID(clsNativePoint,

 "<init>", "(II)V");

pEnv->NewObject(clsNativePoint, cons, 10, 10);

The only JNI object construction method with no counterpart in the Java world
is AllocObject. AllocObject creates a Java instance without invoking any

5003_06.fm Page 216 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 217

constructor. This is a very dangerous trick, and it is impossible to do in pure Java
code. Most objects rely on constructors to reach an initial valid state. By bypass-
ing the constructor, you risk causing malformed objects that will cause bizarre
bugs later on. However, this trick has its uses. If you are re-creating an object
from a serialization stream or from some other persistence format, it can be
more efficient to skip constructors entirely. The object’s state is known to be safe
because the object was in a valid state when it was serialized.6 The Java serializa-
tion architecture uses constructorless instantiation to avoid the onerous require-
ment that all serializable objects have a default constructor. See §4.2.2 for
details.

6.5 Error Handling in JNI
When two programming platforms meet, you have to deal with all the idiosyncra-
sies of both. In JNI, this is most obvious when you are dealing with errors and
failures. There are at least four distinct issues to consider:

1. What happens to the virtual machine when native code fails?

2. How should JNI code deal with C++ exceptions?

3. How should JNI code deal with Java exceptions?

4. How should JNI code communicate errors back to the VM?

The answer to each of these questions stems from a single principle: Well-written
JNI code should preserve the appearance of Java, even when native code fails. In
other words, problems should only reach the virtual machine in the form of Java
exceptions.

6.5.1 Failures in Native Code
The first issue, failures in native code, is important because C and C++ intro-
duce many risks not present in Java code. Most of these risks are caused by us-
ing pointers incorrectly. If native code inadvertently addresses the wrong
memory locations, there are several possible outcomes. The process may fault
and immediately be destroyed by the operating system or the hardware. Or,

6. Of course, this assumes that the stream format was not accidentally or maliciously corrupted.
See Chapter 4 for details on dealing with this problem.

5003_06.fm Page 217 Tuesday, November 6, 2001 10:33 AM

218 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

data may be silently corrupted, causing the virtual machine or operating system
to fail mysteriously later. Worse, data may be silently corrupted while everything
appears to be normal. JNI cannot protect you from any of these problems; all
you can do is write and test native code with extra caution.

One surprising aspect of this danger is that the virtual machine itself is ex-
posed to you as native code, through the JavaVM and JNIEnv pointers. Nor-
mally you access the virtual machine’s services through Java, with well-defined
guarantees that code will either succeed or throw a well-known exception. Not
so with the JNIEnv and JavaVM pointers. With these, if you pass incorrect ar-
guments to any JNI functions, the results are not defined and are likely to be cat-
astrophic. For example, an invalid jobject handle might cause the following
output from the HotSpot VM:

HotSpot Virtual Machine Error, EXCEPTION_ACCESS_VIOLATION

Please report this error at

http://java.sun.com/cgi-bin/bugreport.cgi

#

Error ID: 4F533F57494E13120E43505002D4

If you are doing JNI work, do not rush to report messages like this one as bugs
against HotSpot—the bugs are almost certainly yours.

6.5.2 Handling C++ Exceptions
The second issue is how to handle C++ exceptions in JNI code. From a pro-
grammer’s perspective, it would be nice if C++ exceptions were automatically
converted into Java exceptions. However, the JNI architecture makes no attempt
to derive Java representations for arbitrary C++ objects, so there is no obvious
mapping from a C++ exception to a Java exception. Even if there were, there is
another problem. While Java is a language and a binary standard, C++ is only a
language standard. This means that different C++ compilers can (and do) imple-
ment exceptions in slightly different ways.

The lack of a binary standard for C++ exceptions makes it impossible for
the Java language to have a one-size-fits-all C++ exception catcher. If Java
wanted to catch all C++ exceptions at the native boundary, then JNI would have
to include exception-handling code that was rebuilt for each compiler. Rather

5003_06.fm Page 218 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 219

than face this complexity, JNI simply disallows throwing C++ exceptions across
the C++/Java boundary. Disregard this warning at your peril; the behavior of a
C++ exception inside the virtual machine is undefined. If a JNI method might en-
counter a C++ exception, you should catch that exception in native code to pre-
vent it from destroying the virtual machine. In practice, this means you need a
top-level catch block for every JNI method.

6.5.3 Handling Java Exceptions from Native Code
The third issue is dealing with Java exceptions that occur while you are in native
code. Unless documented otherwise, any JNIEnv function can trigger a Java
exception. Of course, you will not see the exception directly because there is no
mapping from Java exceptions into C++ exceptions. There are two ways to de-
tect that an exception has occurred. With some JNIEnv functions, you can infer
an error from the return value. For example, FindClass will return zero if the
class cannot be found. Other methods, such as CallVoidMethod, do not have
a return value that can be used to indicate an exception. For these, you must call
ExceptionOccurred or ExceptionCheck to detect an exception, as shown
in Listing 6–19.

Listing 6–19 Detecting a Pending Exception in JNI

pEnv->CallVoidMethod(obj, s_methMove, xinc, yinc);

//option 1. get the jobject that represents the exception

jthrowable exc;

if (NULL != (exc = pEnv->ExceptionOccurred())) {

 //run about, scream, and shout…

}

//option 2. peek to see if the exception is pending

if (JNI_TRUE == pEnv->ExceptionCheck()) {

 //more running about…

}

The ExceptionOccurred call returns a jthrowable if an exception is
pending, or zero if it is not. Because jthrowable is a subtype of jobject,
you can manipulate it from JNI just as you would any other Java object; for exam-
ple, you can reflectively discover and use its fields and methods.

5003_06.fm Page 219 Tuesday, November 6, 2001 10:33 AM

220 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

When an exception occurs in JNI you have two choices: Either handle the ex-
ception from native code, or clean up and get out. If you choose to handle the
exception, it is just as if you used a catch block in Java code. The exception is
vanquished and execution on the thread can continue. Since JNI provides no
C++ mapping of a Java catch block, you must handle exceptions using another
API call, ExceptionClear:

if (0 != (exc = pEnv->ExceptionOccurred())) {

 pEnv->ExceptionClear();

}

If you do not handle an exception with ExceptionClear, you cannot continue
to use the virtual machine from that thread. You must free any resources you
need to free, and then exit the native method.

If you do not intend to handle an exception anyway, there is no need to get a
local reference to it. If this is the case, the ExceptionCheck method is an in-
expensive shortcut for ExceptionOccurred that does not return the excep-
tion itself. When a native method ends with a Java exception pending, the virtual
machine discovers the exception and propagates it to the caller of the native
method.

If you attempt to continue calling into the virtual machine while an exception
is pending, the behavior is undefined.7 Unfortunately, this leads to very cluttered
code, with every JNIEnv call immediately followed by a check that no exception
is pending, plus associated cleanup and recovery code if necessary, as seen in
Listing 6–20.

Listing 6–20 Error-Safe Version of JNI_OnLoad

//Every JNIEnv* call is checked before continuing.

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* vm, void* reserved)

{

 JNIEnv* pEnv;

 if (JNI_OK != vm->GetEnv((void **)&pEnv, JNI_VERSION_1_2))

 {

7. If “undefined behavior” is starting to sound like a mantra, that is because it is one. A great
achievement of Java is how many of its behaviors are well defined, even when problems occur.
Because JNI is native code, it cannot guarantee well-defined behavior.

5003_06.fm Page 220 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 221

 return JNI_EVERSION;

 }

 jclass cls;

 if (NULL == (cls = pEnv->FindClass("NativePoint")))

 return JNI_EVERSION;

 if (NULL == (s_fldX = pEnv->GetFieldID(cls, "x", "I")))

 return JNI_EVERSION;

 if (NULL == (s_fldY = pEnv->GetFieldID(cls, "y", "I")))

 return JNI_EVERSION;

 return JNI_VERSION_1_2;

}

This is substantially more cluttered than the previous version, and frankly,
this example still understates the general problem. All of the method calls above
indicate failure by their return value, which is a little easier than calling Excep-
tionOccurred or ExceptionCheck. Also, this particular method required no
cleanup in case of partial failure. A more complex JNI method would be even
more cluttered with cleanup code.

The irony here is that this is the exact problem exceptions were designed to
solve. JNI does not use C++ exceptions for simplicity and for backward com-
patibility with C. However, there is nothing preventing you from using C++ ex-
ceptions yourself, so long as you never let them propagate back into the virtual
machine. The website for this book [Hal01] includes the JNIEnvUtil class,
which is a plug-compatible subclass of JNIEnv that automates the process of
converting a Java error into a C++ exception. For every JNI call that might fail,
the JNIEnvUtil class calls back to ExceptionOccurred and then throws a
C++ exception. For example, CallVoidMethodA looks like Listing 6–21.

Listing 6–21 JNIEnvUtil

struct JNIEnvUtil : public JNIEnv {

 void CallVoidMethodA(jobject obj, jmethodID methodID,

 jvalue * args) {

 JNIEnv::CallVoidMethodA(obj,methodID,args);

 if (ExceptionOccurred()) {

 throw JNIException();

 }

 }

 //remainder omitted for clarity

}

5003_06.fm Page 221 Tuesday, November 6, 2001 10:33 AM

222 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

The use of C++ exceptions allows you to structure your JNI code without
worrying about virtual machine exceptions. If you were using JNIEnvUtil, the
JNI_OnLoad method would look like Listing 6–22.

Listing 6–22 Using JNIEnvUtil

//JNIEnv replaced by JNIEnvUtil

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* vm, void* reserved)

{

 JNIEnvUtil* pEnv;

 if (JNI_OK != vm->GetEnv((void**)&pEnv, JNI_VERSION_1_2)){

 return JNI_EVERSION;

 }

 try {

 jclass cls = pEnv->FindClass("NativePoint");

 s_fldX = pEnv->GetFieldID(cls, "x", "I");

 s_fldY = pEnv->GetFieldID(cls, "y", "I");

 return JNI_VERSION_1_2;

 }

 catch(const JNIException& exc) {

 //no need to "throw" anything, Java exception is pending

 return JNI_EVERSION;

 }

}

The code structure inside the try block is linear and easy to understand. Of
course, this example assumes that the only reaction to a Java exception is to im-
mediately return, allowing the exception to propagate back to the caller of the
native method. More sophisticated use of C++ exceptions is possible; the
JNIEnvUtil class simply provides a starting point. Regardless of what helper
classes or macros you use to simplify JNI programming, there are two critical
things to remember: Always handle Java exceptions before continuing to call
through the JNIEnv pointer, and never allow C++ exceptions back into the vir-
tual machine.

6.5.4 Throwing Java Exceptions from Native Code
The last and smallest piece of the error-handling story is throwing your own ex-
ceptions back into the virtual machine. This is a simple matter. The JNIEnv

5003_06.fm Page 222 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 223

class includes helper functions that allow you to manually set the pending excep-
tion for the current virtual machine thread (as seen in Listing 6–23).

Listing 6–23 Throwing Java exceptions from Native Code Struct JNIEnv

struct JNIEnv {

 jint Throw(jthrowable obj);

 jint ThrowNew(jclass clazz, const char* msg);

}; //remainder omitted for clarity

The Throw method sets a pending exception object, which you either
caught earlier or created from scratch using the JNI construction APIs. The
ThrowNew method is a shortcut that instantiates a pending exception and calls
its single argument String constructor. You should use these methods in the
same situations that you would choose a throw statement in ordinary Java
code. Just remember that after you set a pending exception, you should do no
more work with the JNIEnv before returning, unless you first handle the excep-
tion by calling ExceptionClear.

6.6 Resource Management
One of the most obvious differences between Java and C++ is the model for
managing resources. In Java, you simply drop references to unused objects and
trust the garbage collector to reclaim memory when necessary. In C++, you typ-
ically take explicit control of resource deallocation. The JNI boundary must pro-
vide a sensible mapping between these two programming styles. There are four
interesting cases to consider:

1. How does native code communicate with the garbage collector to manage
the lifetime of Java objects?

2. How does Java code manage the lifetime of native objects?

3. How does JNI handle arrays?

4. How does JNI handle strings?

Arrays are a special case because Java accesses and stores arrays in a way that
is not necessarily compatible with the pointer-based access used in C++. Strings
are a special case because Java usually uses the two-byte Unicode format for
strings, while much existing C/C++ code uses one-byte ASCII or ANSI format.

5003_06.fm Page 223 Tuesday, November 6, 2001 10:33 AM

224 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

6.6.1 Interacting with the Garbage Collector
The first problem has to do with the management of Java objects from native
code. In Java, the virtual machine keeps track of all object references for you.
When you compile an assignment statement in Java, it translates to a bytecode
that the virtual machine recognizes as an assignment statement. However, the
virtual machine has no way to recognize assignment statements that execute in
native code. If you assign a jobject reference to another variable, the garbage
collector will not know about the new reference, and it may relocate or reclaim
the object. Listing 6–24 shows a dangerous assignment.

Listing 6–24 A Dangerous Assignment

static jobject rememberedPoint;

JNIEXPORT void JNICALL Java_NativePoint_nativeMove

 (JNIEnv *pEnv, jobject obj, jint xinc, jint yinc)

{

 rememberedPoint = obj; //BAD: GC MAY MOVE OR RECLAIM obj

}

You cannot simply store a jobject reference for use later. Unless specifically
documented otherwise, jobject references in JNI are local references. Local
references are only valid until a JNI method returns back to Java, and then only
on the thread they rode in on.

The limited lifetime of local references is convenient for the garbage collec-
tor. When the virtual machine creates the argument stack for a JNI method, it
marks each jobject as “currently in a native method,” preventing garbage col-
lection from touching the object until the native method returns. After the
method returns, the garbage collector is free to treat the object by its normal
rules, reclaiming it if it is not referenced elsewhere.

Local reference lifetime is also convenient for JNI programmers because
there is nothing for them to do. As long as you are content to use only the job-
jects passed into the current method, you do not have to worry about explicit
resource management. If you want to hold onto jobject references for longer
periods of time, you must use the global reference APIs.

Global references give native code the ability to mark an object reference
as “in use until further notice,” thus disabling the garbage collector’s ability to
reclaim the object. To create a global reference, you call NewGlobalRef; to

5003_06.fm Page 224 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 225

delete a global reference, you call DeleteGlobalRef. Use global references
to cache objects that you need to use later, in a different method invocation
and/or on a different thread. Listing 6–25 demonstrates using a global refer-
ence to cache a class object that will be used to throw an exception.

Listing 6–25 Using Global References

static jfieldID s_fldX;

static jfieldID s_fldY;

static jclass clsIllegalArgExc;

JNIEXPORT void JNICALL Java_NativePoint_nativeMove

 (JNIEnv *pEnv, jobject obj, jint xinc, jint yinc)

{

 if ((xinc < 0) || (yinc < 0)) {

 pEnv->ThrowNew(clsIllegalArgExc, "increment less than zero");

 }

 int x = pEnv->GetIntField(obj, s_fldX);

 int y = pEnv->GetIntField(obj, s_fldY);

 pEnv->SetIntField(obj, s_fldX, x + xinc);

 pEnv->SetIntField(obj, s_fldY, y + yinc);

}

JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* vm, void* reserved)

{

 JNIEnv* pEnv;

 if (JNI_OK != vm->GetEnv((void **)&pEnv, JNI_VERSION_1_2))

 {

 return JNI_EVERSION;

 }

 jclass cls = pEnv->FindClass("NativePoint");

 s_fldX = pEnv->GetFieldID(cls, "x", "I");

 s_fldY = pEnv->GetFieldID(cls, "y", "I");

 jclass temp = pEnv->FindClass(

 "java/lang/IllegalArgumentException");

 clsIllegalArgExc = (jclass) pEnv->NewGlobalRef(temp);

 pEnv->DeleteLocalRef(temp);

 return JNI_VERSION_1_2;

}

JNIEXPORT void JNICALL JNI_OnUnload(JavaVM* vm, void* reserved) {

 JNIEnv* pEnv;

 if (JNI_OK != vm->GetEnv((void **)&pEnv, JNI_VERSION_1_2))

 {

 return;

 }

 pEnv->DeleteGlobalRef(clsIllegalArgExc);

}

5003_06.fm Page 225 Tuesday, November 6, 2001 10:33 AM

226 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 6–25 is similar to previous versions of NativePoint, except that
this time around only positive movements are allowed; negative movements trig-
ger an IllegalArgumentException. The JNI_OnLoad function calls
FindClass to get the jclass reference for the java.lang.IllegalArgu-
mentException class. However, the return value of FindClass is a local ref-
erence (remember that all JNI references are local unless explicitly documented
otherwise). In order to safely cache the jclass reference for use later, you
must call NewGlobalRef and cache the resulting global reference instead.
When and if the native library is about to be unloaded, the JNI_OnUnload
method will call DeleteGlobalRef to renounce its hold on the class object.

Managing global references is tricky because they add the complexities of
C++ explicit memory management to Java references. In larger projects, it can
be very difficult to identify where and when global references should be re-
leased. In fact, it can even be difficult to distinguish global from local references!
Notice that global and local references both have the same static types, such as
jobject, jclass, and so on. This means that the compiler cannot distinguish
reference types. If you call DeleteGlobalRef on a local reference, the results
are undefined. There is no silver bullet for these problems. However, they are
standard fare for C++ developers, so at least writing JNI code is not substan-
tially more difficult than any other kind of C++ programming.

Note that Listing 6–25 also includes a call to DeleteLocalRef. Local ref-
erences expire at the end of the native method anyway, so DeleteLocalRef is
not mandatory. However, there are two reasons that you might want to consider
calling DeleteLocalRef as soon as you know that a reference is no longer
needed by native code. First, the virtual machine may allocate only a limited
number of local reference slots; by default only 16 are guaranteed to be avail-
able. By calling DeleteLocalRef, you give yourself the ability to do things
such as iterating over large object arrays without exceeding the local capacity at
any given time.

The second reason to call DeleteLocalRef is to guarantee that resources
are reclaimed in a timely manner. While the JNI specification claims that local ref-
erences are invalidated at the end of a native method, the virtual machine is not

5003_06.fm Page 226 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 227

always aggressive in reclaiming these references. Some virtual machines may
not reclaim any local references until there are no native methods active on a
thread, as shown in Figure 6–3.

It is very important to call DeleteLocalRef when you are writing helper
functions that may be called from other native methods because you have no
idea how many reference slots will be available when the function executes. Ex-
peditiously calling DeleteLocalRef can cause dramatic performance im-
provements in some situations. Of course, this advice depends on JNI
implementation details, which can vary from one virtual machine to another. Al-
ways profile your code to be sure.

If you need more than the default 16 local references, the SDK 1.2 version
of JNI provides APIs for reserving additional capacity and for allocating addi-
tional references, as shown in Listing 6–26.

Figure 6–3 Local references freed after native outermost call returns

Local refs

Methods

Time

(Freed)

Refs may not be freed until outermost native method A returns.

Java code Native code

Call A

Call B

C

D

Return from B

Return from A

5003_06.fm Page 227 Tuesday, November 6, 2001 10:33 AM

228 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 6–26 JNI Local Reference APIs

struct JNIEnv {

 jint EnsureLocalCapacity(jint capacity);

 jobject NewLocalRef(jobject ref);

 //remainder omitted for clarity

};

You can call EnsureLocalCapacity at any time to set aside storage for a
number of local references, which you can later use with any API that returns a
new local reference, such as NewLocalRef. EnsureLocalCapacity returns
zero to indicate success; otherwise, it returns a negative number and sets a pend-
ing OutOfMemoryError. Listing 6–27 shows how you can use EnsureLocal-
Capacity to set aside enough local reference slots to process an entire array.

Listing 6–27 Using EnsureLocalCapacity

JNIEXPORT jobject JNICALL Java_NativePoint_findBestMatch

 (JNIEnv* pEnv, jobject pt, jobjectArray ptArray)

{

 jsize size = pEnv->GetArrayLength(ptArray);

 pEnv->EnsureLocalCapacity(size);

 jobject* pts = new jobject[size];

 int n;

 for (n=0; n<size; n++) {

pts[n] = pEnv->GetObjectArrayElement(ptArray, n);

 }

 int xSearch = pEnv->GetIntField(pt, s_fldX);

 jobject result;

 for (n=0; n<size; n++) {

jobject objCur = pts[n];

 int xCur = pEnv->GetIntField(objCur, s_fldX);

 if (xCur == xSearch) {

 result = pEnv->NewLocalRef(objCur);

 break;

}

 }

 for (n=0; n<size; n++) {

pEnv->DeleteLocalRef(pts[n]);

 }

 delete [] pts;

 return result;

}

5003_06.fm Page 228 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 229

The findBestMatch method first guarantees that is has enough local ref-
erences with EnsureLocalCapacity, then it extracts all the jobjects into
an array, and then it scans that array looking for the NativePoint with the ex-
act same x coordinate as the pt reference, a.k.a. this. To reclaim references
as quickly as possible, the method loops over the array again, calling Delete-
LocalRef. Note that this example did not strictly require EnsureLocalCa-
pacity. This particular array traversal could have been done one local
reference at a time, but more complex traversals might require simultaneous ac-
cess to several elements.

If you are working with a block of references that will all go out of scope to-
gether, it is more convenient to use the PushLocalFrame and PopLocal-
Frame APIs shown in Listing 6–28.

Listing 6–28 Managing Reference Frames

struct JNIEnv {

 jint PushLocalFrame(jint capacity);

 jobject PopLocalFrame(jobject result);

 //remainder omitted for clarity

};

PushLocalFrame creates a new frame, and the next capacity refer-
ences will belong to it. Similar to EnsureLocalCapacity, PushLocalFrame
either returns zero on success, or it returns a negative number and sets a pend-
ing OutOfMemory error on failure. These references can then all be released in
one motion with PopLocalFrame, which also allows one reference to be kept
alive as a logical return value for the frame. These APIs make the findBest-
Match method much cleaner, as shown in Listing 6–29.

Listing 6–29 Using Reference Frames

JNIEXPORT jobject JNICALL Java_NativePoint_findBestMatch

 (JNIEnv* pEnv, jobject pt, jobjectArray ptArray)

{

 jsize size = pEnv->GetArrayLength(ptArray);

 pEnv->PushLocalFrame(size);

 jobject* pts = new jobject[size];

 int n;

 for (n=0; n<size; n++) {

5003_06.fm Page 229 Tuesday, November 6, 2001 10:33 AM

230 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

pts[n] = pEnv->GetObjectArrayElement(ptArray, n);

 }

 int xSearch = pEnv->GetIntField(pt, s_fldX);

 jobject result;

 for (n=size-1; n>=0; n--) {

jobject objCur = pts[n];

 int xCur = pEnv->GetIntField(objCur, s_fldX);

 if (xCur == xSearch) {

 result = pEnv->PopLocalFrame(objCur);

 break;

}

 }

 delete [] pts;

 return result;

}

Even if you never call EnsureLocalCapacity or PushLocalFrame, you
may be able to create all the local references you want. The JNI documentation
states that “For backward compatibility, the VM allocates local references be-
yond the ensured capacity.”8 In my tests of the 1.2 Classic and 1.3 HotSpot im-
plementations of the virtual machine on Windows NT 4.0, I found that it is
possible to create tens of thousands of local references without any complaint
from the virtual machine. The –verbose:jni command-line option for the
java launcher is supposed to provide warning messages if you exceed your lo-
cal reference capacity, but this works only sometimes. On the classic VM, the
warnings appear to work correctly when you reserve small numbers of local ref-
erences, up to about a thousand. However, if you Ensure space for a large
number of objects, the call returns successfully, but erroneous warning mes-
sages begin to appear claiming that you have exceeded the 16 reference limit.
Furthermore, the warning flags appear to have been dropped entirely from the
HotSpot VM.

The point of this digression is not to encourage you to rely on these idiosyn-
crasies of the Windows VM implementation, but quite the opposite. Instead, you
should be aware that the virtual machine does not reliably warn you if you mis-
use the local reference APIs. Be careful to follow the local reference rules and

8. See the JNI specification [Lia99] section on EnsureLocalCapacity.

5003_06.fm Page 230 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 231

program to the specification, not to the current behavior of a particular virtual
machine. This will give your code the best chance of being portable to a wide va-
riety of virtual machines and operating systems.

6.6.2 Managing Native Resources
There is not much to say about managing native resources from Java because
JNI does not define any Java mapping for native objects. You must handroll any
resource management scheme you wish to use. Fortunately, the core API has
several examples of how to do this. Sockets, files, and database connections
are all native resources that are hidden behind Java objects. With each of these
native resources, the idiom is the same: At the native API level, there are func-
tion calls you can use to allocate the resource and return it to the pool. These
function calls must be mapped to appropriate methods on a Java object. For re-
source allocation, the Java constructor is an obvious match, as shown here:

public class NativeResource {

 private int handle;

 private native int allocHandle();

 public NativeResource() {

 handle = allocHandle();

 }

}

You cannot use the OS call directly because it does not match the signature
expected by JNI, so allocHandle maps the JNI signature to the OS function
call instead:

JNIEXPORT jobject JNICALL NativeResource_allocHandle

 (JNIEnv* pEnv, jobject pt)

{

 return OSAllocResource(); //placeholder for some OS call

}

Deallocating the resource is a bit more of a challenge. If you were wrapping
an API in C++, you could place the call to OSDeallocResource in the class
destructor. However, Java does not have destructors. Instead, most Java
classes take a two-pronged approach to freeing native resources: Define a

5003_06.fm Page 231 Tuesday, November 6, 2001 10:33 AM

232 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

close method that deallocates any native resources, and then back that up with
a finalize method that calls close automatically, as shown in Listing 6–30.

Listing 6–30 Managing Native Resources

//continuing class NativeResource

private native deallocHandle(int handle);

public void close() {

 if (handle != 0) {

 deallocHandle(handle);

 handle = 0;

 }

}

protected void finalize() {

 close();

}

public useResource(String someArg) {

 if (handle == 0) {

 throw new IllegalStateException("object is closed");

 }

 //do work…

}

This solution introduces a fair amount of complexity. Since the class is not
safe for use once the native resource is closed, all the actual functionality of the
class must be guarded by if (handle == 0) blocks, as the useResource
method demonstrates. Clients of the class must be encouraged to call close
as soon as they know they are finished with the resource so that the resource
can be reclaimed as quickly as possible. Clients may even want to call close
within a finally block to guarantee that the object is closed even in excep-
tional situations.

If a client forgets to call close, you can only hope that the finalize
method will be called soon. However, finalize is neither reliable nor efficient
in helping reclaim native resources. The simple fact is this: Garbage collection is
often a great solution for memory management, but it does not help you with
non-memory resource management. Native resources need to be explicitly deal-
located, just as they would be in a systems programming language such as
C++. If you write a Java class that wraps a native resource, use the close/fi-
nalize tandem to quickly reclaim resources that are no longer needed.

5003_06.fm Page 232 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 233

6.6.3 Managing Arrays
The third problem area that JNI faces is passing arrays. In C++, an array is a
contiguous block of memory that can be addressed by a pointer. So, assuming
that an int is four bytes long, an array of 10,000 ints would be stored as 40,000
contiguous bytes somewhere in memory. Using pointer math, it is trivial to ad-
dress any particular element in the array. If the array begins at 0x55551000,
then the fourth element of the array is at 0x55551010.

The Java definition of an array is looser. Java does not expose pointers to
the programmer, and array accesses in Java are actual bytecode instructions
processed by the virtual machine. Since the VM is queried for each item in the
array, it does not need to store the array contiguously in memory. As long as the
VM is willing to do the bookkeeping, it can choose to store the array as several
smaller pieces. This is entirely transparent to the Java programmer, of course.
Figure 6–4 demonstrates possible C++ and Java storage of the same array.

This difference in storing arrays becomes a problem when you are passing
an array between Java and native code. A C++ programmer cannot simply take
the raw pointer address of a Java array and then index to a particular element
because that part of the array might be elsewhere in memory. JNI provides three
related API sets to address this problem. All of the APIs do basically the same
thing: They take a Java array and convert it into the format expected by a C++
programmer, and vice versa.

Figure 6–4 Contiguous versus fragmented storage for a byte array

0

0
C++

Java VM

40000

4000020000

20000

5003_06.fm Page 233 Tuesday, November 6, 2001 10:33 AM

234 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

The simplest array API functions have the word Region in their names, and
they simply copy pieces of arrays between C++ and Java formats. The Region
APIs are shown in Listing 6–31.

Listing 6–31 JNI Array Region API

struct JNIEnv {

 // Only the int version is shown; there are similar calls

 //for boolean, byte, char, short, long, float, and double

 void GetIntArrayRegion(jintArray arr, jsize start,

 jsize len, jint* buf);

 void SetIntArrayRegion(jintArray arr, jsize start,

 jsize len, jint* buf);

//remainder omitted for clarity

}j

Because the Region API functions always create a new copy of the data they
manipulate, you do not have to worry about how the source or destination arrays
are stored in memory. As a result, these functions are the easiest to understand.
Listing 6–32 shows how to use the Region API to increment each element in a
Java array.

Listing 6–32 Using the Region API

JNIEXPORT void JNICALL Java_TestNativeArray_incByRegionAPI

 (JNIEnv *pEnv, jclass cls, jintArray arr, jint inc)

{

 jint size = pEnv->GetArrayLength(arr);

 jint* carray = new jint[size];

 //copy initial Java array into contiguous C array

 pEnv->GetIntArrayRegion(arr, 0, size, carray);

 for (jint n=0; n<size; n++) {

carray[n] += inc;

 }

 //copy result elements back into Java array

 pEnv->SetIntArrayRegion(arr, 0, size, carray);

 delete [] carray;

}

Because the array is copied into a C-style array, you must allocate an array
to receive the contents, as was done here with C++ new and delete. The logic
is simple but potentially very wasteful. The entire array is copied twice, once into

5003_06.fm Page 234 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 235

C++ contiguous memory, and again back into whatever storage the virtual ma-
chine is using. For large arrays, this copying overhead can easily dwarf the work
being done. If it does, you should consider using one of the two other array APIs,
which do not mandate a copy every time.

The second array API is the Element API (see Listing 6–33). Again, there are
API functions for each primitive type, and for simplicity, the text will always refer to
the int version. Unlike the Region APIs, the Element APIs will attempt to give
native code a direct pointer to the array elements; however, this may not always be
possible. If the virtual machine keeps the array in contiguous memory, it may give a
direct pointer to native code. If the Java array is not contiguous, then the virtual ma-
chine will have to copy the array to a contiguous block for use from native code.

Listing 6–33 JNI Array Element API

struct JNIEnv {

//element APIs. Only the int version is shown; there are

//calls for boolean, byte, char, short, long, float, double

jint* GetIntArrayElements(jintArray arr, jboolean* isCopy);

void ReleaseIntArrayElements(jintArray arr, jint* elems,

 jint mode);

};

The Java Language Specification does not provide any technique to guaran-
tee how an array is stored, or to query whether an array is stored contiguously.
Even if the array is stored contiguously, the virtual machine could still choose to
copy the array when it was making it accessible to native code. When you use
the Element APIs, you must write code that functions correctly regardless of
whether the array is being copied or modified in place.

This complicates the programming model in several ways. Since you do not
know whether the array will be copied, you cannot allocate native memory in ad-
vance. If the Element API decides to copy the array, it will allocate the memory
internally, and you must use the corresponding ReleaseTypeArrayEle-
ments function to deallocate the memory. This contrasts with the Region APIs
discussed above, where it is perfectly acceptable to call GetIntArrayRe-
gion without ever making a corresponding call to SetIntArrayRegion. List-
ing 6–34 reimplements the prior example, shown in Listing 6–32, this time
using the Element APIs.

5003_06.fm Page 235 Tuesday, November 6, 2001 10:33 AM

236 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 6–34 Using the Array Element API

JNIEXPORT void JNICALL Java_TestNativeArray_incByPinning

 (JNIEnv *pEnv, jclass cls, jintArray arr, jint inc)

{

 jint size = pEnv->GetArrayLength(arr);

 //pass zero because code does not depend on whether array

 // is copied

 jint* carray = pEnv->GetIntArrayElements(arr, 0);

 for (jint n=0; n<size; n++) {

carray[n] += inc;

 }

 pEnv->ReleaseIntArrayElements(arr, carray, 0);

}

When you call GetIntArrayElements, you pass in a jboolean* that will
record whether you actually have direct access to the array. If the array is cop-
ied, then you must call ReleaseIntArrayElements to copy your changes
back to the master version of the array and to deallocate the temporary copy of
the array. Even if you are directly manipulating the master copy of the array, you
still need to call ReleaseIntArrayElements, because of array pinning.

Pinning prevents the garbage collector from moving the array to another lo-
cation while you are using it. Moving memory out from under a native pointer
would cause undefined behaviors that are very difficult to debug, so the virtual
machine marks the array as unmoveable, preventing it from moving until you call
ReleaseIntArrayElements. In order for ReleaseIntArrayElements to
give precise control over the pinning process, it takes a mode flag that controls
unpinning the array. The modes work differently for copied versus pinned arrays,
as shown in Table 6–4.

The good news is that you rarely need to write special case code based on
whether an array was copied or pinned. The excitingly named 0 flag is generally
appropriate for read/write traversal of an array. If the array was copied, it copies
the temporary array back into the master copy, and if the array was pinned, it
unpins it.

The JNI_ABORT flag supports read-only traversal. If the array was copied,
JNI_ABORT does not bother to copy the array back, which improves perfor-
mance. Note that the JNI_ABORT flag does not function as a transactional roll-

5003_06.fm Page 236 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 237

back. If the changes were made directly to the pinned array, JNI_ABORT will not
unmake the changes. JNI_NOCOPY would probably be a better name for the
JNI_ABORT flag.

The JNI_COMMIT flag allows you to copy changes back without releasing
the temporary array. This is useful in rare circumstances in which you are mak-
ing many changes to an array and want those changes to be quickly visible to
another thread.9

Some virtual machines do not support pinning and always return a copy of
the array to the GetIntArrayElements call. In order to give such virtual ma-
chines another performance option with large arrays, SDK 1.2 introduced a third
array access API called the Critical API, which is shown in Listing 6–35.

Listing 6–35 JNI Array Critical API

struct JNIEnv {

//Unlike the other APIs, there are no

//typed versions for each primitive type, just void*.

void* GetPrimitiveArrayCritical(jarray array,

 jboolean* isCopy);

void ReleasePrimitiveArrayCritical(jarray array,

 void* carr,

 int mode);

//remainder omitted for clarity

};

Table 6–4 Array Unpin Modes

Mode Flag Meaning

Effect on

Copied Array

Effect on

Pinned Array Usage

0 Done, post

changes

Copies back to

master, frees

temp array

Unpins Read/write

traversal

JNI_ABORT Done, drop

changes

Frees temp

array

Unpins, changes

kept anyway!

Read-only

traversal

JNI_COMMIT Not done,

post changes

Copies back to

master

No effect Rarely used

9. To make this work, you must also correctly use synchronized blocks in Java and the Moni-
torEnter and MonitorExit functions in JNI. Interesting topics in themselves, but outside
the scope of this book.

5003_06.fm Page 237 Tuesday, November 6, 2001 10:33 AM

238 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

The Critical API is very similar to the Elements API discussed previ-
ously. GetPrimitiveArrayCritical may choose to copy or pin, and Re-
leasePrimitiveArrayCritical uses the same control flags that were
described earlier. The key difference is that the Critical APIs are more likely
to provide direct access because they do not require pinning. However, the bet-
ter odds come at a price. After calling GetPrimitiveArrayCritical, you
enter a critical region. Until you call Release, you must not call other JNI func-
tions, block the thread at the native or Java level, or take very much time. These
restrictions allow a virtual machine to employ simple, draconian means for pro-
tecting the array while you access it (for example, it may stop all other VM
threads). Listing 6–36 shows the Critical array APIs being used.

Listing 6–36 Using the Critical Array APIs

JNIEXPORT void JNICALL Java_TestNativeArray_incCritical

 (JNIEnv *pEnv, jclass cls, jintArray arr, jint inc)

{

 jint size = pEnv->GetArrayLength(arr);

 //pass zero because code does not depend on whether array

 // is copied

 jint* carray = (jint*)

 pEnv->GetPrimitiveArrayCritical(arr, 0);

 //BEGIN CRITICAL SECTION

 for (jint n=0; n<size; n++) {

 carray[n] += inc;

 }

 //END CRITICAL SECTION

 pEnv->ReleasePrimitiveArrayCritical(arr, carray, 0);

}

After taking the extra care required to use the Critical APIs, you may
discover that their impacts on overall performance are positive, negative, or in-
different. If the speed gain from direct access to the array outweighs the cost
of stopping other threads, then the Critical API is a better choice than the
Elements API, but the reverse can also be true. If the virtual machine supports
pinning arrays, or if all of the APIs are forced to copy arrays, you may discover
no performance effects at all.

5003_06.fm Page 238 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 239

If you reach a point where the performance of the JNI array APIs is signifi-
cant to your application, you will need to profile so that you can choose between
the Region, Elements, and Critical APIs. Moreover, you will need to profile
on the variety of operating systems, virtual machines, and hardware you intend
to support. This is true throughout Java, but it is especially true with JNI, which
may vary widely from one operating system to another. Write once, run any-
where, profile everywhere.

6.6.4 Managing Strings
Strings create many of the same problems that arrays do, which is not surpris-
ing since strings are basically arrays with some additional semantics attached.
As you can see in Listing 6–37, JNI provides the same three API families for
strings that it does for arrays. As with arrays, the Region functions always
copy the string into a preallocated buffer. The Chars API for strings corre-
sponds to the Element array API, and it will try to pin the string in memory, oth-
erwise copying it. The Critical string API attempts to provide direct access
to the string without pinning it. The Critical API functions by basically shut-
ting down the rest of the virtual machine, and its use is governed by the same
rules listed for the Critical array API: no JNI callbacks, no thread blocking,
and quick execution.

Listing 6–37 JNI String API

struct JNIEnv {

 //basics, available since 1.1

 jstring NewString(const jchar *unicode, jsize len);

 jsize GetStringLength(jstring str);

 jstring NewStringUTF(const char *utf);

 jsize GetStringUTFLength(jstring str);

 //region API, available since 1.2

 void GetStringRegion(jstring str, jsize start,

 jsize len, jchar *buf);

 void GetStringUTFRegion(jstring str, jsize start,

 jsize len, char *buf);

 //pinning strings, available since 1.1

 const jchar* GetStringChars(jstring str, jboolean *isCopy);

5003_06.fm Page 239 Tuesday, November 6, 2001 10:33 AM

240 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 void ReleaseStringChars(jstring str, const jchar *chars);

 const char* GetStringUTFChars(jstring str,

 jboolean *isCopy);

 void ReleaseStringUTFChars(jstring str, const char* chars);

 //critical API, available since 1.2

 const jchar * GetStringCritical(jstring string,

 jboolean *isCopy);

 void ReleaseStringCritical(jstring string,

 const jchar *cstring);

 //remainder omitted for clarity

}

There are two special characteristics of Java Strings that deserve atten-
tion. First, Java Strings are immutable—that is, they cannot be changed once
they are instantiated. This greatly simplifies the various APIs. Strings have
GetRegion but no SetRegion because it would be illegal to copy changed
characters into a String. Similarly, the Chars and Critical APIs do not
have a flag to control unpinning behavior. There is no behavior to control be-
cause changes can never be copied back.

Second, Java strings are likely stored internally as Unicode. The JNI string
API comes in two flavors. The flavor that uses the UTF acronym in its name and
takes char* parameters converts Java strings into UTF-8 format,10 which is a
single-byte format that is compatible with ASCII in the lower seven bits. The
other flavor takes jchar arguments and works with two-byte Unicode strings.
Since virtual machines tend to use Unicode internally, it is a good bet that the
UTF functions will always return copies, while the Unicode functions have some
chance of providing direct access. Unfortunately, most legacy C++ code uses
single-byte string encoding, so you will likely find yourself using the UTF APIs.

6.7 Onward
Very few software systems build on only one technology, so interoperability is
key to the success of large projects. JNI provides a low-level, in-process model
for interoperation between Java and systems code written in C or C++. Studying

10. Java’s UTF-8 format is slightly different from the standard UTF-8 format. The Java format is doc-
umented in [LY99].

5003_06.fm Page 240 Tuesday, November 6, 2001 10:33 AM

INTEROP 1: JNI 241

JNI is a valuable way to learn about both C++ and Java because JNI has to deal
with how the language worlds differ. JNI provides a mapping from Java types to
a dynamic, metadata-driven, handle-based, C-callable API.

JNI provides a dynamic loading architecture for native code that is a
stripped-down version of Java’s powerful class loader architecture. JNI provides
APIs to make Java exceptions, arrays, and strings usable from native code, and
it copes with the fact that these constructs do not naturally map to their C++
counterparts. JNI provides an API for explicitly managing Java object lifetime,
which is necessary when you need long-lived “global” references that are safe
from garbage collection.

Unfortunately, JNI is too low-level to be the perfect solution. Frankly, it is the
assembly language of interop. JNI makes no attempt to map C/C++ objects into
Java. Nor does it provide tools to automate wrapping existing native code librar-
ies; instead, you have to manually write wrapper functions that translate from JNI
signatures to your existing native code APIs. If anything, this chapter should con-
vince you to avoid JNI wherever possible.

The Java world needs a higher-level approach for interoperating with other
component platforms. Many attempts have been made and some have become
commercially viable, but none have become part of Java. Appendix A describes
an open-source library for interoperation with Win32 and COM components, and
[JavaWin32] lists the various interop products.

6.8 Resources
 [Lia99] is a well-written guide from a designer of JNI; you will find that Chapters 9
and 10 of this guide are particularly valuable. [Lia99] also includes the JNI specifi-
cation, which is clear and concise. The only real complaint you may have is that
the Java 2 SDK enhancements are in a separate add-on document, so you have
to guess when a feature was implemented in order to find its documentation.

As mentioned previously, [JavaWin32] lists interop products that provide en-
hancements over raw JNI for calling between Java and native code on Windows
operating systems.

5003_06.fm Page 241 Tuesday, November 6, 2001 10:33 AM

5003_06.fm Page 242 Tuesday, November 6, 2001 10:33 AM

