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Foreword 

Several years ago, Stu abandoned the world of COM for what he had hoped
would be greener pastures. While many of his colleagues felt he had lost his
senses, Stu ignored our skepticism and walked away from COM completely. This
was especially difficult given the fact that his employer had a tremendous invest-
ment in COM and had achieved relatively little traction in the Java world at the
time.

Based on this book, I feel the move was beneficial both to Stu and to those
who will be influenced by this book. 

Stu’s view on the Java platform is quite novel. This book portrays the Java
Virtual Machine (JVM) as a substrate for component software. Are there lan-
guages and compilers that generate these components? Sure, but that isn’t the
focus of this book. Does the JVM perform a variety of services such as garbage
collection and JIT compilation? Absolutely, but again, that isn’t the focus of this
book either. Rather, Stu focuses the reader on the role the JVM plays in software
integration. 

I am especially happy to see the book’s emphasis on the class loader archi-
tecture. After spending over eight years working with COM and now two years
with its successor, the Common Language Runtime (CLR), I believe that the key
to understanding any component technology is to first look at how component
code is discovered, initialized, and scoped during execution. In the JVM, the
class loader is responsible for all of these tasks, and Stu gives that devil more
than its due. 

The JVM (and the Java platform as a whole) has a serious competitor now
that Microsoft has more or less subsumed most Java technology into its .NET
initiative, most specifically the CLR. It will be interesting to see how Sun adapts

5003_001.fm  Page xiii  Wednesday, January 23, 2002  3:27 PM
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to the challenge. In looking at the JVM and CLR side-by-side, the JVM exemplifies
the “less is more” philosophy, which I believe is its greatest strength. Hopefully,
Sun will remain true to this basic design principle as the pressures of platform
warfare pull them in the direction of adding feature upon feature for market posi-
tioning rather than aesthetic reasons.

— Don Box,
September 2001

Manhattan Beach, California
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Preface

This book is about developing components using the Java platform. In this book,
the term component has a very specific meaning. A component is an indepen-
dent unit of production and deployment that is combined with other components
to assemble an application.

To elaborate on this definition, consider the difference between objects and
components. An object represents an entity in the problem domain, while a com-
ponent is an atomic1 piece of the installed solution. The object and component
perspectives are complementary, and good designs take account of both. 

Modern development platforms such as Java provide the infrastructure that
developers need to create classes and components. To support object-oriented
programming, Java provides encapsulation, inheritance, and polymorphism. To
support components, Java provides loaders and rich type information. This book
assumes that you already understand object-oriented programming in Java, and
it explains how to use Java’s component infrastructure effectively.

Loaders are responsible for locating, bringing into memory, and connecting
components at runtime. Using Java’s loaders, you can

• Deploy components at fine granularity. 
• Load components dynamically as needed.
• Load components from other machines on the network.
• Locate components from custom repositories.
• Create mobile code agents that live across multiple virtual machines.
• Import the services of non-Java components.

1.  Atomic here means “indivisible,” not necessarily “stands alone.” Most components will have 
dependencies on other components.

5003_001.fm  Page xv  Wednesday, January 23, 2002  3:27 PM



xvi COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Loaders manage the binary boundaries between components. In a world of dis-
tributed applications and multiple component suppliers, loaders locate and con-
nect compatible components.

Type information describes the capabilities of some unit of code. In some
development environments type information is present only in source code. In
Java, type information is not merely a source code artifact; it is also an intrinsic
part of a compiled class and is available at runtime through a programmatic in-
terface. Because Java type information is never “compiled away,” loaders use it
to verify linkages between classes at runtime. In application programming, you
can use type information to

• Serialize the state of Java objects so that they can be recreated on another
virtual machine.

• Create dynamic proxies at runtime, to provide generic services that can
decorate any interface.

• Translate data into alternate representations to interoperate with non-Java
components.

• Convert method calls into network messages.
• Convert between Java and XML, the new lingua franca of enterprise sys-

tems.
• Annotate components with application-specific metadata.

Type information automates many tasks that might otherwise be coded by hand,
and it helps to make components forward compatible to platforms of the future. 

Who Should Read This Book
You should read this book if you want to design, develop, or deploy substantial
applications in Java. Taking a full-lifecycle view of a Java application requires that
you consider not just objects, but components. This book is about the core fea-
tures of Java as a component platform: class loaders, reflection, serialization,
and interoperation with other platforms. You should already know the basics of
Java syntax and have some experience in object-oriented programming with
Java. 

5003_001.fm  Page xvi  Wednesday, January 23, 2002  3:27 PM



PREFACE xvii

This book is not specifically about high-level Java technologies, such as Re-
mote Method Invocation (RMI), Enterprise JavaBeans (EJB), JINI, Java Server
Pages (JSP), servlets, or JavaBeans, but understanding the topics in this book is
critical to using those technologies effectively. If you learn how to use the com-
ponent services described here, you will understand how these high-level tech-
nologies are built, which is the key to employing them effectively. 

Security is also an important aspect of component development and de-
ployment. It is too complex a topic to handle fairly here, and it deserves its
own book-length treatment. (See [Gon99] for coverage of security on the Java
platform.)

Organization of the Book 
The chapters of this book fall into three sections. Chapter 1 introduces compo-
nents. Chapters 2 through 6 explain loaders and type information on the Java
platform. Chapter 7 shows more advanced uses of these services.

Chapter 1 introduces component-oriented programming. Component rela-
tionships must be established not only at compile time, but also at deployment
and runtime. This chapter asks the key questions of component programming
and relates them to the Java platform services discussed in subsequent chap-
ters. Though the other chapters might be read out of order, you should definitely
read this chapter first. 

Chapter 2 shows how to use and troubleshoot class loaders. Class loaders
control the loading of code and create namespace boundaries between code in
the same process. With class loaders you can load code dynamically at runtime,
even from other machines. Class loader namespaces permit multiple versions of
the same class in a single Java virtual machine. You can use class loaders to re-
load changed classes without ever shutting down the virtual machine. You will
see how to use class loaders, how the class loader delegation model creates
namespaces, and how to troubleshoot class loading bugs. You will also learn to
effectively control the bootclasspath, extensions path, and classpath.

Chapter 3 introduces Java type information. Java preserves type informa-
tion in the binary class format. This means that even after you compile your
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Java programs, you still have access to field names, field types, and method
signatures. You can access type information at runtime via reflection, and you
can use type information to build generic services that add capability to any ob-
ject. You will see how to use dynamic invocation, dynamic proxies, package re-
flection, and custom attributes. Chapter 3 also includes a discussion of
reflection performance.

Chapter 4 shows how Java serialization uses reflection. Serialization is a
perfect example of a generic service. Without any advance knowledge of a
class’s layout, serialization can ship both code and state from one virtual ma-
chine to another across time or space. You will see how the serialization format
embeds its own style of type information and how you can customize that repre-
sentation. You will also see how to extend default serialization, replace it entirely
with custom externalization code, or tune it to handle multiple versions of a class
as code evolves. You will then learn how to validate objects being deserialized
into your application and how to annotate serialized objects with instructions for
finding the correct class loader.

Chapter 5 returns to class loaders and shows you how to implement your
own. While the standard class loaders are dominant in most applications, cus-
tom class loaders allow you to transform class code as classes are loaded.
These transformations could include decryption, adding instrumentation for per-
formance monitoring, or even building new classes on-the-fly at runtime. You
will see how to tie your custom class loaders into Java’s security architecture,
how to write a custom class loader, and how to write protocol handlers that can
customize not just how you load classes, but also how you load any other type
of resource.

Chapter 6 presents the Java Native Interface (JNI) as a basic means of con-
trolling the boundary between Java code and components written in other envi-
ronments. JNI provides a set of low-level tools for exposing Java objects to
platform native code and native code to Java objects. You will learn to use the
JNI application programming interface (API) to translate between Java and native
programming styles—which differ markedly in their approach to class loading,
type information, resource management, error handling, and array storage.
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Understanding the deficiencies of JNI sets the stage for Appendix A, which de-
scribes a higher-level approach.

Chapter 7 discusses using Java metadata to automate the creation of
source code or bytecode. Generated code is a high-performance strategy for
reuse because you generate only the exact code paths that you will need at
runtime. The chapter first presents JSP and EJB as examples of existing appli-
cations that auto-generate code, and then it introduces some ideas for code
generation in your own programs. 

Appendix A returns to interoperation. By building on the code generation
techniques from Chapter 7, Appendix A shows you how to build an interoperation
layer between Java and another component platform: Win32/COM. This chapter
uses the open source Jawin library as an example, to show you how to generate
Java stubs for Win32 objects, and vice versa. 

Sample Code, Website, Feedback…
Unless specifically noted otherwise, all the sample code in this book is open
source. You can download sample code from the book’s website at http://
staff.develop.com/halloway/compsvcs.html. 

Unless otherwise noted, the code in this book is compiled and tested
against the Java 2 Software Development Kit (SDK) version 1.3. Most of the
code in the book will work identically under SDK versions 1.2, 1.3, and 1.4.
Where this is not the case, the text will include a specific reference to the appro-
priate SDK version.

The author welcomes your comments, corrections, and feedback. Please
send email to stu@develop.com.
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