

1

Chapter 1

From Objects to Components

Well-written Java programs are both object-oriented and component-oriented.
This chapter characterizes the differences between object and component per-
spectives, and then it demonstrates these differences by taking a program de-
sign that is object-oriented and modifying it to be component-oriented as well.

Consider an example problem domain of contact management systems.
One important facet of this domain is the ability to find contacts based on a vari-
ety of different criteria. Listing 1–1 shows a partial listing for the

Contact

 and

FindContact

 interfaces.

Listing 1–1 Contact and FindContact Interfaces

package contacts;

public interface Contact {

 public String getLastName();

 public void setLastName(String ln);

 public String getFirstName();

 public void setFirstName(String fn);

 public String getSSN();

 public void setSSN();

 //etc. for other standard fields

}

//contacts/ContactFinder.java

package contacts;

public interface ContactFinder {

 Contact[] findByLastName(String ln);

 Contact[] findByFirstName(String fn);

 Contact[] findBySSN(String ssn);

 //other more exotic search methods…

}

5003_01.fm Page 1 Tuesday, November 6, 2001 10:34 AM

2

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Given these interfaces, it is easy to imagine a variety of client applications
that access contact information. Listing 1–2 shows a simple

ListByLastName

console client that lists all the contacts with a given last name. Assuming that
the

Contact

 and

ContactFinder

 interfaces have correctly captured the prob-
lem domain, this can be judged an adequate object-oriented (OO) design. Notice
the complete separation of interface and implementation.

ListByLastName

uses variables only of interface types such as

Contact

 and

ContactFinder

. If
future versions use a different implementation, only one line of code needs to
change.

Listing 1–2 ListByLastName

package contacts.client;

import contacts.*;

import contacts.impl.*;

public class ListByLastName {

 public static void main(String [] args) {

 if (args.length != 1) {

 System.out.println("Usage: ListByLastName lastName");

 System.exit(-1);

 }

 ContactFinder cf = new SimpleContactFinder();

 Contact[] cts = cf.findByLastName(args[0]);

 System.out.println("Contacts named " + args[0] + ":");

 for (int n=0; n<cts.length; n++) {

 System.out.println(cts[n]);

 }

 }

}

This design is easily extensible via inheritance. Imagine that each purchaser
of the contact management system wants to add a few items of custom data to
the basic notion of a

Contact

. They would simply extend the

Contact

 interface,
creating a different subinterface for each customer. Listing 1–3 shows a sample
extension that tracks information of interest to diplomats.

5003_01.fm Page 2 Tuesday, November 6, 2001 10:34 AM

FROM OBJECTS TO COMPONENTS

3

Listing 1–3 A DiplomaticContact

package contacts.diplomatic;

import contacts.*;

public interface DiplomaticContact extends Contact {

 public float getSpyProbability();

 public void setSpyProbability(float newProb);

 public Contact[] getKnownAssociates();

 //etc.

}

The contact management design shown in Listing 1–3 does a good job of
modeling the problem domain while preserving the ability to repair and/or en-
hance specific implementations. This is no ordinary achievement, and the suc-
cess of object-oriented languages such as Java derives from their support in
accomplishing these objectives. But don’t start celebrating yet. The current de-
sign does not begin to address the issues of component deployment.

A

component

 is an independent unit of production and deployment that is
combined with other components to assemble an application. There is some
conceptual overlap between objects and components. Objects are instances of
classes; in fact, object-oriented design might just as well be called class-
oriented design. A component is often just a compiled class, or a group of com-
piled classes.

1

 One might ask, if the most important work product of both para-
digms is the class, what is the significant difference between object and
component approaches? The object approach emphasizes design and develop-
ment, while the component approach emphasizes deployment.

Object-oriented design emphasizes the development-time relationships be-
tween entities in a system. Component-oriented design extends these relation-
ships to other phases of the application lifecycle, particularly production and
deployment. An object-oriented approach leads to questions such as the following:

1. Does the design capture the relevant part of the problem domain?

2. Are the interfaces and classes easy to extend and modify?

1. A component might also be some other independent unit of deployment: a text file, a graphic
image, a data file, or a script.

5003_01.fm Page 3 Tuesday, November 6, 2001 10:34 AM

4

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

A component-oriented approach leads to questions like these:

1. How will a client find implementation classes at runtime?

2. What happens if there is more than one version of the implementation
classes available at runtime?

3. How will components locate and load necessary configuration information?

4. What happens if a process or container needs to be shut down temporarily?
Can work in progress be saved and restored transparently? Can component
instances migrate from one container to another?

5. How does the development and maintenance of one member of a family of
products impact the other members?

6. Are components bloated by code unrelated to a particular customer’s task?

7. An old component is

almost

 a perfect fit for a new system. Can the old com-
ponent be extended in unanticipated new ways without touching the source
code?

8. What happens when part of the system must be implemented on a different
software platform and seamlessly interoperate with the rest?

These sound like important questions, so why do components get so much less
attention than objects do?

Any particular set of tools encourages some kinds of solutions while it dis-
courages others. The friendly environment of a developer’s computer discour-
ages the analysis of deployment issues. At any given time, a development
machine has a snapshot of a complex, evolving system. The pieces of the snap-
shot can be proven to fit together by compilers and other development tools.
Configuration information is all in the right place, and even if it is not, there is an
expert nearby who can tweak things until they work. Everyone has heard the
classic refrain “It works fine on my machine!”

The real world is just the opposite of the developer’s machine. Different com-
ponents and different component versions get jumbled together, and applications
are expected to load correctly and sort things out on their own. Configuration in-
formation is missing or inaccurate, and systems are expected to function any-
way. Applications need to grow and evolve without ever shutting down, and
systems must be built from disparate components that were never intended to

5003_01.fm Page 4 Tuesday, November 6, 2001 10:34 AM

FROM OBJECTS TO COMPONENTS

5

work together. Programs struggle under the weight of thousands of lines of code
that are not related to the task at hand but cannot easily be removed.

Java is not just an OO language; it is also a platform that provides the tools
to manage complex deployment. Consider again the component architecture
questions raised earlier:

1.

How will a client find implementation classes at runtime?

The class loader
architecture (Chapter 2) provides a flexible means for locating classes from
different sources. Custom class loaders (Chapter 5) extend this architecture
to support arbitrary new strategies for dynamically locating components at
runtime.

2.

What happens if there is more than one version of the implementation
classes available at runtime?

The class loader delegation model (§2.4.2)
defines a search order. Package reflection (§3.6) can discover the version
of a loaded class. You can use custom attributes (§5.5) to define a more
sophisticated version-reconciliation mechanism.

3.

How will components locate and load necessary configuration information?

Components should rarely load configuration information directly from the
file system. Instead, you should use the current class loader (§2.3) or the
context class loader (§2.9) to load resources relative to the classes that
need them.

4.

What happens if a process or container needs to be shut down temporarily?
Can work in progress be saved and restored transparently? Can component
instances migrate from one container to another?

 Here, you should use Java
serialization (Chapter 4) to write a Java instance to a stream and then instan-
tiate an equivalent instance somewhere else. Or, use reflection (Chapter 3)
to read and write the state of an object as XML.

5.

How does the development and maintenance of one member of a family of
products impact the other members?

Object-oriented design provides inher-
itance and delegation as mechanisms to share code across a family of prod-
ucts. With a component-oriented approach, you can automate delegation
using reflection (§3.2), dynamic proxies (§3.4), or generated code (Chapter
7).

6.

Are components bloated by code unrelated to a particular customer’s task?

Straight OO designs may preserve too much flexibility, carrying unneeded
code at deployment time or runtime. You can use domain analysis and code

5003_01.fm Page 5 Tuesday, November 6, 2001 10:34 AM

6

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

generation (Chapter 7) to generate the exact solution you need, exactly
when you need it.

7.

An old component is almost a perfect fit for a new system. Can the old com-
ponent be extended in unanticipated new ways without touching the source
code?

You can use dynamic proxies (§3.4) to transparently layer new func-
tionality over existing interfaces. If you need better performance (§3.5), use
reflection to generate static proxies.

8.

What happens when part of the system must be implemented on a different
software platform and seamlessly interoperate with the rest?

 The Java Native
Interface (Chapter 6) is inadequate. You should build a marshalling layer
(Appendix A) to encapsulate the details of cross-platform communication.

For those seeking immediate gratification, Listing 1–4 shows a more compo-
nent-oriented approach to the contact management domain. While this is much
more complete than the earlier listings, it leaves plenty of room for improve-
ment. As you read the remaining chapters, consider how you might employ
class loaders, reflection, serialization, code generation, and native code to en-
hance this example.

Listing 1–4 A Component Approach to Contacts

package contacts;

import java.io.*;

import java.net.*;

import java.util.*;

/**

 * Factory class for the <code>Contacts</code> package.

 * Use this instead of instantiating classes directly.

 */

public class ContactFactory {

 /**

 * Process administrators should specify the concrete

 * implementation class to use by setting the

 * <code>contacts.impl.SimpleContactFinder</code> property,

 * and specify the class loader to use by setting

 * the context class loader.

 */

 public ContactFinder getDefaultFinder() {

 try {

5003_01.fm Page 6 Tuesday, November 6, 2001 10:34 AM

FROM OBJECTS TO COMPONENTS

7

 String className =

 System.getProperty("contacts.FinderClass",

 "contacts.impl.SimpleContactFinder");

 Class clazz = Class.forName(className, true,

Thread.currentThread().getContextClassLoader());

 return (ContactFinder) clazz.newInstance();

 }

 catch (Exception e) {

 e.printStackTrace();

 throw new Error("Default Finder not available");

 }

 }

}

//contacts.impl.SimpleContactFinder

package contacts.impl;

import contacts.*;

import java.util.*;

import java.io.*;

public class SimpleContactFinder implements ContactFinder {

 /**

 * Default values for JNDI lookups, database table

 * names, etc.

 */

 private static Properties configProps;

 /**

 * Do not assume that a file system is available.

 * Always load co-located application resources by

 * using the class's own class loader

 */

 static {

 try {

 InputStream is = SimpleContactFinder.class.

 getClassLoader().

 getResourceAsStream("contacts/impl/config.properties");

 configProps = new Properties();

 configProps.load(is);

 }

 catch (Exception e) {

 e.printStackTrace();

 throw new Error(

 "Could not load contacts.impl.config.properties");

5003_01.fm Page 7 Tuesday, November 6, 2001 10:34 AM

8

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 }

 }

 //implementation continues…

}

//contacts.impl.SimpleContact.java

package contacts.impl;

import contacts.*;

import java.io.*;

/**

 * Data classes need to be serializable so that instances

 * can be moved from one process to another.

 * If necessary, you can wrap instances in a MarshalledObject

 * to preserve codebase information

 */

public class SimpleContact implements Contact, Serializable {

 private String lastName;

 private String firstName;

 private String ssn;

 public SimpleContact(String lastName, String firstName,

 String ssn) throws ContactsException

 {

 this.lastName = lastName;

 this.firstName = firstName;

 this.ssn = ssn;

 validateNewInstance();

 }

 /**

 * Deserialization must be validated, just like any

 * other "constructor".

 */

 private void readObject(ObjectInputStream ois)

 throws IOException, ClassNotFoundException,

 ContactsException

 {

 ois.defaultReadObject();

 validateNewInstance();

 }

 /**

 * All constructors, plus deserialization (i.e. the

5003_01.fm Page 8 Tuesday, November 6, 2001 10:34 AM

FROM OBJECTS TO COMPONENTS

9

 * readObject method) share validation code. Throws

 * application-specific ContactException if instance

 * is invalid

 */

 private void validateNewInstance() throws ContactsException

 {

 //check valid ssn

 //check non-null name, etc.

 }

 //implementation continues…

}

;contacts.jar manifest file

;each package is JARred and sealed separately

;all package reflection info is specified

Sealed=true

Implementation-Title=Contacts

Implementation-Version=1.0.0

Implementation-Vendor=Stuart Halloway

Specification-Title=Contacts

Specification-Version=1.0.0

Specification-Vendor=Stuart Halloway

5003_01.fm Page 9 Tuesday, November 6, 2001 10:34 AM

5003_01.fm Page 10 Tuesday, November 6, 2001 10:34 AM

