

285

Appendix A

Interop 2: Bridging Java and
Win32/COM

This chapter introduces Jawin, an open source architecture for Java/Win32/
COM interop designed by the author.

A.1 Overview

The Java platform standardizes the services and data formats that you need to
assemble an application from separate components. The class loader architec-
ture, type information, and reflective services, such as serialization, provide the
infrastructure to load component code, configuration information, resources,
and component data from disparate sources at runtime.

When you need to assemble applications across

different

 component plat-
forms, things fall apart. All platforms take their own approach to component ser-
vices, and the differences from Java can be daunting. In the case of Microsoft’s
Win32 API and the Component Object Model (COM), the problems are not merely
of academic interest. Win32 and COM are associated with the dominant Mi-
crosoft Windows family of operating systems. Because the Windows family is so
prevelant, most organizations will need to deal with code written for these sys-
tems, even if they have made a strong commitment to Java.

5003_0A.fm Page 285 Monday, November 12, 2001 10:39 AM

286

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

One approach to calling Win32 and COM components is to use the Java Na-
tive Interface (JNI), as described in Chapter 6. JNI does provide the necessary
tools, but it is tedious to use for any but the smallest projects. When you use
raw JNI, you have to write a large amount of infrastructure code every time you
want to cross the boundary between Java and Win32 or COM. Moreover, JNI is
a generic architecture for calling native code, and therefore it does not include
any features that deal with the specific problems of the Win32 platform. For
these two reasons, organizations that need to implement substantial communi-
cation between Java and Win32/COM components will want to look for other
answers.

This appendix will demonstrate an alternative to JNI by describing a higher-
level strategy for in-process interoperation between Java, Win32, and COM com-
ponents. This strategy uses translucent

stubs (introduced in §A.2) that bridge
the differences between component platforms. These stubs are important be-
cause they sit between components from different platforms and hide the details
of cross-platform communication. §A.3, §A.4, and §A.5 present the key differ-
ences between Java, Win32, and COM as component platforms and describe
how translucent stubs might resolve these problems.

Most of a marshalling layer implementation is generic and can be shared by
all components. However, each component interface will need its own interface
stub, which must either be developed manually or generated from type informa-
tion. §A.7 discusses how to generate stubs for Win32 and COM interfaces.

For concrete examples, this chapter uses Jawin, an open source Java-to-
Win32/COM marshalling layer developed by the author. However, the emphasis
here is on general concepts, not on the specifics of the Jawin implementation.
For a list of other Java/Win32 interop solutions, see [JavaWin32].

A.2 Translucent Stubs

A translucent stub is the visible part of a marshalling architecture. A marshalling
architecture moves a method call from one environment to another by executing
the following series of steps.

5003_0A.fm Page 286 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM

287

1. Convert a method invocation into a request message.

2. Deliver the request message to a target environment.

3. Convert the request message into a method stack in the target environ-
ment.

4. Invoke the method.

5. Convert the return value(s) or exception(s) into a response message.

6. Deliver the response message to the source environment.

7. Convert the response message back into the types expected by the caller.

Figure A–1 illustrates these steps.

Stubs vary in how well they hide the details of the steps listed above. JNI
stubs are very simple, leaving the programmer explicitly aware of all of the steps
listed above. On the other hand, you can define a

transparent

 stub as one that
completely hides the details of communication. Transparent stubs might seem
ideal, but they are usually difficult (or impossible) to implement. A

translucent

Figure A–1 Marshalling a call from Java to COM

Win32 Process

Caller invokes method (1). Component stub
serializes arguments (2) and then sends them (3).
Generic or shared stub deserializes arguments (4)
and calls Win32 or COM component (5). Entire
sequence runs in reverse to marshal return value
back to caller.

Translucent
stub

Java VM

COM
component

Intrinsic
functions

Shared stubs

Generic stub

1
2

3

4

5

Generated from
type information

Shared by all
components

5003_0A.fm Page 287 Monday, November 12, 2001 10:39 AM

288

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

stub fits somewhere between the extremes. It hides the details of communica-
tion that are easily hidden, but exposes the communication layer in some places.

JNI provides only a minimal interface for communicating between Java and
native code. As Chapter 6 demonstrated, you must write hand-tuned code to
deal with such basic issues as converting parameter types, manipulating arrays,
and reporting errors. Worse, you must duplicate this code for every single native
method. When you write JNI code, you are always acutely aware that you are
working near the boundary of the Java platform, and because of this, you must
be skilled in both Java and the native platforms.

If transparent stubs could be created easily, the problems of JNI would be
neatly solved. Clients would not have to write any additional code to call
Win32/COM components. More importantly, clients would not have to know
any details about the Win32/COM platforms or even be aware that these plat-
forms were in use.

How hard is it to create a transparent stub? There are three things to worry
about when you are creating transparent stubs between Java, Win32, and COM:

1. Platform impedance. Each platform makes certain fundamental assump-
tions that are not valid elsewhere, thus forming an “impedance mismatch”
between the platforms. Transparent stubs must hide these differences. For
example, COM components indicate errors with numeric codes, which a
transparent Java stub would hide by translating the error codes into Java
exceptions.

2. Generating per-interface stubs. Each different “interface,” however that con-
cept maps to a particular platform, implies a different stub. These stubs are
very similar to RMI stubs. Therefore, an interop solution needs to include a
code generator. This could be a developer tool similar to

rmic

, or a runtime
API akin to dynamic proxies.

3. Performance. The stubs have to meet performance criteria, which are spe-
cific to an application.

To determine whether transparent stubs are worth the effort, compare the
costs of building the stubs with the benefits they provide. Is it easier to efficiently
generate stubs that cope with various platform impedance issues, or is it easier
to just brute-force your way with raw JNI?

5003_0A.fm Page 288 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM

289

Translucent stubs are based on the observation that some platform imped-
ance problems are more difficult to solve than others. The stubs are called
translucent because they hide

most

 of the details of calling into native code.
When an idiom has an obvious mapping from one platform to another, such as
the error codes and exceptions mentioned previously, then it should be hidden
in the stub layer. When an idiom does not translate well to another platform or
you must understand it to use the component, it is more appropriate to expose
the idiom directly.

Java RMI provides a good example of translucent stubs. RMI stubs hide the
details of calling an object in another virtual machine, usually over a network.
Using RMI is much easier than manually converting method invocation into
socket communication. However, RMI stubs are not completely transparent.
Object parameters passed to RMI methods must be serializable so that they
can be transmitted over the network. RMI stubs will enforce this rule by throw-
ing an exception, which breaks transparency and reveals to the client that RMI
is involved.

In another case, the designers of RMI deliberately broke with transparency.
They made it so all remote methods must be declared to throw the checked ex-
ception

java.rmi.RemoteException

. This reflects the underlying reality that
even if the method succeeds, the stub communication may fail. Because the ex-
ception is checked, all clients must deal with it, which makes the presence of
RMI obvious. It would have been just as easy to make

RemoteException

 un-
checked, which would have been more transparent. However, this would only
have lulled developers into a false sense of security. The possibility of communi-
cations failure is so important that it outweighs the convenience of simpler, more
transparent clients.

§A.3 describes the sources of platform impedance between Java, Win32,
and COM. In this discussion, you will see how one particular stub architecture
[Jawin] deals with these issues. The particular choices made in this implementa-
tion are reasonable, but not inevitable. Different development teams will assign
different weights to the issues.

5003_0A.fm Page 289 Monday, November 12, 2001 10:39 AM

290

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

A.3 Platform Impedance

This section describes the facets of the COM and Win32 platforms that make in-
teroperation with Java difficult. Table A–1 summarizes the chief sources of plat-
form impedance. The COM approach is explored in more detail in §A.4, and the
Win32 approach is discussed in §A.5. This is obviously not a complete introduc-
tion to these complex technologies. For more on COM see [Box98]; for more on
Win32 see [Ric99].

The examples in §A.4 and §A.5 show client-side syntax for dealing with these
problems from Java, and subsequent sections show one approach to implement-
ing this client-side syntax.

A.4 The Component Object Model

The Component Object Model (COM) defines a binary representation for inter-
face contracts between components. Above that core level, COM includes a
runtime with many services that are useful in assembling applications from

Table A–1 Platform Impedance: Java, Win32, and COM

Concern Java Approach Win32 Approach COM Approach

Loader

architecture

Class loaders Explicit paths Registry lookup

Metadata/

Type info

Extensive Minimal Partial

Object lifecycle

management

Implicit, GC Explicit and ad hoc Explicit and

reference-counted

Type discovery Per-class Ad hoc Per-instance

Error reporting Throwable GetLastError et al. HRESULT et al.

Thread affinity Explicit Explicit Apartments

Security model Code source and

signer

User principal User principal

5003_0A.fm Page 290 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM

291

components. Where the emphasis in Java is one language for many platforms,
COM aims at many languages running on one platform.

Different languages use the COM runtime in different ways, which makes
learning COM arduous. If you look past the trappings of particular languages, the
COM specs and API docs define a set of core services analogous to many of
those described in this book:

• COM defines a local loader based on lookup information stored in the Win-
dows Registry.

• COM defines two different type information formats that are not entirely
compatible.

• COM defines a reflection-like API for accessing type information.

While these services fill similar roles to their Java counterparts, they are dif-
ferent enough to introduce quite a bit of platform impedance.

A.4.1 The COM Loader

The COM loader loads COM objects by their unique name, which is a 128-bit
identifier called a GUID (Globally Unique ID). The loader uses this name to locate
the appropriate binary by consulting the Windows Registry. The Registry typically
also contains a human-friendly name called a ProgID.

GUIDs and ProgIDs do not have an obvious analog in Java. The GUIDs do not
map well to class names, and the ProgIDs may not be unique. Most importantly,
any name mapping would replace a name that has some meaning in the COM
world with a new name that has meaning only as defined by the stub architec-
ture. The most appropriate thing to do is to expose these constructs directly to
Java clients as shown here:

//create an instance of MS-Word from Java, using the ProgID:

WordApp wd =

 (WordApp) Ole32.CoGetObject("new:Word.Application", …);

//using the GUID:

GUID wordGUID = new GUID

 ("{000209FF-0000-0000-C000-000000000046}");

WordApp wd =

 (WordApp) Ole32.CoCreateInstance(wordGuid, …);

5003_0A.fm Page 291 Monday, November 12, 2001 10:39 AM

292

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

WordApp

 is a generated stub for the top-level COM interface to Microsoft
Word. The

Ole32

 class is a hand-coded API stub that is part of Jawin.

A.4.2 COM Type Information

Type information poses a trickier problem. COM type information comes in two
important formats, the Interface Definition Language (IDL), and the type library.
C and C++ developers use IDL to describe interfaces, as shown in Listing A–1.

Listing A–1 A Simple IDL Fragment

HRESULT

CrunchArray([in] int sizeIn, [in, size_is(size] int* in,

[out] int* sizeOut, [out, size_is(1,sizeOut)] int** out);

IDL method declarations include method names, return types, and argument
types. A tool that could read the IDL text file could use this information to gener-
ate Java stubs.

There are two problems with using IDL files to generate stubs. First, many
COM implementation languages do not use IDL files at all; instead, they de-
scribe interfaces with a

type library

. Type libraries are not as expressive as IDL
and support only the most commonly used types. Type libraries can be stored
standalone in type library (TLB) files or bound into the application binary as re-
sources. The

ITypeLib

 and

ITypeInfo

 interfaces, COM’s version of reflec-
tion, can be used to extract the information from a type library. This turns out to
be a much easier approach to stub generation than parsing IDL. You do not
need to write a parser, and type libraries are much more widely available. Even
if there is only an IDL file available, you can use the

midl

 compiler to generate
a type library.

The second problem with IDL is that the vocabulary is too flexible. Because
it can describe interfaces for pointer-based languages such as C and C++, IDL
includes a number of constructs that do not have any trivial mapping to Java—
or to most COM languages, for that matter. For example, the

CrunchArray

method in Listing A–1 uses two

out

 parameters to “return” multiple values to
the caller. A straight translation to Java will not work since Java does not sup-
port

out

 parameters. In this example, the right thing to return would be an

5003_0A.fm Page 292 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM

293

array, but IDL can express even more complex signatures that have no obvious
Java mapping.

Most integration tools deal with the complexity of IDL by avoiding it. They sup-
port only the subset of types that can be expressed in a type library. Many tools
handle an even smaller subset of types, those that are

VARIANT

-compatible. The

VARIANT

 data type is a union of types that are available to scripting languages.
Although

VARIANT

-compatible types are a small subset of full IDL, this limitation
is not as bad as it seems. A large fraction of all COM interfaces voluntarily limit
themselves to these types anyway so that they can be used from scripting lan-
guages. The Jawin architecture is capable of supporting all IDL types, but the im-
plementation is complete only for the most commonly used types.

A.4.3 COM Object Lifecycle

COM uses reference counting to manage object lifecycle. All COM interfaces ex-
tend the base interface

IUnknown

, which has two reference counting methods:

ULONG AddRef();

ULONG Release();

When clients acquire an interface pointer, they must call

AddRef

. When they
are finished with the interface, they must call

Release

. COM objects manage
their own lifetime based on these hints. The most common approach is for the
object to maintain a reference count and delete itself when the count reaches
zero, although more esoteric approaches are possible. The client does not care
what the object actually does in response to these methods; it simply must fol-
low the rules in calling them. There are three ways that a Java client might deal
with reference counting COM components:

1. Java stubs could implement the

finalize

 method, which would call

Release

 when triggered by the garbage collector.

2. Java stubs could provide an explicit

Release

 method that clients must
remember to call.

3. Stubs could provide both

finalize

 and an explicit

Release

.

5003_0A.fm Page 293 Monday, November 12, 2001 10:39 AM

294

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Option 1 is the most transparent. Java programmers are not used to refer-
ence counting, so why make them remember this detail? Unfortunately, this does
not have acceptable performance. Garbage collection is not deterministic, so
there is no guarantee when

finalize

 will run, if ever. COM objects would be
held in memory for an indeterminate amount of time, even after they were no
longer needed. Worse yet,

finalize

 might be called on the wrong thread.
Option 2 requires that clients remember to call

Release

 when they are fin-
ished using a Java stub. This is the most efficient approach. However, if the cli-
ent forgets to call

Release

,

the object will be leaked. With option 3,

finalize

serves as a backup in case clients forget. This two-pronged approach is stan-
dard throughout the core Java API where native resources are used. In the core
API, Java classes that manipulate sockets, files, database connections, or other
native resources provide a well-known method, typically named

close

,

which
clients call to free the native resource. Jarwin provides a

close

 method, but
does not use

finalize

 because of the threading issue.

A.4.4 COM Type Discovery

In COM, type is a property of a particular instance, not of an entire class. A par-
ticular instance can implement one or more interfaces. Interfaces are uniquely
named by 128-bit GUIDs called IIDs. To discover whether an object supports a
particular interface, you call the method

HRESULT QueryInterface(REFIID iid,

 [out, iid_is(riid)] void *ppvResult)

Based on their responses to

QueryInterface

, different instances of the
same class may implement different interfaces. This is the opposite of Java, in
which the list of implemented interfaces is a fixed property of the binary class
format.

Java’s cast operator relies on the fixed nature of the binary class format, and
therefore cannot work with transparent COM stubs. There are two options: Hack
a virtual machine to change the semantics of casting, or simulate casting with a

5003_0A.fm Page 294 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 295

method call. The former option violates the Java license,1 so there is no hope for
modifying the virtual machine. Casting from one interface to another requires a
method call:

SomeComInterface itf1 = getSomeComInterface();

//this won’t work:

//OtherComInterface itf2 = (itf2) itf1;

//you must explicitly call COM’s QueryInterface

OtherComInterface itf2 = (itf2)

 itf1.QueryInterface(itf2.class);

Notice that this notion of “casting” also muddies the concept of identity. The
variables itf1 and itf2 refer to the same COM object, but they are different
stubs. The expression (itf1 == itf2) will evaluate to false.

A.4.5 COM Error Handling
COM provides several levels of support for error reporting. All COM interface
methods return an unsigned 32-bit type called an HRESULT to indicate success
or failure. The significant HRESULT values have an associated text message that
can be retrieved via the Win32 API call FormatMessage. Applications that want
to provide more specific information about an error can populate an “error ob-
ject” which can be placed in thread local storage by calling SetErrorInfo. Cli-
ents can then “catch” the error object by calling GetErrorInfo.

All of COM’s error information can be mapped into Java by simply creating a
subclass of Exception that has data members for the HRESULT, text message,
and any data from the error object. As a result, Java programmers can handle
exceptions from Java/COM stubs just like they would for any other Java class.
The COMException class in Listing A–2 is a simple wrapper for COM error in-
formation. The interesting design decision is whether to make the COMExcep-
tion class a checked or unchecked exception. In Jawin, COMException is a

1. This was one of the elements of Sun’s lawsuit over the Microsoft VM, which modified casting to
transparently support COM semantics.

5003_0A.fm Page 295 Monday, November 12, 2001 10:39 AM

296 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

checked exception. This design choice is based on the similar decision in the de-
sign of RemoteException for RMI. Even if the method itself succeeds, there
may be communication errors in the stub layer.

Listing A–2 COMException

package com.develop.jawin;

public class COMException extends Exception {

 public final int hresult;

 public static final int E_UNEXPECTED = 0x8000ffff;

 public COMException() {

 this(E_UNEXPECTED);

 }

 public COMException(int hresult) {

 //code to get error string not shown

 this.hresult = hresult;

 }

 public COMException(int hresult, String text) {

 super(text);

 this.hresult = hresult;

 }

 public COMException(String text) {

 this(E_UNEXPECTED, text);

 }

 public String getMessage() {

 return Integer.toHexString(hresult) + ": "

 + super.getMessage();

 }

 public COMException(Throwable t) {

 this(E_UNEXPECTED, t.getMessage());

 }

}

A.4.6 COM Thread Affinity
From a Java programmer’s perspective, the most unusual feature of COM is its
built-in support for thread-affine components. Java, Win32, and COM all define
some resources as thread-affine—those resources that can be used only from a
subset of the threads in the process. There are two historical reasons for this:

5003_0A.fm Page 296 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 297

1. User-interface subsystems are often built to run on a single thread to sim-
plify the programming model for UI developers.

2. Some components do not use the concurrency protection mechanisms of
the underlying platform, and therefore they are unsafe when called from
more than one thread at a time. Most C++ and Java programs suffer from
this problem.

In Java and in Win32, there is no special support for thread-affine compo-
nents. You simply have to be careful. If you break the rules and call a component
from the wrong thread, the resulting behavior is typically undefined. You might
get lucky and crash your application, or you may get unlucky and have data cor-
ruption that goes unnoticed.

COM provides apartments to deal with thread affinity. An apartment is a logi-
cal subspace of a process within which all objects expect the same thread se-
mantics. Method calls across apartments go through stubs2 (called proxies in
the COM world) that do any extra work necessary to guarantee the correct
thread semantics, such as switching calls onto an appropriate thread. Objects
can live in a single-threaded apartment (STA) if they want to be called from only
one thread throughout their lifetime; or, they can live in a multi-threaded apart-
ment (MTA) if they want to be called from multiple threads and might execute
blocking calls. If an object knows that it will never need to make a blocking call,
it can safely “visit” either an STA or the MTA and have no thread affinity. COM ob-
jects with no thread affinity are called agile, or are said to “aggregate the free-
threaded marshaller.”3

With COM+ 1.0, the apartment story is even more complex. The apartment
model is extended to a more general context model. Objects can request that
they live in a particular context, and inbound method calls will pass through a
proxy that sets up the required context. This is very similar to EJB, where

2. These stubs are very similar to the stubs that are the subject of this chapter. They are generated
from type information and exist to bridge between incompatible components—in this case within a
single component platform.
3. This technology describes how an object implementor defeats thread affinity. Aggregation is a
reuse mechanism in COM, and the free-threaded marshaller is a component that prevents the cre-
ation of cross-apartment stubs. This causes an object to belong to all apartments (or none) depend-
ing on your perspective.

5003_0A.fm Page 297 Monday, November 12, 2001 10:39 AM

298 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

method calls pass through container-generated code that sets up the transac-
tion and security context. The addition of contexts necessitates yet another
apartment type. The thread-neutral apartment (TNA) is home to objects that do
not have thread affinity but need to have stubs to initialize their context.

Apartments are quite complex, and many trees have been felled describing
them. There are three possible approaches to take when dealing with this com-
plexity from Java:

1. Require that Java clients understand COM apartments and use them cor-
rectly.

2. Require that Java clients treat all COM components as thread-local.

3. Build logic into the stub layer that analyzes the current thread on each
method call, and uses an appropriate COM proxy.

None of these options is perfect. Option 1 is a non-starter; it is completely
unrealistic to expect that Java programmers learn the details of COM apart-
ments just to use a COM object. Option 2 provides a very simple rule that Java
clients can deal with, but it is overly restrictive in many cases. Option 3 is en-
tirely transparent to Java clients, but the performance hit is significant in some
cases.

Since none of the three options is perfect, Jawin supports more than one.
Option 3 is the default: Stubs always guarantee that COM threading rules are fol-
lowed. This will work correctly in all cases but may be slow. If you know that you
plan to make repeated calls from the same thread, Jawin provides a helper
method called contextLocalize. Calling contextLocalize turns off a stub’s
built-in apartment support. Calls through the stub will execute more quickly, but
they are only guaranteed to work from the current thread.

A.4.7 COM Security
The security architecture is the most troubling source of impedance mismatch
between COM and Java. COM security is based on the user identity currently as-
sociated with a thread. Java assigns permissions based on the code source, that
is, the location (URL) that code came from and the signers of the code (if any). In
theory, there is no problem with securing COM objects using Java permissions. It

5003_0A.fm Page 298 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 299

is simply a matter of defining some appropriate Permission subclasses, and
calling checkPermission inside the generated stubs. But, you would have to
write this code by hand. There is no straightforward way to generate security-
aware stubs because there is no security metadata. Because there is not a good
solution, most interop products (including Jawin) either ignore security or build
special cases by hand.

A.5 Win32 Dynamic Link Libraries
Dynamic Link Libraries (DLLs) are the basic mechanism for component reuse in
the Win32 family of operating systems. DLLs have been around much longer
than Java or COM, so when I describe the DLL architecture as a component plat-
form, I am fitting new terms to an old technology. While the goals of component
programming are less fully realized in the DLL architecture, the key elements are
still visible.

A.5.1 The DLL Loader
The loader architecture for DLLs is quite simple. First, call LoadLibrary to lo-
cate a binary by its name and location in the file system. Then, call GetProcAd-
dress to locate a particular function entry point in the library, either by name or
by ordinal (numeric address). Cast the result of GetProcAddress to an appro-
priate function pointer, and off you go, as shown in Listing A–3.

Listing A–3 Dynamic Loading of a DLL Entry Point

 //dynamically loading and calling MessageBoxW:

 typedef WINUSERAPI int WINAPI

 MBFUNC(HWND, LPCWSTR, LPCWSTR, UINT);

 HMODULE hm = LoadLibrary("USER32.DLL");

 MBFUNC* MsgBox = (MBFUNC*)GetProcAddress(hm, "MessageBoxW");

 MsgBox(0,L"Hello",L"Dynamically Loaded", 0);

The important difference from Java is that DLLs deal in functions, not ob-
jects. Since Java does not allow freestanding functions, the obvious mapping is
to represent these functions as static methods on some Java class. This is
Jawin’s approach.

5003_0A.fm Page 299 Monday, November 12, 2001 10:39 AM

300 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

How should DLL entry point functions be grouped into Java classes? One ap-
proach would be to have a single Java class with all the stub functions for a par-
ticular DLL. For example, User32.java would contain stubs for all the functions
from User32.dll. This approach leads to very large stub classes—User32.dll
contains around 700 function entry points. An alternate approach is to group
smaller sets of related functions under some meaningful name. Jawin usually
takes the latter approach; for example, all the Registry functions are grouped in
Registry.java.

A.5.2 DLL Type Information
A compiled DLL does not expose any useful type information other than the
names of methods. In this respect DLLs are very primitive compared to either
COM or Java. If you look back at Listing A–3, you will see that loading the Mes-
sageBoxW function is not type-safe. All DLL entry points look the same until you
cast them. If you cast wrong, chaos ensues.

Java clients expect and deserve more type safety than this. In order to gen-
erate strongly typed stubs, you must obtain type information from somewhere.
There are several possibilities:

• IDL files

• Type libraries (TLBs)

• Header (.h) files

• Custom type formats

IDL files and type libraries you remember from the discussion of COM type
information. Both IDL and type libraries can describe DLL entry points. However,
few DLLs actually ship with this information. Indeed, most DLLs are described by
header files. The C/C++ header files ship with the Windows SDK, but they are
more difficult to parse.

Even if you have successfully obtained and parsed an IDL, TLB, or header file,
you may have trouble generating a Java-friendly signature for some Win32 func-
tions. Consider the Win32 API GetTokenInformation shown in Listing A–4.

5003_0A.fm Page 300 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 301

Listing A–4 Win32’s GetTokenInformation

BOOL GetTokenInformation(

 HANDLE TokenHandle, // handle to access token

 TOKEN_INFORMATION_CLASS TokenInformationClass, // token type

 LPVOID TokenInformation, // buffer

 DWORD TokenInformationLength, // size of buffer

 PDWORD ReturnLength // required buffer size

);

Logically, this function returns an object whose type is determined by the
TokenInformationClass flag. However, this “object” takes the form of an
opaque array of bytes copied into the TokenInformation argument. A Java cli-
ent would expect to see not these raw bytes, but instead an instance of a Java
class. Because the information needed to make this conversion is not part of the
method signature, a simple type library would be inadequate. You would need to
customize the type information to describe this conversion, which the method
signature does not capture.4 Given these issues, it might be easier to enter the
type information by hand, using a custom format.

Most interop products fail to support any of these options and are unable to
generate stubs for Win32 DLLs. The current version of Jawin requires that you
write Win32 stubs by hand, although a future version may utilize a custom XML-
based type format.

A.5.3 DLL Object Lifecycle
Many DLL entry points define some notion of an “object” whose lifecycle needs
to be managed. For example, the Registry function RegOpenKey returns an
opaque handle that represents a key in the Registry. When you are finished with
the key, you should call RegCloseKey to release the resource. Java stubs could
hide this detail from clients by implementing finalize to release the resource,
but this is a bad idea. As mentioned earlier in the discussion of COM lifecycle,
finalize is unreliable. Even though it makes the programming model more

4. Neither COM nor Java metadata captures this sort of information either, so aren’t all the compo-
nent technologies equally vulnerable to this problem? In theory, yes; but in practice, no. The coding
style (modulo syntax) used in GetTokenInformation is legal in Win32, Java, or COM, but
though it is very common in the Win32 API, it is frowned upon in both the Java and COM worlds.

5003_0A.fm Page 301 Monday, November 12, 2001 10:39 AM

302 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

difficult, clients should be forced to call the lifecycle management APIs for such
objects. These calls can be exposed directly, which is how Jawin handles the
problem. If the stub layer manufactures a Java object to wrap the handle, then
the lifecycle management API call should be hidden behind a close method. In
the latter case, finalize can be used as a failsafe.

A.5.4 DLL Type Discovery
Because DLL entry points are not objects, they do not implement interfaces or
support any notion of inheritance.5

A.5.5 DLL Error Reporting
DLLs do not enforce a standard scheme for reporting exceptional conditions. In
the Win32 SDK, API calls report errors in several different ways:

• Some functions return zero on failure. A numeric code with more informa-
tion is available by calling GetLastError. After calling GetLastError,
you can obtain a string describing the error with FormatMessage. Get-
TokenInformation is one example of this approach.

• Some functions return zero on success. Again, more information is available
through GetLastError. RegCloseKey is one example.

• Some functions return an error code such as an HRESULT directly. Most of
the support API for COM fits in this category.

To add to the confusion, third-party DLLs are free to invent more unusual
schemes. It should be straightforward to convert any documented exception re-
porting scheme into an exception for Java clients. Jawin handles the three stan-
dard types shown above, and it is extensible to deal with others.

A.5.6 DLL Thread Affinity
DLLs do not provide any special support for thread affinity, and neither does
Java, so there is no impedance mismatch here.

5. DLL entry points into C++ libraries may provide access to C++ objects that do implement multi-
ple interfaces. Jawin does not directly support non-COM C++ objects because there is relatively lit-
tle demand for this ability. It would be straightforward (but tedious) to extend Jawin’s COM support
to also provide direct C++ support.

5003_0A.fm Page 302 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 303

A.5.7 DLL Security
The issues with the DLL security model are the same as with COM; see §A.4.7.

A.6 Marshalling Architecture
A marshalling architecture ships method calls from one environment to another
and provides some degree of help with the platform impedance issues dis-
cussed earlier. As mentioned in §A.2, marshalling involves seven steps:

1. Convert a method invocation into a request message.

2. Deliver the request message to a target environment.

3. Convert the request message into a method stack in the target environ-
ment.

4. Invoke the method.

5. Convert the return value(s) or exception(s) into a response message.

6. Deliver the response message to the source environment.

7. Convert the response message back into the types expected by the caller.

In order for this communication to occur inside a single process space, the
marshalling layer must be built on top of JNI. There are two distinct approaches
to marshalling a message from Java into native code. The shared stub ap-
proach, discussed in §A.6.1, lets JNI do the marshalling, but it requires that
each unique method signature be manually coded in JNI. A generic stub, de-
scribed in §A.6.2, marshals method calls and results in an opaque array of
bytes. All method calls can then be implemented by a single native method.

A.6.1 Shared Stubs
The idea behind shared stubs is simple. Although the theoretical number of dif-
ferent API signatures is practically infinite, most APIs actually use one of a very
small number of signatures. For example, you have probably coded a method
that takes an int and returns an int. However, have you ever written a method
that takes int, float, int, int, int and returns double? Probably not.

If the total number of different API signatures is small relative to the total
number of different API methods, then it makes sense to develop and test a

5003_0A.fm Page 303 Monday, November 12, 2001 10:39 AM

304 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

small set of native entry points, one for each signature. Once these entry points
are in place, then you can add new methods without having to develop or test
any new native code.

For example, consider the Win32 APIs listed in Listing A–5. These functions,
selected from several different areas of the Win32 API, all appear to have differ-
ent signatures. However, the HGDIOBJ, int, LPVOID, HRESULT, BOOL, HWND,
HANDLE, LONG, and HKEY types all could be represented by the Java type int.
As a result, these APIs could all share a single native stub method.

Listing A–5 Many APIs Can Share Stubs.

HGDIOBJ GetStockObject(int fnObject);

HRESULT CoInitialize(LPVOID reserved);

BOOL UpdateWindow(HWND hwnd);

BOOL DeregisterEventSource(HANDLE hEventLog);

LONG RegCloseKey(HKEY hKey);

Listing A–6 shows two shared stubs: one that handles one int argument,
and a similar method that handles a single String argument. These stubs use a
naming convention of invoke{X*}_X, where each X is replaced by a letter indi-
cating the argument type, in this case I for int and G for String. Each stub
takes zero or more parameters for the method arguments, plus the two special
arguments flags and func. The flags control interpretation of the return
value, and they correspond to the different error handling schemes for DLLs
listed in §A.5.5. The func argument is the address of the API function.

Listing A–6 Shared Stub for Win32 APIs with a Single Integer Parameter

//Client code example: calling CoInitialize

Ole32.CoInitialize();

//Implementing the interface stub for CoInitialize

public class Ole32 {

 public static void CoInitialize() throws COMException {

 FuncPtr fp = new FuncPtr("OLE32.DLL", "CoInitialize");

 SharedStubs.invokeI_I(0, fp.getPeer(), CHECK_HR);

 }

 //etc.

}

5003_0A.fm Page 304 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 305

//implementing the interface stub for the Registry APIs

public class Registry

{

 static private final FuncPtr fpCK;

 static {

 fpCK = new FuncPtr("ADVAPI32.DLL", "RegCloseKey");

 }

 public static void CloseKey(int key)

 throws IOException, COMException

 {

 SharedStubs.invokeI_I(key, fpCK.getPeer(), CHECK_W32);

 }

 //etc.

}

//excerpt from com.develop.com.marshal.SharedStubs;

public class SharedStubs {

 public static native int invokeG_I(int arg0, String arg1,

 int func, int flags);

 public static native int invokeI_I(int arg0,

 int func, int flags);

 //etc.

}

The native implementations of the shared stubs, shown in Listing A–7, are te-
dious but straightforward. Each stub executes the same basic series of steps:

1. Convert arguments to Java types if necessary.

2. Cast the peer to a function pointer and invoke the function.

3. Do any special processing of the return value.

4. Free any resources allocated in step 1.

Listing A–7 Implementation of Shared Stubs’ Native Methods

typedef HRESULT (__stdcall * FTYPE1)(int);

inline bool checkRet(int ret, int flags) {

 switch (flags) {

 case 0:

return true;

 case 1:

if (!ret) {

 JNIComException::SetLastError();

5003_0A.fm Page 305 Monday, November 12, 2001 10:39 AM

306 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 return false;

}

return true;

 case 2:

if (FAILED(ret)) {

 JNIComException::SetContextException(ret);

 return false;

}

return true;

 case 3:

if (ret != ERROR_SUCCESS) {

 JNIComException::SetContextException(ret);

 return false;

}

return true;

 default:

JNIComException::SetContextException(

 "Invalid code in checkRet");

return false;

 }

}

JNIEXPORT jlong JNICALL

Java_com_develop_com_marshal_SharedStubs_invokeI_1I

 (JNIEnv * pEnv, jclass, jint arg0, jint peer, jint flags)

{

 int ret = ((FTYPE1)peer)(arg0);

 checkRet(ret, flags);

 return ret;

}

JNIEXPORT jlong JNICALL

Java_com_develop_com_marshal_SharedStubs_invokeG_1I

(JNIComUtil * pEnv, jclass, jstring arg0, jint peer, int flags)

{

 CComBSTR bs0;

 bs0.Attach(pEnv->jstobs(arg0));

 int ret = ((FTYPE1)peer)((int)bs0.m_str);

 checkRet(ret, flags);

 return ret;

}

For a stub that handles only primitive numeric types, steps 1 and 4 disap-
pear and the implementation is entirely trivial. For slightly more complex types,

5003_0A.fm Page 306 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 307

such as strings, the marshalling layer uses a set of helper APIs called intrinsic
functions to perform data conversions.

An intrinsic function is a hand-coded function that implements some atomic
action inside the marshalling layer, such as streaming a particular data type or
converting a numeric error code into a Java exception. The intrinsic functions
get their name because they are built into the marshalling layer. More complex
marshalling tasks, such as streaming a large struct, do not require hand-coded
functions. They take the form of several intrinsic function invocations in se-
quence and are generated from type information.

In Listing A–7, the invokeG_I implementation uses a helper class CComB-
STR as an intrinsic function. In this case, the “function” is actually a class be-
cause CComBSTR is already available as part of the Active Template Library
(ATL), which Jawin uses. The CComBSTR class automates converting a Java
string into a BSTR, which is the most common string format in COM program-
ming.

When does a particular marshalling task deserve its own intrinsic function,
and when should it be composed from calls to lower-level intrinsic functions? The
boundary is arbitrary. High-frequency data types, such as strings and arrays, de-
serve custom functions both for convenience and for performance reasons.
However, there is a strong motivation to minimize the number of intrinsic func-
tions, since some human must write each one. Most intrinsic functions come in
pairs: a Java function to convert from Java to Win32/COM, and a native function
to go in the other direction, from Win32/COM to Java. Never having to hand-
code a native function is a key goal of building a marshalling layer in the first
place. Wherever possible, Jawin executes more complex marshalling tasks by
calling preexisting intrinsic functions.

For all their value, shared stubs are unlikely to handle every possible API.
Methods with a large number of arguments, or with more complex structured
types, require more complex stubs—and are therefore likely to not have shared
stubs at all. Of course, some stubs are better than no stubs. If nine of ten
needed APIs can be accessed through a preexisting shared stub, then you have
achieved a 90 percent reduction in the native code that you have to write.

5003_0A.fm Page 307 Monday, November 12, 2001 10:39 AM

308 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

A.6.2 A Generic Stub
Shared stubs implement one specific signature per stub. An alternate approach
is to use a generic stub that can marshal any method call. A generic stub con-
verts a method call into a serialized request message, which is then transmitted
to the destination object. In addition to the request, the generic stub must also
transmit some instructions that describe the method signature to be called. Us-
ing the request and the instructions, the generic stub builds the native call stack
and invokes the method. Return values and exceptions are then serialized into a
response, and returned to the client.

In theory, a generic stub could encode everything about the method call into
a single array, and be declared like this:

 public native byte[] genericInvoke(byte[] request);

In practice, the method call is likely to be encoded into more than one ar-
gument, for the convenience of the developer. Jawin’s generic stub has this
signature:

package com.develop.com.marshal;

public class GenericStub {

 public static byte[] win32Invoke(int peer, String inst,

 int stackBytes, int totalBytes,

 byte[] request, Object[] ObjectArgs);

 //remainder omitted for clarity

}

The request array is the serialized call, totalBytes is the number of rele-
vant bytes in request, and the peer is the native function pointer to invoke.
The separate array for Java object arguments is necessitated by JNI. JNI re-
quires that objects passed to native code must be passed as object references,
so the objects travel in their own separate array ObjectArgs. The object array
also does double duty for any Java objects to be returned to the caller. The
StockBytes and inst arguments are described in the next section.

5003_0A.fm Page 308 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 309

A.6.3 Instruction Strings
The other two parameters, stackBytes and inst, tell the marshalling layer
how to build the native call stack. The stackBytes value is the size of the call
stack. The implementation of win32Invoke will allocate a call buffer of this size
on the stack. Then, the request array must be unmarshalled into the buffer.
The inst argument is an instruction string that tells the marshaller how to copy
the request array into the call buffer.

An instruction string is a sequence of characters that drives a state machine
inside the marshaller. The state machine processes the instruction string to cre-
ate a call stack. If all the arguments to a method are primitive types, then the in-
structions are trivial: Simply copy the request directly into the call buffer. If the
arguments to a method are COM interface pointers or data structures, then the
instructions get more complex. For example, consider the Jawin code to call the
MessageBoxW function that appears in Listing A–8.

Listing A–8 Marshalling MessageBoxW

//the MessageBoxW signature in C:

WINUSERAPI int

WINAPI MessageBoxW(HWND, LPCWSTR, LPCWSTR, UINT);

//Client code: calling MessageBoxW from Java

User32.MessageBoxW("Hello World", "Jawin");

//Implementing the interface stub. This code might be

//hand-written or generated from type information.

public class User32 {

 static final int mstackMessageBoxW = 16;

 public static void MessageBoxW(String msg, String title)

 throws COMException

 {

 FuncPtr fp = new FuncPtr("USER32.DLL", "MessageBoxW");

 NakedByteStream nbs = new NakedByteStream();

 LittleEndianOutputStream leos = new

 LittleEndianOutputStream(nbs);

 leos.writeStringUnicode(msg);

 leos.writeStringUnicode(title);

5003_0A.fm Page 309 Monday, November 12, 2001 10:39 AM

310 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 GenericStub.win32Invoke(fp.getPeer(),

 "kGGk:T1:",

 mstackMessageBoxW,

 leos.size(),

 nbs.getInternalBuffer(),

 null);

 }

 //etc.

}

The User32 stub for MessageBoxW executes the following steps:

1. Create an instance of the FuncPtr helper class. Behind the scenes, this
helper calls LoadLibrary and GetProcAddress to load the function.

2. Create a LittleEndianOutputStream to hold the request message.
(Win32 and COM expect bytes to be in little-endian order).

3. Write the string arguments into the stream.

4. Call the method, passing in the request and the instruction string.

The instruction string kGGk:T1: is interpreted as follows:

• The characters before the first colon are the instructions for converting the
message into a call buffer. The letter k means “skip this argument on the
stack” and the letter G means “read a string from the message and write its
address onto the stack.” In this example, the first and last arguments are
skipped because the entire call buffer is zero-filled, and these arguments
need to be zero.

• The characters between the colons are the instructions for writing the return
value into the response buffer. The characters T1 mean “write the return
value into the response buffer and raise a COMException if the function
returned zero.”

• The characters after the second colon are instructions for writing any out
parameters into the response buffer. MessageBoxW does not have any out
parameters, so this part of the string is empty.

Jawin supports a large number of different instructions which are documented
at [Jawin] and can be extended to support arbitrarily complex API signatures.

Jawin’s character encodings for the instruction strings are arbitrary and can
be quite complex. The purpose of the generic stub is to replace raw JNI for com-
plex method signatures. However, one could make the argument that learning to

5003_0A.fm Page 310 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 311

use encodings such as kGGk:T1 is just as difficult as writing raw JNI, so why
bother? The answer, of course, is that you will not be writing the encodings di-
rectly. Classes such as User32 should be generated from type information, as
discussed in the next section.

A.7 Generating Stubs
Consider again the marshalling architecture diagram, shown in Figure A–1. The
intrinsic functions and other marshalling infrastructure code must be developed
by hand. However, they are developed only once to be shared by all interface
stubs. Each particular COM interface or set of DLL entry points will need its own
interface stub. These interface stubs vary only by differences in type informa-
tion, and they are ideal candidates for code generation. Jawin includes proto-
types for generating both shared stubs and interface stubs.

A.7.1 Generating Shared Stubs
The com.develop.jawin.tools package, included with Jawin, is a pure Java
implementation that builds the Java and native source code files for shared
stubs. The COMSharedStubDriver class defines a set of argument types and a
maximum number of arguments to generate. Then the COMSharedStubDriver
iterates over every permutation of arguments, calling COMSharedStubBuilder
to generate the Java declaration and native implementation. Listing A–9 shows
the native stub declarations generated for two-argument methods with types
int, float and String. Listing A–10 shows a small sample of the generated
implementations.

Listing A–9 Stub Declarations Generated by COMSharedStubDriver

//stub declarations

package com.develop.com.marshal;import com.develop.com.*;import

com.develop.util.*;import java.io.*;import java.util.*;

 public class COMMarshal { public static native void

 invokeII(int vtableIndex, int guidToken, int peer, int

 unknown, int arg0, int arg1);

 public static native void invokeIF(int vtableIndex, int

 guidToken, int peer, int unknown, int arg0, float arg1);

5003_0A.fm Page 311 Monday, November 12, 2001 10:39 AM

312 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 public static native void invokeIG(int vtableIndex, int

 guidToken, int peer, int unknown, int arg0, String arg1);

 public static native String invokeIoG(int vtableIndex, int

 guidToken, int peer, int unknown, int arg0);

 public static native int invokeIoI(int vtableIndex, int

 guidToken, int peer, int unknown, int arg0);

 public static native float invokeIoF(int vtableIndex, int

 guidToken, int peer, int unknown, int arg0);

 public static native void invokeFI(int vtableIndex, int

 guidToken, int peer, int unknown, float arg0, int arg1);

 public static native void invokeFF(int vtableIndex, int

 guidToken, int peer, int unknown, float arg0, float arg1);

 public static native void invokeFG(int vtableIndex, int

 guidToken, int peer, int unknown, float arg0, String arg1);

 public static native String invokeFoG(int vtableIndex, int

 guidToken, int peer, int unknown, float arg0);

 public static native int invokeFoI(int vtableIndex, int

 guidToken, int peer, int unknown, float arg0);

 public static native float invokeFoF(int vtableIndex, int

 guidToken, int peer, int unknown, float arg0);

 public static native void invokeGI(int vtableIndex, int

 guidToken, int peer, int unknown, String arg0, int arg1);

 public static native void invokeGF(int vtableIndex, int

 guidToken, int peer, int unknown, String arg0, float arg1);

 public static native void invokeGG(int vtableIndex, int

 guidToken, int peer, int unknown, String arg0, String arg1);

 public static native String invokeGoG(int vtableIndex, int

 guidToken, int peer, int unknown, String arg0);

 public static native int invokeGoI(int vtableIndex, int

 guidToken, int peer, int unknown, String arg0);

 public static native float invokeGoF(int vtableIndex, int

 guidToken, int peer, int unknown, String arg0);

 public static native void invokeI(int vtableIndex, int

 guidToken, int peer, int unknown, int arg0);

 public static native void invokeF(int vtableIndex, int

 guidToken, int peer, int unknown, float arg0);

 public static native void invokeG(int vtableIndex, int

 guidToken, int peer, int unknown, String arg0);

 public static native String invokeoG(int vtableIndex, int

 guidToken, int peer, int unknown);

 public static native int invokeoI(int vtableIndex, int

 guidToken, int peer, int unknown);

 public static native float invokeoF(int vtableIndex, int

 guidToken, int peer, int unknown);

}

5003_0A.fm Page 312 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 313

Listing A–10 Native Stubs Generated by COMSharedStubDriver

JNIEXPORT void JNICALL

Java_com_develop_com_marshal_COMMarshal_invokeIF(JNIComUtil *

pEnv, jclass, jint vtableIndex, jint guidToken, jint peer, jint

unknown, jint arg0, jfloat arg1)

{

 CComPtr<IUnknown> cpUnk;

 try {

 getUnknown(guidToken, peer, unknown, &cpUnk);

 FTYPE3* vtable = (FTYPE3*) (*(int*)(cpUnk.p));

 int inv0 = arg0;

 float inv1 = arg1;

 JNI_HR(vtable[vtableIndex]((int)cpUnk.p, inv0, inv1));

 }

 HANDLE_JNI_EXCEPTIONS()

}

JNIEXPORT void JNICALL

Java_com_develop_com_marshal_COMMarshal_invokeIG(JNIComUtil *

pEnv, jclass, jint vtableIndex, jint guidToken, jint peer, jint

unknown, jint arg0, jstring arg1)

{

 CComPtr<IUnknown> cpUnk;

 try {

 getUnknown(guidToken, peer, unknown, &cpUnk);

 FTYPE3* vtable = (FTYPE3*) (*(int*)(cpUnk.p));

 int inv0 = arg0;

 CComBSTR temp1;

 temp1.Attach(pEnv->jstobs(arg1));

 int inv1 = (int)temp1.m_str;

 JNI_HR(vtable[vtableIndex]((int)cpUnk.p, inv0, inv1));

 }

 HANDLE_JNI_EXCEPTIONS()

}

The code for the actual generator is almost insultingly simple. That is one of the
beauties of generative programming. There is often no need (or temptation) to
optimize the generator because it is run only at development time. Also, the gen-
erator does not need to be particularly user-friendly since the target user is a de-
veloper. Of course, a very large, widely used generator might need to be
developed and optimized like a “normal” program. Nevertheless, generators are
often simpler than the same logic implemented dynamically at runtime.

5003_0A.fm Page 313 Monday, November 12, 2001 10:39 AM

314 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

One reason that the generator is simple is that “almost right is good
enough.” The COMSharedStubDriver makes several simplifying assumptions
about out parameters:

• There is at most one out parameter per method.

• If there is an out parameter, it appears last.

• The out parameters should be translated to a Java return value.

None of these assumptions is entirely true, but they probably apply to bet-
ter than 98 percent of actual COM interfaces. Many developers would consider
it unwise to code these assumptions into an OO base class since they are not
entirely accurate and might compromise the architecture. Nobody worries if a
development-time generator is predictably inaccurate for some cases. You can
always replace the generator with another generator, defer special classes to
another generator, or simply code the outlying cases by hand.6

A.7.2 Generating Interface Stubs
Whether you use shared stubs or a generic stub, the front end of the marshalling
layer is an interface stub that provides a Java representation of some COM inter-
face or Win32 entry point. In general, the source code for an interface stub
looks like this:

//pseudo-code

package <% =some.arbitrary.package %>;

import <%= some.standard.imports %>;

class <%= SomeStub %> {

 //Some per-class goo…

 <%= SomeReturnType %>

 <%= someMethod %>(<%= someArgs %>) { //for each method

 SomeCallStackRep r = new SomeCallStackRep();

 r.addArg(<%= arg[n] %>); //for each arg

6. This entire argument is as much about culture as it is about technology. It is entirely feasible to
code an inheritance-based solution that deliberately ignores special cases. However, many OO pur-
ists are obsessive about accurately modeling the problem domain. The recent rise of Extreme Pro-
gramming (XP) is, in part, a rejection of this aspect of OO culture.

5003_0A.fm Page 314 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 315

 ReturnRep ret = Stub.invoke(r);

 return <%= someReturnTypeConversionFunc %>(ret);

 }

}

Most of the text in this file is boilerplate; only the bolded portions need to
change for different methods. Type information can be used to generate these
replacements. The use of the <%= expr%> syntax implies an obvious approach,
which is to use JSP or a JSP-like syntax to generate the source code for the
stubs.

Because COM type information is already available through COM interfaces,
Jawin uses a COM-based code generation language called X-Code7 instead of
JSP. Listing A–11 shows the method generation portion of the X-Code template,
and Listing A–12 shows an example of a generated method.

Listing A–11 Method Generation Template from COMThunk.xjava

public <%= returnTypeName(method) %>

<%= method.Name %>(<%= argList(method,0) %>)

throws COMException, IOException

{

 int vtIndex = <%= method.VtableIndex %>;

 NakedByteStream nbs = new NakedByteStream();

 LittleEndianOutputStream leos =

 new LittleEndianOutputStream(nbs);

 //arg stream

<% for (i=0; i < method.ArgCount; i++) { %>

<%= marshalArg(method, i)%><% } %>

 //object args

<%= customObjArray(method) %>

<% for (i=0; i < method.ArgCount; i++) { %>

<%= marshalObject(method, i)%><% } %>

 byte[] result = GenericStub.comInvokeString(

 "<%= marshalString(method) %>",

<%= method.ArgCount * 4 %>,

leos.size(),

nbs.getInternalBuffer(),

7. X-Code is part of Gen<X>, a commercial code general reaction tool developed by the author’s
employer. Jawin began as a proof of concept for X-Code, and Jawin itself is completely free and
open source. For more information on Gen<X>, see [GenX].

5003_0A.fm Page 315 Monday, November 12, 2001 10:39 AM

316 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

objArgs,

 vtIndex,

iidToken,

peer,

unknown);

<%= customMaybeStream() %><%= customMaybeReturn() %>

}

Listing A–12 Sample Generated Method: Saving a Word Document

public void Save(Object arg0, Object arg1)

 throws COMException, IOException

{

 int vtIndex = 16;

 NakedByteStream nbs = new NakedByteStream();

 LittleEndianOutputStream leos =

 new LittleEndianOutputStream(nbs);

 //arg stream

 Variant.marshalIn(arg0, leos);

 Variant.marshalIn(arg1, leos);

 //object args

 Object[] objArgs=null;

 byte[] result = GenericStub.comInvokeString("VV:H:ll",

 8,

 leos.size(),

 nbs.getInternalBuffer(),

 objArgs,

 vtIndex,

 iidToken,

 peer,

 unknown);

}

The Save method implementation shows both the benefits and limits of a type-
information driven approach. On the plus side, the generation of this method is
entirely automatic; all you have to do is run the template against the Microsoft
Word type library. However, the signature is not very informative. Many COM in-
terfaces are designed primarily with scripting in mind, and they do not use
strong typing. The Save method uses VARIANT arguments, which can be any le-
gal scripting type. As a result, the Java stub is weakly typed as well, taking argu-
ments of type Object.

5003_0A.fm Page 316 Monday, November 12, 2001 10:39 AM

INTEROP 2: BRIDGING JAVA AND WIN32/COM 317

A.8 Onward
Interoperation between Java, Win32, and COM is an important aspect of most
enterprise systems. Even organizations with a strong commitment to Java need
access to the huge number of existing COM and Win32 DLL components.

There is no single solution to this problem, and the relationship between the
key vendors makes it unlikely that there ever will be. [JavaWin32] summarizes the
various third-party products that have appeared to fill this void. To varying de-
grees, each product hides the sources of platform impedance presented in §A.3.

The latter half of this appendix presented an example marshalling architec-
ture. You have three important decisions to make in choosing the best marshal-
ling architecture for your own use:

1. Decide which aspects of platform impedance need to be handled transpar-
ently, which ones to expose to Java clients, and how they should be
exposed.

2. Find support for the type systems you need. If you only need to access
scriptable COM components, there is no need to invest in a product that
supports DLL entry points or complex IDL expressions.

3. Minimize the work that must be done by hand. Choose a solution that can
automatically generate the interface stubs you need.

Many of the marshalling products will let you mix-and-match solutions to
these three questions. For example, since Jawin is open source, you could easily
use Jawin’s intrinsic functions but replace its stub generators with your own.

This appendix has examined in-process communication. In-process solutions
have several benefits. They are almost certain to be faster because they do not
pay the penalty of crossing a process or network boundary. Also, they allow
Java programs direct access to process-local resources. If you need access to
process-local resources, in-process interop is your only choice.

Another possibility, beyond the scope of this book, is out-of-process tech-
niques, using network communication to bridge between Java and native pro-
cesses. Calling native code in another process provides some fault tolerance since
the native process has no way to damage the Java process. On the other hand,
out-of-process communication is slower and is completely unsuitable for some
tasks, such as manipulating process-specific resources inside the virtual machine.

5003_0A.fm Page 317 Monday, November 12, 2001 10:39 AM

5003_0A.fm Page 318 Monday, November 12, 2001 10:39 AM

