% @ 5003_001.fm Page i Wednesday, January 23, 2002 3:27 PM

) o

—



% @ 5003_001.fm Page ii Wednesday, January 23, 2002 3:27 PM



% @ 5003_001.fm Page iii Wednesday, January 23, 2002 3:27 PM

Component Development for the
Java™ Platform

Stuart Dabbs Halloway

vvAddison-Wesley

Boston e San Francisco ® New York e Toronto ¢ Montreal
London e Munich e Paris e Madrid
Capetown ® Sydney ® Tokyo ® Singapore ¢ Mexico City



% @ 5003_001.fm Page iv Wednesday, January 23, 2002 3:27 PM @ @

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley, Inc. was aware of a
trademark claim, the designations have been printed with initial capital letters or all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or im-
plied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more infor-
mation, please contact:

Pearson Education Corporate Sales Division
201 W. 103" Street

Indianapolis, IN 46290

(800) 428-5331
corpsales@pearsoned.com

Visit AW on the Web: www.aw.com/cseng/

Library of Congress Cataloging-in-Publication Data

Halloway, Stuart Dabbs.
Component development for the Java platform / Stuart Dabbs Halloway.
p. cm. - (DevelopMentor series)
Includes bibliographical references and index.
ISBN 0-201-75306-5
1. Java (Computer programming language) 2. System design. I. Title. Il. Series.

QA76.73 J38 H346 2002
005.13'3—dc21 200105379

Copyright © 2002 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher. Printed in the United States of America. Published simulta-
neously in Canada.

For information on obtaining permission for use of material from this work, please submit a written re-
quest to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

0-201-75306-5

Text printed on recycled paper
123456789 10—MA—0504030201
First printing, December 2001

e [



% @ 5003_001.fm Page v Wednesday, January 23, 2002 3:27 PM

To Joey



% @ 5003_001.fm Page vi Wednesday, January 23, 2002 3:27 PM



% @ 5003_001.fm Page vii Wednesday, January 23, 2002 3:27 PM

Contents

1
2

Foreword
Preface

From Objects to Components

The Class Loader Architecture
2.1 Assembling an Application
2.2 Goals of the Class Loader Architecture
2.2.1 Transparency
2.2.2 Extensibility
2.2.3 Capability
2.2.4 Configurability
2.2.5 Handling Name and Version Conflicts
2.2.6 Security
2.3 Explicit and Implicit Class Loading
2.3.1 Explicit Loading with URLClassLoader
2.3.2 Implicit Class Loading
2.3.3 Reference Type versus Referenced Class
2.3.4 ClassLoader.loadClass versus Class.forName
2.3.5 Loading Nonclass Resources
2.4 The Class Loader Rules
2.4.1 The Consistency Rule
2.4.2 The Delegation Rule
2.4.3 The Visibility Rule
2.4.4 Delegations as Namespaces
2.4.5 Static Fields Are Not Singletons
2.4.6 Implicit Loading Hides Most Details
2.5 Hot Deployment
2.5.1 Using Hot Deployment
2.6 Unloading Classes
2.6.1 Making Sure Classes Are Collectable

xiii
XV

11
11
14
15
15
16
16
16
17
17
18
19
20
21
22
23
23
24
25
27
28
29
29
33
35
35

Vil



% @ 5003_001.fm Page viii Wednesday, January 23, 2002 3:27 PM

viii

3

2.7 Bootclasspath, Extensions Path, and Classpath
2.7.1 The Classpath
2.7.2 The Extensions Path
2.7.3 The Bootclasspath
2.8 Debugging Class Loading
2.8.1 Instrumenting an Application
2.8.2 Using —verbose:class
2.8.3 Instrumenting the Core API
2.9 Inversion and the Context Class Loader
2.10 Onward
2.11 Resources

Type Information and Reflection
3.1 The Binary Class Format

3.1.1 Binary Compatibility

3.1.2 Binary Class Metadata

3.1.3 From Binary Classes to Reflection
3.2 Reflection

3.2.1 Reflecting on Fields

3.2.2 The Difference between get and getDeclared

3.2.3 Type Errors Occur at Runtime

3.2.4 Reflecting on Methods
3.3 Reflective Invocation

3.3.1 A Reflective Launcher

3.3.2 Wrapping Primitive Types

3.3.3 Bypassing Language Access Rules

3.3.4 Exceptions Caused by Reflective Invocation
3.4 Dynamic Proxies

3.4.1 Delegation instead of Implementation Inheritance

3.4.2 Dynamic Proxies Make Delegation Generic
3.4.3 Implementing InvocationHandler

3.4.4 Implementing a Forwarding Handler

3.4.5 The InvocationHandler as Generic Service
3.4.6 Handling Exceptions in an InvocationHandler
3.4.7 Either Client or Server Can Install a Proxy
3.4.8 Advantages of Dynamic Proxies

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

e

36
37
39
41
43
44
45
46
49
55
56

57
58
58
63
66
66
68
68
70
71
72
73
74
76
81
83
83
84
85
86
87
89
90
91



% @ 5003_001.fm Page ix Wednesday, January 23, 2002 3:27 PM

3.5 Reflection Performance
3.6 Package Reflection
3.6.1 Setting Package Metadata
3.6.2 Accessing Package Metadata
3.6.3 Sealing Packages
3.6.4 Weaknesses of the Versioning Mechanism
3.7 Custom Metadata
3.8 Onward
3.9 Resources

4 Serialization
4.1 Serialization and Metadata
4.2 Serialization Basics
4.2.1 Serialization Skips Some Fields
4.2.2 Serialization and Class Constructors
4.3 Using readObject and writeObject
4.4 Matching Streams with Classes
4.4.1 The serialVersionUID
4.4.2 Overriding the Default SUID
4.4.3 Compatible and Incompatible Changes
4.5 Explicitly Managing Serializable Fields
4.5.1 ObjectinputStream.GetField Caveats
4.5.2 Writer Makes Right
4.5.3 Overriding Class Metadata
4.5.4 Performance Problems
4.5.5 Custom Class Descriptors
4.6 Abandoning Metadata
4.6.1 Writing Custom Data after defaultWriteObject
4.6.2 Externalizable
4.6.3 Using writeObject to Write Raw Data Only: Bad Idea
4.7 Object Graphs
4.7.1 Pruning Graphs with Transient
4.7.2 Preserving Identity
4.7.3 Encouraging the Garbage Collector with reset
4.8 Object Replacement
4.8.1 Stream-Controlled Replacement
4.8.2 Class-Controlled Replacement
4.8.3 Ordering Rules for Replacement
4.8.4 Taking Control of Graph Ordering

92
94
95
96
97
97
98
103
103

105
105
106
109
110
111
113
114
115
117
119
120
121
122
123
124
124
124
125
128
130
131
131
132
133
134
137
139
145

CONTENTS



% @ 5003_001.fm Page x Wednesday, January 23, 2002 3:27 PM

4.9 Finding Class Code
4.9.1 Annotation in RMI
4.9.2 RMI MarshalledObjects
4.10 Onward
4.11 Resources

Customizing Class Loading
5.1 Java 2 Security
5.1.1 The Role of Class Loaders
5.2 Custom Class Loaders
5.2.1 Pre-Java 2 Custom Class Loaders
5.2.2 Class Loading since SDK 1.2
5.2.3 A Transforming Class Loader
5.3 Protocol Handlers
5.3.1 Implementing a Handler
5.3.2 Installing a Custom Handler
5.3.3 Choosing between Loaders and Handlers
5.4 Getting Past Security to the Loader You Need
5.5 Reading Custom Metadata
5.5.1 Example: Version Attributes
5.5.2 Serializable Classes as Attributes
5.5.3 Reading Attributes during Class Loading
5.5.4 Debugging Support
5.6 Onward
5.7 Resources

Interop 1: JNI
6.1 Why Interoperate?
6.2 The Dangers of Native Code
6.3 Finding and Loading Native Code
6.3.1 Name Mappings
6.3.2 Type Mappings
6.3.3 Overloaded Names
6.3.4 Loading Native Libraries
6.3.5 Class Loaders and JNI
6.3.6 Common Errors Loading Native Libraries
6.3.7 Troubleshooting Native Loading
6.4 Calling Java from C++
6.4.1 Minimizing Round Trips
6.4.2 Performance Comparisons
6.4.3 Differences between JNI and Reflective Invocation

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

e

147
148
150
150
151

153
155
157
159
159
160
162
168
169
171
174
175
177
178
179
183
188
189
190

191
191
193
194
195
195
198
199
202
205
207
208
211
214
214



% @ 5003_001.fm Page xi Wednesday, January 23, 2002 3:27 PM

6.5

6.6

6.7
6.8

Error Handling in JNI

6.5.1 Failures in Native Code

6.5.2 Handling C++ Exceptions

6.5.3 Handling Java Exceptions from Native Code
6.5.4 Throwing Java Exceptions from Native Code
Resource Management

6.6.1 Interacting with the Garbage Collector
6.6.2 Managing Native Resources

6.6.3 Managing Arrays

6.6.4 Managing Strings

Onward

Resources

7 Generative Programming

7.1

7.2

7.3
7.4
7.5
7.6

7.7

7.8
7.9

Why Generate Code?

7.1.1 Object-Oriented Approaches to Modeling Variabilities
7.1.2 Thinking in Terms of Bind Time

7.1.3 Separating Specification from Bind Time

7.1.4 Choosing a Specification Language

7.1.5 Reuse Requires More Than One Use

7.1.6 A Little Domain Analysis Is a Dangerous Thing

Why Generate Code with Java?

7.2.1 Type Information Acts as a Free Specification Document
7.2.2 Class Loading Supports Flexible Binding Modes
7.2.3 Java Source Is Easy to Generate

7.2.4 Java Binary Classes Are Easy to Generate

7.2.5 Code Generation Boosts Performance

7.2.6 Levels of Commitment to Code Generation

A Taxonomy of Bind Times and Modes

Code Generation in RMI

Code Generation in JSP

Code Generation in EJB

7.6.1 The Deployment Descriptor

7.6.2 Alternate Implementations

Generating Strongly Typed Collections

7.7.1 Code Generation Language versus Target Language
Generating Custom Serialization Code

Onward

7.10 Resources

217
217
218
219
222
223
224
231
233
239
240
241

243
243
244
246
247
249
249
250
250
250
251
251
252
252
252
253
255
257
260
263
265
267
270
271
276
279

CONTENTS

Xi



% @ 5003_001.fm Page xii Wednesday, January 23, 2002 3:27 PM

Xii

8 Onward
8.1 Where We Are
8.2 Where We Are Going
8.3 Resources

A Interop 2: Bridging Java and Win32/COM
Bibliography
Index

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

e

281
281
282
283

285
319
323



% @ 5003_001.fm Page xiii Wednesday, January 23, 2002 3:27 PM

Foreword

Several years ago, Stu abandoned the world of COM for what he had hoped
would be greener pastures. While many of his colleagues felt he had lost his
senses, Stu ignored our skepticism and walked away from COM completely. This
was especially difficult given the fact that his employer had a tremendous invest-
ment in COM and had achieved relatively little traction in the Java world at the
time.

Based on this book, | feel the move was beneficial both to Stu and to those
who will be influenced by this book.

Stu’s view on the Java platform is quite novel. This book portrays the Java
Virtual Machine (JVM) as a substrate for component software. Are there lan-
guages and compilers that generate these components? Sure, but that isn't the
focus of this book. Does the JVM perform a variety of services such as garbage
collection and JIT compilation? Absolutely, but again, that isn't the focus of this
book either. Rather, Stu focuses the reader on the role the JVM plays in software
integration.

| am especially happy to see the book’s emphasis on the class loader archi-
tecture. After spending over eight years working with COM and now two years
with its successor, the Common Language Runtime (CLR), | believe that the key
to understanding any component technology is to first look at how component
code is discovered, initialized, and scoped during execution. In the JVM, the
class loader is responsible for all of these tasks, and Stu gives that devil more
than its due.

The JVM (and the Java platform as a whole) has a serious competitor now
that Microsoft has more or less subsumed most Java technology into its .NET
initiative, most specifically the CLR. It will be interesting to see how Sun adapts

Xiii



% @ 5003_001.fm Page xiv Wednesday, January 23, 2002 3:27 PM

XIvV

to the challenge. In looking at the JVM and CLR side-by-side, the JVM exemplifies

the “less is more” philosophy, which | believe is its greatest strength. Hopefully,

Sun will remain true to this basic design principle as the pressures of platform

warfare pull them in the direction of adding feature upon feature for market posi-
tioning rather than aesthetic reasons.

— Don Box,

September 2001

Manhattan Beach, California

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

e



% @ 5003_001.fm Page xv Wednesday, January 23, 2002 3:27 PM

Preface

This book is about developing components using the Java platform. In this book,
the term component has a very specific meaning. A component is an indepen-
dent unit of production and deployment that is combined with other components
to assemble an application.

To elaborate on this definition, consider the difference between objects and
components. An object represents an entity in the problem domain, while a com-
ponent is an atomic! piece of the installed solution. The object and component
perspectives are complementary, and good designs take account of both.

Modern development platforms such as Java provide the infrastructure that
developers need to create classes and components. To support object-oriented
programming, Java provides encapsulation, inheritance, and polymorphism. To
support components, Java provides loaders and rich type information. This book
assumes that you already understand object-oriented programming in Java, and
it explains how to use Java's component infrastructure effectively.

Loaders are responsible for locating, bringing into memory, and connecting
components at runtime. Using Java’s loaders, you can

e Deploy components at fine granularity.

e |oad components dynamically as needed.

e |Load components from other machines on the network.

e Locate components from custom repositories.

e (Create mobile code agents that live across multiple virtual machines.
e |mport the services of non-Java components.

1. Atomic here means “indivisible,” not necessarily “stands alone.” Most components will have
dependencies on other components.

XV



% @ 5003_001.fm Page xvi Wednesday, January 23, 2002 3:27 PM

Xvi

Loaders manage the binary boundaries between components. In a world of dis-
tributed applications and multiple component suppliers, loaders locate and con-
nect compatible components.

Type information describes the capabilities of some unit of code. In some
development environments type information is present only in source code. In
Java, type information is not merely a source code artifact; it is also an intrinsic
part of a compiled class and is available at runtime through a programmatic in-
terface. Because Java type information is never “compiled away,” loaders use it
to verify linkages between classes at runtime. In application programming, you
can use type information to

e Serialize the state of Java objects so that they can be recreated on another
virtual machine.

e (Create dynamic proxies at runtime, to provide generic services that can
decorate any interface.

e Translate data into alternate representations to interoperate with non-Java
components.

e Convert method calls into network messages.

e Convert between Java and XML, the new lingua franca of enterprise sys-
tems.

e Annotate components with application-specific metadata.

Type information automates many tasks that might otherwise be coded by hand,

and it helps to make components forward compatible to platforms of the future.

Who Should Read This Book

You should read this book if you want to design, develop, or deploy substantial
applications in Java. Taking a fulllifecycle view of a Java application requires that
you consider not just objects, but components. This book is about the core fea-
tures of Java as a component platform: class loaders, reflection, serialization,
and interoperation with other platforms. You should already know the basics of
Java syntax and have some experience in object-oriented programming with
Java.

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

e



% @ 5003_001.fm Page xvii Wednesday, January 23, 2002 3:27 PM

This book is not specifically about high-level Java technologies, such as Re-
mote Method Invocation (RMI), Enterprise JavaBeans (EJB), JINI, Java Server
Pages (JSP), servlets, or JavaBeans, but understanding the topics in this book is
critical to using those technologies effectively. If you learn how to use the com-
ponent services described here, you will understand how these high-level tech-
nologies are built, which is the key to employing them effectively.

Security is also an important aspect of component development and de-
ployment. It is too complex a topic to handle fairly here, and it deserves its
own book-length treatment. (See [Gon99] for coverage of security on the Java
platform.)

Organization of the Book

The chapters of this book fall into three sections. Chapter 1 introduces compo-
nents. Chapters 2 through 6 explain loaders and type information on the Java
platform. Chapter 7 shows more advanced uses of these services.

Chapter 1 introduces component-oriented programming. Component rela-
tionships must be established not only at compile time, but also at deployment
and runtime. This chapter asks the key questions of component programming
and relates them to the Java platform services discussed in subsequent chap-
ters. Though the other chapters might be read out of order, you should definitely
read this chapter first.

Chapter 2 shows how to use and troubleshoot class loaders. Class loaders
control the loading of code and create namespace boundaries between code in
the same process. With class loaders you can load code dynamically at runtime,
even from other machines. Class loader namespaces permit multiple versions of
the same class in a single Java virtual machine. You can use class loaders to re-
load changed classes without ever shutting down the virtual machine. You will
see how to use class loaders, how the class loader delegation model creates
namespaces, and how to troubleshoot class loading bugs. You will also learn to
effectively control the bootclasspath, extensions path, and classpath.

Chapter 3 introduces Java type information. Java preserves type informa-
tion in the binary class format. This means that even after you compile your

PREFACE

XVii



% @ 5003_001.fm Page xviii Wednesday, January 23, 2002 3:27 PM

Xviii

Java programs, you still have access to field names, field types, and method
signatures. You can access type information at runtime via reflection, and you
can use type information to build generic services that add capability to any ob-
ject. You will see how to use dynamic invocation, dynamic proxies, package re-
flection, and custom attributes. Chapter 3 also includes a discussion of
reflection performance.

Chapter 4 shows how Java serialization uses reflection. Serialization is a
perfect example of a generic service. Without any advance knowledge of a
class’s layout, serialization can ship both code and state from one virtual ma-
chine to another across time or space. You will see how the serialization format
embeds its own style of type information and how you can customize that repre-
sentation. You will also see how to extend default serialization, replace it entirely
with custom externalization code, or tune it to handle multiple versions of a class
as code evolves. You will then learn how to validate objects being deserialized
into your application and how to annotate serialized objects with instructions for
finding the correct class loader.

Chapter 5 returns to class loaders and shows you how to implement your
own. While the standard class loaders are dominant in most applications, cus-
tom class loaders allow you to transform class code as classes are loaded.
These transformations could include decryption, adding instrumentation for per-
formance monitoring, or even building new classes on-thefly at runtime. You
will see how to tie your custom class loaders into Java's security architecture,
how to write a custom class loader, and how to write protocol handlers that can
customize not just how you load classes, but also how you load any other type
of resource.

Chapter 6 presents the Java Native Interface (JNI) as a basic means of con-
trolling the boundary between Java code and components written in other envi-
ronments. JNI provides a set of low-level tools for exposing Java objects to
platform native code and native code to Java objects. You will learn to use the
JNI application programming interface (API) to translate between Java and native
programming styles—which differ markedly in their approach to class loading,
type information, resource management, error handling, and array storage.

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

e



% @ 5003_001.fm Page xix Wednesday, January 23, 2002 3:27 PM

Understanding the deficiencies of JNI sets the stage for Appendix A, which de-
scribes a higher-level approach.

Chapter 7 discusses using Java metadata to automate the creation of
source code or bytecode. Generated code is a high-performance strategy for
reuse because you generate only the exact code paths that you will need at
runtime. The chapter first presents JSP and EJB as examples of existing appli-
cations that auto-generate code, and then it introduces some ideas for code
generation in your own programs.

Appendix A returns to interoperation. By building on the code generation
techniques from Chapter 7, Appendix A shows you how to build an interoperation
layer between Java and another component platform: Win32/COM. This chapter
uses the open source Jawin library as an example, to show you how to generate
Java stubs for Win32 objects, and vice versa.

Sample Code, Website, Feedback...

Unless specifically noted otherwise, all the sample code in this book is open
source. You can download sample code from the book’s website at http://
staff.develop.com/halloway/compsvcs.html.

Unless otherwise noted, the code in this book is compiled and tested
against the Java 2 Software Development Kit (SDK) version 1.3. Most of the
code in the book will work identically under SDK versions 1.2, 1.3, and 1.4.
Where this is not the case, the text will include a specific reference to the appro-
priate SDK version.

The author welcomes your comments, corrections, and feedback. Please
send email to stu@develop.com.

Acknowledgments

First and foremost, thanks to my wife Joanna. You challenged me to think better,
and then actually put up with being around me when | took the challenge. Thanks
also to my parents, Ronald and Olive Dabbs, for raising me in an environment
that enabled me to find the richly satisfying life | lead today.

PREFACE

XIX



% @ 5003_001.fm Page xx Wednesday, January 23, 2002 3:27 PM

XX

Thanks to everyone at DevelopMentor for creating such a fantastic play envi-
ronment. Thanks to Don Box and Mike Abercrombie for starting it all, and for
bringing together such a talented team. Thanks to Brian Maso, whose Intensive
Java course materials were the seed of many ideas in this book. Thanks to Si-
mon Horrell, Kevin Jones, and Ted Neward for running an excellent Guerrilla Java
class, and for many lengthy conversations on the minutiae of the Java platform.

Thanks to the DevelopMentor folk and other friends who volunteered to re-
view drafts of this book. In addition to Brian, Simon, Kevin, and Ted, these also
include lan Griffiths, Tim Ewald, and Jason Masterman. Thanks to Eric Johnson
for reviewing the entire manuscript. Special thanks to Justin Gehtland and Chris
Sells, who also reviewed the entire manuscript, despite the fact that their day
jobs keep them tied to the other component platform.

Thanks to the excellent group of reviewers provided by Addison-Wesley: Carl
Burnham, Joshua Engel, Eric Freeman, Peter Haggar, Howard Lee Harkness,
Norman Hensley, Tim Lindholm, and Paul McLachlan. | don’t know you all person-
ally, and in some cases do not even have your names, but your contributions to
the book were invaluable. Few problems could escape the notice of such an elite
group. For any inconsistencies and errors that remain, the fault is mine.

Thanks to Mike Hendrickson and Julie Dinicola, my editors at Addison-Wesley.
Thanks also to all the other wonderful people at Addison-Wesley who helped
make this book happen: Tyrrell Albaugh, John Fuller, Giaconda Mateu, Patrick
Peterson, Tracy Russ, Mary Cotillo, Stephane Thomas, and Ross Venables.

Thanks to the staff of Neo-China restaurant in Durham, North Carolina, for
providing a substantial fraction of my caloric intake while | was writing this book.

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

e



