

5003_001.fm Page i Wednesday, January 23, 2002 3:27 PM

5003_001.fm Page ii Wednesday, January 23, 2002 3:27 PM

London • Munich • Paris • Madrid
Boston • San Francisco • New York • Toronto • Montreal

Capetown • Sydney • Tokyo • Singapore • Mexico City

Component Development for the
Java

™

 Platform

Stuart Dabbs Halloway

5003_001.fm Page iii Wednesday, January 23, 2002 3:27 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley, Inc. was aware of a
trademark claim, the designations have been printed with initial capital letters or all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or im-
plied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more infor-
mation, please contact:

Pearson Education Corporate Sales Division
201 W. 103

rd

 Street
Indianapolis, IN 46290
(800) 428-5331
corpsales@pearsoned.com

Visit AW on the Web: www.aw.com/cseng/

Library of Congress Cataloging-in-Publication Data

Halloway, Stuart Dabbs.
Component development for the Java platform / Stuart Dabbs Halloway.

p. cm. -- (DevelopMentor series)
Includes bibliographical references and index.
ISBN 0-201-75306-5
1. Java (Computer programming language) 2. System design. I. Title. II. Series.

QA76.73 J38 H346 2002
005.13’3—dc21 200105379

Copyright © 2002 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher. Printed in the United States of America. Published simulta-
neously in Canada.

For information on obtaining permission for use of material from this work, please submit a written re-
quest to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

0-201-75306-5
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—MA—0504030201
First printing, December 2001

5003_001.fm Page iv Wednesday, January 23, 2002 3:27 PM

To Joey

5003_001.fm Page v Wednesday, January 23, 2002 3:27 PM

5003_001.fm Page vi Wednesday, January 23, 2002 3:27 PM

vii

Contents

Foreword xiii
Preface xv

1 From Objects to Components 1

2 The Class Loader Architecture 11

2.1 Assembling an Application 11
2.2 Goals of the Class Loader Architecture 14

2.2.1 Transparency

15

2.2.2 Extensibility

15

2.2.3 Capability

16

2.2.4 Configurability

16

2.2.5 Handling Name and Version Conflicts

16

2.2.6 Security

17
2.3 Explicit and Implicit Class Loading 17

2.3.1 Explicit Loading with URLClassLoader

18

2.3.2 Implicit Class Loading

19

2.3.3 Reference Type versus Referenced Class

20

2.3.4 ClassLoader.loadClass versus Class.forName

21

2.3.5 Loading Nonclass Resources

22
2.4 The Class Loader Rules 23

2.4.1 The Consistency Rule

23

2.4.2 The Delegation Rule

24

2.4.3 The Visibility Rule

25

2.4.4 Delegations as Namespaces

27

2.4.5 Static Fields Are Not Singletons

28

2.4.6 Implicit Loading Hides Most Details

29
2.5 Hot Deployment 29

2.5.1 Using Hot Deployment

33
2.6 Unloading Classes 35

2.6.1 Making Sure Classes Are Collectable

35

5003_001.fm Page vii Wednesday, January 23, 2002 3:27 PM

viii

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

2.7 Bootclasspath, Extensions Path, and Classpath 36

2.7.1 The Classpath

37

2.7.2 The Extensions Path

39

2.7.3 The Bootclasspath

41
2.8 Debugging Class Loading 43

2.8.1 Instrumenting an Application

44

2.8.2 Using –verbose:class

45

2.8.3 Instrumenting the Core API

46
2.9 Inversion and the Context Class Loader 49
2.10 Onward 55
2.11 Resources 56

3 Type Information and Reflection 57

3.1 The Binary Class Format 58

3.1.1 Binary Compatibility

58

3.1.2 Binary Class Metadata

63

3.1.3 From Binary Classes to Reflection

66
3.2 Reflection 66

3.2.1 Reflecting on Fields

68

3.2.2 The Difference between get and getDeclared

68

3.2.3 Type Errors Occur at Runtime

70

3.2.4 Reflecting on Methods

71
3.3 Reflective Invocation 72

3.3.1 A Reflective Launcher

73

3.3.2 Wrapping Primitive Types

74

3.3.3 Bypassing Language Access Rules

76

3.3.4 Exceptions Caused by Reflective Invocation

81
3.4 Dynamic Proxies 83

3.4.1 Delegation instead of Implementation Inheritance

83

3.4.2 Dynamic Proxies Make Delegation Generic

84

3.4.3 Implementing InvocationHandler

85

3.4.4 Implementing a Forwarding Handler

86

3.4.5 The InvocationHandler as Generic Service

87

3.4.6 Handling Exceptions in an InvocationHandler

89

3.4.7 Either Client or Server Can Install a Proxy

90

3.4.8 Advantages of Dynamic Proxies

91

5003_001.fm Page viii Wednesday, January 23, 2002 3:27 PM

CONTENTS

ix

3.5 Reflection Performance 92
3.6 Package Reflection 94

3.6.1 Setting Package Metadata

95

3.6.2 Accessing Package Metadata

96

3.6.3 Sealing Packages

97

3.6.4 Weaknesses of the Versioning Mechanism

97
3.7 Custom Metadata 98
3.8 Onward 103
3.9 Resources 103

4 Serialization 105

4.1 Serialization and Metadata 105
4.2 Serialization Basics 106

4.2.1 Serialization Skips Some Fields

109

4.2.2 Serialization and Class Constructors

110
4.3 Using readObject and writeObject 111
4.4 Matching Streams with Classes 113

4.4.1 The serialVersionUID

114

4.4.2 Overriding the Default SUID

115

4.4.3 Compatible and Incompatible Changes

117
4.5 Explicitly Managing Serializable Fields 119

4.5.1 ObjectInputStream.GetField Caveats

120

4.5.2 Writer Makes Right

121

4.5.3 Overriding Class Metadata

122

4.5.4 Performance Problems

123

4.5.5 Custom Class Descriptors

124
4.6 Abandoning Metadata 124

4.6.1 Writing Custom Data after defaultWriteObject

124

4.6.2 Externalizable

125

4.6.3 Using writeObject to Write Raw Data Only: Bad Idea

128
4.7 Object Graphs 130

4.7.1 Pruning Graphs with Transient

131

4.7.2 Preserving Identity

131

4.7.3 Encouraging the Garbage Collector with reset

132
4.8 Object Replacement 133

4.8.1 Stream-Controlled Replacement

134

4.8.2 Class-Controlled Replacement

137

4.8.3 Ordering Rules for Replacement

139

4.8.4 Taking Control of Graph Ordering

145

5003_001.fm Page ix Wednesday, January 23, 2002 3:27 PM

x

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

4.9 Finding Class Code 147

4.9.1 Annotation in RMI

148

4.9.2 RMI MarshalledObjects

150
4.10 Onward 150
4.11 Resources 151

5 Customizing Class Loading 153

5.1 Java 2 Security 155

5.1.1 The Role of Class Loaders

157
5.2 Custom Class Loaders 159

5.2.1 Pre-Java 2 Custom Class Loaders

159

5.2.2 Class Loading since SDK 1.2

160

5.2.3 A Transforming Class Loader

162
5.3 Protocol Handlers 168

5.3.1 Implementing a Handler 169
5.3.2 Installing a Custom Handler 171
5.3.3 Choosing between Loaders and Handlers 174

5.4 Getting Past Security to the Loader You Need 175
5.5 Reading Custom Metadata 177

5.5.1 Example: Version Attributes 178
5.5.2 Serializable Classes as Attributes 179
5.5.3 Reading Attributes during Class Loading 183
5.5.4 Debugging Support 188

5.6 Onward 189
5.7 Resources 190

6 Interop 1: JNI 191
6.1 Why Interoperate? 191
6.2 The Dangers of Native Code 193
6.3 Finding and Loading Native Code 194

6.3.1 Name Mappings 195
6.3.2 Type Mappings 195
6.3.3 Overloaded Names 198
6.3.4 Loading Native Libraries 199
6.3.5 Class Loaders and JNI 202
6.3.6 Common Errors Loading Native Libraries 205
6.3.7 Troubleshooting Native Loading 207

6.4 Calling Java from C++ 208
6.4.1 Minimizing Round Trips 211
6.4.2 Performance Comparisons 214
6.4.3 Differences between JNI and Reflective Invocation 214

5003_001.fm Page x Wednesday, January 23, 2002 3:27 PM

CONTENTS xi

6.5 Error Handling in JNI 217
6.5.1 Failures in Native Code 217
6.5.2 Handling C++ Exceptions 218
6.5.3 Handling Java Exceptions from Native Code 219
6.5.4 Throwing Java Exceptions from Native Code 222

6.6 Resource Management 223
6.6.1 Interacting with the Garbage Collector 224
6.6.2 Managing Native Resources 231
6.6.3 Managing Arrays 233
6.6.4 Managing Strings 239

6.7 Onward 240
6.8 Resources 241

7 Generative Programming 243
7.1 Why Generate Code? 243

7.1.1 Object-Oriented Approaches to Modeling Variabilities 244
7.1.2 Thinking in Terms of Bind Time 246
7.1.3 Separating Specification from Bind Time 247
7.1.4 Choosing a Specification Language 249
7.1.5 Reuse Requires More Than One Use 249
7.1.6 A Little Domain Analysis Is a Dangerous Thing 250

7.2 Why Generate Code with Java? 250
7.2.1 Type Information Acts as a Free Specification Document 250
7.2.2 Class Loading Supports Flexible Binding Modes 251
7.2.3 Java Source Is Easy to Generate 251
7.2.4 Java Binary Classes Are Easy to Generate 252
7.2.5 Code Generation Boosts Performance 252
7.2.6 Levels of Commitment to Code Generation 252

7.3 A Taxonomy of Bind Times and Modes 253
7.4 Code Generation in RMI 255
7.5 Code Generation in JSP 257
7.6 Code Generation in EJB 260

7.6.1 The Deployment Descriptor 263
7.6.2 Alternate Implementations 265

7.7 Generating Strongly Typed Collections 267
7.7.1 Code Generation Language versus Target Language 270

7.8 Generating Custom Serialization Code 271
7.9 Onward 276
7.10 Resources 279

5003_001.fm Page xi Wednesday, January 23, 2002 3:27 PM

xii COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

8 Onward 281
8.1 Where We Are 281
8.2 Where We Are Going 282
8.3 Resources 283

A Interop 2: Bridging Java and Win32/COM 285

Bibliography 319

Index 323

5003_001.fm Page xii Wednesday, January 23, 2002 3:27 PM

xiii

Foreword

Several years ago, Stu abandoned the world of COM for what he had hoped
would be greener pastures. While many of his colleagues felt he had lost his
senses, Stu ignored our skepticism and walked away from COM completely. This
was especially difficult given the fact that his employer had a tremendous invest-
ment in COM and had achieved relatively little traction in the Java world at the
time.

Based on this book, I feel the move was beneficial both to Stu and to those
who will be influenced by this book.

Stu’s view on the Java platform is quite novel. This book portrays the Java
Virtual Machine (JVM) as a substrate for component software. Are there lan-
guages and compilers that generate these components? Sure, but that isn’t the
focus of this book. Does the JVM perform a variety of services such as garbage
collection and JIT compilation? Absolutely, but again, that isn’t the focus of this
book either. Rather, Stu focuses the reader on the role the JVM plays in software
integration.

I am especially happy to see the book’s emphasis on the class loader archi-
tecture. After spending over eight years working with COM and now two years
with its successor, the Common Language Runtime (CLR), I believe that the key
to understanding any component technology is to first look at how component
code is discovered, initialized, and scoped during execution. In the JVM, the
class loader is responsible for all of these tasks, and Stu gives that devil more
than its due.

The JVM (and the Java platform as a whole) has a serious competitor now
that Microsoft has more or less subsumed most Java technology into its .NET
initiative, most specifically the CLR. It will be interesting to see how Sun adapts

5003_001.fm Page xiii Wednesday, January 23, 2002 3:27 PM

xiv COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

to the challenge. In looking at the JVM and CLR side-by-side, the JVM exemplifies
the “less is more” philosophy, which I believe is its greatest strength. Hopefully,
Sun will remain true to this basic design principle as the pressures of platform
warfare pull them in the direction of adding feature upon feature for market posi-
tioning rather than aesthetic reasons.

— Don Box,
September 2001

Manhattan Beach, California

5003_001.fm Page xiv Wednesday, January 23, 2002 3:27 PM

xv

Preface

This book is about developing components using the Java platform. In this book,
the term component has a very specific meaning. A component is an indepen-
dent unit of production and deployment that is combined with other components
to assemble an application.

To elaborate on this definition, consider the difference between objects and
components. An object represents an entity in the problem domain, while a com-
ponent is an atomic1 piece of the installed solution. The object and component
perspectives are complementary, and good designs take account of both.

Modern development platforms such as Java provide the infrastructure that
developers need to create classes and components. To support object-oriented
programming, Java provides encapsulation, inheritance, and polymorphism. To
support components, Java provides loaders and rich type information. This book
assumes that you already understand object-oriented programming in Java, and
it explains how to use Java’s component infrastructure effectively.

Loaders are responsible for locating, bringing into memory, and connecting
components at runtime. Using Java’s loaders, you can

• Deploy components at fine granularity.
• Load components dynamically as needed.
• Load components from other machines on the network.
• Locate components from custom repositories.
• Create mobile code agents that live across multiple virtual machines.
• Import the services of non-Java components.

1. Atomic here means “indivisible,” not necessarily “stands alone.” Most components will have
dependencies on other components.

5003_001.fm Page xv Wednesday, January 23, 2002 3:27 PM

xvi COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Loaders manage the binary boundaries between components. In a world of dis-
tributed applications and multiple component suppliers, loaders locate and con-
nect compatible components.

Type information describes the capabilities of some unit of code. In some
development environments type information is present only in source code. In
Java, type information is not merely a source code artifact; it is also an intrinsic
part of a compiled class and is available at runtime through a programmatic in-
terface. Because Java type information is never “compiled away,” loaders use it
to verify linkages between classes at runtime. In application programming, you
can use type information to

• Serialize the state of Java objects so that they can be recreated on another
virtual machine.

• Create dynamic proxies at runtime, to provide generic services that can
decorate any interface.

• Translate data into alternate representations to interoperate with non-Java
components.

• Convert method calls into network messages.
• Convert between Java and XML, the new lingua franca of enterprise sys-

tems.
• Annotate components with application-specific metadata.

Type information automates many tasks that might otherwise be coded by hand,
and it helps to make components forward compatible to platforms of the future.

Who Should Read This Book
You should read this book if you want to design, develop, or deploy substantial
applications in Java. Taking a full-lifecycle view of a Java application requires that
you consider not just objects, but components. This book is about the core fea-
tures of Java as a component platform: class loaders, reflection, serialization,
and interoperation with other platforms. You should already know the basics of
Java syntax and have some experience in object-oriented programming with
Java.

5003_001.fm Page xvi Wednesday, January 23, 2002 3:27 PM

PREFACE xvii

This book is not specifically about high-level Java technologies, such as Re-
mote Method Invocation (RMI), Enterprise JavaBeans (EJB), JINI, Java Server
Pages (JSP), servlets, or JavaBeans, but understanding the topics in this book is
critical to using those technologies effectively. If you learn how to use the com-
ponent services described here, you will understand how these high-level tech-
nologies are built, which is the key to employing them effectively.

Security is also an important aspect of component development and de-
ployment. It is too complex a topic to handle fairly here, and it deserves its
own book-length treatment. (See [Gon99] for coverage of security on the Java
platform.)

Organization of the Book
The chapters of this book fall into three sections. Chapter 1 introduces compo-
nents. Chapters 2 through 6 explain loaders and type information on the Java
platform. Chapter 7 shows more advanced uses of these services.

Chapter 1 introduces component-oriented programming. Component rela-
tionships must be established not only at compile time, but also at deployment
and runtime. This chapter asks the key questions of component programming
and relates them to the Java platform services discussed in subsequent chap-
ters. Though the other chapters might be read out of order, you should definitely
read this chapter first.

Chapter 2 shows how to use and troubleshoot class loaders. Class loaders
control the loading of code and create namespace boundaries between code in
the same process. With class loaders you can load code dynamically at runtime,
even from other machines. Class loader namespaces permit multiple versions of
the same class in a single Java virtual machine. You can use class loaders to re-
load changed classes without ever shutting down the virtual machine. You will
see how to use class loaders, how the class loader delegation model creates
namespaces, and how to troubleshoot class loading bugs. You will also learn to
effectively control the bootclasspath, extensions path, and classpath.

Chapter 3 introduces Java type information. Java preserves type informa-
tion in the binary class format. This means that even after you compile your

5003_001.fm Page xvii Wednesday, January 23, 2002 3:27 PM

xviii COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Java programs, you still have access to field names, field types, and method
signatures. You can access type information at runtime via reflection, and you
can use type information to build generic services that add capability to any ob-
ject. You will see how to use dynamic invocation, dynamic proxies, package re-
flection, and custom attributes. Chapter 3 also includes a discussion of
reflection performance.

Chapter 4 shows how Java serialization uses reflection. Serialization is a
perfect example of a generic service. Without any advance knowledge of a
class’s layout, serialization can ship both code and state from one virtual ma-
chine to another across time or space. You will see how the serialization format
embeds its own style of type information and how you can customize that repre-
sentation. You will also see how to extend default serialization, replace it entirely
with custom externalization code, or tune it to handle multiple versions of a class
as code evolves. You will then learn how to validate objects being deserialized
into your application and how to annotate serialized objects with instructions for
finding the correct class loader.

Chapter 5 returns to class loaders and shows you how to implement your
own. While the standard class loaders are dominant in most applications, cus-
tom class loaders allow you to transform class code as classes are loaded.
These transformations could include decryption, adding instrumentation for per-
formance monitoring, or even building new classes on-the-fly at runtime. You
will see how to tie your custom class loaders into Java’s security architecture,
how to write a custom class loader, and how to write protocol handlers that can
customize not just how you load classes, but also how you load any other type
of resource.

Chapter 6 presents the Java Native Interface (JNI) as a basic means of con-
trolling the boundary between Java code and components written in other envi-
ronments. JNI provides a set of low-level tools for exposing Java objects to
platform native code and native code to Java objects. You will learn to use the
JNI application programming interface (API) to translate between Java and native
programming styles—which differ markedly in their approach to class loading,
type information, resource management, error handling, and array storage.

5003_001.fm Page xviii Wednesday, January 23, 2002 3:27 PM

PREFACE xix

Understanding the deficiencies of JNI sets the stage for Appendix A, which de-
scribes a higher-level approach.

Chapter 7 discusses using Java metadata to automate the creation of
source code or bytecode. Generated code is a high-performance strategy for
reuse because you generate only the exact code paths that you will need at
runtime. The chapter first presents JSP and EJB as examples of existing appli-
cations that auto-generate code, and then it introduces some ideas for code
generation in your own programs.

Appendix A returns to interoperation. By building on the code generation
techniques from Chapter 7, Appendix A shows you how to build an interoperation
layer between Java and another component platform: Win32/COM. This chapter
uses the open source Jawin library as an example, to show you how to generate
Java stubs for Win32 objects, and vice versa.

Sample Code, Website, Feedback…
Unless specifically noted otherwise, all the sample code in this book is open
source. You can download sample code from the book’s website at http://
staff.develop.com/halloway/compsvcs.html.

Unless otherwise noted, the code in this book is compiled and tested
against the Java 2 Software Development Kit (SDK) version 1.3. Most of the
code in the book will work identically under SDK versions 1.2, 1.3, and 1.4.
Where this is not the case, the text will include a specific reference to the appro-
priate SDK version.

The author welcomes your comments, corrections, and feedback. Please
send email to stu@develop.com.

Acknowledgments
First and foremost, thanks to my wife Joanna. You challenged me to think better,
and then actually put up with being around me when I took the challenge. Thanks
also to my parents, Ronald and Olive Dabbs, for raising me in an environment
that enabled me to find the richly satisfying life I lead today.

5003_001.fm Page xix Wednesday, January 23, 2002 3:27 PM

xx COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Thanks to everyone at DevelopMentor for creating such a fantastic play envi-
ronment. Thanks to Don Box and Mike Abercrombie for starting it all, and for
bringing together such a talented team. Thanks to Brian Maso, whose Intensive
Java course materials were the seed of many ideas in this book. Thanks to Si-
mon Horrell, Kevin Jones, and Ted Neward for running an excellent Guerrilla Java
class, and for many lengthy conversations on the minutiae of the Java platform.

Thanks to the DevelopMentor folk and other friends who volunteered to re-
view drafts of this book. In addition to Brian, Simon, Kevin, and Ted, these also
include Ian Griffiths, Tim Ewald, and Jason Masterman. Thanks to Eric Johnson
for reviewing the entire manuscript. Special thanks to Justin Gehtland and Chris
Sells, who also reviewed the entire manuscript, despite the fact that their day
jobs keep them tied to the other component platform.

Thanks to the excellent group of reviewers provided by Addison-Wesley: Carl
Burnham, Joshua Engel, Eric Freeman, Peter Haggar, Howard Lee Harkness,
Norman Hensley, Tim Lindholm, and Paul McLachlan. I don’t know you all person-
ally, and in some cases do not even have your names, but your contributions to
the book were invaluable. Few problems could escape the notice of such an elite
group. For any inconsistencies and errors that remain, the fault is mine.

Thanks to Mike Hendrickson and Julie Dinicola, my editors at Addison-Wesley.
Thanks also to all the other wonderful people at Addison-Wesley who helped
make this book happen: Tyrrell Albaugh, John Fuller, Giaconda Mateu, Patrick
Peterson, Tracy Russ, Mary Cotillo, Stephane Thomas, and Ross Venables.

Thanks to the staff of Neo-China restaurant in Durham, North Carolina, for
providing a substantial fraction of my caloric intake while I was writing this book.

5003_001.fm Page xx Wednesday, January 23, 2002 3:27 PM

