

11

Chapter 2

The Class Loader Architecture

This chapter introduces Java’s class loader architecture, which provides a dy-
namic, flexible means for locating resources (both code and data) at runtime.
Class loaders allow an application to be built from many disparate resources at
runtime, and they provide a namespace mechanism that allows multiple versions
of the same resource to coexist in a single virtual machine. Class loaders are
also integral to the security architecture because they tell the virtual machine
(VM) how and from where classes were loaded.

This chapter will cover finding and loading resources, the class loader delega-
tion model for sharing resources, the standard class loaders provided by the core
API, debugging class loading, and some straightforward examples of using class
loaders. For information about the relationship between class loaders and the se-
curity model and for how to write your own class loaders, see Chapter 5.

2.1 Assembling an Application

Assembling a statically linked, standalone application is easy. In the simplest sce-
nario, all of the binaries that constitute a standalone application are linked into a
single file during development. Deploying the application is an all-or-nothing prop-
osition. If you have possession of that single file, then the application is correctly
deployed. If you do not have the file, then you do not have the application.

Actual practice is more complex. There are many reasons that you need to
split applications into separate components:

• Different applications may share the same components. It is wasteful to
deploy a separate copy of a component for each application that uses it.

5003_02.fm Page 11 Friday, November 9, 2001 3:43 PM

12

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

• Applications change over time. If you make a small change to one compo-
nent of an application, you should be able to redeploy that component with-
out redeploying the entire application.

• Applications are dynamic. Based on conditions at runtime, applications may
incorporate new resources (both data and code) in ways that cannot be fully
anticipated during development.

• Applications use data resources such as graphic images. These resources
are not managed by programmers and should be configurable without pro-
grammer intervention.

• Applications typically have configuration settings that are specified by the
deployer of the application. These settings are logically part of the applica-
tion but are not available until runtime.

All of these issues are variations of the same theme: The components of an ap-
plication need to be assembled dynamically at runtime, not statically during the
development phase.

Assembling the components of an application at runtime poses several chal-
lenges for platforms such as Java. A component platform should implement an
infrastructure for

locating

 various components of an application so that they can
be reassembled. When a component is located, the platform should

verify

that
the component would actually work with the application. This is a security issue
because you do not want rogue components corrupting your applications. It is
also a configuration management issue because you may need to choose be-
tween multiple versions of a component. If a component cannot be located or
verified, then the cause of the failure should be clearly reported to the applica-
tion. Note that failure to find a single component need not mean that the applica-
tion as a whole cannot continue. Most applications can operate in a reduced
capacity even if some components are missing.

The developer of an application will rarely assert complete control over how
components are fitted together. In a server product, it often makes sense to
cede some control to administrators. A typical example of this is allowing an ad-
minstrator to plug in a security subsystem or database driver for the applica-
tion. Other parties that may want to define and configure components include
graphic artists, user interface specialists, problem domain experts, even end

5003_02.fm Page 12 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE

13

users. (I will use the term

deployment

to describe the process of linking compo-
nents together and the term

deployer

to describe any person performing de-
ployment tasks.)

Developers will often wear the deployer hat. Developers are

definitely

 re-
sponsible for building applications that are deployment-friendly—those that give
deployment control to the right people at the right times. However, most Java
applications will allow some control of deployment at runtime, which poses sev-
eral interesting challenges.

Figure 2–1 illustrates some of the potential problems that a deployer may
encounter when assembling an application. In this example the application’s
main class needs to find a

WidgetFactory

, the correct version of

Widget

,
and some database (JDBC) configuration settings. The shaded components indi-
cate the desired configuration, but there are several potential snags in linking
the application correctly:

1. Not all of the resources are colocated with the application’s main class, so
deployers need some way to specify where the application should look for
them.

2. Some resources can be found in more than one location. For example, the

WidgetFactory

 is visible within the application, at URL A, and at URL B. A
deployer should be able to select a component based on its location.

Figure 2–1 Assembling an application at runtime

Local VM URL A URL B

App main
class

WidgetFactory WidgetFactory

JDBCDriver=Y

WidgetFactory

JDBCDriver=X

Widget 1.0

Widget 1.1

Part of
application

Not Part of
application

5003_02.fm Page 13 Friday, November 9, 2001 3:43 PM

14

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

3. There are two different versions of the

Widget

 class, version 1.0 and 1.1.
A deployer should be able to automatically access the most recent version
or be able to explicitly fall back to older versions when necessary.

4. Finally, the application wants to use some JDBC configuration settings from
URL B,

not

the settings that are available locally. A deployer should be able
to bypass or ignore local settings.

To make the type resolution process robust, the Java platform provides
both reasonable default rules for how resources are located, and a mechanism
deployers can use to customize this behavior. Additionally, Java can audit the
linking process at runtime and optionally abort if the wrong resource is encoun-
tered. These services are the province of class loaders.

The Java class loader architecture provides the services that you need to as-
semble applications at runtime. Using class loaders, you can find and verify
classes, resources, and configuration settings. Class loading services go well
beyond support for simple scenarios to handle the challenges of real-world appli-
cation deployment. For example, you can safely load resources, even code,
from untrusted network locations. You can reload changed versions of a compo-
nent without shutting down your application, or you can even permit multiple ver-
sions of a component to coexist at one time.

Unfortunately, most of the details of class loading are hidden from view dur-
ing application development, and some key services are disabled by default. As
a result, many application designs do not make effective use of class loaders. In-
stead, they rely on abstractions such as the classpath to hide the details of de-
ployment. This approach to deployment leads to applications that cannot evolve
and adapt at runtime. Worse yet, they do not even fail gracefully; instead, they
terminate with exceptions that are far removed from the actual deployment prob-
lems. The remainder of this chapter will explain the class loader architecture and
show you how to use and extend it effectively.

2.2 Goals of the Class Loader Architecture

“Design before you code” is a good rule, even when you are merely studying a
system already in place. So, before you learn how class loaders work, you need

5003_02.fm Page 14 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE

15

to understand the goals of the architecture. This section serves to justify, in ad-
vance, some of the complexity you will see in the class loader code.

The class loader architecture aims to be transparent, extensible, capable,
and configurable. Also, it needs to deal sensibly with name conflicts and version
incompatibilities without compromising the ability to share resources loaded
from different places or in different ways. Finally, it has to define and enforce
some notion of security so that there are specific control mechanisms for what
dynamically loaded classes can and cannot do.

2.2.1 Transparency

Transparency is critical. Most Java code is, and should continue to be, written
with no explicit awareness that class loaders even exist. Consider the

Sim-

plicity

 application shown in Listing 2–1. This code makes no mention of
class loaders, yet somehow the

Simplicity

 class is loaded into the virtual ma-
chine, and later the

RocketShip

 class is also loaded. This implies that when
the virtual machine begins execution, it knows how to find the application main
class, and then somehow it infers where to look for additional classes as neces-
sary. This loading happens implicitly, without any specific coding effort. The prin-
ciple of least surprise also dictates that once the

RocketShip

 class is loaded,
it continues to be available and doesn’t magically change its characteristics in
any way. So, the

println

 statement in

main

 should output

true

.

Listing 2–1 The Simplicity Class

public class Simplicity {

 public static void main(String [] args) {

 RocketShip r1 = new RocketShip("Gemini");

 RocketShip r2 = new RocketShip("Apollo");

 System.out.println(r1.getClass() == r2.getClass());

 }

}

2.2.2 Extensibility

Class loading must be extensible. No matter what capabilities are built into the
system, some particular user will need something different. Exotic class loader

5003_02.fm Page 15 Friday, November 9, 2001 3:43 PM

16

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

designs might inject debugging information, smuggle optimization hints to just-in-
time (JIT) compilers, pull binary code from source control systems, or enforce
Eiffel-like invariants.

1

 The class loader architecture should allow these, and other,
extensions to be made without requiring modification to the classes to be loaded.

2.2.3 Capability

Class loading must be capable. Specifically, the core API should include class
loaders that meet common needs, such as on-the-fly reloading of code that has
changed on the file system, loading code from other nodes on the network, and
loading code from compressed archives. Additionally, these facilities must not
compromise simplicity by surprising the developer; for example, you should not
suddenly discover that your application was unknowingly using code down-
loaded from http://pureevil.org instead of from your local hard drive.

2.2.4 Configurability

Class loading must be easily configurable. It is not sufficient to provide a class
loading API that developers must explicitly code against. All of the standard sce-
narios above should be available as configuration options of the virtual machine.
They should be accessible for modification by system administrators, not just
Java developers. Also, it would be nice if there were an obvious system for add-
ing configuration options for custom class loaders created by third parties, such
as Java 2 Enterprise Edition (J2EE) container vendors.

2.2.5 Handling Name and Version Conflicts

Class loading must deal sensibly with name conflicts and with version incompatibil-
ities. Java programmers are taught to avoid name conflicts through careful use of
package names. The naming rule is that any classes that you ship must have pack-
age names that begin with your dotted domain name in reverse, followed by what-
ever internal package scheme your organization uses. For example, my company
website is http://www.develop.com, so my packages begin with

com.develop

.

1. The Eiffel programming language provides constructs to specify

invariants

—conditions that
must be true—at the beginning or end of a method’s exeuction. Programs that encode invariants
tend to be more readable and have fewer bugs. See [Mey00] for details.

5003_02.fm Page 16 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE

17

The naming rule is a good start, but it is insufficient in a dynamic system be-
cause it relies on the goodwill and competence of all parties involved. In prac-
tice, the naming rule will fail in two ways:

1. Organizations have internal name collisions. Without a very strict top-down
policy, this is more difficult to avoid than it might at first seem. Consider a
company whose U.S. and European branches each define an interface
named

com.myco.FootballPlayer

, for example. Worse still, some
organizations might place code in the default package.

2. Organizations need to deploy multiple versions of the same class simulta-
neously. Consider a mission critical server that needs 24/7 availability.
When a new version of a class becomes available, that class should be used
to service new clients. Unfortunately, bugs happen and some clients may
discover that they have an unintended dependency on an older version. A
server should be able to continue to serve the old version of the class to
those clients until the problem can be solved.

The runtime must be able to load multiple classes with the exact same name
and keep track of them so that developers using the classes are never unpleas-
antly surprised. Moreover, it is inefficient to create a new virtual machine every
time this situation occurs. Classes that change dynamically should be able to
share the code from classes that change less frequently.

2.2.6 Security

Finally, the entire architecture must make some security guarantees. This is not
often a major problem for monolithic applications where the entire application is
viewed as a single whole. Dynamic class loading opens the possibility of multiple
classes that do not trust each other, coexisting uneasily in the same virtual ma-
chine. The Java class loader architecture is supplemented by a security architec-
ture that provides flexible, administrative security for code loaded from different
sources.

2.3 Explicit and Implicit Class Loading

The simplest class loading API is provided by the

ClassLoader

 class shown in
Listing 2–2.

5003_02.fm Page 17 Friday, November 9, 2001 3:43 PM

18

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 2–2 Explict Loading with ClassLoader

package java.lang;

public class ClassLoader {

 public Class loadClass(String n)

 throws ClassNotFoundException;

 //remainder omitted for clarity

}

This is fairly straightforward. You pass in the full name of the class, delimiting
packages with dots, and you get back a distinguished

Class

 object that repre-
sents the loaded class. If the class loader fails, it throws the checked

Class-

NotFoundException

.

2.3.1 Explicit Loading with URLClassLoader

The easiest way to see

loadClass

 in action is to use a concrete

Class-

Loader

 implementation provided by the core API. By far, the most common and
useful standard class loader is

java.net.URLClassLoader

. The class con-
structor takes an array of URLs, and it can find classes that reside at any of
those URLs. The simplest type of URL is a file URL, which simply points to a loca-
tion on the file system. Consider Listing 2–3.

Listing 2–3 Explicitly Loading from a URL

import java.net.*;

public class LoaderDemo {

 public static void main(String [] args) throws Exception {

 URL url = new URL("file:subdir/");

 URL[] urls = new URL[]{url};

 URLClassLoader loader = new URLClassLoader(urls);

 Class cls = loader.loadClass("LoadMe");

 Object o = cls.newInstance();

 }

}

public class LoadMe {

 static {

 System.out.println(LoadMe.class + " loaded.");

 }

}

5003_02.fm Page 18 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE

19

Compile the

LoaderDemo

 into one directory, and then compile

LoadMe

 into a
subdirectory named

subdir

. Navigate to the directory that contains Loader-
Demo.class, and run

LoaderDemo

 with the command line

java –classpath . LoaderDemo

The dot is shorthand for the current directory, so the Java launcher should be
able to load

LoaderDemo

. Also, you will see that

LoaderDemo

 successfully
loads

LoadMe

, even though the LoadMe.class file is not on the classpath. Try
deleting the LoadMe.class file, and run

LoaderDemo

 again. This time you will
see a

ClassNotFoundException

. In a real application, you could catch this
exception and possibly continue execution, even with some classes missing.

The ability to load classes dynamically via a

URLClassLoader

 is so power-
ful that more than 95 percent of all Java application classes are probably loaded
by

URLClassLoader and its subclasses. However, you will rarely call load-
Class explicitly as shown above. Explicit class loading, in any form, runs
counter to one of the primary goals of the class loader architecture: transpar-
ency. Explicit class loading requires work by the programmer for each class to
be loaded, and it is too tedious for general use.

2.3.2 Implicit Class Loading
Java provides an intuitive mechanism for implicit class loading. Every Java class
maintains a reference to the class loader that loaded it, accessible via the get-
ClassLoader() method. Whenever a class refers to another class, the refer-
ent is loaded implicitly, using the same class loader that loaded the referring
class. Listing 2–4 shows some examples of references.

Listing 2–4 Referenced Classes Are Loaded Implicitly

//reference to LoadMeBase

public class LoadMe extends LoadMeBase {

 //reference to LoadMeToo

 static LoadMeToo lmt = new LoadMeToo();

 //reference to LoadMeAlso

 static LoadMeAlso lma;

 static ClassLoader ldr = getSomeLoader();

 //Neither of these refer to LoadMeThree!

5003_02.fm Page 19 Friday, November 9, 2001 3:43 PM

20 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 static Class cls = ldr.loadClass("LoadMeThree");

 static Object o = cls.newInstance();

}

This new version of the LoadMe class refers to several other classes, all of
which will be loaded implicitly when needed. First, LoadMe extends another
class LoadMeBase. In order to verify that LoadMe is a legal extension of Load-
MeBase, the LoadMeBase class must be loaded. Whenever a virtual machine
loads LoadMe, it will attempt to load LoadMeBase using the same class loader.

LoadMe also has static references to objects of type LoadMeToo and
LoadMeAlso. The virtual machine will load these classes only when they are ac-
tually needed to initialize a reference. Since the LoadMeAlso reference is initial-
ized only to null, the virtual machine will not bother loading this class at all.2

2.3.3 Reference Type versus Referenced Class
Notice that LoadMeThree is not referenced by LoadMe, even though the class
will be loaded when the code runs. The difference is that the references cls and
obj, which are used to manipulate LoadMeThree, are statically typed as
java.lang.Class and java.lang.Object, respectively. It is the compile-
time type of a reference that triggers implicit class loading; so while Class and
Object are implicitly loaded, the LoadMeThree class object is explicitly loaded
by someOtherLoader. The subtle distinction between reference type and refer-
ent class allows implicit and explicit class loading to coexist.

Most Java code uses implicit references, all of which will be transparently
loaded by a single ClassLoader. On rare occasions, a developer breaks this
chain by using explicit class loading and assigning the result to some base-class
reference type. Then, life continues as before. If LoadMeThree itself makes ref-
erences, they will be loaded implicitly by the class loader that loaded Load-
MeThree, that is, someOtherLoader.3

2. As an optimization, a virtual machine can preload classes that are not needed yet. However, it
cannot make the effects of loading these classes visible to the program. So, if preloading a class
caused an exception, that exception would not be thrown until the point in the code where the class
was actually first used.
3. This is not completely true but will have to do for now. The delegation mechanism makes things
a little more complex, as you will see momentarily.

5003_02.fm Page 20 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 21

2.3.4 ClassLoader.loadClass versus Class.forName
The loadClass method shown in Listing 2–2 is actually one of a family of meth-
ods in the Class and ClassLoader classes. The complete list is shown in List-
ing 2–5. All the methods look similar, so which should you use?

Listing 2–5 Explict Class Loading APIs

//all methods listed throw ClassNotFoundException

package java.lang;

public class Class {

 public Class forName(String name);

 public Class forName(String name, boolean resolve,

 ClassLoader cl);

 //remainder omitted for clarity

}

public class ClassLoader {

 public Class loadClass(String name);

 public Class loadClass(String name, boolean resolve);

 //remainder omitted for clarity

}

The various explicit loading APIs differ in three ways:

1. The APIs that take a resolve parameter allow the user to pass in false
to postpone linking the class. Since the virtual machine will have to link the
class before it is used anyway, this option is rarely needed. For more on link-
ing see [Ven99].

2. The single-argument version of forName is a shortcut for using the caller’s
class loader.

3. Some implementations of the loadClass method will not load arrays that
are not already loaded into the virtual machine. The API docs do not make
clear whether this is a bug, but it is “fixed” in SDK version 1.3.

Because of loadClass’s odd history of mishandling arrays, Class.forName
is probably the better choice.

5003_02.fm Page 21 Friday, November 9, 2001 3:43 PM

22 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

2.3.5 Loading Nonclass Resources
In addition to loading classes, class loaders can also load arbitrary resources.
The relevant methods are demonstrated in Listing 2–6.

Listing 2–6 Loading Resources

import java.io.*;

import java.net.*;

import java.util.*;

public class LoadResources {

 public static final String res = "config.props";

 public static void main(String [] args)

 throws IOException

 {

 ClassLoader cl = LoadResources.class.getClassLoader();

 System.out.println("All resources at " + res);

 Enumeration enum = cl.getResources(res);

 while (enum.hasMoreElements()) {

 System.out.println(enum.nextElement());

 }

 URL url = cl.getResource(res);

 System.out.println("First resource at " + res);

 System.out.println(url);

 InputStream is = cl.getResourceAsStream(res);

 Properties props = new Properties();

 props.load(is);

 System.out.println("Properties from " + res);

 props.list(System.out);

 }

}

The call to getResources returns an enumeration of URLs for all the re-
sources found at the specified path. More than one match is possible since a
class loader can search multiple locations. The call to getResource returns
only the first matching URL. The convenience method getResourceAsStream
uses getResource to locate a URL, then connects to the URL and opens an
InputStream on the data.

The resource loading functions are typically used to load data needed by an
application class, such as configuration information or images for a graphical
application. By using a class loader instead of talking directly to a file system,

5003_02.fm Page 22 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 23

you simplify deployment of applications. If you place application resources in the
same location as your application classes, you do not have to worry about find-
ing resources.

While standard class loaders such as URLClassLoader implement the re-
source loading methods correctly, custom class loaders (discussed in Chapter
5) may ignore these methods or throw an exception. If you rely on class loaders
to load resources, make sure that the class loaders in your application are re-
source-aware.

2.4 The Class Loader Rules
Implicit class loading provides simplicity, and explicit class loading provides flex-
ibility. However, these mechanisms must have some additional properties to
deal with the tricky issue of class visibility. What communication should be possi-
ble between classes loaded by two different class loaders? The simple answers
to this question have undesirable properties: If there is no communication
across class loader boundaries, then there is no real benefit to dynamic class
loading, and separate class loaders might just as well be separate virtual ma-
chines. On the other hand, complete visibility between class loaders leads to
chaos, as there is no way to hide conflicting names or versions from each other.
So, the class loader architecture adopts a middle path characterized by the fol-
lowing three rules:

1. The consistency rule: Class loaders never load the same class more than
once.

2. The delegation rule: Class loaders always consult a parent class loader
before loading a class.

3. The visibility rule: Classes can only “see” other classes loaded by their class
loader’s delegation, the recursive set of a class’s loader and all its parent
loaders.

In combination, these three rules provide a workable solution to all of the design
problems listed above.

2.4.1 The Consistency Rule
The consistency rule is the easiest to understand. Once a class is loaded, any fu-
ture attempts to load the same class from the same class loader must return

5003_02.fm Page 23 Friday, November 9, 2001 3:43 PM

24 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

the already-loaded class. This rule is necessary to prevent nasty surprises for
developers and for the virtual machine. It is also easy to implement; class load-
ers simply keep a HashMap or other data structure of already-loaded classes
and consult that structure before attempting to load the class again.

The consequences of breaking the consistency rule are dire:

1. Implicit class loading no longer makes any sense. If more than one version
of a class is loaded, you have no way to know which one is used when an
implicit reference is made.

2. The integrity of developer code is endangered. For example, imagine that
your code assumes that class Foo has a field named bar. What happens
when that field suddenly disappears because a new version of Foo has
been loaded?

3. The integrity of the virtual machine is endangered. Virtual machine imple-
mentations are built based on the assumption that class loaders never
reload the same class, and their behavior is undefined if this actually occurs.
This is even worse than compromising developer code because a damaged
virtual machine might crash, corrupt data, or open a security hole.

Given that following the consistency rule is easy, and the consequences of
breaking it are so dire, you may wonder why I belabor the point. The problem is
that breaking the consistency rule appears to be a simple way of replacing
classes at runtime. On some virtual machines, this can even appear to work for
a while. Do not be fooled. The correct way to replace classes on-the-fly (§2.5)
has nothing to do with reloading classes into the same ClassLoader instance.
The delegation and visibility rules provide the necessary framework for replacing
classes on-the-fly. When implemented correctly, dynamic replacement is porta-
ble to all legal VMs, and it has none of the liabilities associated with trying to
shoehorn new classes into old class loaders.

2.4.2 The Delegation Rule
The delegation rule states that class loaders always consult a parent class
loader before loading a class. ClassLoader’s constructor takes a single argu-
ment of type ClassLoader, which is the parent of the new class loader. The

5003_02.fm Page 24 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 25

parent is available to application code via the getParent() method.4 The set
of a class loader and all of its ancestors is called a class loader delegation. Be-
cause each class loader checks with its parent, the entire delegation will be
checked recursively before a specific class loader is allowed to load a class.

The overall effect of the delegation rule is to allow limited sharing of classes
between class loaders. Consider Figure 2–2, which shows a class loading sce-
nario that might occur in a web browser. The browser will provide applets from dif-
ferent domains with unique URLClassLoaders to load their own specific classes.
However, the applet class loaders must consult their delegations before loading
any class. So, when an applet refers to system classes such as java.lang.Ob-
ject or java.net.URL, it will get the versions provided by the system class
loader. All applets are forced to share the same version of these core classes. As
you will see later, this point is critical to security since the core classes include se-
curity classes such as java.lang.SecurityManager, not to mention classes
that can access your hard drive such as java.io.FileOutputStream.

2.4.3 The Visibility Rule
The visibility rule states that classes can only see other classes loaded by their
class loader’s delegation. Consider Figure 2–2 again. Both good.org and pure-
evil.org have a class with the same name, org.good.Main. Assuming that you
browse to good.org first, the following sequence of events ensues:

1. The browser creates a class loader CLgood for good.org.

2. CLgood is asked to load Main.

3. CLgood first delegates to the system class loader.

4. The system class loader fails to find Main.

5. CLgood loads Main from good.org. Any classes that Main refers to will be
implicitly loaded by CLgood’s delegation.

6. The browser creates a class loader CLevil for pureevil.org.

4. ClassLoader also has a convenience constructor that takes no arguments. If you use this ver-
sion, then the new class loader will take the result of ClassLoader.getSystemClass-
Loader() as its parent. The system class loader finds classes from various locations including the
classpath and is discussed in detail shortly.

5003_02.fm Page 25 Friday, November 9, 2001 3:43 PM

26 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

7. CLevil executes steps 2 through 4 again.

8. CLevil loads Main from pureevil.org. As far as the VM is concerned, this
class is entirely different from the class of the same name loaded in step 5.

The fact that pureevil.org introduces its own private version of
org.good.Main has no effect on the execution of the “real” org.good.Main
loaded from good.org. Each applet gets its own copy of any application-specific
classes. This helps to guarantee that applets do not accidentally or maliciously
manipulate code loaded by other applets. At the same time, delegation guaran-
tees that all applets share the core API classes such as java.lang.String
and java.io.FileOutputStream. This helps to protect the integrity of the
core API and is far more efficient than loading multiple copies of exactly the
same code.

Figure 2–2 Class loader delegations

System class loader

Delegates to Delegates to

URL class loader
http://www.good.org

URL class loader
http://www.pureevil.org

java.lang.Object

org.good.Main org.good.Main

java.net.URL

The dotted line surrounds the classes visible to the version of
org.good.Main loaded from http://www.good.org.

5003_02.fm Page 26 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 27

2.4.4 Delegations as Namespaces
The class loading rules have several surprising implications. The first is that a
class loader delegation forms a namespace. The Java language already has
namespaces in the form of packages; for example, com.develop.String is
a totally different class than java.lang.String. Once you factor in class
loading, the idea of namespace includes not only a class’s package name, but
also which class loader loaded the class. This fact is easily verified by executing
Listing 2–7.

Listing 2–7 The Same Binary Class Loaded by Two Different Loaders

import java.net.*;

public class LoaderDemo2 {

 public static void main(String [] args) throws Exception {

 URL url = new URL("file:subdir/");

 URL[] urls = new URL[]{url};

 URLClassLoader loader = new URLClassLoader(urls);

 URLClassLoader loader2 = new URLClassLoader(urls);

 Class cls = loader.loadClass("LoadMe");

 Class cls2 = loader2.loadClass("LoadMe");

 Object o = cls.newInstance();

 //cls == cls2 is false

 System.out.println("(cls == cls2) is " + (cls == cls2));

 }

}

As far as the VM is concerned, cls and cls2 are just as different as
classes with different names. In this example, the classes happen to be loaded
from the same location, so the bytecodes are exactly the same.5 However, the
classes might just as well have been loaded from different locations, or at differ-
ent times. The classes might contain different fields, different method signa-
tures, or different method implementations. Since the VM considers the classes
to be totally different anyway, it does not have to know, or care.

The delegation model introduces another wrinkle into the namespace issue.
Try running the LoaderDemo example, but this time, install the LoadMe class

5. The one exception to this is if the LoadMe.class file is replaced while this program is running. In
this case, it is possible that two different files would be loaded. This is discussed in more detail later
in this chapter in the Hot Deployment example.

5003_02.fm Page 27 Friday, November 9, 2001 3:43 PM

28 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

into the same directory instead of into subdir. Now, you will see a totally differ-
ent result—LoaderDemo will report that cls and cls2 are the same, even
though different loaders were asked to load each. What has happened? Both
loader and loader2 implicitly delegate to the system class loader. When you
moved LoadMe into the same directory as LoaderDemo, you made LoadMe
visible to the system class loader. Neither loader nor loader2 actually loads
the LoadMe class. So, the first run reported that

LoadMeloader != LoadMeloader2

and the second run reported that

LoadMesystem == LoadMesystem

Though this delegation behavior is efficient and allows controlled sharing of
code, it is also the cause of most class loading errors. The bugs all follow this
general pattern: A developer designs a class to be loaded dynamically. Then,
the class is unintentionally copied onto the classpath. Because all class loaders
delegate to the system class loader,6 the classpath version of the class is al-
ways the one found. The symptom of this bug is that dynamic class loading does
not occur. If the purpose of dynamic class loading was to centralize deployment
to a website, new versions of the class never seem to work on client machines.
This bug is difficult to detect because no exception is thrown. The virtual ma-
chine succeeds in finding a class, but it loads the “wrong” version of the class
that is visible to a parent class loader.

2.4.5 Static Fields Are Not Singletons
The singleton design pattern models an entity that appears only a single time in
a system. A simple approach to implementing the singleton pattern in Java is to
create a class with a private constructor to prevent accidental creation of multi-
ple instances. Then, the class can provide a static method that returns the single
instance of the class, as shown in Listing 2–8.

6. This is an example of being economical with the truth. It is possible to use the single-argument
ClassLoader constructor to deliberately bypass the classpath, but this usage is very rare in practice.

5003_02.fm Page 28 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 29

Listing 2–8 A Naive Singleton Implementation

public class NaiveSingleton {

 private static NaiveSingleton onlyOne;

 private NaiveSingleton() {}

 static {

 onlyOne = new NaiveSingleton();

 }

 public NaiveSingleton getInstance() { return onlyOne; }

}

Dynamic class loading thwarts this approach because over time, multiple ver-
sions of a class might be loaded, each with its own copy of the static field. As a
result, designing a singleton in Java requires some additional thought about how
to maintain the singleton identity in a dynamic environment. Some solutions in-
clude keeping the singleton in a class that is not loaded dynamically, or storing
the singleton state outside of a particular Java instance using JDBC or EJB.

2.4.6 Implicit Loading Hides Most Details
“Normal” code that relies on implicit class loading will never see any of these is-
sues. Implicit class loading is kept simple by the consistency and visibility rules.
The consistency rule says that there will be only one version of a class loaded by
a particular class loader, and the visibility rule says that the class loader delega-
tion defines the set of all visible classes. So, there may be multiple different ver-
sions of classes floating around your VM, but unless you explicitly use class
loaders, you will only ever see one of them.

Even when you do make explicit use of class loaders, you can use abstrac-
tion to hide this complexity from the bulk of your code. The next section will
show you how to divide your application into two distinct parts, a simple client
part that doesn’t worry about class loader issues, and a server that does the
grunt work to provide a useful service based on class loaders.

2.5 Hot Deployment
Class loaders can be used to load multiple versions of a class from different loca-
tions in space, but they can also be used to load different versions of a class from
the same location at different times. This ability, often called hot deployment, is

5003_02.fm Page 29 Friday, November 9, 2001 3:43 PM

30 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

useful for redeploying incremental changes to a class without having to shut down
the virtual machine. In the example that follows, client code7 will use multiple ver-
sions of a class, without writing any explicit class loading code. The server code
will instantiate new class loaders as necessary to load new versions of the class.

The example will use that classic OO staple, the two-dimensional Point, as
seen in Listing 2–9.

Listing 2–9 The Point Interface

public interface Point {

 public int getX();

 public int getY();

 public void move(int dx, int dy);

}

The initial PointImpl implementation is defective, as shown in Listing 2–10. It
will later be replaced without shutting down the VM.

Listing 2–10 A Defective PointImpl

public class PointImpl implements Point {

 private int x;

 private int y;

 public int getX() { return x; }

 public int getY() { return y; }

 public void move(int dx, int dy) {

 x += dx;

 //oops! forgot to move y

 }

 public String toString() {

 return "Point at " + x + ", " + y;

 }

}

The client code is a PointClient class that creates a Point and moves it
around. However, PointClient should not reference the PointImpl imple-
mentation class through a variable of type PointImpl. If it does, the rules of
implicit class loading will take over, and the PointImpl class will be loaded by

7. Throughout the book, I will use the terms “client” and “server” in their most generic sense. Client
code is code that utilizes some service provided by server code.

5003_02.fm Page 30 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 31

the same class loader that loads PointClient. This defeats the purpose of
the example. A single version of PointClient should be able to load and use
new versions of PointImpl. This is impossible if PointClient is loaded from
the same loader because the consistency rule forbids unloading and reloading
PointImpl from a single loader. Therefore, the creation of PointImpl is hid-
den behind a PointServer object that handles the details of explicitly loading
new versions of PointImpl, as shown in Listing 2–11.

Listing 2–11 The PointServer Class

import java.net.*;

public class PointServer {

 static ClassLoader cl;

 static Class ptClass;

 public static synchronized Point

 createPoint(Point template)throws Exception

 {

 if (ptClass == null) reloadImpl();

 Point newPt = (Point) ptClass.newInstance();

 if (template != null) {

 newPt.move(template.getX(), template.getY());

 }

 return newPt;

 }

 public static synchronized void reloadImpl()

 throws Exception

 {

 URL[] serverURLs = new URL[]{new URL("file:subdir/")};

 cl = new URLClassLoader(serverURLs);

 ptClass = cl.loadClass("PointImpl");

 }

}

The PointServer object acts as a factory, providing a createPoint
method that returns a Point. The template parameter can be used to initial-
ize the new Point to match an existing Point. If templatePoint is null
the new Point will start at the origin. PointServer also provides the helper
method reloadImpl to load a new version of PointImpl.

The PointClient class provides a simple command-line interface to move
a Point or reload the PointImpl implementation, as shown in Listing 2–12.

5003_02.fm Page 31 Friday, November 9, 2001 3:43 PM

32 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 2–12 PointClient

import java.io.*;

public class PointClient {

 static Point pt;

 public static void main(String [] args) throws Exception

 {

 BufferedReader br = new BufferedReader(

 new InputStreamReader(System.in));

 pt = PointServer.createPoint(null);

 System.out.println(pt);

 while (true) {

 System.out.println("MOVE1, RELOAD, or EXIT");

 String cmdRead = br.readLine();

 String cmd = cmdRead.toUpperCase();

 if (cmd.equals("EXIT")) {

 return;

 } else if (cmd.equals("RELOAD")) {

 PointServer.reloadImpl();

 pt = PointServer.createPoint(pt);

 System.out.println(pt);

 } else if (cmd.equals("MOVE1")) {

 pt.move(1,1);

 System.out.println(pt);

 }

 }

 }

}

In order to run this example, you will need to compile the PointImpl class
into a directory named subdir, and you will need to compile Point, Point-
Client, and PointServer into your top-level directory. Then, when you run
the application and enter the appropriate commands, you will see a session sim-
ilar to Listing 2–13.

Listing 2–13 A Session with PointClient

Point at 0, 0

MOVE1, RELOAD, or EXIT

MOVE1

Point at 1, 0

MOVE1, RELOAD, or EXIT

RELOAD

5003_02.fm Page 32 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 33

Point at 1, 0

MOVE1, RELOAD, or EXIT

MOVE1

Point at 2, 0

MOVE1, RELOAD, or EXIT

The move implementation is broken; although the PointClient is trying
to increment both x and y, only x is changing. Simply reloading the class
doesn’t fix the problem. Even though the PointServer is loading a new version
of PointImpl, it contains the same defective code as the original. You need to
repair the bug in Java and then recompile the fixed version. Make sure that you
leave the PointClient process running while you make these changes. Fix
and recompile PointImpl to correctly increment y. Now, try again to reload
and move the Point.

Listing 2–14 Moving the Corrected PointImpl

RELOAD

Point at 2, 0

MOVE1, RELOAD, or EXIT

MOVE1

Point at 3, 1

MOVE1, RELOAD, or EXIT

EXIT

Listing 2–14 shows that after you reload the changed PointImpl, the move
operation now works correctly. You can use this technique to replace code in the
field without forcing clients to shut down their applications.

2.5.1 Using Hot Deployment
There are several points to remember when you apply hot deployment in your
own applications. The first three have to do with how the classes get loaded.
First, clients must not reference the type that will need to be dynamically re-
placed. If they do, one of two bad things will happen: The client will implicitly load
the classes with its class loader, or it will fail to load the classes at all. Either
way, there will be no way to get a new version of the server class without shut-
ting down the client.

5003_02.fm Page 33 Friday, November 9, 2001 3:43 PM

34 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

The second point is implied by the first one. Clients cannot use a reference
of the implementation type; they must use a reference of a base class or inter-
face type. As the PointClient example shows, the client uses a reference
of type Point. This base interface is loaded implicitly by the client’s class
loader. Of course, this does imply that you have to shut down the client if you
want to change the interface that the client is programming against. This is
reasonable since the client would have to write some new code to use a new
interface anyway.

The third point is that the implementation class must be able to find the
same version of the base interface that the client is using. In other words, the
implementation’s class loader must delegate to the client’s class loader. This is
implicit in the Point example because the PointClient is loaded by the sys-
tem class loader, which is the default parent for new class loaders.

The remaining issues deal with the relationship between old and new ver-
sions of a class. The VM recognizes no relationship between old and new ver-
sions of a class, so you must manufacture any necessary relationship in your
code. In the example, the PointServer class manages the relationship be-
tween old and new versions of PointImpl. When a new PointImpl is instanti-
ated, the PointServer uses the old PointImpl as a template, thereby
maintaining the state that the client had already accumulated. This requires two
specific actions on the part of the client. First, the client must make the state of
the original object available to the server factory so that it can correctly instanti-
ate the new version. Second, the client must drop any references to the old ver-
sion of the PointImpl, both to preserve resources and to take advantage of
the new version of the code. The client executes both of these actions via the
single line of code8

pt = PointServer.createPoint(pt)

8. With one more level of indirection, you could hide these details from the client as well. The
server gives the client a forwarding proxy to the actual object, which allows the server to control
the object itself and swap it out at any time, possibly without consent or even awareness on the
part of the client.

5003_02.fm Page 34 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 35

2.6 Unloading Classes
Once you switch all of your applications to use dynamic class loading, what hap-
pens to old versions of classes that nobody is using anymore? Class loaders
and classes require a noticeable amount of memory, and if this memory is not
reclaimed, your highly available server application will eventually fail. Of course,
in Java you cannot explicitly destroy an object. The absence of an explicit de-
lete operator is one of the primary safety features of the language. So, class
loaders and classes must be reclaimed just like any other object, by the gar-
bage collector (GC).

The VM specification does not make any special distinction about how class
or class loader objects will be collected. This means that virtual machines may
garbage collect these objects exactly like they would recover any other Java ob-
jects. On the other hand, the spec does not prevent a VM from handling these
objects separately or even from refusing to unload them from memory.

The SDK implementation of Java treats classes and class loaders slightly
differently from other objects. The SDK garbage collector defaults to treating
classes and loaders just like any other objects, and it can collect them when
there are no existing references. You can disable this behavior with the non-
standard launcher flag -Xnoclassgc. You will need to check the documenta-
tion, or possibly even write test cases, to determine the behavior of other
virtual machines.

2.6.1 Making Sure Classes Are Collectable
If you are writing server applications, it is probable that you will deploy them on a
VM that can garbage collect classes. The only thing you have to worry about is
making sure that your code drops all references to classes that you want the GC
to reclaim. This is easier said than done. Unintended references are one of the
major memory problems in Java, and they can strike any kind of code.

The consequences of unintended references are particularly severe when
class loaders are involved. Consider these facts. Every instance of a class main-
tains a reference to its Class object, accessible through the getClass()
method. Moreover, every instance of Class maintains a reference to its
ClassLoader, accessible via getClassLoader(). In turn, class loaders hold

5003_02.fm Page 35 Friday, November 9, 2001 3:43 PM

36 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

a cache of every Class that they have ever loaded. The net result of all of these
references is that a single instance of any class loaded by a class loader will
keep the class loader, and every class that it loaded, in memory.

In a simple example like the PointClient, references are easy to track
down. The three references that might keep an old class loader in memory are
PointClient.pt, PointServer.cl, and PointServer.ptClass. Each of
these references is reset whenever a new version is loaded, so there is no dan-
ger that an unintended reference will hold the old classes in memory. In a larger
application, it is important to keep track of these “problem” references during
the design phase to make sure that none of them cause trouble later.

2.7 Bootclasspath, Extensions Path, and Classpath
Java provides several mechanisms for configuring how classes are loaded,
which do not require any explicit class loader code. One of these mechanisms,
the classpath, is the only interaction with class loaders that some Java applica-
tions will ever need. The classpath provides a simple mechanism to specify a set
of locations where your code can be found. Despite its simplicity, the classpath
is the source of a great many headaches, even for experienced Java develop-
ers. By understanding the classpath in terms of the class loader architecture,
though, you can avoid these problems or quickly troubleshoot them when they
occur.

The classpath is only one part of Java’s class loader configuration options.
When you run an application with the standard Java launcher java, your applica-
tion begins life with a set of three class loaders already in place: the bootstrap,
extensions, and system class loaders, as is shown in Figure 2–3. The bootstrap
class loader loads the core system packages from the bootclasspath, the exten-
sions class loader loads extensions to the core API from the extensions path,
and the system class loader loads application code from the classpath. The
three loaders are often treated as a single loader named the system class
loader.9 This three-tiered design accomplishes two objectives: simplicity for the

9. It is confusing that the term “system class loader” can be used to mean either (1) the loaders that
consult the classpath, or (2) the loader plus its delegation. In practice, this distinction rarely matters.
The API call ClassLoader.getSystemClassLoader() returns the classpath class loader, but
because of the delegation model this loader can also load bootstrap or extensions classes.

5003_02.fm Page 36 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 37

common case, and great flexibility for the rare cases where you need to make
sweeping changes to deployment, security, or how the core classes are loaded.

2.7.1 The Classpath
The common case mentioned previously involves only the system class loader.
This class loader is variously called the application class loader, the classpath
class loader, or the system class loader. Although “classpath loader” is the most
informative, the API functions that deal with this loader use the term “system,”
therefore, system will be preferred here. Regardless of how you name this
loader, it simply loads classes from directories and Java Archive (JAR) files listed
on the classpath.

There are several ways to control the initial setting of the classpath. In the
absence of any other information, the classpath is set to “.”, the directory from
which the java launcher is run. This setting can be overridden by specifying a
CLASSPATH environment variable. The environment variable, in turn, can be
overridden via a command-line switch. The java launcher recognizes either –cp
or –classpath, but note that many other Java SDK command-line tools

Figure 2–3 The three standard class loaders

Delegates to

Delegates to

Bootstrap
loader

Extensions
loader

System
loader

Loads

Loads

Loads

Default extensions (e.g., jre/lib/ext)

(defaults to none)

Core APls (e.g., rt.jar)

java.lang java.io etc.

Classpath classes

com.yourco etc.

5003_02.fm Page 37 Friday, November 9, 2001 3:43 PM

38 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

recognize only the longer –classpath form. Finally, the –classpath
command-line switch can be overridden by yet another command-line switch,
–jar. If you use the –jar switch, then user classes will only be loaded from
a single specified JAR file. These options are summarized in Table 2–1.

Time and experience have proven that using the command line is the clean-
est, most reliable way to set the classpath. If you set the CLASSPATH environ-
ment variable, then you always run the chance of another application or user
resetting it to point somewhere else. Similarly, you cannot rely on the implicit
use of the current directory because if any other actor on your system has set
the CLASSPATH, the current directory will be ignored. When you set the class-
path from the command line, you have complete control. The command line is
the one place to look in case of problems, and changes elsewhere on the ma-
chine will not cause mysterious failures loading classes. For this reason, choose
the command-line method of setting the classpath over any other method when-
ever you are using the java launcher.

The value of the classpath is a delimited list of directories or JAR files. The
delimiter is platform specific, and it is available on each platform as the constant
java.io.File.pathSeparatorChar. Examples in the text will use a semi-
colon, which is the delimiter for Win32 operating systems. If a class is not in the
default package, then the class’s package name must be combined with the
classpath to locate the class. For instance, the command line

java –cp MyJar.jar;MyClasses com.develop.Test

Table 2–1 Setting the Classpath

Setting Comments

-jar switch Lst only a single JAR

-cp switch List a mix of JARs and directories

CLASSPATH environment variable Not recommended

Current directory Not recommended

5003_02.fm Page 38 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 39

will only be able to locate the file Test.class if it is located in the

MyClasses/com/develop/

directory, or if it is stored in MyJar.jar with directory information included, as

com/develop/Test.class

The conversion of the package name into a directory hierarchy is necessary to
distinguish classes with the same base name but different package names.

The launcher’s command-line processing is relatively forgiving. The launcher
accepts relative paths and forgives your choice of a directory delimiter; for ex-
ample, the names MyClasses, MyClasses/, and MyClasses\ all correctly lo-
cate classes in the MyClasses subdirectory of the current directory. However,
there are other places in the Java world where the only legal choice is the ‘/’ de-
limiter, including a trailing ‘/’ at the end of a string specifying a directory. If you
develop the habit of using foo/ to specify a directory name on the command
line, you will be using a consistent syntax that will also work in other places such
as file URLs.

2.7.2 The Extensions Path
The system class loader delegates to the extensions class loader. The exten-
sions class loader loads installed optional packages, which the Java Extension
Mechanism [Ext] defines as “packages housed in one or more JAR files that im-
plement an API that extends the Java platform […] in the sense that the virtual
machine can load them without their being on the class path, much as if they
were classes in the platform’s core API.” This characterization implies that the
extensions class loader should be used to share packages that are common to
a large number of applications for which it would be inconvenient to repeatedly
specify locations on the classpath. Examples of such packages include XML
tools and custom security providers.

In short, installed optional packages are JAR files that are placed in a set of
well-known directories and made available to all applications. Placing classes on

5003_02.fm Page 39 Friday, November 9, 2001 3:43 PM

40 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

the extensions path differs from placing classes on the classpath in two major
ways:

1. It is easy to specify a large number of JAR files at once.

2. Extensions pass all security checks.

Directories in the extensions path are automatically scanned for JAR files. Di-
rectories in the classpath are not scanned, so you must list each JAR file individ-
ually. Note, however, that the extensions loader loads only from JAR files, never
from class files. The reason for this is the assumption that the code for common
libraries should be deployed as JAR files. When they are deployed this way the
danger of loading mismatched versions of classes is minimized.

By default, installed optional packages are loaded as needed from the

${JAVA_HOME}/lib/ext

directory. It is possible to override this by setting the java.ext.dirs property
on the command line. For example,

java –Djava.ext.dirs=myext1;myext2 MyMainClass

would allow any JAR files under the myext1 or myext2 directories to be loaded
as installed optional packages. In practice, you are unlikely to override the loca-
tion of the extensions directory. Since the purpose of extensions is to be omni-
present, it usually makes little sense to override the extensions path on a per-
application basis.

Some developers use the extensions path in place of the classpath be-
cause they like the convenience of not listing each JAR individually. I would dis-
courage this practice if you are concerned about security, however, because it
operates against the intention that extensions are exempt from security
checks. Per-application class settings are better accomplished by setting a
command-line classpath.

The second major difference between installed optional packages and class-
path classes has to do with security. When Java 2 security is enabled, like it is
with the –Djava.security.manager launcher flag, installed optional pack-
ages default to being completely trusted by the virtual machine. This high level

5003_02.fm Page 40 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 41

of trust is enabled by the following entry in the default java.policy file, which
resides at ${JAVA_HOME}/lib/security/java.policy:

grant codeBase "file:${java.home}/lib/ext/*" {

 permission java.security.AllPermission;

};

On the other hand, classes loaded from the classpath run with a minimal set of
permissions, which does not include general access to the network, local files,
or critical virtual machine subsystems. Both the classpath and extensions secu-
rity settings can be changed, augmented, or replaced on a per-VM basis with
custom policies. Nevertheless, the design assumes that classes in installed op-
tional packages will normally be trusted parts of the system and that application
classes from the classpath will not.

2.7.3 The Bootclasspath
The extensions class loader delegates to the bootstrap class loader, sometimes
also known as the primordial class loader. The bootstrap class loader checks
the bootclasspath and loads the core API packages such as java.lang,
java.io, and java.util, usually from a file named rt.jar. The bootstrap class
loader is almost certain to be implemented in native code, and unlike all other
class loaders, it does not present itself as a Java identity. When you call get-
ClassLoader() for a bootstrap class, the result will be null.

The bootstrap class loader has two significant properties that separate it
from all other class loaders; both are related to security:

1. Classes loaded by the bootstrap class loader are not verified, that is, the vir-
tual machine assumes that they are well-formed binary classes.

2. Classes loaded by the bootstrap loader are not subject to security checks.
This is subtly different from installed optional packages loaded by the exten-
sions class loader: Bootstrap classes are never even asked for their permis-
sions, while installed optional packages are asked but default to having all
permissions anyway.

You will rarely want to place your own classes on the bootclasspath. There is
no need to do so for security reasons or to make deployment convenient because

5003_02.fm Page 41 Friday, November 9, 2001 3:43 PM

42 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

installed optional packages work well for these purposes. There are only two situ-
ations in which it makes sense to deploy on the bootclasspath: if you wish to re-
place the core classes with custom versions, or if the core API classes need to
have direct access to your code.

Replacing core classes is a useful debugging trick. In its simplest form, you
might want to recompile the core classes with the javac –g flag to generate de-
bugging information, which the default rt.jar lacks. Many Java integrated develop-
ment environments (IDEs) include an rtd.jar file, which has debugging information
included, and they automatically set the bootclasspath to this version of the core
API when they start a debugging session by calling

java –Xbootclasspath:rtd.jar {vmArgs} YourMainClass

You might also want to recompile a subset of the core classes to insert debug-
ging information. In this case, you can use the

–Xbootclasspath/a: or –Xbootclasspath/p:

flags, which append or prepend your classpath to the normal bootclasspath, re-
spectively. The following section (§2.8) demonstrates one use of this technique.

The other situation that demands changes to the bootclasspath is when the
core API classes need direct access to your code. The only case where this
might occur is when the core API provides a factory method for installing some
service that you define. In this situation, your service class must be visible to the
class loader expected by the factory method.

One situation that requires changes to the bootclasspath is loading a custom
security policy. The security policy implements the mapping between a class
and the security permissions that are granted to that class. The exact details of
how the policy works are unimportant here; suffice it to say that you can config-
ure the virtual machine to replace its standard policy with a class of your own
choosing.

However, there is a hitch. Look at Listing 2–15, which shows pseudocode
for loading a custom policy. Notice the single-argument version of Class.for-
Name, which relies on implicit class loading. Since the system code resides in

5003_02.fm Page 42 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 43

rt.jar, it is loaded by the bootstrap class loader. In order to be visible, a custom
policy implementation must also be loaded by the bootstrap loader. If you write a
custom policy, you will need to set the bootclasspath to point to your custom
policy class.

Listing 2–15 Loading a Custom Security Policy

String custPolicy = System.getProperty(

 "java.security.policy");

Class cls = Class.forName(custPolicy);

Object o = cls.newInstance();

Policy.setPolicy((java.security.Policy) o);

Taken together, the bootstrap, extensions, and system loaders provide a
large variety of options for deployment and security settings on a single ma-
chine. This is often sufficient for configuring simple applications. If you want to
dynamically deploy and redeploy classes, the standard class loaders won’t help
you. You, or some other code in your process, will need to install some addi-
tional class loader instances, probably of java.net.URLClassLoader.

2.8 Debugging Class Loading
The flexibility of the class loader architecture creates the potential for extreme
confusion when something goes wrong. Consider the simple situation of an ap-
plication failing with a ClassNotFoundError for class Foo. This could be
caused by the Foo.class file being in the wrong directory, by an incorrect –cp
parameter on the command line, by a problem with the CLASSPATH environ-
ment variable, or by any of the bootclasspath or extensions path settings.
Even worse, the failure to load Foo could be the result of a chain reaction
caused by some other class Quux being loaded from an unexpected location.
Once Quux is loaded, all of the classes that Quux references are implicitly
loaded from Quux’s class loader delegation, so if Quux is in an unexpected
place (but still visible), it may cause bizarre loading failures at distant locations
in the code.

All of these problems can happen even with the standard class loaders.
When you start instantiating your own class loaders, the situation becomes even

5003_02.fm Page 43 Friday, November 9, 2001 3:43 PM

44 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

more bewildering. This section will show you three tricks for debugging class
loading problems:

1. Instrumenting your application

2. Using the –verbose:class flag

3. Instrumenting the core API

2.8.1 Instrumenting an Application
You can often diagnose class loading problems by instrumenting your applica-
tion near the trouble spot. For example, consider Listing 2–16, which you might
use to troubleshoot the case of class Quux being unable to implicitly load class
Foo.

Listing 2–16 Instrumenting an Application

public class Quux {

 public void useFoo() {

 //assume this call is failing, and you don't know why

 Foo f = new Foo();

 }

 //add this static block to tell where Quux is coming from

 static {

 ClassLoader cl = Quux.class.getClassLoader();

 System.out.println("Delegation for Quux");

 while (cl != null) {

 System.out.println(cl);

 cl = cl.getParent();

 }

 System.out.println("{bootstrap loader}");

 }

}

The static block added to the Quux class simply logs the entire delegation for
Quux by recursively calling getParent() until the bootstrap loader is reached.
If Quux came from the classpath, you would see output similar to this:

sun.misc.Launcher$AppClassLoader@404536

sun.misc.Launcher$ExtClassLoader@7d8483

{bootstrap loader}

5003_02.fm Page 44 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 45

Here you can see the three installed class loaders in action. The instance of
the nested class sun.misc.Launcher.AppClassLoader is the system
class loader, and the instance of sun.misc.Launcher.ExtClassLoader is
the extensions loader. By inserting a block of code like this near the site of a
class loading failure, you will be able to verify that the classes that did load came
from the right place.

2.8.2 Using –verbose:class
You can obtain similar logging without writing any code by running the virtual ma-
chine with the –verbose:class flag for tracing class loading. Listing 2–17
shows a partial example of the output from running the LoaderDemo example
(see Listing 2–2) with the –verbose:class flag.

Listing 2–17 Output from -verbose:class

[Opened d:\java\jdk1.3\jre\lib\rt.jar]

[Opened d:\java\jdk1.3\jre\lib\i18n.jar]

[Opened d:\java\jdk1.3\jre\lib\sunrsasign.jar]

[Loaded java.lang.Object from d:\java\jdk1.3\jre\lib\rt.jar]

[Loaded java.io.Serializable from d:\java\jdk1.3\jre\lib\rt.jar]

[Loaded java.lang.Comparable from d:\java\jdk1.3\jre\lib\rt.jar]

 {more lines like this }

[Loaded LoaderDemo]

[Loaded sun.misc.URLClassPath$JarLoader from

d:\java\jdk1.3\jre\lib\rt.jar]

 {more lines again }

[Loaded LoadMe]

The output shows the order in which classes are loaded, and for the core API
classes, it also shows the JAR file they were loaded from. The complete listing of
loaded classes from an application run can be very helpful in many debugging
scenarios. In addition to helping with class loading problems, it also gives some
hints as to what the application was doing. This information can also help you
tune the application footprint. Sometimes a single class can pull in a large num-
ber of other classes via implicit class loading. The –verbose:class output
makes this situation painfully clear, and it gives you the opportunity to locate and
perhaps discontinue using classes that incur this hidden expense.

5003_02.fm Page 45 Friday, November 9, 2001 3:43 PM

46 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

2.8.3 Instrumenting the Core API
The –verbose:class feature is easy to use, but the format and quantity of
output is controlled by the virtual machine. In some situations, you might want to
log even more information, such as failure to load classes or the order in which
loaders are consulted to load a class. If you control the source code for the
class loaders used in an application, you can create a special logging subclass
for each class loader. If you do not control the source code, your only recourse
may be to modify the core API classes to add custom logging.

The Java SDK provides a nonstandard flag that makes it easy to replace
core API classes. To take advantage of this, specify an alternate location that is
consulted before the normal bootclasspath via the –Xbootclasspath/p: flag.
Even if a VM does not support this nonstandard flag, you can still replace core
classes by building a version of rt.jar that contains the modified classes. The VM
flag simply makes experimentation easier by eliminating the need to keep track
of multiple custom versions of rt.jar.

Listing 2–18 shows a modified version of URLClassLoader that logs class
loader creation, classes found, and classes not found. The logConstructor
method logs the creation of all URLClassLoaders, including the URLs that the
loader will consult and the parent loader. The log output also includes the this
reference, which you can use to cross-reference with the class loading portion of
the log to determine which specific instance loaded a class. The logCon-
structor method also logs the call stack at the time the loader was created by
instantiating an Exception and then extracting its stack trace (without ever
throwing the Exception). This is a common trick for logging call stacks.10

Listing 2–18 Adding Logging to URLClassLoader

//extract java.net.URLClassLoader from src.jar in your SDK

//directory to a "boot" directory. Insert the following

//methods adding other code as instructed in the comments:

/**

 * add a call to logConstructor after the call to super

10. You could also use Thread.dumpStack(), which does the same trick internally. I prefer the
direct instantiation of an exception because the printStackTrace can be redirected to a
PrintStream other than out.

5003_02.fm Page 46 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 47

 * in each URLClassLoader constructor

 */

private void logConstructor(URL[] urls, ClassLoader parent) {

 if (parent == null) {

 parent = getSystemClassLoader();

 }

 System.out.println("Created URLClassLoader " + this);

 System.out.println("\tparent: " + parent);

 for (int n=0; n<urls.length; n++) {

 System.out.println("\turl: " + urls[n]);

 }

 System.out.println("created at ");

 new Exception().printStackTrace();

 System.out.println();

}

protected Class loadClass(String name, boolean resolve)

 throws ClassNotFoundException

{

 Class cls = null;

 try {

 cls = super.loadClass(name, resolve);

 return cls;

 }

 finally {

 System.out.print("Class " + name);

 if (cls == null) {

 System.out.println(" could not be loaded by " + this);

 } else {

ClassLoader cl = cls.getClassLoader();

if (cl == this) {

 System.out.println(" loaded by " + cl);

} else {

 System.out.println(" requested by " + this +

 ", loaded by " + cl);

}

 }

 }

}

The loadClass method logs whether class loading was successful and
the identity of both the requesting loader and the loader that was actually used.
(Remember that the delegation model implies that the requesting loader may

5003_02.fm Page 47 Friday, November 9, 2001 3:43 PM

48 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

delegate instead of doing the loading itself.) If you compile this version of
URLClassLoader to a boot directory and then prepend that directory to the
bootclasspath, you will get quite a large output, similar to Listing 2–19.

Listing 2–19 Output from the Logging Version of URLClassLoader

{Note: this output has been drastically clipped to show only a few

classes being loaded}

>java -Xbootclasspath/p:boot -cp classes LoaderDemo

Created URLClassLoader sun.misc.Launcher$ExtClassLoader@100d7a

parent: null

created at {stack trace omitted}

Created URLClassLoader sun.misc.Launcher$AppClassLoader@ac738

parent: sun.misc.Launcher$ExtClassLoader@100d7a

url: file:/D:/halloway/JavaCode/v1tests/classes/

created at {stack trace omitted}

Class LoaderDemo could not be loaded by

 sun.misc.Launcher$ExtClassLoader@100d7a

Class LoaderDemo loaded by

 sun.misc.Launcher$AppClassLoader@ac738

Created URLClassLoader java.net.URLClassLoader@3179c3

parent: sun.misc.Launcher$AppClassLoader@ac738

url: file:subdir/

created at {stack trace omitted}

Class LoadMe could not be loaded by

 sun.misc.Launcher$ExtClassLoader@100d7a

Class LoadMe could not be loaded by

 sun.misc.Launcher$AppClassLoader@ac738

Class LoadMe loaded by java.net.URLClassLoader@3179c3

This output demonstrates many of the points made in this chapter. First, the VM
creates the extensions class loader, which delegates to the bootstrap class
loader. Then, the VM creates the system class loader, which delegates to the ex-
tensions class loader. The log output clearly shows that both the system and ex-
tensions class loaders are implemented as subclasses of URLClassLoader.
When LoaderDemo creates an instance of URLClassLoader, it does not spec-
ify a parent, but you can see that it implicitly delegates to the classpath class
loader. Finally, you can see that LoaderDemo is loaded from the classpath but
that LoadMe is loaded by the URLClassLoader that points to file:subdir/.

5003_02.fm Page 48 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 49

You will find that replacing java.net.URLClassLoader is far more useful
for debugging than either using the –verbose:class flag or adding ad hoc
code to your own classes. Of course, you may not like the specific information
generated by the URLClassLoader modifications listed above. Good! The en-
tire point of replacing the class is to generate exactly the output you want, so
start with the example code and tweak it to meet your needs.

Replacing core classes is a trick for in-house debugging only. You should
never ship a custom version of a core API class to customers without specifi-
cally verifying that what you are doing does not violate the license agreement.
For more information see the LICENSE file that is in the root directory of your
SDK installation.

You might find similar approaches useful in logging Swing, or Remote
Method Invocation (RMI), or just about any Java technology. In theory, any core
API class is fair game. In practice, you need to be very careful not to break any-
thing. If you are not exactly sure what you are doing, you may introduce cata-
strophic bugs. Even simply adding logging code could cause concurrency
problems and deadlocks. Modifying the core APIs is like recompiling your operat-
ing system. It can be entertaining and highly educational, but you should not do
it in a production environment.

2.9 Inversion and the Context Class Loader
Thanks to the delegation model, one class can reference another without both
classes having to come from the same class loader. In particular, a class A can
reference any class B that is visible to A’s class loader’s delegation. More con-
cretely, an application class Main can refer to java.lang.String even
though Main comes from the classpath class loader and String comes from
the bootstrap loader. However, this relationship is not bidirectional. The
String class cannot refer to the application Main class, because the class-
path class loader is not part of the bootstrap loader’s delegation. The problem
is one of inversion—a class from a parent loader cannot reference a class from
a child loader. Some legal permutations that do not cause inversion are listed in
Table 2–2.

5003_02.fm Page 49 Friday, November 9, 2001 3:43 PM

50 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

In most situations, inversion problems are easily avoided. Simply put base
classes, superinterfaces, and referenced classes at least as high in the class
loader hierarchy as the classes that reference them. This is trivially accom-
plished by placing all of your application code on the classpath. For hot deploy-
ment scenarios, install interfaces on the classpath and load implementations
with URLClassLoaders that are children of the classpath loader.

Sometimes code that is very high in the class loader hierarchy will need to
access code that is an arbitrary distance lower in the class hierarchy. Consider
the hypothetical StuffedAnimal API (a.k.a. SAPI) in Listing 2–20. The API con-
sists of two classes, StuffedAnimal and StuffedAnimalFactory. The
StuffedAnimal interface defines the contract between the client and the im-
plementation, and the StuffedAnimalFactory provides a configurable way
for clients to request a StuffedAnimal implementation.

Listing 2–20 The StuffedAnimal API (SAPI)

public interface StuffedAnimal {

 public void snuggle();

 public void sleep();

 public void getMisplaced();

}

public class StuffedAnimalFactory {

 public static StuffedAnimal newAnimal() {

 String name = System.getProperty("stuffed.animal");

 if (name == null) {

 throw new Error("stuffed.animal not specified");

 }

Table 2–2 Legal and Illegal References across Class Loaders

Relationship between Classes A and B Legal Class Loader Relationships

No relationship Any

A has field/variable of type B CLA equals/descends from CLB

A extends B CLA equals/descends from CLB

A has field/variable of type B and
B has field/variable of type A

CLA must equal CLB

5003_02.fm Page 50 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 51

 //see StuffedAnimalFactory3 for better approach

 try {

 Class cls = Class.forName(name);

 return (StuffedAnimal) cls.newInstance();

 } catch (Exception e) {

 e.printStackTrace();

 throw new Error("Unable to create " + name);

 }

 }

}

Listing 2–21 A StuffedAnimal Provider

public class TeddyBear implements StuffedAnimal {

 public void snuggle() {

 System.out.println("I love you");

 }

 public void sleep() {

 System.out.println("ZZZ");

 }

 public void getMisplaced() {

 throw new Error("child very unhappy");

 }

}

Listing 2–22 A StuffedAnimal Client

public class StuffedAnimalClient {

 public static void main(String [] args) {

 StuffedAnimal sa = StuffedAnimalFactory.newAnimal();

 sa.snuggle();

 sa.sleep();

 }

}

Imagine that StuffedAnimals become so popular that almost all Java ap-
plications want to use them. Because the API is stable and widely used, you can
make the SAPI available to all. Simply add StuffedAnimal and StuffedAn-
imalFactory to a SAPI.jar file in the extensions directory. Now, assume that
the StuffedAnimalClient wants to define and use a particular TeddyBear
provider implementation as shown in Listings 2–21 and 2–22. Assuming that

5003_02.fm Page 51 Friday, November 9, 2001 3:43 PM

52 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

the client and provider code are in the classes subdirectory, the java com-
mand line would look like this:

java –cp classes/ -Dstuffed.animal=TeddyBear \

StuffedAnimalClient

This usage has several advantages:

1. The client does not have to worry about the location of the API code
because it is picked up automatically from the extensions directory.

2. The API definition, client, and server are all free from worrying about explicit
class loading—none of the code even mentions a class loader.

3. The client is the deployer. Clients can select different implementations with-
out changing a line of code by setting the stuffed.animal property.

In fact, the only problem with this example is that it simply doesn’t work. The API
is loaded as an extension, but the server code (Teddy Bear) is on the classpath.
The API’s reference to the server code is a class loader inversion and the fac-
tory’s call to Class.forName is unable to see the TeddyBear class.

There are a couple of workarounds to this problem that you should avoid.
Obviously, you could dodge the issue by installing all the classes under the same
class loader, either the extensions or the system loader. Application architec-
tures that take this approach often end up installing classes in several different
places just to make sure things load. Never do this. This haphazard approach
defeats the purpose of having a hierarchy of different loaders, and it almost
guarantees deployment problems.

A slightly better idea would be to add a ClassLoader argument where
necessary in the API, as shown in Listing 2–23. This version of SAPI allows the
client to specify a class loader on each call to the factory, and it uses the three-
argument version of Class.forName to reach the correct class loader. This ex-
plicit approach will work, but it is tedious to ask the client to pass in a class loader
every time. This strategy becomes even more tedious if the class loader must be
passed through dozens of intermediate methods before it needs to be used.

Listing 2–23 SAPI with Explicit Class Loading

public class StuffedAnimalFactory2 {

 public static StuffedAnimal newAnimal(ClassLoader cl) {

5003_02.fm Page 52 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 53

 String name = System.getProperty("stuffed.animal");

 if (name == null) {

 throw new Error("stuffed.animal not specified");

 }

 //see StuffedAnimalFactory3 for best approach

 try {

 Class cls = Class.forName(name, true, cl);

 return (StuffedAnimal) cls.newInstance();

 } catch (Exception e) {

 e.printStackTrace();

 throw new Error("Unable to create " + name);

 }

 }

}

public class StuffedAnimalClient2 {

 public static void main(String [] args) {

 Class cls = StuffedAnimalClient2.class;

 ClassLoader cl = cls.getClassLoader();

 StuffedAnimal sa = StuffedAnimalFactory2.newAnimal(cl);

 sa.snuggle();

 sa.sleep();

 }

}

An easier approach than using an explicit argument is to define a context class
loader to use in potential inversion situations. A context loader is not passed as
an explicit parameter; instead, it is available at any time through a special API.

The thread context class loader is designed precisely for this purpose. New
as of SDK version 1.2, the context loader is implemented by a pair of methods
on the thread class, shown in Listing 2–24. Functionally, the context class loader
methods are simply a wrapper around a single object reference kept in thread lo-
cal storage. When you write a provider API, such as the StuffedAnimal API,
you should use the thread-specific context loader on each thread, thereby avoid-
ing the need to pollute your API with extra class loader parameters. This is par-
ticularly important if your code is going to execute in a container environment,
such as a J2EE implementation, in which the instantiation of class loaders is typ-
ically controlled by the J2EE container vendor, not the application author.

5003_02.fm Page 53 Friday, November 9, 2001 3:43 PM

54 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 2–24 The Context Class Loader API

package java.lang;

public class Thread implements Runnable {

 public void setContextClassLoader(ClassLoader cl);

 public ClassLoader getContextClassLoader();

 //rest of class omitted for clarity

}

Listing 2–25 shows a version of SAPI that uses the thread context class
loader. In this listing, the context loader is used only once, so the code is actually
a little longer than the explicit version shown in Listing 2–23. In a larger applica-
tion, setting the context loader in a centralized location would greatly reduce the
amount of class loader–related code.

Listing 2–25 SAPI Using the Thread Context Class Loader

public class StuffedAnimalFactory3 {

 public static StuffedAnimal newAnimal() {

 String name = System.getProperty("stuffed.animal");

 if (name == null) {

 throw new Error("stuffed.animal not specified");

 }

 ClassLoader cl = Thread.currentThread()

 .getContextClassLoader();

 try {

 Class cls = Class.forName(name, true, cl);

 return (StuffedAnimal) cls.newInstance();

 } catch (Exception e) {

 e.printStackTrace();

 throw new Error("Unable to create " + name);

 }

 }

}

public class StuffedAnimalClient3 {

 public static void main(String [] args) {

 Class cls = StuffedAnimalClient2.class;

 ClassLoader cl = cls.getClassLoader();

 Thread.currentThread().setContextClassLoader(cl);

 StuffedAnimal sa = StuffedAnimalFactory3.newAnimal();

 sa.snuggle();

 sa.sleep();

 }

}

5003_02.fm Page 54 Friday, November 9, 2001 3:43 PM

THE CLASS LOADER ARCHITECTURE 55

In the versions of the StuffedAnimalClient that set a class loader, I
chose the class loader using the code

ClassLoader cl = StuffedAnimalClient.class.getClassLoader();

instead of the arguably simpler

ClassLoader cl = ClassLoader.getSystemClassLoader();

These two formulations mean entirely different things. The former says “Give me
the class loader that loaded StuffedAnimal,” while the latter says “Give me
the class loader that loads from the classpath.” It is a coincidence that these
evaluate to the same loader in this example. If you used the latter formulation
and later switched to using hot deployment, someone besides the system
loader might load the StuffedAnimalClient and TeddyBear, and you
would have another inversion problem. Do not make assumptions about what
class loader will load your class. Always query for your class’s actual loader at
runtime with YourClass.class.getClassLoader.

2.10 Onward
Class loaders enable flexible, dynamic deployment of Java applications. Classes
can be loaded from a variety of different sources, which are selected at runtime.
Class loaders provide controlled sharing of code. The delegation model of class
loading allows some classes to be shared widely, while other classes are kept lo-
cal to class loaders far down the delegation hierarchy.

Class loading is often felt but not seen. Most Java code takes no explicit ac-
count of class loading, allowing implicit class loading to deal with many common
loading scenarios. The core API provides a set of built-in class loaders: the boot-
strap, extensions, and system class loaders. These loaders provide for different
levels of security and different policies of sharing between and within applica-
tions. The combination of implicit class loading and the configuration options for
the standard class loaders meets many class loading needs without requiring
any explicit class loading code.

You can gain additional flexibility by instantiating your own class loaders to
explicitly load classes. The java.net.URLClassLoader class can load

5003_02.fm Page 55 Friday, November 9, 2001 3:43 PM

56 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

classes from any supported URL protocol. One use of URLClassLoader is hot
deployment, whereby old and new versions of a class can coexist in the same
process. Debugging class loading can be tricky, but with the -verbose:class
flag and customized implementations of URLClassLoader, you can quickly
eliminate most problems.

The context class loader is a thread local class loader reference. Use the
context loader as an out-of-band mechanism to communicate which class loader
needs to be used when related components are loaded by different class loaders.

2.11 Resources
If you want to learn more about the topics covered in this chapter, the following
references may prove useful. [New00] covers class loading in detail, with an em-
phasis on how to use class loading to support different deployment strategies.
[JavaGeeks] includes several free white papers related to class loading. “Under-
standing Class.forName()” has a good explanation of the thread context class
loader, and “Using the BootClasspath” discusses replacing the core classes.
[Ven99] explains the class loading process, with an emphasis on the actual
structure of class files and how the virtual machine loads and verifies classes.

5003_02.fm Page 56 Friday, November 9, 2001 3:43 PM

