

105

Chapter 4

Serialization

Java serialization allows you to take the state of a Java object and write it into a
byte stream. From the stream, you can later create a second Java object that
has a state that is equivalent to the state of the original. This facility allows you
to persist an instance to a file, transfer an object to another machine on the net-
work, move an object from one class loader to another, or re-create the state of
an object against a newer version of the code. In short, serialization lets you
make components that are mobile. Several high-level Java technologies build on
the backbone of serialization, including Remote Method Invocation (RMI), Java-
Beans, Enterprise JavaBeans (EJB), and JINI.

4.1 Serialization and Metadata

Metadata plays two critical roles in serialization. First, serialization relies on
class metadata and reflection to extract the state of an instance. In the common
case, reflection does all the heavy lifting, and developers do not have to write
any per-class serialization code. Unfortunately, the simplicity of basic serializa-
tion is deceptive. Java is designed to support dynamic, changing systems,
which makes serialization more complex than it appears at first brush. In a dy-
namic system, it is possible for the receiver of a serialized object to not have the
appropriate class. If this is the case, the receiver will need to know what sort of
class loader it needs to create to access the class.

What is even worse than not having the class at all is the possibility that the
receiver may have a different version of the class. If this occurs, the serialization
architecture allows the developer to salvage the information in the stream, even

5003_04.fm Page 105 Friday, November 9, 2001 2:12 PM

106

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

if it does not correspond to the local definition of the class. Real applications
may also need to customize an object’s serialized format for performance, or to
choose between pass-by-value and pass-by-reference semantics when they are
passing objects from one virtual machine to another.

The second role that metadata plays is ensuring that the stream matches
the receiver’s expectations for a class. The serialization binary format defines its
own metadata, which can be compared to the metadata in the binary class for-
mat. The serialization binary format makes it possible to recover an object’s
state, even if the code for a class is no longer available, or has changed. The se-
rialization format also includes a number of hooks for customizing how objects
are transmitted. This chapter will show you the basics of serialization, and then it
will show you how to tweak serialization to improve performance, protect invari-
ants, discover the location of necessary class files at runtime, and recover data
if class files have changed since an object was serialized.

4.2 Serialization Basics

Not all Java classes are serializable. To indicate that you want a class to be seri-
alizable, you must implement the

java.io.Serializable

 interface. This in-
terface has no methods; rather, it simply acts as a marker interface indicating a
class’s willingness to have its instances serialized. In Listing 4–1, the

Person

class is serializable, but the

Humanoid

 class is not. When an instance of

Per-

son

 is written to a stream, the serialization architecture uses reflection to ex-
tract the field values and write them to the stream.

Listing 4–1 The Humanoid and Person Classes

public abstract class Humanoid {

 protected int noOfHeads;

 private static int totalHeads;

 public Humanoid() {

 this(1);

 }

 public Humanoid(int noOfHeads) {

 if (noOfHeads > 10)

 throw new Error("Be serious. More than 10 heads?!");

 this.noOfHeads = noOfHeads;

 synchronized (Humanoid.class) {

5003_04.fm Page 106 Friday, November 9, 2001 2:12 PM

SERIALIZATION

107

 totalHeads += noOfHeads;

 }

 }

 public int getHeadCount() {

 return totalHeads;

 }

}

import java.io.*;

public class Person extends Humanoid

 implements java.io.Serializable {

 private String lastName;

 private String firstName;

 private transient Thread workerThread;

 private static int population;

 public Person(String lastName, String firstName) {

 this.lastName = lastName;

 this.firstName = firstName;

 synchronized (Person.class) {

 population++;

 }

 }

 public String toString() {

 return "Person " + firstName + " " + lastName;

 }

 static synchronized public int getPopulation() {

 return population;

 }

}

Given that reflective access can work on

any

 field of

any

 object, there was
no mechanical limitation that prevented the language designers from making all
classes serializable. They did not do so for two reasons. First, some classes’ in-
stances contain resources that are local to a VM, process, or machine. Such
classes wrap threads, files, sockets, database connections, and so on. There is
no well-defined way to create a new instance from one of these objects that has
state that is “equivalent” to the original object.

The second reason has to do with security. Some classes take the private-
ness of their private fields very seriously. Serialization provides a back door
through which these fields can be accessed by writing them into a serialization
stream and analyzing the stream’s contents. Rather than force developers to

5003_04.fm Page 107 Friday, November 9, 2001 2:12 PM

108

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

worry about these issues for every class, the Java language simply considers
objects

not

serializable by default.
To write a serializable object to a stream, you need to create an instance of

j

ava.io.ObjectOutputStream

.

ObjectOutputStream

 is a wrapper
stream; its constructor takes an

OutputStream

 argument that will actually re-
ceive data. This wrapper architecture makes it easy to use the same

Ob-

jectOutputStream

 class, regardless of whether you are serializing an object
to a file, socket, or other destination.

The

WriteInstance

 class in Listing 4–2 writes a

Person

 to a file speci-
fied on the command line. The meat of this example is the call to

os.writeOb-

ject(p)

. It is that simple. If the object referenced by

p

 were not serializable,
the call would throw a

java.io.NotSerializableException

. Since the ob-
ject referenced by

p

 is of a serializable type, the object’s state is extracted via
reflection and written to

oos

, which in turn writes the state to a file specified on
the command line. To verify that this works, you can read the object back in later
using

ReadInstance

. You should see output showing that the state “Julius
Drabbih” was recovered correctly.

Listing 4–2 The WriteInstance and ReadInstance Classes

import java.io.*;

public class WriteInstance {

 public static void main(String [] args) throws Exception

 {

 if (args.length != 1) {

 System.out.println("usage: java WriteInstance file");

 System.exit(-1);

 }

 FileOutputStream fos = new FileOutputStream(args[0]);

 ObjectOutputStream oos = new ObjectOutputStream(fos);

 Person p = new Person("Drabbih", "Julius");

 oos.writeObject(p);

 }

}

import java.io.*;

public class ReadInstance {

 public static void main(String [] args) throws Exception

 {

 if (args.length != 1) {

5003_04.fm Page 108 Friday, November 9, 2001 2:12 PM

SERIALIZATION

109

 System.out.println("usage: java ReadInstance filename");

 System.exit(-1);

 }

 FileInputStream fis = new FileInputStream(args[0]);

 ObjectInputStream ois = new ObjectInputStream(fis);

 Object o = ois.readObject();

 System.out.println("read object " + o);

 }

}

4.2.1 Serialization Skips Some Fields

Serialization does not necessarily read and write

all

class fields to the stream.
There are three exceptions, all of which can be seen in Listing 4–1.

1. Base class fields are only handled if the base class itself is serializable. This
is in keeping with the idea that a class should only be serializable if the
class’s author specifically makes it so. In our example, this has the odd con-
sequence of making our

Person

 forget how many heads he has. The

noOfHeads

 field is part of a nonserializable base class, so serialization
ignores it.

1

2. Second, serialization ignores static fields because they are not part of any
particular instance’s state.

2

 So,

Person

’s

population

 field is not written
to the stream.

3. You can use the

transient

 keyword to disable serialization for specific
fields. Normally, you will use

transient

 if some of your class’s instance
fields do not have a logical serialized form. In the

Person

 example,

work-

erThread

 is marked transient because there is no standard notion of mov-
ing a thread from one VM or process to another. Note that even though

workerThread

 is not written to the stream, it will still have a well-defined
value of

null

 when a

Person

 is deserialized. When the Java virtual
machine instantiates an object, object reference fields are initialized to

null

, numeric primitive fields to zero, and Boolean fields to

false

. This
happens prior to any constructors or serialization code, guaranteeing that
objects will have a well-defined initial state.

1. You can modify the default behavior and capture the fields from nonserializable base classes.
(See §4.3).
2. Even if you wrote a static field during serialization, then what? When you read back in two differ-
ent instances of a class, which one gets to set the one and only copy of the static field? Serializa-
tion doesn’t happen for static fields because it does not have clear semantics.

5003_04.fm Page 109 Friday, November 9, 2001 2:12 PM

110

COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

4.2.2 Serialization and Class Constructors

An intriguing aspect of serialization is its relationship to constructors. It is an ar-
ticle of faith among Java programmers that Java objects are never created with-
out a constructor invocation. This is essential for security because otherwise
maleficent code could create invalid instances of core system classes in an at-
tempt to destabilize the VM. Additionally, the promise that constructors will run
is important to guarantee class invariants. Many constructors include checks to
make sure that the object’s state is valid, and later methods assume a valid
state because they know that a constructor ran.

However sacred constructors may be, serialization does not always invoke
them. You can verify this by adding a call to

System.out.println()

 to the
constructors for the

Humanoid

 and

Person

 classes used in Listing 4–1. If you
do this and then rerun

WriteInstance

 and

ReadInstance

, your session
should look like Listing 4–3.

Listing 4–3 Deserialization Does Not Invoke Constructors

>java -cp classes WriteInstance Person.ser

Humanoid constructor ran

Person constructor called

>java -cp classes ReadInstance Person.ser

Humanoid constructor ran

read object Person Julius Drabbih

When

WriteInstance

 uses

new

 to create a

Person

 object, the

Human-

oid

 and

Person

 constructors both run, as expected. However, when ReadIn-
stance reads the Person from the file, only the Humanoid constructor fires.
What happened to Person’s constructor?

The answer is that serialization does not need to invoke Person’s construc-
tor because it plans to assign Person’s fields from the stream anyway. Running
a constructor for Person would be redundant at best. Moreover, notice that
Person has no default constructor. How would deserialization synthesize argu-
ments for a nondefault constructor?3 If there were more than one constructor,
which one would deserialization choose? Serialization avoids these pitfalls by

3. In this case it would be easy, but in general it would not.

5003_04.fm Page 110 Friday, November 9, 2001 2:12 PM

SERIALIZATION 111

skipping the constructor step altogether. It is able to do this without using an in-
valid bytecode sequence because it creates the object from native code, where
the bytecode rules do not apply.

Note that Humanoid’s constructor is still invoked because Humanoid is not
serializable. Since serialization has no way to assign Humanoid’s fields, it relies
on Humanoid’s default constructor. This implies one of the rules of serialization:
If you mark a class Serializable, any nonserializable base classes of your
class must have a default constructor.

In the simplest case, you would not worry about the various fields that serial-
ization skips or the constructor behavior. This is because the goal of the archi-
tecture is to let developers simply mark their classes Serializable and then
forget about them. However, the Person class demonstrates how quickly one
can run afoul of the details. When a Person class is read from a serialized
stream, there are two semantic problems that default serialization does not
solve:

1. Humanoid’s default constructor sets the number of heads the Person has
to one. This defect might not manifest as a bug for quite a long time since
most people do in fact have only one head. However, if and when the bug
occurs it would be very confusing.

2. Person’s population field is supposed to track the total number of peo-
ple instantiated in a particular VM. Serialization bypasses Person’s
constructor, so population is not incremented.

Both of these problems necessitate some ability to customize the serialization
process. Most of the rest of this chapter will be spent looking at various custom-
ization hooks, starting with one that can be used to solve the population
problem.

4.3 Using readObject and writeObject
If a class wishes to add some custom code that runs when an object is read
from serialization, it can implement the readObject method:

private void readObject(ObjectInputStream stream)

 throws IOException, ClassNotFoundException

5003_04.fm Page 111 Friday, November 9, 2001 2:12 PM

112 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Before it reads an object’s state from the stream, ObjectInputStream uses
reflection to check to see if the object’s class implements readObject. If it
does, ObjectInputStream simply calls readObject instead of executing
normal deserialization.

When you implement readObject, you normally do two things:

1. Call back to ObjectInputStream and ask it to read the fields as in nor-
mal serialization.

2. Execute any custom steps that you wish to add to the deserialization pro-
cess.

Listing 4–4 shows how to use readObject to deal with the population
problem.

Listing 4–4 Using readObject as a Deserialization Constructor

import java.io.*;

public class Person extends Humanoid

 implements java.io.Serializable {

 //repeat all code from original version of Person, plus:

 private void readObject(ObjectInputStream ois)

 throws IOException, ClassNotFoundException

 {

 ois.defaultReadObject();

 synchronized (Person.class) {

 population++;

 }

 System.out.println("Adjusting population in readObject");

 }

}

The call to ois.defaultReadObject() causes ObjectInputStream
to read the field values from the stream and then to use reflection to assign the
field values to the object. The call to increment population correctly tracks
that a new instance of Person is alive in this VM.

You should add any per-instance validation code after the call to default-
ReadObject. You should also use readObject to initialize any transient fields
if Java’s default values of null/zero/false are inappropriate for your object.
Any invariant that you would check in a constructor should also be checked by
readObject. In short, treat readObject like a public constructor.

5003_04.fm Page 112 Friday, November 9, 2001 2:12 PM

SERIALIZATION 113

4.4 Matching Streams with Classes
Serialization may involve loading classes if the instance being deserialized is of a
type not already present in the virtual machine. The design for how classes are
loaded is simple. The common case works without any special effort on the part
of the programmer; the current class loader is simply asked to load the class
whose name matches the class name in the serialization stream.

When deserialization triggers class loading, there are two problem cases to
worry about. When the runtime attempts to load a class to deserialize an object,
it might find a different version of the class than the one that serialized the ob-
ject, or it might not find the class at all. This section will cover the former prob-
lem; the problem of finding classes is covered in §4.9.

Fortunately, the common case is handled trivially by the basic class loader
architecture. When deserialization needs to load a class, it leverages implicit
class loading; so, when ReadInstance needs to load Person, the virtual ma-
chine finds the class loader that loaded ReadInstance and tries to load Per-
son with the same loader.

You can verify this using the custom version of URLClassLoader from
§2.8.3. Listing 4–5 shows a run of ReadInstance with class loader logging
turned on; note that the same loader loads ReadInstance, Person, and Hu-
manoid. You might also try to read in the Person after deleting the Per-
son.class file. If you do, deserialization will fail with a ClassNotFound-
Exception. This proves that the default serialization mechanism does not em-
bed the actual class file in the stream. If the receiver does not already have the
binary class, it will not be able to deserialize the object.

Listing 4–5 Deserialization Leverages Implicit Class Loading.

{output clipped to show only relevant details}

>java -Xbootclasspath/p:boot/ -cp classes ReadInstance

>Person.ser

ReadInstance loaded by sun.misc.Launcher$AppClassLoader@ac738

Humanoid loaded by sun.misc.Launcher$AppClassLoader@ac738

Person loaded by sun.misc.Launcher$AppClassLoader@ac738

The serialized stream does not contain the entire binary format of the ob-
ject’s class. Nevertheless, there needs to be some way to detect if the class file

5003_04.fm Page 113 Friday, November 9, 2001 2:12 PM

114 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

that the sender used is the same as the one the receiver is using. The classes
might have different fields, different methods, or different semantics, and in any
of these situations, the receiver may be unable to deserialize a valid instance.
This could be a fatal flaw in the architecture since the problems caused by such
an invalid instance might percolate to distant parts of the system and be difficult
to track down.

4.4.1 The serialVersionUID
To avoid this problem, serialization sends a fingerprint as part of the class
metadata in the serialized stream. This fingerprint takes the form of a 64-bit
value called the stream unique identifier, or serialVersionUID (SUID). The run-
time calculates a SUID for a class using several pieces of class metadata, in-
cluding the class name, class modifiers, superinterfaces, and the signatures
of most fields, constructors, and methods. All of this metadata is written into a
java.io.DataOutputStream, which is then hashed using the Secure Hash
Algorithm (SHA-1). (This is an abridged version of what happens; the exact de-
tails are in the serialization spec. See [Ser] for details.) The important point is
this: Almost any change to a class, other than editing a method’s implementa-
tion, will cause the class’s SUID to change. If the SUID for a class does not
match the SUID from the stream, then deserialization will fail.

You can retrieve the SUID of a class with the command-line tool serialver
as follows:

>serialver Person

Person: static final long serialVersionUID =

3880321542343815834L;

Now, try adding a new field to the Person class as demonstrated here:

private int age;

If you attempt to read in the old version of Person.ser using this changed Per-
son class, you will get an exception like the one shown here:

java.io.InvalidClassException: Person;

 Local class incompatible:

 stream classdesc serialVersionUID=3880321542343815834

 local class serialVersionUID=8695226918703748744

5003_04.fm Page 114 Friday, November 9, 2001 2:12 PM

SERIALIZATION 115

The old version of the object does not have a value for age, and the ObjectIn-
putStream would have no way to decide a reasonable value for age, so it re-
jects the attempt to deserialize a Person.

The last argument attributes too much intelligence to ObjectInput-
Stream. The serialization architecture does not actually know that one version
of the class had an age field and one did not; all it knows is that the SUIDs are
different. This implies that even an innocuous change will break serialization. To
see the problem, remove the age field from Person.java, and add the following
method instead:

public void innocuousMethod() {}

This method does nothing at all; nevertheless, the SUID changes, and you can no
longer read old versions of the class. The SUID is inexpensive, costing only 64
bits in the stream, but it is also a brute-force approach. From the perspective of
the SUID, all changes are significant changes, and they all break serialization.4

It is interesting to compare serialization versioning to the class compatibility
rules for class loading. When it is loading classes, the virtual machine uses the
name and type information in the class file format to verify the linkage between
classes. If there is a version mismatch, the error information can be quite pre-
cise, pinpointing the field or method that is missing. The SUID is another variant
of this same idea, but it is compressed for efficient transmission. Because the
metadata is hashed down to a single 64-bit value, serialization can only tell you
that two classes are different—not what the difference is.

4.4.2 Overriding the Default SUID
If you make a change to a class that you know to be innocuous, you can assert
its compatibility with older versions of the class by assigning an explicit
serialVersionUID field. If you add a field with this signature

private static final long serialVersionUID = {somevalue}L;5

4. To be fair, there is a roughly 1 in 264 chance that changing a class will not change the serialVer-
sionUID, but don’t hold your breath waiting for this.
5. The serialization specification states that the serialVersionUID field should be pri-
vate, static, and final. However, the serialver tool omits the private keyword,
and the implementation only verifies that the field is static and final.

5003_04.fm Page 115 Friday, November 9, 2001 2:12 PM

116 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

to a class, the runtime will use this value instead of calculating the hash code.
So, all you have to do to read a different version of a class is discover that
class’s SUID and set a serialVersionUID field to match. Discovering the
original SUID is a snap because it is in the serialization stream, and it is also con-
tained in the text of the InvalidClassException that is thrown when deseri-
alization fails.

Armed with this information, you can create a new version of Person that is
capable of reading the original version, as is shown in Listing 4–6. This version
of Person has seen several changes from the original. The static and transient
fields are gone, and the instance field age has been added. Nevertheless, this
version of Person can be used to read the original Person from a stream be-
cause the matching serialVersionUID has been added.

Listing 4–6 Using an Explicit serialVersionUID

public class Person extends Humanoid

 implements java.io.Serializable {

 static final long serialVersionUID=3880321542343815834L;

 private String lastName;

 private String firstName;

 private int age; //this field is new to this version!

 public Person(String lastName, String firstName, int age) {

 this.lastName = lastName;

 this.firstName = firstName;

 }

 public String toString() {

 return "Person " + firstName + " " + lastName +

 " aged " + age;

 }

}

As soon as you deploy a second version of any serializable class, you will
need to set the serialVersionUID. In fact, it is a good idea to manually set
the serialVersionUID in the first version of a serializable class; you do this
by running the serialver tool and pasting the result back into your source
code. Calculating the SUID is expensive, and by setting it yourself, you can pay
this cost once, at development time, instead of paying it the first time the class
is serialized in each runtime.

5003_04.fm Page 116 Friday, November 9, 2001 2:12 PM

SERIALIZATION 117

4.4.3 Compatible and Incompatible Changes
Once you set the serialVersionUID, you are on your own to make sure that
the old and new versions of the class are truly compatible. You have traded one
problem for its opposite. Instead of all changes being considered bad, all
changes are now considered OK. To add some order to this chaos, the serializa-
tion spec groups possible changes to a class into two categories: compatible
and incompatible changes. Compatible changes include adding new serializable
fields or adding or removing classes from the inheritance hierarchy. Incompati-
ble changes include deleting fields, juggling the order of classes in the inheri-
tance hierarchy, or changing the type of a primitive field. The two types of
changes are summarized in Table 4–1.

When you make a compatible change to a class, the runtime does the best
job it can with the data it finds in the stream. For example, if you add a class to
the inheritance hierarchy after serializing an instance, there will be no data in the
stream for that class’s data members. So, when you deserialize the object, the
new class’s members will be initialized to the default value appropriate to their
type: false for Booleans, zero for numeric types, and null for references.

Table 4–1 Compatible and Incompatible Changes

Type of Change Examples

Compatible change Adding fields, adding/removing classes, adding/
removing writeObject/readObject, adding
Serializable, changing access modifier,
removing static/transient from a field

Incompatible change Deleting fields, moving classes in a hierarchy,
adding static/transient to a field, changing
type of a primitive, switching between
Serializable or Externalizable, removing
Serializable/Externalizable, changing
whether readObject/writeObject handles
default field data, adding writeReplace or
readResolve that produces objects incompatible
with older versions

5003_04.fm Page 117 Friday, November 9, 2001 2:12 PM

118 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Similarly, if you add a serializable field, old versions of the object will not have a
value for that field.

The new version of Person demonstrates this because it has added an age
field. When you read an old Person stream into a new Person class, the age
value will be zero as shown here:

read object Person Julius Drabbih aged 0

In the next section, you will see a more advanced use of readObject that can
help deal with this situation.

Unfortunately, the serialization spec is unclear about what should happen
when you make an incompatible change to a class. Based on the term “incom-
patible,” you might expect that an incompatible change would cause deserializa-
tion to fail with an exception. In the Java 2 SDK, this is true for some, but not all,
types of incompatible changes. For example, if you delete a field from the Per-
son class, then the stream will have a value for that field, and nowhere to put it.
Rather than throw an InvalidClassException, ObjectInputStream si-
lently drops the field.

Most other incompatible changes will throw exceptions. The exact behavior
of the Java 2 SDK version 1.3 for each type of incompatible change is summa-
rized in Table 4–2. Since the spec is not clear in mandating these behaviors,
other implementations might be different.

Table 4–2 How Java 2 SDK 1.3 Handles Incompatible Changes

Incompatible Change Runtime Response

Deleting a field Silently ignored

Moving classes in inheritance hierarchy Exception

Adding static/transient Silently ignored

Changing primitive type Exception

Changing use of default field data Exception

Switching Serializable and Externalizable Exception

Removing Serializable or Externalizable Exception

Returning incompatible class Depends on incompatibility

5003_04.fm Page 118 Friday, November 9, 2001 2:12 PM

SERIALIZATION 119

4.5 Explicitly Managing Serializable Fields
With default serialization, the mapping between class fields and stream fields is
automatic and transparent. At serialization time, a field’s name and type in the
class become the field’s name and type in the stream. The fields written by de-
fault serialization are called the default field data. At deserialization, a field’s
name and type in the stream are used to find the correct field to assign in the
new instance.

The serialization API exposes hooks so that you can take control of any of
these steps. Two nested classes do most of the work. ObjectInput-
Stream.GetField allows you to explicitly manage pulling fields out of the
stream, and ObjectOutputStream.PutField allows you to explicitly man-
age inserting fields into the stream.

ObjectOutputStream.GetField presents all the stream fields as name/
value pairs. In order to access the stream in this fashion, you have to implement
readObject, but instead of calling defaultReadObject, you call read-
Fields. Then, it is up to you to extract each field by name and assign it to the ap-
propriate field in the object. Consider the new version of Person in Listing 4–7.
This version of Person stores both names in the single field fullName.

Listing 4–7 Person Using readFields to Handle Different Versions

import java.io.*;

public class Person implements java.io.Serializable {

 private String fullName;

 static final long serialVersionUID=388032154234815834L;

 public Person(String fullName) {

 this.fullName = fullName;

 }

 public String toString() {

 return "Person " + fullName;

 }

 private void readObject(ObjectInputStream ois)

 throws IOException, ClassNotFoundException

 {

 ObjectInputStream.GetField gf = ois.readFields();

 fullName = (String) gf.get("fullName", null);

 if (fullName == null) {

 String lastName = (String) gf.get("lastName", null);

5003_04.fm Page 119 Friday, November 9, 2001 2:12 PM

120 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 String firstName = (String) gf.get("firstName", null);

 if ((lastName == null) || (firstName == null))

 throw new InvalidClassException("invalid Person");

 fullName = firstName + " " + lastName;

 }

 }

}

The readObject method has been implemented to correctly read either
new- or old-format streams. Instead of calling defaultReadObject, the
readObject implementation begins with a call to readFields, which exposes
the fields as a collection of name/value pairs. You can then extract the field val-
ues using a family of

type get(String name, type default)

methods, one for each primitive type and one for Object. The first call to get
optimistically assumes that the stream version matches the class, and that
fullName is available. If it is not, then readObject continues and tries to in-
terpret the stream as the original Person version, extracting firstName and
lastName fields. You can make your readObject implementations as com-
plex as necessary, possibly handling multiple old versions of a class.

4.5.1 ObjectInputStream.GetField Caveats
There are two caveats to remember when you are using ObjectInput-
Stream.GetField to manage fields. First, it is an all-or-nothing deal. If your
class has 70 fields, there is no way to tell ObjectInputStream to “use de-
faultReadObject for these 65 fields, and let me handle the rest myself.”
Once you decide to call readFields, you have to assign all the fields yourself.6

The second caveat is that the GetField.get methods do not like field
names that do not appear in any version of the class being deserialized. If you
attempt to get a field that cannot be found in the stream and that field also
cannot be found in the local version of the class, the runtime will throw an

6. The spec does not appear to mandate this behavior. In fact, the source for readFields has
this comment: “TBD: Interlock w/ defaultReadObject.” Perhaps a future version will allow you to call
defaultReadObject and readFields for the same Object.

5003_04.fm Page 120 Friday, November 9, 2001 2:12 PM

SERIALIZATION 121

“IllegalArgumentException: no such field.”7 This situation is likely if you
are dealing with three or more versions of a class over time. To handle this situ-
ation, wrap calls to get inside a try block.

4.5.2 Writer Makes Right
When you use readObject and GetField to control deserialization, the writer
of an object does not worry about the stream format, instead, it leaves the
reader to make things right. This can be more efficient than having the writer try
to guess the format; if the writer guesses incorrectly, the result is that both
writer and reader do extra work. However, the reader-makes-right approach has
a disadvantage as well. While new versions of a class can read either old or new
versions from the stream, an old version of a class cannot handle a newer ver-
sion of the stream format.

If your design does not permit you to update all versions of a class every-
where, then you may need to code newer versions of a class to respect the orig-
inal format. Serialization provides a hook for this with GetField’s mirror image,
the PutField class. You customize serialization output by implementing
readObject’s counterpart, writeObject:

private void writeObject(ObjectOutputStream oos)

 throws IOException;

The PutField class has a set of put methods that write field values to the
stream. Listing 4–8 shows a version of Person that uses writeObject to
control which fields are serialized. The first line of writeObject retrieves the
PutField instance that is used to write objects to the stream. Then, the put
method is used to assign name/value pairs, and the writeFields method
adds all the fields to the stream. By implementing both readObject and
writeObject, this new version of Person continues to both read and write
the format established by the original version of Person.

7. This is an unnecessary complication. There are other ways to find out if the field exists in the
stream or class; GetField.get would be easier to use if it always handled not finding the field
by returning the default value passed as its second parameter.

5003_04.fm Page 121 Friday, November 9, 2001 2:12 PM

122 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Listing 4–8 Using writeObject for Backward Compatibility

import java.io.*;

public class Person implements java.io.Serializable {

 private String fullName;

 static final long serialVersionUID=388032154234815834L;

 public Person(String lastName, String firstName) {

 this.fullName = firstName + " " + lastName;

 }

 public String toString() {

 return "Person " + fullName;

 }

 private static final ObjectStreamField[]

 serialPersistentFields

 = {new ObjectStreamField("firstName", String.class),

 new ObjectStreamField("lastName", String.class)};

 private void writeObject(ObjectOutputStream oos)

 throws IOException

 {

 ObjectOutputStream.PutField pf = oos.putFields();

 int delim = fullName.indexOf(" ");

 String firstName = fullName.substring(0, delim);

 String lastName = fullName.substring(delim+1);

 pf.put("firstName", firstName);

 pf.put("lastName", lastName);

oos.writeFields ();

 }

 private void readObject(ObjectInputStream ois)

 throws IOException, ClassNotFoundException

 {

 ObjectInputStream.GetField gf = ois.readFields();

 String lastName = (String) gf.get("lastName", null);

 String firstName = (String) gf.get("firstName", null);

 if ((lastName == null) || (firstName == null))

throw new InvalidClassException("invalid Person");

 fullName = firstName + " " + lastName;

 }

}

4.5.3 Overriding Class Metadata
Using the writeObject method introduces one additional complexity not
present when using readObject. You cannot just write any field name and type

5003_04.fm Page 122 Friday, November 9, 2001 2:12 PM

SERIALIZATION 123

that you choose; you can only write fields whose names and types are part of
the class metadata. This information cannot be modified at runtime because
class metadata is only written to a stream once; later references to the same
class simply reference the original metadata. Remember that by default serial-
ization will use reflection to discover the names and types of a class’s nonstatic,
nontransient fields.

If you want to bypass reflection and specify the class serialization metadata
directly, you must specify the class field

private static final ObjectStreamField[] serialPersistentFields

The runtime will discover the serialPersistentFields array by reflection,
and it will use them to write the class metadata to the stream.

ObjectStreamField is a simple collection class that contains a String
holding a field name and a Class holding a field type. In the Person example in
Listing 4–8, writeObject needs to write firstName and lastName to the
stream, so serialPersistentFields is set to contain appropriate
ObjectStreamField instances. If you change the class metadata by setting
serialPersistentFields, you must also implement writeObject to write
instance fields that match your custom metadata, and you must implement
readObject to read those fields. If you don’t, ObjectOutputStream will try
to reflect against your class, find fields that do not match the metadata, and fail
with an InvalidClassException.

4.5.4 Performance Problems
The current SDK implementations of GetField and PutField perform poorly.
The class metadata, whether generated by reflection or specified explicitly via
serialPersistentFields, is stored as an instance of ObjectStream-
Class. Instead of using an efficient hash table, ObjectStreamClass stores
the field information in a sorted array and uses a binary search to find fields at
runtime. If you make heavy use of GetField and PutField, these binary
searches become the primary bottleneck when serializing an object.

The default serialization mechanism does not pay this penalty because it
makes a linear traversal of the sorted array. Unfortunately, this linear traversal is

5003_04.fm Page 123 Friday, November 9, 2001 2:12 PM

124 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

not accessible to user code. This implementation defect may be repaired in a
future version of the SDK.

4.5.5 Custom Class Descriptors
In addition to instance-specific metadata hooks, serialization also provides a
mechanism for customizing the reading and writing of class metadata. This
mechanism is rarely used because it requires matching modifications to both in-
put and output streams, and it makes your streams usable only by stream sub-
classes that use the modified version. Consult the API documentation for details
under ObjectOutputStream’s writeClassDescriptor and ObjectIn-
putStream’s readClassDescriptor.

4.6 Abandoning Metadata
In all the scenarios discussed so far, class metadata is part of the serialization
format. The first time an instance of a particular class is written, the class meta-
data is also written, including the class name, SUID, field names, and field types.
When default serialization is used, the field names are discovered by reflection,
and the SUID is calculated by taking an SHA-1 hash of the class metadata. When
you override these behaviors by specifying serialVersionUID or serial-
PersistentFields, you are not eliminating metadata. Instead, you are just
taking explicit control of what the metadata looks like.

The serialization mechanism also provides several hooks that allow you to
skip sending metadata at all. This section will show you various techniques for
reducing metadata, and then it will explain why you should avoid these tech-
niques in most cases. There are three techniques for bypassing metadata: add-
ing data after defaultWriteObject, making your object Externalizable,
and replacing defaultWriteObject entirely.

4.6.1 Writing Custom Data after defaultWriteObject
The first technique, adding data after defaultWriteObject, allows you to
make ad hoc extensions to an instance’s serialization packet. ObjectOutput-
Stream and ObjectInputStream implement DataOutput and DataInput,
respectively. These interfaces provide helper methods for reading and writing

5003_04.fm Page 124 Friday, November 9, 2001 2:12 PM

SERIALIZATION 125

primitive types. Return to the original Person example from Listing 4–1. One of
Person’s problems was that the Humanoid base class data was not written to
the stream. You could solve this problem by adding extra lines to readObject
and writeObject like this:

 //add to Person.java. This is _not_ a great design!

 private void writeObject(ObjectOutputStream oos)

 throws IOException

 {

 oos.defaultWriteObject();

 oos.writeInt(noOfHeads);

 }

 private void readObject(ObjectInputStream ois)

 throws IOException, ClassNotFoundException

 {

 ois.defaultReadObject();

 noOfHeads = ois.readInt();

 System.out.println("had " + noOfHeads + " heads");

 }

After calling defaultWriteObject to write the standard fields and meta-
data, the call to writeInt simply tacks on an extra piece of data. Similarly, the
call to readInt extracts that extra data item. Unlike Person’s lastName and
firstName fields, this extra data travels naked—without any metadata describ-
ing what it is. This means that somebody with a different version of the class (or
no version of the class at all) will be unable to determine what the int value in the
stream means. In fact, a reader without this exact version of the class probably
cannot even tell if the value is an int, as opposed to two shorts or four bytes. A
more flexible solution to this problem is to use serialPersistentFields
and PutField as discussed in the previous section. That way, you can explic-
itly guarantee that the correct metadata is present, which will vastly increase the
chances that a reader of your stream will be able to interpret the data.

4.6.2 Externalizable
A more heavy-handed approach to bypassing metadata is to declare that your
class implements java.io.Externalizable, which extends Serializable.
When you implement Externalizable, you make your class Serializable,

5003_04.fm Page 125 Friday, November 9, 2001 2:12 PM

126 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

but you also take full responsibility for transmitting data and metadata for that
class and for transmitting data and metadata for any base class data and meta-
data. You must explicitly manipulate the stream using Externalizable’s two
methods, shown here:

public void writeExternal(ObjectOutput out)

 throws IOException;

public void readExternal(ObjectInput in)

 throws IOException, ClassNotFoundException;

For our old friend Person, these methods might be implemented as shown
in Listing 4–9. There are several important points to notice in this example.

1. The Person class deals explicitly with all fields for itself and its base
classes.

2. Because the readExternal method must be declared public, malicious
or ignorant code might invoke the readExternal method at any time,
blasting some arbitrary state into your object.

3. An Externalizable class must have a public constructor.8

4. Finally, no metadata is written. Only the actual value of the fields is written to
the stream.

Listing 4–9 Externalizable Version of Person

public class Person extends Humanoid

 implements java.io.Externalizable

{

 //other fields, methods, as before

 public Person() { /*required! */}

 public void readExternal(ObjectInput oi)

 throws IOException

 {

 lastName = oi.readUTF();

 firstName = oi.readUTF();

 noOfHeads = oi.readInt();

 }

8. The requirements that methods be public and that Externalizable objects have a public
constructor are completely out-of-step with the rest of serialization. Most other serialization behav-
iors and customizations are implemented using reflection and naming conventions. Because serial-
ization can use reflection to bypass language protections, it can hide its details in private methods.
The designer of externalization must have momentarily forgotten about these advantages.

5003_04.fm Page 126 Friday, November 9, 2001 2:12 PM

SERIALIZATION 127

 public void writeExternal(ObjectOutput oo)

 throws IOException, ClassNotFoundException

 {

 oo.writeUTF(lastName);

 oo.writeUTF(firstName);

 oo.writeInt(noOfHeads);

 }

}

Using Externalizable introduces three dangers:

1. Other versions of the class may not be able to figure out what is in the
stream.

2. Generic tools that analyze serialization streams will have to skip over
Externalizable data, treating it as an opaque array of bytes.

3. It is easy to introduce bugs when writing Externalizable code. If you
write the fields out in one order, and then read the fields back in a different
order, the best you can hope for is that the stream will break. If the wrong
ordering is type-compatible with the correct ordering, you will silently assign
data to the wrong fields.

Given all of the dangers of Externalizable objects, what purpose do
they serve? In some situations, Externalizable objects offer better serializa-
tion performance. Skipping metadata has three potential performance benefits:

1. The stream is smaller because the metadata is not present.

2. There is no need to reflect over metadata for the class.

3. There is no need to use reflection on a per-instance basis to extract and
assign values from fields.

How much actual performance benefit you get from externalizing a class will de-
pend heavily on how that class is used, when it is serialized, and what type of
stream ObjectOutputStream is wrapping. In many cases, the performance
benefit will be negligible. Externalization should never be your first option; only
consider it when your application is functioning correctly and you have profiling
data to prove that externalization provides an essential speedup. The most likely
place for externalization is for simple classes that never change, so for them,
metadata is not important.

5003_04.fm Page 127 Friday, November 9, 2001 2:12 PM

128 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

4.6.3 Using writeObject to Write Raw Data Only: Bad Idea
The third option for bypassing metadata is to implement writeObject to write
data directly, without first calling defaultWriteObject or putFields to in-
voke the normal metadata mechanism. You should never use this option. The
ability to write data in this way was an unintended loophole in the serialization
specification. Unfortunately, this technique is used in a few places in the core
API, so the spec is not likely to preclude this tactic anytime soon.

Listing 4–10 shows this technique. This version of Person uses the
readObject and writeObject hooks for serialization-with-metadata, but the
code looks like it belongs in an Externalizable object instead. You should
never write code like this. If you truly want to bypass all metadata, you should (1)
reconsider one last time; then (2) implement Externalizable.

Listing 4–10 Bad Style in writeObject

public class Person extends Humanoid

 implements java.io.Serializable

{

 //other fields, methods, as before

 private void readObject(ObjectInputStream ois)

 throws IOException

 {

 lastName = ois.readUTF();

 firstName = ois.readUTF();

 noOfHeads = ois.readInt();

 }

 private void writeObject(ObjectOutputStream oos)

 throws IOException, ClassNotFoundException

 {

 oos.writeUTF(lastName);

 oos.writeUTF(firstName);

 oos.writeInt(noOfHeads);

 }

}

To understand the problem with this use of writeObject, you need to look
at the details of serialization’s binary format. The binary format relies on the fol-
lowing assumptions about objects that implement writeObject.

5003_04.fm Page 128 Friday, November 9, 2001 2:12 PM

SERIALIZATION 129

1. The default field data will occur exactly once, and it will occur first. There is
no need for a special marker in the binary format because this data will
always be present. The implication for developers is that you should always
begin your writeObject implementation with a call to defaultWrite-
Object, or with calls to the PutField nested class that do essentially the
same thing.

2. If custom data is present, it will follow after the normal serialization data.
Because custom serialization data is optional, the byte flag TC_BLOCKDATA
indicates the beginning of custom data.

If you do violate these assumptions in your own code, either by writing to the
ObjectOutputStream before writing the normal data, or by never writing the
normal data at all, your code will still execute correctly. However, if anyone ever
tries to read your stream without having the original class, they stand a 1-in-256
chance of being stymied.

If the first byte of your instance’s serialized data happens to be the constant
TC_BLOCKDATA, readers cannot depend on metadata to tell them what they are
looking at, as demonstrated by Figure 4–1. Maybe that first byte is the begin-
ning of some custom data, or maybe it is the beginning of normal data that just
happens to start with that value. The benefit of metadata is lost because now
readers must have a class file that knows how the original stream was pro-
duced. In your own code, you should obey the intent of the specification, and al-
ways write normal serialization data first.

I would summarize the options for avoiding metadata as ranging from bad,
to worse, to worst.

• Bad: If you implement writeObject to first write the normal serialization
data, and then use the stream’s DataOutput capabilities to tack on extra
data, your serialization stream will be an odd hybrid. The normal data will
include metadata, and the extra data will not.

• Worse: If you implement Externalizable, you lose all metadata bene-
fits, you have to handle base classes yourself, and you must write (and
debug!) a lot of per-class code. However, both of these options have their
uses. Appending extra data to writeObject is slightly easier than using
serialPersistentFields to provide full metadata, and it may be suit-
able if you value development speed over flexibility. Externalizable

5003_04.fm Page 129 Friday, November 9, 2001 2:12 PM

130 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

objects may be enough faster and smaller that you are willing to deal with
inflexible, error-prone code.

• Worst: Never violate the spirit of the specification by skipping the normal
serialization data in your writeObject implementation. If you do, it will be
impossible for a generic tool to reliably extract the data from the stream.

Do not throw metadata away. Instead of using the techniques explained
here, use the metadata-friendly techniques described in §4.5.

4.7 Object Graphs
Serialization is recursive. When you serialize an object, all of its serializable
fields are also serialized. Primitives are serialized by the DataOutput methods
of the stream, and objects are serialized by writeObject. This fact is implicit
in the Person example of this chapter, since lastName and firstName are
themselves object types, not primitives. Recursion to referenced objects is
highly desirable because it simplifies serializing complex graphs of objects all in
one step. However, the fact that writeObject actually serializes an entire
graph of objects introduces a few wrinkles that you need to be aware of.

Figure 4–1 Streams generated by WriteObject

Case 1. Simple serialization stream

Case 2. writeObject calls defaultWriteObject and then writes custom data.

Case 3. writeObject writes custom data. This cannot be distinguished
from Case 1 when default field data begins with TC_BLOCKDATA flag.

Default field data
TC

BLOCK
DATA

Custom data block

Default field data

TC
BLOCK
DATA

Custom data block

5003_04.fm Page 130 Friday, November 9, 2001 2:12 PM

SERIALIZATION 131

The first issue is the danger of serializing far more data than you wanted.
Consider a data object that lives inside a hierarchical container:

public class PhotonTorpedo implements Serializable {

 private int range;

 private int power;

 private Starship ship;

 //etc.

}

In this design, all PhotonTorpedos are contained by a Starship. Perhaps
each Starship in turn belongs to a Fleet. This is a perfectly reasonable
model, but when you serialize a PhotonTorpedo, you wind up attempting to se-
rialize all the other weapons on the Starship, and all the other Starships in
the Fleet. If a single one of these connected instances is not serializable, seri-
alization will fail with a NotSerializableException. More amusingly, if the
entire graph is serializable, you will wind up scratching your head wondering why
a PhotonTorpedo takes up 48.7MB on disk, or why it takes four hours to send
one over the network!

4.7.1 Pruning Graphs with Transient
If the reader does not care about containers like the Starship, you can use the
transient keyword to block serialization of container references like ship.
Once ship is marked transient, you probably will also need to add code to
readObject or readExternal to correctly reinitialize the value of ship at
deserialization time.

4.7.2 Preserving Identity
Another situation that arises when you are serializing an entire object graph is
the possibility that the same instance might be serialized more than once.9 Con-
sider the following additions to the Person class:

public class Person {

 private Person spouse;

 private Person boss;

}

9. Of course, this can also happen if you simply call writeObject twice on the same object.

5003_04.fm Page 131 Friday, November 9, 2001 2:12 PM

132 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

In this situation, it is very likely that spouse and boss are the same Java iden-
tity. However, serialization only writes the state once, and it uses that state to
reinitialize both references when the object is deserialized. To track identity,
each object is assigned a numeric token the first time it is written. When the
same object needs to be written again, only the token needs to be written to the
stream.

There are three reasons why the architecture works this way:

1. Sending the state only once is more efficient.

2. Sending the state only once provides more intuitive semantics. If I deserial-
ize a Person and call p.getSpouse().appease(), I expect both the
spouse and the boss to be appeased. This will only work if a single
instance is deserialized and assigned to both references.

3. Failing to track object identity will lead to an infinite loop if there are circular
references. Consider the Person example again. When you serialize a
Person, you recursively serialize the spouse instance. But spouse is
also a Person, so you end up serializing Person.spouse.spouse,
which (hopefully!) is the original Person again. Serialization has to recog-
nize that this is a Person it has seen before, or else it will run in circles until
it blows the stack.

4.7.3 Encouraging the Garbage Collector with reset
Because Java tracks object identities and does not write an instance to the
stream more than once, all these problems are solved without any effort on the
programmer’s part. However, the tracking mechanism must keep a reference to
every object ever written to a stream.10 As a result, no object that is written to
an object stream can be garbage collected! In a long running application that
uses serialization, this can cause poor performance and may eventually lead to
an OutOfMemoryError. In order to avoid this problem, ObjectOutput-
Stream provides a reset method.

public void reset() throws IOException

10. This is not strictly true. The design could have used a java.lang.ref.WeakRefer-
ence to track streamed objects while still allowing them to be garbage collectable. This option
was rejected as unnecessarily expensive in the general case.

5003_04.fm Page 132 Friday, November 9, 2001 2:12 PM

SERIALIZATION 133

When you call reset, the stream nulls its internal table of already-written ob-
jects. If an object is written to the stream before and after the reset point, the
object's state will be written twice, and the receiver will see two different object
identities. If this identity-destroying behavior is desirable or acceptable in your
application, then you can call reset regularly to allow streamed objects to be
garbage collected. If this behavior is not desirable, you will have to carefully co-
ordinate calls to reset to preserve the semantics required by the receiver.

The relationship between reset and garbage collection is needlessly com-
plex in older versions of Java. For example, in SDK version 1.3, the following
rules apply:

1. If an ObjectOutputStream is no longer reachable, then its references to
streamed objects will no longer prevent them from being garbage collected.
This is just vanilla GC behavior.

2. Calling close on an object stream does not reset the stream! If you want
to free resources in a timely fashion, you must explicitly call reset, in addi-
tion to explicitly calling close.

3. Calling reset does not immediately clear the references to objects that
have been streamed. This is an unfortunate accident of the ObjectOut-
putStream’s nested HandleTable implementation, which marks the
table as empty without explicitly setting references to null. As a result,
objects that pass through an object stream will only be collectable if a call
to reset is followed by streaming some additional objects through to over-
write the old references.

These rules are demonstrated by the YouMustReset class in the accompany-
ing source code. Note that rules 2 and 3 are inferred from the source code, not
mandated by the serialization spec. The memory management problems of
close and reset are fixed in the 1.4 version of Java. In 1.4, calling close
does clear the object table and null out all old references. So, rules 2 and 3 ap-
ply only to versions of Java prior to 1.4.

4.8 Object Replacement
Both object streams and objects themselves have the ability to nominate re-
placement objects at serialization time. This object replacement feature has

5003_04.fm Page 133 Friday, November 9, 2001 2:12 PM

134 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

many uses. If your object graph contains an object that is not serializable, you
can replace it with an object that is serializable. If you are doing distributed pro-
gramming, you can replace an object’s state with an object’s stub, causing the
receiver to get a reference to the remote object, instead of a local by-value copy
of the object. RMI uses object replacement for this purpose. Replacement may
also be useful if you want to add additional semantics to serialization that go be-
yond the capabilities of the readObject and writeObject methods.

4.8.1 Stream-Controlled Replacement
You can implement stream-controlled object replacement by subclassing Ob-
jectOutputStream and/or ObjectInputStream. The relevant methods are
shown in Listing 4–11. You must call the enableReplaceObject and en-
ableResolveObject methods to turn replacement on or off; the default is off.
These methods also act as a chokepoint for a security check. Because a stream
might use object replacement to corrupt an object graph, the enable methods
require that the caller have the SerializablePermission "enableSub-
stitution".11

Listing 4–11 Stream-Level Object Replacement APIs

package java.io;

public class ObjectOutputStream {

 //ObjectOutputStream replacement methods

 protected boolean enableReplaceObject(boolean enable);

 protected Object replaceObject(Object obj);

 //rest of class omitted for clarity

}

public classs ObjectInputStream {

 //ObjectInputStream replacement methods

 protected boolean enableResolveObject(boolean enable);

 protected Object resolveObject(Object obj);

 //rest of class omitted for clarity

}

11. See [Gon99] for a detailed explanation of Java 2 permissions.

5003_04.fm Page 134 Friday, November 9, 2001 2:12 PM

SERIALIZATION 135

To actually perform replacement and resolution, you override replaceOb-
ject and resolveObject, respectively. If replacement is enabled, these
methods will be called once for every object serialized to the stream, allowing
you to substitute a different object. You may substitute any object you want.
However, if you replace an object with an object that is not type-compatible, you
will need to resolve it back to a type-compatible reference or the stream will
throw an exception.

One use of stream-controlled replacement is to serialize an object that
would not otherwise be serializable. Consider the SimplePerson class in List-
ing 4–12. If you tried to serialize a SimplePerson, a normal object stream
would throw a NotSerializableException. If you control the source for
SimplePerson, you can fix this by declaring that SimplePerson implements
Serializable. If you do not have control of the source code, the next best
thing to do is to replace the SimplePerson instance with some other class in-
stance that is serializable.

Listing 4–12 Serializing a Nonserializable Instance

public interface PersonItf {

 public String getFullName();

}

public class SimplePerson implements PersonItf {

 String fullName;

 public SimplePerson(String fullName) {

 this.fullName = fullName;

 }

 public String getFullName() {

 return fullName;

 }

}

import java.io.*;

public class WriteSimplePerson {

 private static class Replacer extends ObjectOutputStream {

 public Replacer(OutputStream os) throws IOException {

 super(os);

 enableReplaceObject(true);

 }

5003_04.fm Page 135 Friday, November 9, 2001 2:12 PM

136 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 protected Object replaceObject(Object obj) {
 if (obj instanceof PersonItf) {

 PersonItf p = (PersonItf) obj;
 return new StreamPerson(p.getFullName());

 }
 return obj;
 }
 }
 public static void main(String[] args)
 throws IOException
 {
 FileOutputStream fos = new FileOutputStream
 (args[0]);
 ObjectOutputStream oos = new Replacer(fos);
 oos.writeObject(new SimplePerson("Fred Wesley"));
 }
}

public class StreamPerson implements java.io.Serializable,
PersonItf {
 String fullName;
 public StreamPerson(String fullName) {
 this.fullName = fullName;
 }
 public String getFullName() {
 return fullName;
 }
 public String toString() {
 return "StreamPerson " + fullName;
 }
}

The WriteSimplePerson class in Listing 4–12 demonstrates using re-
placement to cope with an instance that is not serializable. The Replacer class
checks to see if an object implements PersonItf. If it does, then Replacer
replaces it with the StreamPerson class, which is known to be Serializ-
able. You could implement a corresponding Resolver subclass of Object-
InputStream to convert the object back to a SimplePerson at
deserialization time. However, in this example there is probably no need to do
so. If the receiver is expecting only a PersonItf, then StreamPerson is just
as good as SimplePerson. The ReadInstance class from Listing 4–2 cer-
tainly doesn’t care since it never casts the result to anything more specific than

5003_04.fm Page 136 Friday, November 9, 2001 2:12 PM

SERIALIZATION 137

Object. If you use WriteSimplePerson to create a file SimplePerson.ser,
ReadInstance will happily deserialize a StreamPerson as shown here:

java -cp classes ReadInstance SimplePerson.ser

read object StreamPerson Fred Wesley

As long as type relationships are maintained, replacement is totally transpar-
ent for the reader. As far as ReadInstance knows, there never was any class
other than StreamPerson involved. If the receiver did want to cast an object to
the original implementation class, or if the object was referenced via its specific
subtype in an object graph, then a resolution step would also be necessary to
convert the stream type back into the type expected by the reader.

The usage of replacement without resolution opens an interesting possibility.
Imagine that there are hundreds of implementations of the PersonItf interface,
and that some of them are very large and expensive to serialize. One mechanism
to trim down the cost of serializing the various classes would be to go through
the source code marking fields transient. However, transient is a property
of the field itself, not of any particular instance. If different clients care about dif-
ferent fields, you cannot selectively set the transient bit at runtime. Because
you cannot use transient selectively, you end up having to serialize all the
fields, even though any particular client might only care about some subset.

Object replacement allows you to customize serialization on a per-stream
basis, unlike the transient keyword, which operates on a per-class basis.
Look again at the Replacer class. It replaces all PersonItf implementations
with StreamPersons. If you know in advance that the receiver of an object
stream cares only about the PersonItfness of objects, then the Replacer
class saves you from worrying about whether a particular PersonItf is serial-
izable, and it gives serialization a predictable cost.

4.8.2 Class-Controlled Replacement
Replacement at the class level is syntactically very similar to stream-level re-
placement. A class that desires replacement implements the methods in Listing
4–13. Like many serialization hooks, these methods are not part of any inter-
face and are discovered by reflection.12 The type compatibility rules for class-

12. This is also why the access modifier does not matter.

5003_04.fm Page 137 Friday, November 9, 2001 2:12 PM

138 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

level object replacement are the same as for stream-level replacement. If you re-
place an object, you need to make sure that the replacement is, or later resolves
to, a type expected by the receiver.

Listing 4–13 Class-Level Object Replacement Hooks

ANY-ACCESS Object writeReplace()

 throws ObjectStreamException;

ANY-ACCESS Object readResolve()

 throws ObjectStreamException;

Class-level replacement has several important differences from stream-
based replacement. Because it operates at the level of the class being serial-
ized, you can use class-level replacement only if you have access to the source
code for the class being replaced. On the positive side, no security check is nec-
essary; since all the relevant code is in the same class, it is assumed to be
within a single trust boundary.

Classes use the class-level object replacement mechanism to separate their
serialized form from their in-memory representation. Explicitly coding a separate
serialized form may be useful if a class has complex serialization code, or serial-
ization code that is shared with other classes.

Another place where class-level replacement is useful is in designs that rely
on object identity, such as certain implementations of the singleton design pat-
tern. A singleton is a unique object in a system, often represented by a single ob-
ject identity. Deserialization creates new object identities, so if a singleton is
deserialized more then once, its unique identity is lost.

Object resolution can be used to patch this situation, as shown in Listing
4–14. The author of the Planet class wants to guarantee that there are only
two singleton Planets in the entire VM: earth and mars. To prevent acciden-
tal planet creation, Planet’s constructor is marked private. For a nonserializ-
able class, this would be good enough, but remember that serialization acts
like a public constructor. When a Planet is deserialized, the serialization ar-
chitecture creates a new instance and populates its fields by reflection.

If earth were deserialized twice, there would be two different object identi-
ties holding the same earth state. This could cause program bugs if code re-
lies on reference equality to compare Planets, and at the very least it wastes

5003_04.fm Page 138 Friday, November 9, 2001 2:12 PM

SERIALIZATION 139

memory with unnecessary copies of semantically identical Planets. The re-
solve-Object method sidesteps this problem by looking up the singleton
Planet and returning it instead. Because of this, the Planet reference cre-
ated by deserialization is never visible to client code and is available for gar-
bage collection.

Listing 4–14 Using Class-Controlled Resolution to Preserve Identity

import java.io.*;
public class Planet implements Serializable {
 String name;
 private static final earth = new Planet("Earth");
 private static final mars = new Planet("Mars");
 private Planet(String name) {
 this.name = name;
 }
 public static Planet getEarth() {
 return earth;
 }
 public static Planet getMars() {
 return mars;
 }
 private Object readResolve() throws IOException
 {
 if (name.equals("Earth"))

 return earth;
 if (name.equals("Mars"))

 return mars;
 throw new InvalidObjectException("No planet " + name);
 }
}

4.8.3 Ordering Rules for Replacement
Object replacement has a number of ordering rules that you must take into ac-
count if you are doing any nontrivial replacements.13

1. Class-level replacement is invoked prior to stream-level replacement. This is
the only sensible ordering; letting the stream go first could violate a class’s
internal assumptions about how it will be serialized. Similarly, class-level res-
olution occurs prior to stream-level resolution.

13. These ordering rules live in a gray area between the specification and a specific implementa-
tion’s detail. I would expect most vendors to follow the SDK’s lead, but if you are relying on these
behaviors it wouldn’t hurt to test them on each Java implementation you plan to support.

5003_04.fm Page 139 Friday, November 9, 2001 2:12 PM

140 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

2. Class-level replacement is recursive; that is, a replacement can nominate
another replacement and so on ad infinitum. Class-level resolution is not
recursive.14

3. Stream-level replacement/resolution is not recursive. Streams get exactly
one chance to replace/resolve an object.

4. During serialization, objects are replaced as they are encountered. During
deserialization, objects are replaced only after they are fully constructed.

These rules are shown graphically in Figure 4–2 and Figure 4–3.

Rules 2 and 4 have asymmetries that are counterintuitive. While class re-
placement executes recursively, class resolution does not. So, if class A nomi-
nates replacement B, and B nominates replacement C, the only way you can
force C to resolve to A is in a single step.

14. This behavior has an odd history. In SDK version 1.2, neither replacement nor resolution were
recursive. This was reported as bug ID 4217737, and subsequently “fixed” in SDK 1.3 Beta. While
the bug report asked that both behaviors be made recursive, only replacement was changed.

Figure 4–2 Choosing a replacement for obj during serialization

Yes

Yes

No
No

obj =
obj.resolveObject();

obj =
strm.replaceObject();

writeObject(obj);

Does obj implement
resolveObject?

Is stream
replacement

enabled?

START

END

5003_04.fm Page 140 Friday, November 9, 2001 2:12 PM

SERIALIZATION 141

Rule 4 implies that an object graph with both circular references and object
replacement may be impossible to deserialize correctly. Consider the Worker
and Boss classes in Listing 4–15.

Listing 4–15 Circular References May Cause Problems During Resolution.

import java.io.*;

public class Worker implements PersonItf, Serializable {

 private String name;

 private PersonItf boss;

 public Worker(String name, PersonItf boss) {

 this.name = name;

 this.boss = boss;

Figure 4–3 Resolving obj

Yes

Yes

Yes

No

No
No

originalObj = obj;

tempObj =
obj.replaceObject()

obj = tempObj;

obj =
strm.replaceObject();

writeObject(obj);

Does
tempObj.class equal
originalObj.class?

Does obj implement
replaceObject?

Is stream
replacement

enabled?

START FAIL

END

5003_04.fm Page 141 Friday, November 9, 2001 2:12 PM

142 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

 }

 public String toString() {

 return "Worker " + name + " (boss " + boss.getFullName()+")";

 }

 private Object writeReplace() {

 System.out.println("Replacing worker");

 return new WireWorker(name, boss);

 }

 public String getFullName() {

 return name;

 }

 public PersonItf getBoss() {

 return boss;

 }

}

import java.io.*;

import java.util.*;

public class Boss implements PersonItf, Serializable {

 private String name;

 private ArrayList workers = new ArrayList();

 public Boss(String name) {

 this.name = name;

 }

 public String toString() {

 StringBuffer sb = new StringBuffer("Boss " +

 name + ", workers:");

 for (int n=0; n<workers.size(); n++) {

 sb.append("\n\t").append(workers.get(n));

 }

 return sb.toString();

 }

 public void addWorker(PersonItf worker) {

 workers.add(worker);

 }

 public String getFullName() {

 return name;

 }

}

Serializing an instance of one of these classes is likely to involve a circular refer-
ence since Boss keeps an ArrayList of Workers, and each Worker keeps a
reference to its Boss. Serialization will also involve replacement, as Worker
nominates a replacement class WireWorker. To keep the example simple,

5003_04.fm Page 142 Friday, November 9, 2001 2:12 PM

SERIALIZATION 143

WireWorker does not actually add any functionality; it simply holds references
to the data members of the original Worker instance. Consider what happens
when a Worker/Boss tandem is serialized as shown in Listing 4–16.

Listing 4–16 Serializing a Worker

import java.io.*;

public class WriteWorker {

 public static void main(String[] args) throws IOException

 {

 FileOutputStream fos = new FileOutputStream(args[0]);

 ObjectOutputStream oos = new ObjectOutputStream(fos);

 Boss b = new Boss("Queen");

 Worker w = new Worker("Drone", b);

 b.addWorker(w);

 System.out.println(w);

 System.out.println(b);

 oos.writeObject(w);

 System.out.println("wrote worker to " + args[0]);

 }

}

import java.io.*;

public class ReadWorker {

 public static void main(String [] args)

 throws Exception

 {

 String fileName = args[0];

 FileInputStream fis = new FileInputStream(fileName);

 ObjectInputStream ois = new ObjectInputStream(fis);

 Worker w = (Worker) ois.readObject();

 System.out.println("read worker from " + args[0]);

 System.out.println(w);

 System.out.println(w.getBoss());

 }

}

The stream replaces w with a WireWorker, call it w'. While the stream con-
tinues to chase references, it writes b, which has another reference to w in the
workers array. Because replacement occurs as references are encountered,
this reference to w will also be replaced by w'. The stream’s view of the object
graph is depicted in the middle portion of Figure 4–4.

5003_04.fm Page 143 Friday, November 9, 2001 2:12 PM

144 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

At deserialization time, the object graph is read back into memory. When the
top-level object w' is reconstructed, it gets a chance to readResolve. At this
point, the top-level reference is turned back into a Worker—call it w for symme-
try. However, the runtime does not keep a table of previously resolved objects.
When the runtime encounters w' again, it sees a handle for a WireWorker in-
stance and returns that instance, as shown in the bottom stripe of Figure 4–4.

The resulting object hierarchy contains a WireWorker instance in the
Boss’s workers array, almost certainly counter to the programmer’s intent.
This behavior can produce bizarre symptoms. Since the workers array is not
strongly typed, the fact that the object hierarchy has changed will not be de-
tected as a ClassCastException during deserialization. Later, some method
of Boss will fail because it expects the entries in the workers array to be of
type PersonItf, not WireWorker.

Figure 4–4 The worker object graph in transit

Worker
W

Boss
B

Worker
W

WireWorker
W'

Boss
B

WireWorker
W'

Worker
W

Boss
B

WireWorker
W'

Replace

Resolve

Replace

Original object graph

Stream object graph

Deserialized object graph

WorkersBoss

WorkersBoss

WorkersBoss

5003_04.fm Page 144 Friday, November 9, 2001 2:12 PM

SERIALIZATION 145

4.8.4 Taking Control of Graph Ordering
The problem with circular references and object replacement is only the most
egregious example of a problem shared by all of the serialization hooks dis-
cussed so far. Serialization is designed to transparently handle object graphs,
without forcing you to know or worry about the exact order in which objects in
the graph are serialized. Custom serialization hooks are also designed to hide
the ordering of the object graph. Unfortunately, some hooks are likely to have or-
dering dependencies, which leads to the need for potentially confusing ordering
rules such as the object replacement rules discussed earlier. The situation calls
for some way to take explicit control of the order of events during deserializa-
tion. The registerValidation hook, shown in Listing 4–17, addresses this
need.

Listing 4–17 Object Validation APIs

package java.io;

public class ObjectInputStream {

 public void registerValidation(ObjectInputValidation obj,

 int prio)

 throws NotActiveException,

 InvalidObjectException;

 //remainder omitted for brevity

}

package java.io;

public interface ObjectInputValidation {

 public void validateObject() throws InvalidObjectException

}

The ObjectInputStream class implements the method registerVali-
dation. You can call this method at any time during deserialization, by passing
in an ObjectInputValidation implementation that will be called after the en-
tire object graph is reconstructed. The validateObject method has two ad-
vantages over resolveObject. First, because validateObject is called
after the entire object graph has been reconstituted, the graph is in a reliable, re-
producible state. Second, you can exert additional control over multiple vali-
dateObject calls by setting the prio value when registering the callback.

5003_04.fm Page 145 Friday, November 9, 2001 2:12 PM

146 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

Callbacks with a higher prio value are made first, and there are no guarantees
for callbacks with the same priority.

The modified version of Boss shown in Listing 4–18 registers a callback to
fix the nested references that are not handled by object resolution. Rather than
attempt to validate an individual object’s state in readObject, SafeBoss calls
registerValidation so that it can validate the object after the entire object
graph has been re-created. Then, validateObject verifies that each field is
correct and iterates over the workers array making sure each worker is, or is
convertible to, a PersonItf.

Even though the validateObject method says nothing about replace-
ment, it is fully capable of replacing nested objects such as those in the work-
ers array. However, validateObject returns void, so it cannot replace the
top-level object being validated. You will often use resolveObject and val-
idateObject in tandem to deal with ordering dependencies caused by circular
references.15

Listing 4–18 Using ObjectInputValidation to Control Ordering

public class SafeBoss implements PersonItf, Serializable,

 ObjectInputValidation

{

 //only methods that differ from Boss included, for brevity

 private void readObject(ObjectInputStream ois)

 throws IOException, ClassNotFoundException

 {

 System.out.println("registering validation");

 ois.defaultReadObject();

 ois.registerValidation(this, 0);

 }

 public void validateObject()

 throws InvalidObjectException

 {

 System.out.println("running validation");

 if ((name == null) || (workers == null)) {

 throw new InvalidObjectException("unexpected null field");

 }

 for (int n=0; n<workers.size(); n++) {

15. If the object graph is very simple, it doesn’t matter much which approach you use.

5003_04.fm Page 146 Friday, November 9, 2001 2:12 PM

SERIALIZATION 147

 Object o = workers.get(n);

 if (o instanceof PersonItf) continue;

 if (o instanceof WireWorker) {

 WireWorker w = (WireWorker) o;

 workers.set(n, new Worker(w.data1, w.data2));

 } else {

 throw new InvalidObjectException(

 "unexpected worker type " + o.getClass());

 }

 }

 }

}

4.9 Finding Class Code
The serialization hooks discussed thus far either customize how instances are
serialized or customize what data is written in the standard class metadata for-
mat. The serialization specification also includes hooks for extending or replac-
ing the class metadata format. The annotateClass and resolveClass
methods of the object streams allow arbitrary per-class payloads to be added to
a stream.

While there are no restrictions on the data included in a class annotation, the
primary use for this mechanism is to help the receiver locate the correct class
file if it is not available locally. The sender writes a URL string for each class, and
the receiver uses the URL to instantiate a ClassLoader if it cannot find a local
definition for the class. Consider the object streams in Listing 4–19; these serial-
ize and load objects from a location not on the classpath.

Listing 4–19 Annotating Classes with a URL

class AnnotatedOutputStream extends ObjectOutputStream {

 private final String url;

 public AnnotatedOutputStream(OutputStream os, String url)

 throws IOException {

 super(os);

 this.url = url;

 }

 protected void annotateClass(Class cl)

 throws IOException {

 writeObject(url);

 }

5003_04.fm Page 147 Friday, November 9, 2001 2:12 PM

148 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

}

class ResolvingInputStream extends ObjectInputStream {

 public ResolvingInputStream(InputStream is)

 throws IOException

 {

 super(is);

 }

 protected Class resolveClass(ObjectStreamClass v)

 throws IOException, ClassNotFoundException

 {

 String url = (String) readObject();

 URL u = new URL(url);

 URLClassLoader ucl = new URLClassLoader(new URL[]{u});

 String cls = v.getName();

 System.out.println("resolving " + cls + " from " + url);

 return Class.forName(cls, true, ucl);

 }

}

The AnnotatedOutputStream class marks every class it serializes with a
URL string. The ResolvingInputStream class reads in the string and uses it
to create a URLClassLoader, which then loads the class. This simple system
allows the sender of an object to tell the receiver how to download the code nec-
essary to deserialize and use the object. To flesh out this idea, you would want
to add the ability to annotate different classes with different locations and cache
the class loaders created during resolution.

4.9.1 Annotation in RMI
The primary customer of many advanced serialization features is Java RMI. RMI
includes a full solution for dynamically downloaded code that is basically an elab-
orate version of the annotation classes shown in Listing 4–19. Dynamic code
download makes it possible for RMI to ship serialized objects around the net-
work without worrying about installing class files; they will be downloaded when
and where needed.

As powerful as this mechanism is, it works harder than necessary due to a
weakness of the serialization architecture. Reading a serialized graph is an all-
or-nothing prospect. If a single class cannot be found, deserialization fails and

5003_04.fm Page 148 Friday, November 9, 2001 2:12 PM

SERIALIZATION 149

both the object graph and the stream become unusable. This can be particu-
larly irritating when class files need to be downloaded. Consider the distributed
workflow situation depicted in Figure 4–5. A Message object is passed from
machine to machine, and each machine operates on a fragment of the Mes-
sage’s contents.

Because the Message is transmitted as a serialized Java object, every sin-
gle class in the graph must be downloaded to every machine. This is overkill
since each machine looks at only one of the Data(N) classes that make up the
overall Message. It would be nice if there were some way to mark objects in a
stream as “deserialize only when absolutely necessary” and then have each vir-
tual machine deserialize and download code for only the instances actually used.

Serialization does not provide a marker for deserialize-on-demand, but you
can achieve the desired effect in a straightforward manner. Simply write a wrap-
per class that, instead of holding a reference to an object, holds a reference to
a byte array that contains the serialized form of the object. The wrapper class

Figure 4–5 Message must be entirely deserialized at each node.

public class Message
implements Serializable
{
 private Data1 d1;
 private Data2 d2;
 private Data3 d3;
 private Data4 d4;
}

Source

Process (d1)

Process (d2) Process (d3)

Process (d4)

Destination

5003_04.fm Page 149 Friday, November 9, 2001 2:12 PM

150 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

can be serialized and deserialized as much as you like without ever having to
touch the contents of the byte array. An object wrapped in this fashion can
travel through many intermediate steps until it is needed, without there being
any need to load the object’s class. When you finally do need the object, you
build an ObjectInputStream around the array and extract the object, down-
loading its class if necessary. RMI includes an implementation of this technique
called a MarshalledObject.

4.9.2 RMI MarshalledObjects
The deserialize-on-demand idiom is so useful that RMI provides a complete im-
plementation in the java.rmi.MarshalledObject class. The Marshalled-
Object API is simple and is shown in Listing 4–20. When you pass an object to
the MarshalledObject constructor, that object is stored in serialized form un-
til you later request it with the get method. RMI uses the MarshalledObject
to store initialization parameters for Activatable objects, but you can use a
MarshalledObject anywhere that you need to maintain the ability to instanti-
ate an object at any time without actually holding a reference to the object itself.

Listing 4–20 Key MarshalledObject Methods

package java.rmi;

public class MarshalledObject {

 public MarshalledObject(Object o);

 public Object get();

 remainder omitted for clarity

}

4.10 Onward
Java metadata makes basic serialization trivial. If you mark a class Serializ-
able, an ObjectOutputStream can discover your class’s fields via reflection,
and it can automate the process of writing an instance to a stream or reading it
back again. This alone is quite a trick if you come from a language background
that does not include metadata.

The interesting parts of Java serialization, though, are the hooks that Java
provides to fine-tune how your classes transition to and from object streams.
You can use the readObject and writeObject methods to add custom

5003_04.fm Page 150 Friday, November 9, 2001 2:12 PM

SERIALIZATION 151

per-instance data or validation to the default serialization behavior. With class
annotation, you can add custom per-class data, typically to support dynami-
cally downloading the code necessary to deserialize an object. The regis-
terValidation hook copes with order dependencies by providing control at
the level of an entire object graph, instead of on a per-instance basis. You can
use the serialPersistentFields to change the metadata associated with
a class, keeping the serialized form readable by all class versions as the code
evolves.

With these powers, however, come some dangers. The Externalizable
interface is tempting because it is often associated with better performance,
but it accomplishes this by eliminating metadata from the stream format, and
this can lead to a maintenance nightmare. The serialVersionUID (SUID) provides
an efficient way to compare two classes for compatibility, but it gives an all-or-
nothing answer. You may have to provide custom readObject and write-
Object code to glue together serialized forms that are almost compatible and
that the SUID test would have rejected.

You can replace objects during serialization, in order to control the seman-
tics of transmission for higher efficiency or to clearly separate a class’s serializa-
tion format from its in-memory format—but you have to be careful when you
deal with cyclical graphs. Finally, you must be aware that serialized objects can-
not be garbage collected until the stream itself is collectable, or until you call
reset. As of SDK version 1.4, calling close has the same GC-friendly effects
as calling reset.

Serialization is not a general persistence mechanism. It does not provide
random access to objects embedded in the graph. For long-term storage, or for
query and update operations against data, JDBC or Enterprise JavaBeans (EJB)
may be more appropriate. For simple transmission of objects across space or
time, serialization is a simple and flexible solution.

4.11 Resources
For more on Java serialization, you should probably begin with [Har99], which
covers Java I/O in general. In particular, Chapter 11 is devoted entirely to object
serialization, providing coverage that is more basic but also more systematic

5003_04.fm Page 151 Friday, November 9, 2001 2:12 PM

152 COMPONENT DEVELOPMENT FOR THE JAVA™ PLATFORM

than the material presented here. [Blo01] is a wide-ranging, excellent book on
using Java effectively. It includes a short chapter on serialization that discusses
performance and validation in a fashion complementary to this chapter. Finally,
the serialization specification [Ser] is clear and concise, although it emphasizes
“what” and “how” instead of “why.”

5003_04.fm Page 152 Friday, November 9, 2001 2:12 PM

