
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Designing Wireless Enterprise
Applications Using Java™ Technology

A Java BluePrints for Wireless White Paper

January 2002 (Revision 2)

Please
Recycle

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All
rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology
described in this publication. In particular, and without limitation, these intellectual property rights may
include one or more U.S. patents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, J2ME, J2SE, J2EE, JDBC, Enterprise
JavaBeans, EJB, JavaServer Pages, and JSP are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR PROGRAM(S) DESCRIBED IN
THIS PUBLICATION AT ANY TIME.

Designing Wireless Enterprise
Applications Using Java
Technology

Today's businesses have an established standard for developing multitier enterprise
applications: the Java 2 Platform, Enterprise Edition (J2EE). One of the J2EE
platform’s advantages is its ability to accommodate many types of clients, including
Web browsers, Java applets, and Java applications, which can easily be deployed
onto a laptop, desktop or workstation.

The Java 2 Platform, Micro Edition (J2ME) gives businesses the opportunity to
accommodate a new set of enterprise clients: cell phones, two-way pagers, and
palmtops. These Internet-ready devices can be programmed using the Mobile
Information Device Profile (MIDP), a set of Java APIs which, together with the
Connected Limited Device Configuration (CLDC), provides a complete Java runtime
environment.

With the J2ME and J2EE platforms, you can create 100% Java technology-based
wireless enterprise solutions. This paper describes how to use these technologies
together, and the issues you will face when designing and implementing your own
J2ME-J2EE solutions. From time to time, this paper will cite examples from the Java
Smart Ticket Demo (available through the J2EE BluePrints for J2ME Wireless Web
site at http://java.sun.com/j2ee/blueprints/j2mewireless/), a sample
movie ticket reservation application. Once you understand the principles behind the
Java Smart Ticket Demo, you can easily apply the same principles as you develop
other mobile services.

This paper refers to many technologies across the J2ME and J2EE platforms. If you
need to get up to speed on any of these technologies, don’t worry; the Resources
section at the end of this paper contains references you should find useful.
3

0.1 Overview of Java Technologies for
Wireless Enterprises
Widely supported across the industry, the J2EE standard gives developers a rich
technology stack on which to run their enterprise applications. This stack includes
the Java Database Connectivity (JDBC) API for access to tabular data sources, the
J2EE Connector architecture for integration into legacy databases and information
systems, and the Enterprise JavaBeans (EJB) component architecture for
modularizing business logic. On top of this base, JavaServer Pages (JSP) and
Java servlet technologies provide a powerful, flexible Web layer for accessing
enterprise services.

Today, JSP pages and Java servlets are commonly used to support Web browser
clients. Under this arrangement, a browser retrieves dynamically-generated HTML
from the server and interprets it to render the user interface. You could use this
approach to support wireless clients as well, creating JSP pages and Java servlets
that generate Wireless Markup Language (WML) and Compact HTML (CHTML) for
consumption by microbrowsers. Unfortunately, browser-based solutions have some
key limitations, which are pronounced in the wireless space.

The J2ME MID Profile addresses many of the limitations of microbrowser-based
solutions. Developed through the Java Community Process (JCP) program under the
guidance of an expert group composed of 20 companies representing the wireless
industry, MIDP addresses programming issues most relevant to mobile clients, such
as user interface, networking, persistent storage, and application model. Compared
to microbrowser-based solutions, MIDP provides the following advantages:

■ Lower network usage and server load. In a microbrowser-based solution, the server is
responsible for generating display markup. This requires a round-trip every time
the interface changes. In contrast, a MIDP client’s interface is contained within the
device, so it can operate even when disconnected. On the occasions the device
does interact with a server, it incurs less network traffic, because it downloads
only application data, as opposed to application data plus interface markup.

■ A better user experience. Markup languages such as WML and CHTML are, by
design, restricted in the types of interactions they can offer. With the MIDP GUI
APIs, it is easy to implement customized widgets and event-handling, opening up
unlimited possibilities for mobile client interfaces that are easier and more
interesting to use.
4 Designing Wireless Enterprise Applications Using Java Technology • January 2002 (Revision 2)

0.2 Reaping the Benefits of a 100% Java
Technology-Based Solution
With the J2ME and J2EE platforms, you have everything you need to enable your
enterprise for mobile access. Furthermore, by using Java technology to implement
your entire end-to-end solution, you fully leverage its portability and scalability, as
well as the ease of using the Java programming language.

On the server side, you can develop your J2EE applications against the J2EE
Reference Implementation and deploy them on any J2EE-branded application server.
The J2EE standards ensure that your business gets a choice of servers appropriate to
the strategic purpose of your application.

On the client side, you can develop your MIDP application using the J2ME Wireless
Toolkit and provision it onto any MIDP-compliant device, whether it's a cell phone,
two-way pager, or palmtop. This allows you to serve a wider range of clients,
making your enterprise even more accessible.

The bottom line benefits of using a 100% Java technology-based solution are
increased programmer productivity, better strategic use of computing resources, and
a greater return on an organization's technology investments.

0.3 Architecture of a Java Wireless
Enterprise Application
The high-level architecture of a Java wireless enterprise application is similar to that
of a canonical J2EE application.

In the Java Smart Ticket Demo, for example, the client tier consists of a MIDP
application, or MIDlet, which provides the user interface on the mobile device. The
MIDlet, in turn, communicates with Java servlets in the Web tier to access the
business logic of Enterprise JavaBeans components in the EJB tier; both the servlets
and enterprise beans are located on a J2EE application server. Finally, the enterprise
information systems (EIS) tier supports access to the application database through
the JDBC API.
 Designing Wireless Enterprise Applications Using Java Technology 5

FIGURE 0-1 J2EE-J2ME Application Architecture

In addition to being divided into tiers, the architecture of the Java Smart Ticket demo
follows a Model-View-Controller (MVC) organization. In a J2EE-J2ME application,
the separation of model (data abstraction) from view (data presentation) is a natural
fit since these parts map almost directly to server and client. The controller logic is
distributed between the server and client.

Web Tier

EIS Tier

EJB EJB

EJB

Servlet

MIDlet

Client Tier

EJB Tier

HTTP(S)

JDBC

Mobile
Information

Device

Application
Server

Database
Server
6 Designing Wireless Enterprise Applications Using Java Technology • January 2002 (Revision 2)

One of the benefits of using MVC is that it separates core data access functionality
from the presentation and control logic that uses this functionality. Such separation
allows multiple views to share the same enterprise data model, which makes
supporting multiple views--and by extension, clients--easier to implement, test, and
maintain.

Enterprise JavaBeans components support this approach, because they are designed
to be reusable. For example, to incorporate an HTML front-end, you only have to
add a set of HTML views, which you can connect to your enterprise beans through a
separate controller. You can also work in the opposite direction; your J2EE
application that already serves Java applets and HTML browsers can be easily
extended to serve mobile users.

In the sections that follow, you will find design guidelines on issues specific to
J2ME-J2EE applications. You can find an explanation of general J2EE application
architecture as well as guidelines on how to design the lower tiers of a J2EE
application at the J2EE BluePrints Web site (http://java.sun.com/j2ee/
blueprints/).

0.4 Messaging
HTTP provides the bridge between the MID Profile and the J2EE platform; because
they both support HTTP, they can use this protocol to communicate with each other.

One of the J2EE platform’s strengths is its ability to serve many types of clients over
the Web, including browsers, plug-ins, Java applets, and even non-Java applications.
The JSP and Java servlet technologies help in this regard, providing an extensive
framework for communication over HTTP using a dynamic request/response-based
paradigm.

MIDP includes standard support for HTTP 1.1, and APIs for generating GET, POST
and HEAD requests, basic header manipulation, and stream-based consumption and
generation of messages. Consequently, you can use the JSP and Java servlet
technologies to serve MIDP clients.

Note that while you program against an HTTP networking API, what goes on
behind the scenes may or may not occur over TCP/IP. Depending on the carrier
network, messages moving between a MIDP device and a J2EE server may tunnel
through a number of different protocols. On the server side, the deployment
configuration of the carrier network ensures that such network connections are
routed to and received by the J2EE server in the form of HTTP messages.

There are no requirements about the format of messages that flow between a MIDP
client and a J2EE application. Recall that both JSP pages and Java servlets let you
send any type of data in the body of an HTTP response, not only HTML, or markup
 Designing Wireless Enterprise Applications Using Java Technology 7

for that matter. Similarly, a MIDlet can send any type of data in the body of an HTTP
request. So, the format could be something simple like a string of comma-separated
values, or something more structured in the form of key-value pairs, or more
formally, XML data conforming to a set of DTDs or schemas.

0.4.1 Design and Implementation Guidelines
This section describes the issues you should consider when designing and
implementing messaging in a J2ME-J2EE application.

0.4.1.1 Choosing a Message Format

When choosing a message format, keep in mind that the size requirements the
format imposes will have pronounced effects in a wireless production environment.
Well-formed and self-descriptive XML messages can be orders of magnitude larger
than simple text-based messages, consuming bandwidth and airtime for which the
user of the application may be billed.

To be sure, wireless applications using XML do enjoy some advantages. For one, the
messages are self-describing, making debugging and development easier. Another,
perhaps more significant win is that many Web services are XML-based; if a J2EE
application publishes such services then developing a MIDP client to use the very
same services makes its integration almost seamless. The J2EE and J2ME platforms
accommodate this strategy.

The J2EE platform provides a rich set of libraries for building XML-based Web
services, through the Java APIs for XML Messaging (JAXM), XML-based RPC (JAX-
RPC), and XML Registries (JAXR). The lower-level Java API for XML Processing
(JAXP) allows developers to manipulate XML documents using the Document
Object Model (DOM) and Simple API for XML (SAX), and to transform XML
documents using Extensible Stylesheet Language Transformations (XSLT).

On the MIDP side of the equation, a few well-supported XML parsers exist. (At the
moment, these are not native components of the profile.) These parsers do come at a
cost, however, increasing a MIDlet’s size by 15 to 30 kilobytes. Also note that since
the parsers are designed for constrained environments, they may offer only SAX for
processing XML documents, and may not include XML validation or sophisticated
error-reporting mechanisms.
8 Designing Wireless Enterprise Applications Using Java Technology • January 2002 (Revision 2)

0.4.1.2 Ensuring Confidentiality

When designing an application such as the Java Smart Ticket Demo, which involves
the transmission of sensitive user information such as passwords and credit card
numbers, it is important to keep private the communication between client and
server.

If your MIDP device supports the Secure Sockets Layer (SSL) protocol, you can
protect your messages using HTTP connections over SSL (HTTPS connections).
Furthermore, because of MIDP’s Generic Connection Framework, making an HTTPS
connection does not require any special or different code. A MIDP client just needs
to open a connection to a server on an URL beginning with https:.

For your convenience, the MIDP device emulation in the J2ME Wireless Toolkit
supports HTTPS. This capability lets you test, in your development environment,
your applications that use HTTPS. (For more information, see the J2ME Wireless
Toolkit User’s Guide.)

0.4.1.3 Utilize Content Type and MIME Type

To aid debugging of messages sent from client to server, you should describe the
type of data in the message using the content-type header in the HTTP request. In
some deployments, this is absolutely necessary; some gateways through which the
HTTP messages tunnel do not accept messages with undefined or non-standard
content-type headers.

0.4.1.4 Aggregate Messages Before Sending

In wireless production deployments, a significant cost of an HTTP connection lies in
establishing the connection in the first place. You can avoid this cost by aggregating
messages before sending them, minimizing the number of messages the client sends.

0.4.1.5 Use Progress Indicators During Messaging

It is sometimes impossible to avoid sending large chunks of data either to or from
mobile devices. Since these devices often encounter unexpected network delays and
unreliable network performance, a visual indication of the progress of a data
exchange can improve user experience.
 Designing Wireless Enterprise Applications Using Java Technology 9

0.5 Session and Personalization
Management
A session is a sequence of service requests by a single user using a single client to
access a server. Session state is the information maintained in the session across
requests, such as the contents of a shopping cart which are updated as a user
browses and chooses from a catalog.

Whereas session state spans service requests, personalization data is maintained
between sessions. Typically, many aspects of a user, such as his or her address, zip
code, or favorite color, would not change from session to session. Because such data
is stable, an application can use it to personalize a user’s experience.

This section describes how to maintain session state and personalization data in a
J2ME-J2EE application.

0.5.1 Managing Session State
HTTP is, by design, a stateless protocol. It does not outline any mechanisms for
determining if a series of requests is from one user or another user. The Java servlet
API works around this limitation by providing an HTTPSession object, which
represents each user's interaction with the Web layer. J2EE application servers use
three methods to maintain the integrity of HTTPSessions:

■ Using cookies. A cookie is a small chunk of data a server sends for storage on the
client. Each time the client sends information to a server, it includes in its request
the headers for all the cookies it has received (and stored).

■ Using URL rewriting. This technique involves encoding every URL on a served
page to include client-side session state. When the client selects an URL, the
encoded session state is sent back to the server with the request.

■ Using HTTPS. To ensure the privacy of an HTTPS communication, the client
generates a session key that uniquely identifies the user.

MIDP devices can use all of these three methods. (However, HTTPS is not a
requirement of MIDP.) The first two methods are relatively simple to implement.
When using cookies, clients must always retransmit the last cookie sent by the
server, which usually contains only a session ID, and for URL rewriting the client
must append the session ID to each request.

The Java Smart Ticket Demo uses URL rewriting but it could also use cookies. It can
be useful to implement URL rewriting as a fallback to cookie support since some
gateways do not allow the transmission of cookies.
10 Designing Wireless Enterprise Applications Using Java Technology • January 2002 (Revision 2)

0.5.2 Managing Personalization Data
While session management can be characterized as transient, personalization data is
by nature persistent. In a J2ME-J2EE application, the data can be persisted on the
server, or the client, or both. The MIDP Record Management Store (RMS) API allows
you to store data that persists on the device between uses of an application. On the
other hand, J2EE application servers offer numerous ways of integrating with other
information systems to store and retrieve user information and preferences.

A major benefit of personalizing an application is that it can lead to fewer user
interactions for completing a task. This is especially important for wireless devices,
whose inputs are constrained. In the case of the Java Smart Ticket Demo, it would
become tedious to re-enter a zip code with every use of the service since the user is
often interested in seeing movies close to home.

0.5.3 Design and Implementation Guidelines
The main consideration for session and personalization management is how much of
these responsibilities should be distributed among client and server.

0.5.3.1 Let the Server Take Care of It

To reduce the size of messages sent from the client to the server, store session state
and personalization on the server. For example, consider an application that uses a
preference such as zip code or membership level to tailor the results of database
queries. If this preference is managed by the server, the client portion of the
application does not need to transmit the same preference with each request it sends.

Also, by letting the server manage sessions and personalization, it is easier to
support multiple types of clients. For example, users who access an enterprise
service from a cell-phone may want to access the same service through a Web front-
end when they are at their laptop or workstation. When they do so, they would
expect not to have to reenter information such as their address, and credit-card
number; these items should already be on file so that all they have to do is sign in.

0.5.3.2 Distinguish Between Generic and Device-Specific Preferences

Not all data should be stored on the server. For example, a mobile user may prefer to
display fonts in a certain size or style. These preferences are specific to the user’s
interactions with the MIDP client, not with the service; hence, when the user
accesses the application through another client, these preferences would be
inappropriate. Device-specific information of this sort is most conveniently stored
directly on the MIDP device.
 Designing Wireless Enterprise Applications Using Java Technology 11

You can also use client-specific preferences to streamline workflows. For example,
the Java Smart Ticket Demo remembers whether a user prefers to see a preview, a
poster, or neither after choosing the movie to see. This preference may be influenced
by the speed of the network or the performance of the device, and thus they should
be stored on the device itself.

0.6 Deployment and Provisioning
When deploying a wireless enterprise application, you follow the usual steps for
deploying J2EE and MIDP applications.

On the J2EE side, JSP pages and Java servlets are packaged inside a Web archive
(WAR) file, while EJB components are packaged inside a Java archive (JAR) file. The
WARs and JARs go inside a single enterprise archive (EAR) file, together with
descriptor files that describe the deployment requirements of the components. J2EE
application servers typically include graphical tools for assembling and deploying
EAR files.

Deploying a MIDP application is slightly simpler. A MIDP application is packaged
inside a JAR file, which contains the application’s class and resource files. You can
deploy this JAR file using a couple of methods:

■ Pre-installing the JAR on the mobile device.

■ Downloading the JAR from the J2EE server once onto the mobile device.

When deploying the application, keep in mind that wireless devices generally have
limited memory and work on networks with limited bandwidth. Smaller
applications are desirable.

Accompanying the JAR file is a Java Application Descriptor (JAD) file, which
describes the application and any configurable application properties. You might
find it useful to make the URL of your wireless service a configurable property, for
example.

0.7 Conclusion
This paper has described how you can design, develop, and deploy complete
wireless enterprise solutions, such as the Java Smart Ticket Demo, using the power
of the J2ME and J2EE platforms. Such solutions can fully reap the benefits of Java
technology: portability, scalability, and programming ease.
12 Designing Wireless Enterprise Applications Using Java Technology • January 2002 (Revision 2)

The high-level architecture of these solutions is simple, yet effective. Enterprise
JavaBeans components provide business logic on top of enterprise data. Java servlets
in the Web tier use these components to access and manipulate data on behalf of
MIDP clients, which in turn present the data to the user. This division of
responsibilities makes the application easier to implement, test, and maintain.

Most importantly, because EJB components are designed to be reusable, an
enterprise application enabled for mobile clients can just as easily serve traditional
desktop clients, such as Java applets and Web browsers. The net result is a truly
accessible enterprise: anytime, anywhere, on anything.

0.8 Resources
For more information on designing wireless enteprise applications using Java
technology, visit the J2EE BluePrints for J2ME Wireless Web site at
http://java.sun.com/j2ee/blueprints/j2mewireless/.

You may also find the following references useful:

■ Roger Riggs, Antero Taivalsaari, Mark VandenBrink. Programming Wireless Devices
with the Java 2 Platform, Micro Edition. Addison-Wesley, Boston, MA, 2001.

■ Nicholas Kassem, Enterprise Team. Designing Enterprise Applications with the Java 2
Platform, Enterprise Edition. Addison-Wesley, Boston, MA, 2000.

All the facilities described in this paper are available in J2ME MIDP 1.0.3, and the
J2EE 1.3 platform. For more information on these technologies, visit the Java
Software Web site at the following URLs:

■ http://java.sun.com/j2ee/, and

■ http://java.sun.com/products/midp/

At those locations, you will find reference implementations for these technologies,
which are free for download.

Also consider joining the interest lists hosted at Sun for these technologies:

■ KVM-INTEREST@JAVA.SUN.COM, and

■ WEBJAVA-WIRELESS@JAVA.SUN.COM.

Details on how to subscribe to these lists are available at
http://archives.java.sun.com.

Readers may send comments on this paper to:

j2ee-j2me-blueprint@sun.com
 Designing Wireless Enterprise Applications Using Java Technology 13

14 Designing Wireless Enterprise Applications Using Java Technology • January 2002 (Revision 2)

	Designing Wireless Enterprise Applications Using Java™ Technology
	Designing Wireless Enterprise Applications Using Java‘ Technology
	0.1 Overview of Java Technologies for Wireless Enterprises
	0.2 Reaping the Benefits of a 100% Java Technology-Based Solution
	0.3 Architecture of a Java Wireless Enterprise Application
	0.4 Messaging
	0.4.1 Design and Implementation Guidelines

	0.5 Session and Personalization Management
	0.5.1 Managing Session State
	0.5.2 Managing Personalization Data
	0.5.3 Design and Implementation Guidelines

	0.6 Deployment and Provisioning
	0.7 Conclusion
	0.8 Resources

