
Dear TheServerSide member,

Thank you for downloading the PDF version of the complete EJB Design Patterns. This book
represents the hard work of myself, and the many developers from TheServerSide and
around the industry, which contributed to this book via ideas, reviews, and more. The
intention of the PDF is to give you free access to preview the book.

On a more personal note, my main motivation behind writing this book is to help others in the
community save time and frustration by using the cataloged knowledge in this book. As a
result, I want to get this book into as many hands if possible. If you read this PDF and decide
not to buy it, I am happy that you at least have it in your hands and can make use of it in
some form or other.

The inspiration to offer this free PDF download came from Ed Roman, who initially offered his
book Mastering EJB (Wiley) on TheServerSide in 1999 (his second edition is now available
for download as well). Ed believes that this move will not reduce book sales. I have to agree
with him. I think that if you really like this book, you will want to own it for yourself.

If you like this book, then you can buy it right now from Amazon.com:

Let your friends and associates know that the book can be downloaded off of TheServerSide.
You may also want to check out The Middleware Company (http://www.middleware-
company.com/), which offers training courses in EJB. You can learn the patterns in this book
hands on in our popular EJB for Architects course.

I hope you enjoy this book!

Sincerely,

Floyd Marinescu
Author, EJB Design Patterns
Director of TheServerSide.com J2EE Community

http://www.amazon.com/exec/obidos/ASIN/0471208310/ref=ase_theserverside-20/

http://www.amazon.com/exec/obidos/ASIN/0471208310/ref=ase_theserverside-20/
http://www.middleware-company.com/
http://www.middleware-company.com/

EJB™ Design Patterns
Advanced Patterns, Processes,

and Idioms

Floyd Marinescu

Wiley Computer Publishing

John Wiley & Sons, Inc.

NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Publisher: Robert Ipsen
Editor: Robert Elliott
Developmental Editor: Emilie Herman
Managing Editor: John Atkins
Text Design & Composition: John Wiley Composition Services

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or ALL CAPITAL LETTERS. Readers, how-
ever, should contact the appropriate companies for more complete information
regarding trademarks and registration.

This book is printed on acid-free paper. ∞

Copyright © 2002 by The Middleware Company. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4744. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York,
NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-mail: PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the pub-
lisher is not engaged in professional services. If professional advice or other expert
assistance is required, the services of a competent professional person should be
sought.

ISBN: 0-471-20831-0

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Advance Praise for
EJB Design Patterns
“Floyd Marinescu has done a great job of documenting and organizing a cornucopia of
EJB design strategies into one concise and balanced book. What I like best is that the
book takes a very non-pretentious, pragmatic approach to presenting EJB design pat-
terns in an easy-to-understand format. I recommend this book to all EJB developers.”

Richard Monson-Haefel
Author of Enterprise JavaBeans, 3rd Edition (O’Reilly 2001)

“This book is a vital resource for anyone building EJB systems. Floyd Marinescu
describes fundamental techniques proven through hard-earned experience in a man-
ner that is straightforward and easy to understand. You can either read this book or
spend a couple of years and maybe figure it out for yourself—it’s your choice.”

Scott W. Ambler
President, Ronin International
Co-author of Mastering EJB, Second Edition,
and author of Agile Modeling

“EJB Design Patterns is an excellent book for junior and senior EJB developers alike. EJB
newbies will find a plethora of best practices in this book that are positioned for use in
real design scenarios. Seasoned EJB developers are sure to discover a number of tips
and tricks to make their own designs even more efficient. The content applies for all
versions of the EJB specification and is a must-have for all EJB developers.”

Tyler Jewell
Director, Technical Evangelism

“I have participated in numerous postings and discussions since the release of the first
draft of the EJB specification, and I’m thrilled that someone has finally written a book
dedicated to EJB patterns. It covers both basic and more complex patterns, and guides
you in setting up and deploying projects that use Enterprise JavaBeans. This book
answers much-asked questions on how to use and access Enterprise JavaBeans cor-
rectly and how to transfer data between the components in your system. An excellent
and well-thought-through book.”

Kjetil H. Paulsen
Senior Software Architect, Mogul Technology

“Enterprise JavaBeans developers have been long challenged by the degree of freedom
that one has when building a distributed business system. EJB Design Patterns provides
us with the first and only resource of its kind: a comprehensive discussion of the kinds
of tradeoffs, variations, and problems that a real-world EJB project has to deal with. It
represents years of in-the-trenches expertise, and will be the first book I recommend to
improve the productivity of any EJB project.”

Stuart Charlton
Senior Architect and Trainer,
Infusion Development Corporation

This book is dedicated to my little sister Jacqueline Marinescu.
Let this book stand as proof that you can achieve anything in life

if you put your heart and mind into it.

Foreword .xi

Introduction .xiii

Acknowledgments .xix

About the Contributors .xxiii

Part One EJB Pattern Language .1

Chapter 1 EJB Layer Architectural Patterns .3
Session Façade .5
Message Façade .12
EJB Command .18
Data Transfer Object Factory .26
Generic Attribute Access .32
Business Interface .40

Chapter 2 Inter-Tier Data Transfer Patterns .45
Data Transfer Object .47
Domain Data Transfer Object .51
Custom Data Transfer Objects .56
Data Transfer HashMap .59
Data Transfer RowSet .63

Contents

Chapter 3 Transaction and Persistence Patterns .69
Version Number .70
JDBC for Reading .76
Data Access Command Beans .81
Dual Persistent Entity Bean .87

Chapter 4 Client-Side EJB Interaction Patterns .91
EJBHomeFactory .92
Business Delegate .98

Chapter 5 Primary Key Generation Strategies .105
Sequence Blocks .106
UUID for EJB .112
Stored Procedures for Autogenerated Keys 117

Part Two Best Practices for EJB Design and
Implementation .121

Chapter 6 From Requirements to Pattern-Driven Design 123
TheServerSide’s Forum Messaging System Use Cases 124
A Quick Referesher on Design Issues and Terminology 126

What Is a Domain Model? .126
Understanding the Layers in a J2EE System 127

Pattern-Driven EJB Architectures .130
Domain and Persistence Layer Patterns 130

Services Layer Patterns .133
Asychronous Use Cases .134
Synchronous Use Cases .134
Other Services Layer Patterns .137

Inter-Tier Data Transfer Patterns .137
Application Layer Patterns .141
Summary .142

Chapter 7 EJB Development Process: Building with
Ant and Unit Testing with Junit .143
Order of Development .144

Layer-Independent Code .145
Domain First .146
Persistence Second .146
Services Third .148
Clients Last .148

viii Contents

Automating Environment Administration with Ant 149
What Is a J2EE Application Environment? 149
What Does It Mean to Administer
a J2EE Application Environment? .151
Using Ant .152

Unit Testing with JUnit .168
Summary .177

Chapter 8 Alternatives to Entity Beans .179
Entity Beans Features .179
Entity Beans and Cognitive Dissonance .180
In Defense of Entity Beans .182
Alternatives to Entity Beans .183

Use Straight JDBC/Stored Procedures .183
Use a Third Party O/R Mapping Product 184
Build a Custom Persistence Framework 184
Use Java Data Objects .184

An EJB Developer’s Introduction to Java Data Objects 185
Class Requirements and Dependencies 185
Build and Deployment Processes .187
Inheritance .188
Client APIs .188
Dynamic versus Static Discovery Mechanisms 189

An EJB Developer’s Guide to Using JDO .189
Preparing Your EJB Environment .189
Configuring Session Beans .190
Executing Use Cases and Transaction Management 191
Container-Managed Transactions .191
Bean-Managed Transactions .192
Caching/Lazy Loading and Reference Navigation 193
Finding Java Data Objects .194
Inter-Tier Data Transfer .196

Summary .197

Chapter 9 EJB Design Strategies, Idioms, and Tips 199
Don’t Use the Composite Entity Bean Pattern 199
Use a Field-Naming Convention to Allow for Validation
in EJB 2.0 CMP Entity Beans .200
Don’t Get and Set Value/Data Transfer Objects
on Entity Beans .201

Contents ix

Using Java Singletons Is OK If They’re Used Correctly 201
Prefer Scheduled Updates to Real-Time Computation 202
Use a Serialized Java Class to Add Compiler Type Checking
to Message-Driven Bean Interactions .202
Always Call setRollbackOnly when Application
Exceptions Occur .203
Limit Parameters to ejbCreate .203
Don’t Use Data Transfer Objects in ejbCreate 204
Don’t Use XML to Communicate as a DTO Mechanism
Unless You Really, Really Have To .204

Appendix Pattern Code Listing .207

References .241

Index .243

x Contents

Most well-architected EJB projects make use of design patterns. Whether or not
a developer is actually aware that he’s using design patterns is another story.
Oftentimes developers conceive of best practices during their projects, and
aren’t aware that these best practices are actually design patterns—reusable
approaches to programming—that are beneficial to other developers on their
projects as well.

That is the beauty of the EJB design patterns presented in this book—they
are practical, real-world patterns extracted from actual EJB projects. Members
of the J2EE community were encouraged to share their patterns on TheServer-
Side.com, a Web site where J2EE developers learn from each other. We’ve all
worked together as a community to flesh out those patterns and bring them to
you.

Floyd Marinescu, the world’s leading expert in EJB design patterns, led this
EJB design patterns project initiative. Floyd and I have been working together
for the past several years building The Middleware Company, a training and
consulting company that helps developers master Enterprise Java. At The
Middleware Company, we’ve been consulting on real-world projects to
enhance the quality of the design patterns. We’ve also been teaching training
courses on EJB design patterns to developers like you, and the feedback from
those courses have improved the quality of this book tremendously.

In this book, Floyd will show you a multitude of EJB design patterns that
you can harness to enhance your EJB projects today. By applying these design
patterns with proper judgment, you can improve the quality of your architec-
ture, make your code more reusable and elegant, and architect your systems to
be easily understood by developers who are familiar with these patterns.

Foreword

xi

The best news about this book is that it’s very approachable. Floyd has cho-
sen to use an easy-to-understand style of writing patterns, called the Alexan-
drian form. This makes it easy for anyone who knows how to program with
EJB to read and learn from this book. (And if you don’t know EJB yet, you may
want to read my book, Mastering Enterprise JavaBeans, Second Edition, which is
available in bookstores and as a complimentary download on TheServer-
Side.com.) Another choice is for you to take a training course in EJB, such as
one of those we offer at The Middleware Company.

When you’re ready to read on, you’re in for a treat. Floyd has devoted an
entire year of his life to tackling the toughest EJB design patterns concepts, and
the results benefit the entire EJB community. I’m honored to have worked with
Floyd on this project, and I’ve learned a lot myself along the way. I’m sure you
will as well.

Ed Roman
CEO, The Middleware Company
Author, Mastering Enterprise JavaBeans, Second Edition

xii Foreword

It’s all about quality of life. Whether you’re a developer, architect, or project
manager, at the end of the day we all want to feel good about building and
deploying well-designed applications, without making costly mistakes, work-
ing long hours, and going through months of stress. At the end of the day, we
are all human, we all want to see the project proceed on schedule and go home
with enough free time to spend on anything we like.

Unfortunately, well-designed applications are not easy to come by when
using new and still maturing technologies such as Java 2 Enterprise Edition
(J2EE). In relatively new fields such as this, there is always a large deficit of
information about designing good systems. Developers are either reinventing
the wheel or simply making costly design mistakes on projects every day. With
no clear set of best practices to follow, the job of the EJB developer is very dif-
ficult. Learning good design is particularly difficult for newcomers to the tech-
nology, many of whom have never built distributed systems before and don’t
understand the fundamental needs that influence distributed systems design.

What makes things worse is that changes in the EJB specification from ver-
sion to version tend to bring about significant changes to the way that good
EJB systems should be designed. Particularly with the introduction of EJB 2.0,
many years worth of best practices discussed in even the most recently pub-
lished books on EJB simply no longer apply or do not have the same purpose,
and using such best practices can result in poorly designed systems.

It is with the concern for spreading good design ideas and improving the
quality of applications that developers design, and as a result the overall qual-
ity of life of the developers themselves, that this book (and The Middleware
Company’s EJB for Architects course—where the patterns in this book are

Introduction

xiii

taught) was written. The end result is that we hope to help you learn the top
design strategies used in the industry today so that you will be able to quickly
design efficient, scalable, and maintainable systems.

The mechanism by which we hope to impart design knowledge to you is the
pattern.

What Is a Pattern?

I like to think of a pattern as a best practice solution to a common recurring prob-
lem. That is, a pattern documents and explains an important or challenging
problem that can occur when designing or implementing an application, and
then discusses a best practice solution to that problem. Over time, patterns
begin to embody the collective knowledge and experiences of the industry that
spawned it. For example, the patterns in this book represent the collective
knowledge of thousands of EJB developers from TheServerSide and in and
around the industry, all of whom contributed via ideas or reviews the material
in this book.

Benefits of Patterns
Of course there are many uses of patterns, but the following are some of the
most important benefits that can help drive the maturity of a new software
platform such as J2EE:

Helps provide a high-level language for discussing design issues. EJB
developers can use the pattern names in this book to discuss implemen-
tation details together efficiently. Imagine how much quicker it is to say
that an application was built using the stateless Session Façade pattern
than trying to explain all the semantics of how the session beans wrapped
entity beans.

Provides much of the design work upfront. A well-written pattern dis-
cusses in detail the problem and issues that need to be solved and shows
how the problem solves it, with a good discussion of the pros, cons, and
other issues to be aware of. By reading a pattern, many challenging and
potentially hidden issues can be discussed and considered upfront.

Combinations of patterns lend themselves to reusable architectures.
Patterns tend to reference and built upon each other. This connection
between patterns serves to create what is called a pattern language: a
series of interconnected patterns that, as a whole, often suggest an over-
all architecture for an application. Thus, when reading this book, certain
sets of patterns in combination will form a reusable architecture that can
be applied across projects again and again.

xiv Introduction

In this book in particular, we take a very low level, EJB-specific patterns
focus. That is, rather than document general abstract patterns that could
potentially be applied across technologies, we focus on how to get things done
with EJB, discussing EJB-specific problems, and EJB-specific intricacies of
implementation. Thus, in this book we part from many other patterns books in
often showing exact implementations of a pattern (where the pattern is not-
project specific). The goal is to provide you, the EJB developer/architect with
all the information you need to readily begin using these patterns in your
EJB/J2EE-based applications.

Origins of Patterns
For many people, patterns were first introduced to them via the landmark
book, Design Patterns: Elements of Reusable Object-Oriented Software (Gamma,
et al., 1994). Not the first work on software patterns, this book had the positive
effect of bringing the concept and use of patterns for software development
into the mainstream.

The actual origin of patterns begins long before Design Patterns was pub-
lished in 1994. Patterns were first described by Christopher Alexander, applied
to the construction/architecture of towns and buildings in the 1970s. In A Pat-
tern Language (1977), Alexander writes: “Each pattern describes a problem
which occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you can use this solu-
tion a million times over, without ever doing it the same way twice.”

Patterns are a great way of organizing knowledge and solutions in any
domain of life, not just civil engineering and software design. What makes pat-
terns well suited for cataloging knowledge is their structure and hands-on
nature. Good patterns show ways to solve problems and are structured in a
style that lends itself well to explaining the aspects of the problem and solution
at work.

Pattern Style Used in This Book
The patterns in this book are described with a style very similar to the original
style used by Alexander, called Alexandrian form. The form I use consists of a
pattern written up in a prose-like form, separated by a problem and solution
statement as follows:

Context: One or two sentences to describe the context in which the pattern
applies.

Problem: A question that illustrates the the problem this pattern is solving.

* * *

Introduction xv

Forces: A set of paragraphs explaining the context and problem in greater
detail, explaining many of the forces at work that requires a solution. Here the
reader will fully understand the need for this pattern.

Solution: One or two sentences that introduce the pattern as the solution to
the problems described above.

Solution Description: Paragraphs describing the solution, including pros, cons,
high-level and low-level explanation of the pattern, and implementation
issues in EJB.

Related Patterns
The related patterns may cross-reference other patterns in the book, or else

point you toward the same or similar patterns in other sources, which are
detailed in the “References” section of this book.

What sets Alexandrian form and the style used in this book apart from most
other popular software patterns books is the use of prose over point form for
structuring the pattern data. One of the goals of this book is to enable both
experienced architects and newcomers to read a pattern and understand it
fully. The way that I tried to realize this is by writing a pattern in a fluid, prose
format, in which the reader is led through the problem and the solution, with
all the necessary points explained step by step, with language as simple as pos-
sible. The emphasis is on learning the pattern in a simple and pleasant fashion.

With non-Alexandrian styles, the patterns are broken up into separate sec-
tions, using point form descriptions within each section. My own opinion of
these styles is that they tend to focus on packing as much info into each point
as possible, making it difficult to casually read and learn, as the information
tends to be categorized in a manner more suitable for reference purposes than
for end-to-end reading. Such patterns books are great for reference purposes,
but the goal of this book is to teach patterns to the experienced architect as well
as inexperienced developer, and so a format that lends itself to learning was
chosen, and Alexandrian form seemed best suited for that purpose.

How This Book Is Organized

This book is organized into two parts. Part One, “EJB Pattern Language,” is the
EJB patterns catalog, detailing 20 patterns. Part Two, “Best Practices for EJB
Design and Implementation,” provides support chapters that teach best prac-
tices in other topics, such as applying the patterns and actually implementing
EJB-based systems. The goal is to give the reader not just a catalog of patterns,

xvi Introduction

but to give the reader the tools needed to take knowledge of these patterns and
get work done. Also included in Part Two is a chapter on Alternatives to Entity
Beans, which gives an EJB developer’s perspective on using Java Data Objects
(JDO) to persist an object model, and a chapter on more fine-grained design
tips and strategies that were too small to qualify as full patterns.

I would recommend that you read through the patterns in Part One before
proceeding to Part Two. If you are more of a hands-on type, you can start read-
ing through the first few chapters of Part Two and refer to the patterns in Part
One when they are mentioned.

Who Should Read This Book?

In order for this book to get into difficult and technically in-depth discussions
on advanced EJB topics, it was assumed that the reader would have a good
understanding of the fundamentals of EJB before reading this book. In partic-
ular, I recommend reading Ed Roman’s Mastering Enterprise JavaBeans, Second
Edition (Wiley 2001), which is a great book for learning both the fundamentals
and advanced applications of EJB. EJB Design Patterns was originally meant to
be a chapter in Ed Roman’s book, but as the chapter kept growing in size, we
decided to promote it into its own book. Another excellent way to gain the
background for this book is to take the Mastering EJB class offered by The
Middleware Company, or you can learn all the patterns in this book hands-on
in The Middleware Company’s EJB for Architects course.

Although the book requires an understanding of EJB, it is not only for expe-
rienced architects. The tone of the book and the language used in the patterns
is intended to be accessible to entry-level developers as well as architects. In
particular, the following three mantras were used in this book’s development:

1. Someone who has just read Ed Roman’s Mastering EJB or another EJB
book should be able to read through and grasp the concepts without
too much difficulty.

2. The content is hardcore and technical enough to make the book a
fascinating read even for experts.

3. Each part of the book should answer more questions than it raises.

These three rules were taken to heart in writing this book. Rule 3 is designed
to keep us providing the necessary background required to explain a difficult
topic, but not so much that there would be duplication with an introductory
text on EJB (Rule 1). Rule 2 kept our focus on discussing the most useful and
important topics not usually covered in other books of this nature.

Introduction xvii

What’s on the Web Site?

The book’s companion Web site, www.theserverside.com/patterns/ejbpat-
terns, contains the book’s running/compiling source code examples, as well as
a readers’ discussion forum. This Web site will also hopefully be continuously
evolving, with more patterns added to it over time from the community.

Summary

This book is a patterns book unlike any other patterns book. Not only will you
learn valuable and fundamental patterns that will help you improve the qual-
ity of the EJB-based applications you write, but you will also learn how to take
the knowledge of these patterns and apply them in a use-case driven manner.
You’ll also learn many best practices for actually implementing an application
once it’s designed.

If this book contributes to your career and the quality of the projects you
work on, then I will feel happy that it helped. If the book benefits your overall
quality of life by streamlining your projects, then its mission will have been
accomplished tenfold!

xviii Introduction

Acknowledgments
I would like to thank Ed Roman and Agnieszka Zdaniuk, for without their
confidence and belief in me, this book would not have been possible.

I would like to thank Florin and Carmen Marinescu, for having taught me
what matters from an early age.

Special thanks to Aravind Krishnaswamy and Mark Turnbull, for allowing
me to make more time for the book by helping me deal with some of my other
responsibilities in life.

Text Contributors

I would like to thank Randy Stafford for his contribution of Chapter 7 on
development process, and Craig Russell for his contribution of material on
JDO in the alternatives to entity beans chapter.

Code/Pattern Idea Contributors

Richard Monson-Haefel for the notion of using Rowsets for Data Transfer.
Jonathan Weedon of Borland, for his contribution of a source code example

upon which the Sequence Blocks pattern is based.
Doug Bateman for the initial suggestion of using Stored Procedures for

Auto-Generated Keys.
Steve Woodcock for the idea and code contribution of the UUID for EJB

pattern.
Stuart Charlton for the Generic Attribute Access idea.

Patterns Guidance

I would like to thank Markus Voelter, Ralph Johnson, and especially Bobby
Woolf, without whose early suggestions on patterns style this book would
have been pretty confusing.

xix

Reviewers

EJB Design Patterns could never have been completed without the reviews,
suggestions, corrections, and even questions of all the members of TheServer-
Side.com J2EE Community who reviewed my work over a period of eight
months:

Alex Tyurin, Alex Wologodzew, Allan Schweitz, Alun R. Butler, Andre Cesta,
Andre Winssen, Andreas Krüger, Andy Stevens, Andy Turner, Ankur Kumar,
Anthony Catalfano, Anuj Vohra, Anup Kumar Maliyackel, Aparna Walawalkar,
Ashim Chakraborty, Babur Begg, Ben Beazley, Bill Ennis, Billy Newport,
Blasius Lofi Dewanto, Bob Lee, Boris Melamed, Botnen Trygve, Brian Benton,
Brian Dobby, Brian Walsh, Brian Weith, Carmine Scotto d’Antuono, Cecile
Saint-Martin, Chad Vawter, Chandra Mora, Charles N. May, Colin He,
Constantin Gonciulea, Cristina Belderrain, Curt Smith, Dan Bereczki, Dan
Zainea, Daniel F. Burke, Daniel Massey, Darrow Kirkpatrick, Dave
Churchville, David E. Jones, David Ezzio, David Ziegler, Dimitri Rakitine,
Dimitrios Varsos, Dion Almaer, Doal Miller, Don Schaefer, Donnie Hale,
Eduard Skhisov, Emmanuel Valentin, Engström Anders, Erez Nahir, Faisal ,
aveed, Fernando Bellas Permuy, FM Spruzen Simon, Forslöf Mats, Frank
Robbins, Frank Sampson, Frank Stefan, Fried Hoeben, Gabriela Chiribau,
Ganesh Ramani, Geert Mergan, Gene McKenna, Geoff Soutter, Gjino Bledar,
Gunnar Eikman, Hai Hoang, Heng Ngee Mok, Hildebrando Arguello, Hossein
S. Attar, Howard Katz, Huu-An Nguyen, Iain McCorquodale, J.D. Bertron,
James Hicks, James Kelly, Janne Nykanen, Jean Safar, Jean-Pierre Belanger,
Jeff Anderson, Jérôme Beau, Jesper Andersen, John Ipe, Jonathan Asbell, Jörg
Winter, Joseph Sheinis, Juan-Francisco Borras-Correa, Julian Chee, Junaid
Bhatra, Justin Leavesley, Justin Walsh, Ken Hoying, Ken Sizer, Krishnan
Subramanian, Kristin Love, Kyle Brown, Lance Hankins, Larry Yang, Laura
Fang, Laurent Rieu, Leo Shuster, M Heling, Madhu Gopinathan, Mark Buchner,
Mark L. Stevens, Martin Squicciarini, Matt Mikulics, Mattias Fagerström,
Mohan Radhakrishnan, Mohit Sehgal, Muhammad Farhat Kaleem, Muller
Laszlo, Murray Knox, Nakamura Tadashi, Nicholas Jackson, Nick Minutello,
Nick Smith, Niklas Eriksson, Oliver Kamps, Olivier Brand, Partha Nageswaran,
Patrick Caulfield, Paul Wadmore, Paulo Ferreira de Moura Jr., Paulo Merson,
Peter Miller, Pontus Hellgren, Raffaele Spazzoli, Rais Ahmed, Rajesh
Jayaprakash, Reg Whitton, Richard Dedeyan, Rick Vogel, Robert McIntosh,
Robert Nicholson, Robert O’Leary, Roger Rhoades, Roman Stepanenko,
Samuel Santiago, Sashi Guduri, Scot McPhee, Scott Chen, Scott Stirling, Scott
W. Ambler, Sébastien Couturiaux, Sergey Oreshko, Shorn Tolley, Simon
Brown, Simon Harris, Simone Milani, Stefan Piesche, Stefan Tilkov, Stephan J.
Schmidt, Steve Divers, Steve Hill, Steven Sagaert, Sun-Lai Chang, Tarek
Hammoud, Taylor Cowan, Terry Griffey, Thanh C. Bryan, Therese Hermansson,
Thierry Janaudy, Thomas Bohn, Toby Reyelts, Tom Wood, Tracy Milburn,

xx Acknowledgments

Trond Andersen, Tyler Jewell, Udaya Kumar, Vaheesan Selvarajah, Vincent
Harcq, Yagiz Erkan, Yi Lin, and Yousef Syed.

And finally, I would like to thank other important people who indirectly con-
tributed to this book being published, by virtue of their positive influence on
my life: Nitin Bharti, Sudeep Dutt, Morrissey, Calvin Broadus, George
Kecskemeti, Johnny Marr, Geoff McGuire, Andre Young, Katerina Ilievska,
Chogyam Trungpa, Siddhartha Gautama, Nadia Staltieri, Dale Carnegie,
Lao-Tzu, David Gahan, Bogdan and Andre Cristescu, Umar Sheikh, Robert
Smith, Ursula and Suzanna Lipstajn, James McDonald, Jacob Murphy, Olivia
Horvath, Peter Coad, Mohandas K. Gandhi, Adib Saikali, Giacomo Casanova,
Sasa Nikolic, Deanna Ciampa, Aravind Krishnaswamy, Mikola Michon, Mark
Turnull, Laura Ilisie, Gregory Peres, Stuart Charlton, and Carlos Martinez.

Acknowledgments xxi

About the Contributors
Randy Stafford is an accomplished professional in many aspects of software
development, with 15 years of Information Technology experience across
industries such as financial services, DBMS software, hospitality, telecommu-
nications, transportation, CASE, and aerospace and defense. He has had broad
exposure as a consultant or permanent employee of large public companies
such as Travelers Express, Oracle, AMS, and Martin Marietta; and of small
private companies such as GemStone, SynXis, and Ascent Logic Corporation.
As a Smalltalk developer, he has been immersed in object-oriented and
distributed-object system development since 1988, and has been involved in
Web development and e-commerce projects since 1995.

Currently Chief Architect at IQNavigator, Inc., Mr. Stafford has developed
eight production-distributed Java applications since 1997, using various J2EE
application servers and Java ORBs. He was the originator and architect of
FoodSmart, the example J2EE application from GemStone Systems, Inc. He
was also the author of GemStone’s pattern language on designing J2EE appli-
cations, and of the GemStone Professional Services Foundation Classes, a
framework for J2EE application development. He has used Ant to build
automation on his last five J2EE applications, dating back to its initial release
in the summer of 2000. He has used JUnit since its initial release in early 1998,
and its predecessor, SmalltalkUnit, since 1995.

Mr. Stafford is an alumnus of Colorado State University with a Bachelor of
Science degree in Applied Mathematics, and graduate coursework in Com-
puter Science. He is published in the object-oriented simulation and systems-
engineering literatures.

Craig Russell is Product Architect at Sun Microsystems, where he is responsi-
ble for the architecture of Transparent Persistence, an object-to-relational
mapping engine. During the past 30 years, he has worked on architecture,
design, and support for enterprise-scale distributed-transactional and data-
base systems.

Craig serves as Specification Lead on Java Data Objects, a specification for
Java-centric persistence, managed as a Java Specification Request via the Java
Community Process.

xxiii

EJB Pattern Language

One

PA R T

3

When first designing Enterprise JavaBean (EJB) systems, choosing a correct
architecture, or partitioning of logic, that satisfies project concerns, such as
performance, maintainability, and portability, is one of most difficult tasks
faced by developers. This chapter covers some fundamental architectural
patterns in use in the industry today, specifically:

Session Façade. The most widely used of all EJB design patterns, the Ses-
sion Façade shows how to properly partition the business logic in your
system to help minimize dependencies between client and server, while
forcing use cases to execute in one network call and in one transaction.

Message Façade. The Message Façade pattern discusses when and how to
partition logic for use cases that are asynchronous in nature.

EJB Command. The antithesis of the Session Façade pattern, the EJB Com-
mand Pattern advocates placing business logic in lightweight, plain Java
Command beans. The main benefits of the pattern are the complete
decoupling of the client from EJB itself and the execution of use cases in
one network call and transaction.

Data Transfer Object Factory. Debunks the old practice of placing DTO
creation/consumption logic on the entity bean itself and prescribes
centralizing data transfer object creation and consumption logic into a
single layer (implemented as session beans or plain java factories).

EJB Layer Architectural Patterns

C H A P T E R

1

Generic Attribute Access. This pattern discusses when and how to pro-
vide a domain-generic interface to the attributes of an entity bean for
maintainability and performance purposes.

Business Interface. This pattern shows how to implement an interface
implementation scheme that can provide compile-time checking of the
method signatures on the Remote/Local interfaces and the EJB bean
class.

4 Chapter One

Session Façade

An EJB client needs to execute business logic in order to complete a use case.

How can an EJB client execute a use case’s business logic in one
transaction and one bulk network call?

* * *
To execute the business logic of a typical use case, multiple server-side

objects (such as session or entity beans) usually need to be accessed and possi-
bly modified. The problem is that multiple fine-grained invocations of ses-
sion/entity beans add the overhead of multiple network calls (and possibly
multiple transactions), as well as contributing to less maintainable code, since
data access and workflow/business logic is scattered across clients.

Consider an online banking scenario where a servlet receives a request to
transfer funds from one account to another, on behalf of a Web client. In this
scenario (as depicted in Figure 1.1), a servlet must check to ensure that the user
is authorized, withdraw funds from one bank account entity bean, and deposit
them to the other bank account entity bean.

Figure 1.1 Client transferring funds between entity beans.

User

findByPrimaryKey(pk)findByPrimaryKey(pk)

Account
Home

Servlet UserHome Account 1 Account2

isAuthorized()isAuthorized()

findByPrimaryKey(account1PK)findByPrimaryKey(account1PK)

findByPrimaryKey(account2PK)findByPrimaryKey(account2PK)

withdrawFunds(amount)withdrawFunds(amount)

depositFunds(amount)depositFunds(amount)

EJB Layer Architectural Patterns 5

When executing methods on the entity beans home and remote interface,
this approach will not scale under serious loads, because the whole scenario
requires at least six network calls: three for finding the appropriate entity
beans, and three more for actually transferring the funds. Furthermore, since
entity beans are transactional creatures, each method call on an entity will
require a separate transaction on the server side, requiring synchronization of
the remote entity with its underlying data store and maintenance on behalf of
the application server.

What’s worse is that this approach won’t guarantee the safety of the client’s
money. If something goes wrong with the deposit, the client’s money will have
already been withdrawn, and his money will be lost. The user authorization
check, the withdrawal, and the deposit all run completely separately, and if the
deposit fails, the withdrawal will not be rolled back, resulting in an inconsistent
state. The problem here is that when calling an entity bean’s methods directly,
each method call is a separate unit of work, and a separate transaction.

One solution is to push extra logic into our entity beans to perform many
operations on behalf of a single client call. This solution introduces mainte-
nance problems, because our entity bean layer will likely be used in many
different ways over time. If we add application logic to our entity beans each
time we need a performance enhancement, our entity beans will quickly
become very bloated and difficult to understand, maintain, and reuse. We are
effectively merging our application logic (verbs) with our persistence logic
(nouns), which is poor application design.

Another approach is for our client to demarcate an aggregate, large transac-
tion via the Java Transaction API (JTA). This would make each entity bean
method call operate under the same transaction, in an all-or-nothing fashion.
If the deposit fails, then the withdrawal will be rolled back and the users’ money
will be safe. However, this improved solution also has many drawbacks:

�� High network overhead. We still have six network calls to deal with,
which slows performance (unless we use local interfaces).

�� Poor concurrency. If the client is located very far from the server (as in
the case of an applet or application interacting with a remote EJB sys-
tem, perhaps even across the Internet or a firewall), the transaction will
last for a long period of time. This causes excess locking, increasing the
chances of collisions or deadlock, and reduces concurrency of other
clients accessing the same entity bean instances.

�� High coupling. Our client writes directly to an entity bean API, which
tightly couples the client with the entity bean. If the entity bean layer
needs changing in the future, then we must also change the client.

6 Chapter One

�� Poor reusability. The business logic that executed the “transfer funds”
use case was embedded directly in the client. It therefore effectively
becomes trapped in that client. Other types of clients (Java applications,
applets, servlets, and so on) cannot reuse this business logic. This mix-
ing of presentation logic with business logic is a poor application
design for any serious deployment.

�� Poor maintainability. Usage of the Java Transaction API causes middle-
ware logic for performing transactions to be interlaced with application
logic. It is much cleaner to separate the two via declarative transactions,
so that we can tweak and tune our middleware without affecting our
business rules.

�� Poor separation of development roles. A common practice on large-
scale projects is to separate the development tasks of presentation logic
programmers (such as servlet/jsp developers) from the business
logic/middleware programmers (EJB developers). If business logic is
coded in the client/presentation layer, a clear separation of roles is not
possible. Business logic and presentation logic programmers will step
on each other’s toes if both program in the presentation layer.

The takeaway point from our discussion is that we need a server-side
abstraction that serves as an intermediary and buffers calls to entity beans.
Session beans are designed just for this.

Therefore:

Wrap the entity bean layer in a layer of session beans called the Ses-
sion Façade. Clients should have access only to session beans not to
entity beans.

The Session Façade pattern applies the benefits of the traditional Façade
pattern to EJB by completely hiding the object model on the server from the
client layer, by having a layer of session beans be the single point of access to
the client. Figure 1.2 illustrates how an architecture can be improved by taking
this approach. The Session Façade pattern further adds the benefits of enforc-
ing the execution of a use case in one network call and providing a clean layer
in which to encapsulate business and workflow logic used to fulfill use cases.
The Session Façade is usually implemented as a layer of stateless session beans
(although the pattern can also be implemented with stateful session beans).

EJB Layer Architectural Patterns 7

Figure 1.2 The Architectural benefits of Session Façade.

To illustrate how this paradigm works and the benefits of this paradigm,
let’s take our previous example. Our business logic for the transferring funds
use case will now be placed in a session bean, which has a method called transfer-
Funds(userpk, accountpk, accountpk, amount). The Bank Teller session bean thus
performs bulk operations on Users and Bank Accounts, as shown in Figure 1.3.

Since the BankTeller session bean is collocated with the User and Account
entity beans, it should be hard-coded to communicate with the entity beans
through their local interfaces, thus reducing the network overhead required to
execute this use case to just one call (the call to the BankTeller from the client).
Also, all updates to the entity bean layer should run within the transaction initi-
ated by the BankTeller, defined in its deployment descriptor, almost always, with
a setting of TX_REQUIRED. This effectively wraps the entire use case within one
transaction, ensuring that all updates to the entity beans run within the transac-
tion initiated upon execution of the transferFunds method on the Bank Teller.

Figure 1.3 The Performance benefits of Session Façade.

transferFunds
(userpk,
account1pk,
account2pk,
amount)

User

findByPrimaryKey(pk)findByPrimaryKey(pk)

Account
HomeBankTeller UserHome Account 1 Account2

isAuthorized()isAuthorized()

findByPrimaryKey(account1PK)findByPrimaryKey(account1PK)

findByPrimaryKey(account2PK)findByPrimaryKey(account2PK)

withdrawFunds(amount)withdrawFunds(amount)

depositFunds(amount)depositFunds(amount)

Servlet

Network

App. Server App. Server
Client

Client

Client

F
a
c
a
d
e

F
a
c
a
d
e

Direct Entity Bean Access Session Facade

Client

Client

Client

Network Network

8 Chapter One

The Session Façade pattern is the most fundamental EJB pattern in use
today (which is why it is the very first pattern in this book). It not only pro-
vides performance benefits, but it also suggests a standard architecture for EJB
systems-partitioning your J2EE applications in such a way that the boundary
between the client and sever is separated by a layer of session beans, whose
methods map to (and contain the business logic of) all the use cases in the
application.

Taking the Bank Teller example further, there are obviously more use cases
involving a bank application than simply transferring funds. Using the Session
Façade pattern, session beans would be created to group use cases with similar
functions into one bean. Thus we can add other ancillary banking operations
to the Bank Teller (such as withdrawFunds, depositFunds, getBalance()). Elsewhere
in the banking application, use cases for different purposes would also be
grouped into a session bean. For example, every bank has a Loans Department.
The use cases required to model the operations of a Loans Department are not
that related to the use cases on a Bank Teller; therefore, they would be grouped
into a LoanServices session bean. Similarly, a banking application would also
need a session bean to encapsulate use cases related to investments. Using the
Session Façade pattern, the architectural layout of this banking application
would look like Figure 1.4.

Figure 1.4 Grouping use cases into session beans architectural layout.

Session Facade

transferFunds
withdrawFunds
depositFunds
getBalance
...

BankTeller
Session Bean

isPersonApprovable
approveLoan
createLoan
...

LoanServices
Session Bean

buyStock
getStockInfo
sellStock
buyBond
sellBond
getOptionsInfo
...

InvestmentServices
Session Bean

Clients Tier Domain Model

Client A

Client B

Client C

Network

EJB Layer Architectural Patterns 9

The Session Façade pattern works so well, that often it is easy to abuse it. It
is common to find projects in which the Session Façade is misused:

�� Creating a session bean God-class. Often developers put all the use
cases in a system in one session bean. This results in a bloated session
bean and reduced development productivity, because all the developers
need access to this one class. Session beans should be split to house
groupings of related use cases.

�� Placing domain logic in session beans. A well-designed object-oriented
domain model should contain all of the business/use case logic in your
application (Fowler, 2001). Most Session Façade methods should simply
delegate to the appropriate entity bean, unless the use case involves
workflow logic that needs to operate across different beans that may
not be directly related.

�� Duplication of business logic across the façade. As the project grows,
often session bean methods contain duplicate code, such as executing
logic to checkCreditHistory, which could be part of the workflow for any
number of use cases. The solution is to add a layer of services (imple-
mented as session beans or plain Java classes) that encapsulate this
reusable, use-case-independent business logic. This services layer is
hidden from the client. As projects grow in size, it is useful to have reg-
ular refactoring sessions in which such duplicate logic is found and
extracted.

The following are the benefits of the Session Façade pattern:

�� Low network overhead. While the session bean layer does add an extra
layer to call through, the client can now transfer funds in just one net-
work call, rather than six network calls. On the server, the session bean
communicates with entity beans via local interfaces, thus not incurring
any network overhead. Even with the entity beans only used for remote
interfaces, most application servers would optimize on the communica-
tions between collocated EJBs.

�� Clean and strict separation of business logic from presentation layer
logic. By using a Session Façade, logic required to execute business
logic is completely wrapped behind methods on session beans. EJB
clients need only worry about presentation layer issues and should
never have to execute more than one method on an EJB to get a unit
of work done. This strictly separates business logic from presentation
layer logic.

10 Chapter One

�� Transactional Integrity. Our session bean encapsulates all logic to per-
form the bank transfer in one transaction. The session bean thus acts as
a transactional façade, which localizes transactions to the server side,
and keeps them short. Transactions are also demarcated at the session
bean method level, configurable via deployment descriptors.

�� Low coupling. The session bean buffers requests between the client and
entity beans. If the entity bean layer needs changing in the future, we
may be able to avoid changing the client because of the session bean
layer of indirection.

�� Good reusability. Our bank teller logic is encapsulated into a modular
session bean, which can be accessed by any type of client (JSPs, servlets,
applications, or applets). The encapsulation of application logic into
session beans means that our entity beans can contain data and data
access logic only, making them reusable across session beans in the
same or even in different applications.

�� Good maintainability. One should define the transaction declaratively
in the Bank Teller session bean’s deployment descriptor, rather than
programmatically via the JTA. This gives us a clean separation of
middleware and application logic, which increases maintainability
and reduces the likelihood of errors.

�� A clean verb-noun separation. The session bean layer models the
application specific use cases, the verbs in our application, while the
entity bean layer models the business objects, or the “nouns,” in our
application. This architecture makes it very easy to map use cases from
a requirements document to a real EJB architecture.

The Session Façade pattern is a staple in EJB development. It enforces highly
efficient and reusable design, as well as clearly separates presentation logic
(the client), business logic (the session façade) and data logic (entity beans, and
so on). Session Façade describes a useful architecture for implementing any
type of use case; however, if a use case is asynchronous in nature, the Message
Façade pattern provides a more scalable approach.

Related Patterns
Message Façade
Data Transfer Object
Session Façade (Alur, et al., 2001)
Session Façade (MartinFowler.com)

EJB Layer Architectural Patterns 11

Message Façade

An enterprise Java bean client wants to invoke the methods of multiple EJBs
within the context of one use case, and doesn’t require an immediate response
from the server.

How can an EJB client invoke the methods of multiple session or
entity beans within one transaction, without the need to block and
wait for responses from each bean?

* * *
Especially in large-scale systems, scalability dictates that the business logic

of a use case execute separately from that of the client, without requiring the
client to wait for the execution to complete. This type of behavior, called asyn-
chronous behavior, allows clients to interact with the User Interface (UI) with
maximum response times, because they don’t need to sit and wait while the
use case they initiated executes. This approach allows a large system to scale,
because use cases can be queued and operated on in a batch, transparent to the
user, who instantly moves on to the next part of a UI. Portions of the system
that actually execute the use cases can also be scaled up and go through system
upgrades if backlogs of queued use cases begin to develop, all without chang-
ing the quality or availability of service for the clients.

Consider a simple Web-based airline registration system in which a servlet
receives a request to reserve a seat for a user for a particular flight. In this
scenario, a servlet must register a user with an airline, determine if seats are
available on a flight, and if so, reserve a seat for a user, as shown in Figure 1.5.

Figure 1.5 Reserve Seat use case.

areSeatsAvailable()areSeatsAvailable()

registerWithAirline(aUser)registerWithAirline(aUser)

findByPrimaryKey(pk)findByPrimaryKey(pk)

areSeatsAvailable()areSeatsAvailable()

registerWithAirline(aUser)registerWithAirline(aUser)

getFlight(flightNum)getFlight(flightNum)

AirlineHome

findByPrimaryKey(pk)findByPrimaryKey(UserPK)

Servlet UserHome Airline Flight

reserveSeatFor(aUser)reserveSeatFor(aUser)

findByPrimaryKey(airlinePK)findByPrimaryKey(airlinePK)

12 Chapter One

In this example, we have a client performing multiple synchronous calls to
the server to execute a use case. Each step of the process requires a separate
network call and blocking on the part of the client. On a system as massive as
an airline reservation application, this bottleneck is obviously unacceptable.
Furthermore, executing the logic in this fashion reduces the maintainability
and reusability of the system and does not provide transaction consistency or
isolation for the use case.

The most common solution is to use the Session Façade pattern. With this
pattern, an application creates a layer of session beans that contain business
logic to fulfill business use cases. Each session bean performs bulk operations
on entity beans or other server-side resources on behalf of the clients, in one
bulk call, as shown in Figure 1.3 in the Session Façade pattern. Unfortunately,
even if the entire use case is wrapped in one Session Façade method, the
approach still suffers from several drawbacks:

�� Unacceptable Response Time. A user interacting with a Web site will
not stick around for longer than a couple of seconds. The execution of
this use case requires a lot of background processing that could span
multiple databases on different airline systems. Because the call to the
EJB layer is a “synchronous” call, the client would have to block until
the entire process has been completed.

�� Unreliable/not fault tolerant. This use case could potentially involve
EJBs that are spread out on as many as three separate EJB Server
instances and three separate databases (one for users, one for airlines,
one for flights). If any one of those servers were down, the entire
process would fail, and the user’s reservation request would be lost.
Even if the servlet layer were communicating with only one EJB server,
the process would fail if the server were down.

Using Session Façade solves the problems of coupling, performance, main-
tainability, reusability, and consistency, but does not completely solve the
problems of response time and reliability. The client still has to block while a
complex and time-consuming reservation use case runs. The use case will also
fail if the EJB server or any of the systems it relies on is not running at the time
the use case is executed.

The takeaway point from our discussion is that we need a fault-tolerant
server-side abstraction that serves as an intermediary, executing use cases in
one call and one transaction (sheltering clients from the complexities of the
server-side object model), which doesn’t require a client to block and wait for
the use case to complete. Message-driven beans are designed just for this.

Therefore:

Use message-driven beans to create a fault-tolerant, asynchronous
façade. Clients should have access to message-driven beans only, not
to entity beans.

EJB Layer Architectural Patterns 13

Using message-driven beans (MDB) as a façade improves upon the Session
Façade pattern by adding the capability to execute use cases in an asynchro-
nous, fault-tolerant manner. When we use a message façade, the business logic
in each of the use cases of an application maps to its own MDB.

Consider the previous example. Our business logic for reserving a seat on a
flight will now be placed in the onMessage() method on a ReserveSeat message-
driven bean. The purpose of this MDB is to encapsulate all business/workflow
logic related to reserving a seat on a flight, and to execute asynchronously, as
shown in Figure 1.6.

Here we have a servlet client creating a Java Message Service (JMS) message
and passing in the necessary parameters. The servlet constructs a message
containing all the parameters required (user’s primary key, flight number, air-
line primary key) and sends this message to a JMS destination created for the
Reserve Seat use case. Upon receiving the message at the appropriate destina-
tion, the client will be free to continue (display the next Web page). At this
point, the message-driven bean container will attempt to pass the message to
the next available ReserveSeat message-driven bean. If all ReserveSeat MDBs
in the pool are being used at the time of message reception, the JMS server
should wait until the next one becomes available. Had this use case been exe-
cuted through a session façade, a fully used session bean pool would have been
a single point of failure, and the client would have to manually retry.

Once a MDB becomes available, the container will execute the onMessage()
method. At this point, the ReserveSeat message-driven bean will linearly go
through the process of executing the use case: register the user with the airline,
check if seats are available, and reserve a seat. While this time-consuming
process is occurring, the end user is free to surf around the site and go about his
or her business.

Figure 1.6 Reserve Seat use case through a Message Façade.

findByPrimaryKey(UserPK)

registerWithAirline(aUser)registerWithAirline(aUser)registerWithAirline(aUser)registerWithAirline(aUser)

areSeatsAvailable()areSeatsAvailable()

registerWithAirline(aUser)registerWithAirline(aUser)registerWithAirline(aUser)

getFlight(flightNum)getFlight(flightNum)

AirlineHome

findByPrimaryKey(UserPK)

ReserveSeatMDB

JMS
Destination

send JMS Message

Message contains
userPK, airlinePK,

flightNum

on Message()

UserHome Airline Flight

reserveSeatFor(aUser)reserveSeatFor(aUser)

Servlet

findByPrimaryKey(airlinePK)findByPrimaryKey(airlinePK)

14 Chapter One

One important advantage that the Message Façade pattern has over the
Session Façade pattern is that asychrononously executed use cases can be
guaranteed. That is, if the transaction fails at any point (perhaps the airlines’s
systems go down or some other system failure occurs), the transaction will be
rolled back and the JMS message will be put back in the queue. The transaction
will then be retried later, without the knowledge of the client.

This behind-the-scenes behavior also presents a problem. How is the client to
be notified if the use case fails or succeeds? For example, if a seat cannot be
reserved because the plane is fully booked, the client needs to be notified. In a
synchronous model (using a session façade), the client would know immedi-
ately. In the asynchronous model, the client is no longer waiting to see if the
use case succeeded, and needs to be alerted in some application-specific form.
The most common solution is email. If the use case succeeds/fails then the
system will notify the user by email. Some companies might implement a
system in such a way that a human being would make a phone call, and so on.
If the application requirements allow it, some applications could use a polling
model. That is, an end user will be assigned a particular place they can go to
check the status of their request, similar to a tracking number used by modern
courier services.

The takeaway point here is that when using the Message Façade pattern,
developers must devise novel ways to communicate the results of a use case to
the client.

One disadvantage of using the Message Façade pattern is that now business
logic is distributed across both message-driven beans (for the message façade)
and session beans (for the session façade). This may not be a major concern for
most, but it would be nice to keep business logic in one place in the applica-
tion. A clever way to solve this problem is to implement all the use cases on the
session façade itself, and use the message façade to delegate to the session
façade. This way, all the benefits of using an asynchronous, fault-tolerant
construct such as a message-driven bean is maintained, while keeping logic
localized to the session bean layer.

The advantages of the Message Façade pattern include all those outlined in
the Session Façade pattern, as well as:

�� Instant response time/asynchronous communication. When a client
sends a JMS message, it is free to continue processing without waiting
for the server to complete the use case and respond. A lengthy, complex
use case can thus be initiated while control flow instantly returns to the
user.

�� Eliminates single points of failure. Using messaging will ensure that
your application continues functioning even if the EJB server or some
other subsystem it relies upon is down. For example, if the database is

EJB Layer Architectural Patterns 15

down, the MDB’s transaction will not complete, and the reserve seat
message will remain on the queue and be retried later. If the EJB con-
tainer is down, the message will again be stored. Such fail-over capabil-
ities would not be possible if we used a synchronous model. Of course
if your JMS server is not clustered and it goes down, this still represents
a single point of failure, but at least the number of potential show stop-
pers is reduced.

However, as a by-product of using message-driven beans, the Message
Façade pattern also has some drawbacks:

�� Message-driven beans have weakly-typed input parameters. The role
of a message-driven bean is to consume JMS messages, all of which
appear identical at compile time. This is in contrast to session/entity
beans, which leverage Java’s built-in strong typing of the methods and
parameters of the remote and local interfaces to catch common errors at
compile time. Extra care must be taken by the developer to load a JMS
message with the appropriate contents required by its destined MDB.
One solution to this problem is to encapsulate all the data from the JMS
message into a custom data transfer object, and serialize this object into
the JMS Message.

�� Message-driven beans do not have any return values. Since MDB
invocations are asynchronous, Message Façade cannot be used for use
cases that require a return value after execution. Using Message Façade
is thus superficially similar to using Session Façade, in which all session
bean methods simply return void. However, it is possible to get a
response from a message-driven bean back to the message creator
by using JMS as the transport mechanism, please refer to the book
Mastering Enterprise Java Beans, Second Edition for a discussion of this
mechanism.

�� Message-driven beans do not propagate exceptions back to clients.
Unlike session/entity beans, message-driven beans cannot throw appli-
cation exceptions or RemoteException from any of their methods. MDBs
must therefore handle all the exceptions presented in some application-
specific format (that is, emailing the user if something went wrong,
logging errors to an admin log, and so on).

Message Façade is a very powerful pattern for building decoupled, highly
scalable applications. A typical EJB system would likely use a combination of
the Session Façade and Message Façade patterns. Session Façade is the clear
choice for “read” type operations, where a client requires some data from the
server, or when a client needs to explicitly wait for a use case to complete. Mes-
sage Façade is clear choice for update operations, where the client does not
need to instantly see the results of the update.

16 Chapter One

The scalability and fault-tolerance benefits that the Message Façade pattern
has over the Session Façade pattern are significant. In terms of performance, a
message-based system will scale better than a clustered session bean approach
because message beans pull work rather than have work pushed to them. The
pull approach scales better when we cluster boxes together because it makes
optimal use of system resources.

Developers should evaluate each use case in their designs carefully, asking
themselves if the use case is of a synchronous or asynchronous nature. This
will be a decisive factor in choosing one pattern over the other.

Related Patterns
Session Façade

EJB Layer Architectural Patterns 17

EJB Command

An EJB client needs to execute business logic in order to complete a use case.

How can a developer implement a use case’s business logic in a
lightweight manner, decoupling the client from EJB and executing
the use case in one transaction and one network call?

* * *

A critical architectural decision when designing an EJB system is where to
put the business logic. The business logic of a use case is the logic that either
delegates to the appropriate method on your domain model or executes logic
that operates across multiple other entity beans and/or session beans (work-
flow logic).

Placing business logic on the client (servlets, applets, and so on) has serious
negative consequences, affecting performance and maintainability, as explained
in the Session Façade Pattern. These problems can be corrected by using the
Session Façade pattern, which requires that business logic be placed in session
bean methods, where each method on a session bean maps to a particular unit
of work, or use case. In doing so, the client is shielded from the object model
on the server and use cases are executed in one transaction and in one network
round trip.

The Session Façade pattern itself is a staple in EJB development, but also
comes with its own shortcomings. Calling the session façade directly from the
client can cause dependencies between the client and the server teams on a
large project and complicate client code because of tight coupling to EJB, as
discussed in the Business Delegate Pattern. These problems can be alleviated by
using business delegates, which add a layer of objects that encapsulate all
access in the EJB layer. Business Delegates can help keep client code simple,
minimizing dependencies between client and server.

Then Session Façade pattern in combination with the Business Delegate
pattern provides a best practice for writing business logic in a format that
decouples the client from the implementation details of the server and allows
the execution of use cases in one network call and in one transaction. As
always, there are trade-offs:

�� Slower development process. Because use case logic (which frequently
can change) runs in a session bean, whenever a use case needs to be
changed (that is, to add a parameter to a method or return an extra

18 Chapter One

attribute), the session bean method that implements that use case may
need to be changed. The process of changing a session bean is not
trivial—a change often requires editing three different files (interface,
bean class, deployment descriptor) as well as redeployment into the
EJB server and possible restarting of the server. Additionally, the busi-
ness delegate that encapsulates the changed session bean on the client
will usually also need to be changed.

�� Division of labor in a large project is more difficult. Depending on
the strategies used to partition work across developers on a project, the
session façade is often a bottleneck which different teams or developers
will fight over, since it can be the subject of frequent change as a project
progresses.

�� Server resources often controlled by just one team in a large corpora-
tion. For large corporations with established and working sets of
deployed EJBs, it can be difficult for teams working on other projects
to effect any changes on existing classes.

In short, developing with a session façade and business delegates can result
in long change-deploy-test round trips, which can become a bottleneck in a
large project. The crux of the problem is that the business logic is being placed
in a layer of session EJBs, which can be pretty heavyweight to develop with.

Therefore:

Use the Command pattern to wrap business logic in lightweight
command beans that decouple the client from EJB, execute in one
network call, and act as a façade for the EJB layer.

A command bean is just a plain Java class with gets, sets, and an execute
method, as described in the original Command pattern (Gamma, et al., 1995).
Applied to EJB, the Command pattern provides a lightweight solution for
achieving the same benefits as the Session Façade and Business Delegate pat-
terns: a façade that hides the object model on the EJB layer, execution of a use
case in one transaction and one network call, and complete decoupling of the
client from EJB. The Command pattern achieves these by providing clients
with classes that they interact with locally, but which actually execute within a
remote EJB server, transparent to the client.

Commands are used to encapsulate individual units of work in an applica-
tion. A use case such as placeOrder, transferFunds, and so on, would have its
business/workflow logic encapsulated in a special command made just for
that use case, as shown in Figure 1.7.

EJB Layer Architectural Patterns 19

Figure 1.7 Transfer Funds Command client view.

The client interaction with a command is very simple. Once a client gets a
command (either by creating one or getting it from a factory, depending upon
implementation), it simply sets attributes onto the command, until the com-
mand contains all the data required to execute a use case. At this point the
client can call the command’s execute method, then simply executes gets on
the command until it has retrieved all the data resulting from the execution of
the command/use case.

When the client executes the command, interesting things happen behind
the scenes. Instead of executing locally, the command is actually transferred to
a remote EJB server and executed within the EJB server’s JVM. All the EJBs
called by the command during the execution of its use case thus occurs within
the EJB server itself. When the command has completed executing, it is returned
to the client, which can then call get methods to retrieve data. By having the
command execute within the EJB server, a use case can execute within just one
transaction. The implementation mechanics of this behavior will be explained
later in the discussion of this pattern.

Using the transferFunds example, a client would set the IDs of the account
from which to withdraw money, the account to which to deposit money, and
the amount to transfer. After calling execute on the transferFunds command,
the client can get the final balances of the accounts, as shown in Figure 1.8.

setTransferAmountID(double)

execute()

getWithdrawAccountBalance()
getDepositAccountBalance()

withdrawAccountID
depositAccountID
transferAmount
withdrawAccountBalance
depositAccountBalance

TransferFunds

20 Chapter One

Figure 1.8 Using a Transfer Funds command.

Probably one of the most comprehensive implementations of the Command
pattern is IBM’s Command framework, which ships with Websphere, part of
IBM’s patterns for e-business. There are many different ways to implement the
EJB Command pattern, but all of them have the same three elements:

�� Command Beans. A simple Java bean class with gets, sets, and an exe-
cute method that contains the business logic required to execute a use
case. The command beans are the only part of the Command pattern
that need to be written by application developers, the other compo-
nents explained below are reusable across projects.

�� Client-side routing logic. Usually a framework of classes that is
responsible for taking a Command and sending it to the remote EJB
server. This routing logic is usually not visible to the client, and is
triggered by calling a command’s execute method. The routing logic/
framework is a generic set of classes that can be reused across projects.

setWithdrawAccountID(idf)

Servlet Transfer Funds
Command

setDepositAccountID(id2)

execute()

getWithdrawAccountBalance()

getDepositAccountBalance()

EJB Layer Architectural Patterns 21

�� Remote Command Server. The Command Server is a service that simply
accepts commands and executes them. Applied to EJB, the Command-
Server class is a stateless session bean that accepts a command as a
parameter and executes it locally. The CommandServer is also generic
and completely reusable across projects.

The interactions between the client and these three components are illus-
trated in Figure 1.9. In this example, the client calls an executeCommand method
on the routing logic component. In IBM’s Command framework, the client
only needs to call execute on the command itself, since the method call will
actually be received by the superclass of the command, which is part of the
routing logic framework.

Behind the scenes, the CommandExecutor delegates the call to an EJBCom-
mandTarget (not shown in Figure 1.9 since it is part of the routing logic), which
is encoded with knowledge of EJB and knows how to send the command to
the CommandServer stateless session bean. Upon receiving the command, the
CommandServer simply calls the execute method on the command, which
then goes about its business logic.

The benefits of the Command pattern are:

�� Facilitates Rapid Application Development (RAD) due to lightweight
dev/deploy process. Writing a use case as a command bean makes it
considerably easier and quicker to deploy and test than writing it as a
session bean method. Frequent changes can be done on a plain Java
class, as opposed to a full EJB.

�� Separation of business logic from presentation logic. Commands act
as a façade to the object model on the server by encapsulating business
logic inside commands, exposing only a simple command interface for
clients to use. This separation allows the client and server to evolve
separately.

�� Forces execution of use cases in single round trip. Since the command
actually executes in the EJB server, only one network call (and transac-
tion) is required to complete a complicated use case.

�� Decouples the client from EJB. Clients are completely decoupled from
the implementation details of the server—all they see is the command
bean, which appears to be a local class.

�� Commands can execute locally or produce dummy data. Empty or
bogus commands can be created at the beginning of a project, allowing
the presentation layer developers to write, compile, and test their code
independently of the business logic/EJB team.

22 Chapter One

Figure 1.9 Command pattern interactions.

In many ways the Command pattern sounds like the ultimate solution, com-
bining the benefits of the Session Façade and Business Delegate patterns, with
a lighter-weight infrastructure, however the benefits are as usual, balanced by
important trade-offs:

�� Very coarse-grained transaction control. Since commands are just plain
Java beans, there is no automatic way to mark a command to run under
a particular transaction setting or isolation level, as you can session
bean methods. Commands can only run under the transaction settings
of the CommandServer that executes them. The workaround for this is
to deploy multiple command server session beans with different jndi
names and transaction settings (configured in the deployment descrip-
tors). The routing logic component needs to be configured to send cer-
tain commands to certain command servers. That is, one may wish to
send all read-only commands to session beans that run with without
transactions, whereas update commands could execute in a command
server running with tx_requires and isolation level serializable.

�� Commands are stateless. The Command object cannot store any state in
the session bean that executes it. Storing state in the EJB layer is thus not
possible with the Command pattern.

executeCommand(transferFundsCommand)

Client RoutingLogic CommandServer
TransferFunds

Command
(copy)

AccountEJBTransferFunds
Command

set...

set...

execute
doStuff...

executeCommand(transferFundsCommand)

get...

Network

executeCommand(command)executeCommand(command)

EJB Layer Architectural Patterns 23

�� Clumsy error handling. Since the command framework is generic, only
a CommandException can be thrown from a command. This means that
application exceptions, such as NoMoneyInAccountException, need to be
caught and wrapped within a CommandException. Clients then need
to look inside the command object for particular exceptions. Since
exceptions are not explicitly declared, clients lose the benefit of
compile-time checking for exception handling.

�� Commands can become unmanageable on large projects. A large
project can explode with thousands of commands, many of which have
duplicate portions of business logic, particularly when different project
teams are using the same back-end domain model. This makes it much
more difficult to maintain the business logic layer, in contrast to the Ses-
sion Façade pattern, where use cases are implemented as session bean
methods, nicely grouped together into a small number of Session beans.
This proliferation of classes can be a serious problem on large projects.

�� CommandServer ejb-jar tightly coupled to command beans and other
EJBs. Since command beans execute within environment of the Com-
mandServer session beans, the command bean classes need to be
deployed with the CommandServer session bean (in the same ejb-jar or
EAR) in order for the command beans to be deserialized and executed.
This means that whenever a command bean is changed, the Command-
Server session bean EAR or ejb-jar will need to be redeployed (so that
the CommandServers classloader can read the new versions of all
included commands) in order to test the changes, or completely restarted
if your application server doesn’t support hot deployment. Furthermore,
command beans need to have visibility of any home, remote, local home,
or local interfaces they may use in their business logic. This requires
that either the CommandServer be deployed in the same EAR as the
other EJBs accessed by any of its command beans, or the interfaces of
the accessed EJBs be packaged with the command server’s ejb-jar.

The Command pattern and the Session Façade pattern both provide two
important benefits: they act as a façade and they execute in one network round
trip. The other major advantage that the Command pattern has over the Ses-
sion Façade pattern is that it decouples the client from the EJB, which can also
be achieved by applying the Business Delegate pattern, in conjunction with
the Session Façade pattern. So how can a developer choose between one and

24 Chapter One

the other? It is helpful to think of commands as cheaper session beans. They are
more lightweight, resulting in a quicker initial development process, at the
expense of possibly less maintainability over time.

Related Patterns
Command (Gamma, et al., 1995)
Data Transfer HashMap

EJB Layer Architectural Patterns 25

Data Transfer Object Factory

A J2EE system using data transfer objects (DTOs) finds that its DTO layer
tends to change very often.

How should data transfer object creation and consumption logic be
implemented, in order to minimize the impact of frequent changes
in the DTO layer on the rest of the system?

* * *
Data transfer objects have a tendency to change often. Domain DTOs

change whenever the domain objects change (adding a new attribute to an
entity bean, and so on). Custom DTOs are just use case-specific data holders
for transporting data across a network; they can change as frequently as your
application’s presentation view. A medium to large application could poten-
tially have tens, or even hundreds, of different data transfer objects, each of
which would require custom logic to create it. A critical question then becomes:
how and where should this logic be implemented, in order to decouple and
protect the rest of this system from data transfer object changes?

A common solution employed in EJB 1.X applications is to place
getXXXDTO/setXXXDTO methods directly on entity beans. In this scenario,
the entity bean would be responsible for populating this data transfer object,
and for updating itself based on the attributes of the set DTO. The problem
with this approach is that it tightly couples the data transfer object layer to the
entity bean layer. That is, placing use-case-specific data transfer object creation
code on an entity bean could cause serious dependencies between your entity
beans and your clients in medium to large applications. Every time a Web page
changed and a different view of the data model was required, you would have
to add a new method to an entity bean, recompile your entity bean, and redis-
tribute your remote interfaces to any client using them.

Entity beans are supposed to be reusable business components, which can
be separately assembled to create an application. In order to build truly
reusable business components, it is important to maintain strict separation
between your application logic and your business logic, allowing the two to
evolve separately. Some other solution is required for creating and consuming
entity beans, one that can decouple DTO-related logic from other components
in the system.

Therefore:

Place the responsibility for creating and consuming data transfer
objects in a data transfer object factory.

A data transfer object factory separates the logic related to data transfer
objects (part of the application domain) from other components in your system

26 Chapter One

such as entity beans (part of the business domain). When new views or differ-
ent subsets of server-side data become necessary, new DTO creation methods
can be added to a DTOFactory, instead of being placed onto an entity bean.
These new methods will interact with the entity bean layer (or any other
source of data such as connectors, straight JDBC, and so forth), calling getters
and traversing relationships as required to generate domain or custom data
tranfer objects. The advantage to this approach is that the entity beans them-
selves do not need to know about these different views of their data, in fact, no
code on an entity bean needs to be changed at all.

For example, consider an automotive application that allows users to
browse for information on cars and their manufacturers. The application thus
has a domain model that consists of (among others) a Car and a Manufacturer
entity bean. Such an application will have a UI with many different pages that
allows users to browse different properties of cars and their manufacturers,
including different subsets of a Car’s attributes (engine properties, body prop-
erties, chassis, and so on) and data that spans multiple entity beans (info about
a car and its manufacturer, and so forth). These different sets of data should be
transferred to the client using custom DTOs, however, instead of placing the
Java methods required to create these different DTOs on a Car or Manufac-
turer entity bean, they would be placed on a DTOFactory such as the one in
Figure 1.10.

The CarDTOFactory now becomes a single point where use-case-specific
DTO logic resides, helping to decouple the clients from the domain model.
Entity beans on the domain model are now free to be domain objects, exposing
only business methods to the clients, not ugly DTO get/set logic, which really
have nothing to do with the business concept embodied by the particular domain
model.

Figure 1.10 CarDTOFactory.

//domain value objects
getCarDTOt(CarPK aCarPK)
getManufacturerDTOForCar(CarPK,
aCarPK)

//custom value objects
getCarEngineDTO(CarPK aCarPK)
getCarBodyDTO(CarPK aCarPK)
getCarChassisDTO(CarPK aCarPK)
getCarAndManufacturerDTO(CarPK
aCarPK)
getCarAndDealersDTO(CarPK aCarPK)

CarDTOFactory

EJB Layer Architectural Patterns 27

There are two fundamental ways to implement the DTO Factory pattern,
depending on whether the client of the factory is a session bean or a non-ejb
client such as a servlet. When used behind a session bean façade, the DTO
factory can be implemented as a plain Java class that simply stores creation/
consumption logic for different data transfer objects in its methods. This type
of Factory lends itself well to reuse because the data transfer objects it gener-
ates can be reused across different session beans and/or in different projects.

When used from a non-ejb client, the DTO factory should be implemented
as a stateless session bean. A typical interaction between this client and the
data transfer object is outlined in Figure 1.11. Here, a servlet client wants to
get a Custom DTO called CarAndManufacturerDTO, so it queries a CarDTO-
Factory for this object. The CarDTOFactory then creates and populates the
DTO by calling get methods on the Car entity bean and its related Manufac-
turer entity bean through their local interfaces.

Data transfer object factories can be used to easily create any type of DTO.
Even complex hierarchies of Aggregate DTOs (domain DTOs that contain
other domain DTOs) can be created that map to different slices of the server-
side entity bean object model. Complex data transfer object hierarchies can be
created by explicitly writing logic that knows how to navigate (and copy) a
use-case-specific slice of a hierarchy of entity beans. These DTO hierarchies can
all be created up front on the server, and passed to the client in one network
call.

Figure 1.11 Using a Car DTO factory as a session bean.

findByPK(carPK)

new()

getName()

getCarAndManufacturer(carPK)

getManufacturer()

Servlet CarHome
CarAnd

Manufacturer DTO ManufacturerCarDTOFactory Car

Network

findByPK(carPK)

new()

getName()

getCarAndManufacturer(carPK)

setCarName(name)setCarName(name)

getManufacturer()

getManufacturerName()getManufacturerName()

setManufacturerName(name)setManufacturerName(name)

28 Chapter One

One important benefit that results from this practice is that the entity beans
in our application are now fully reusable. For example, imagine two separate
development teams in a corporation working on separate applications. These
two teams can reuse the same entity bean business components (a beautiful
example of EJB reuse in action by the way) by using separate data transfer
object factories. The teams could achieve complete reuse by each maintaining
its own separate DTO factory that passed out use-case-specific DTO “slices” of
entity bean state—independently of the other team. By maintaining their own
DTO factory, they could also develop and deploy their own applications com-
pletely independently from each other. This concept is illustrated in Figure 1.12.

Note that the Data Transfer Object Factory pattern does not imply creating
one DTO factory for each entity bean class. For example you don’t necessarily
need to create a CarDTOFactory for a Car entity bean. This would result in
explosion of VO factories. Where requirements permit, it can be more straight-
forward to create a DTO factory for a whole set of entity beans and/or other
sources of server-side data.

DTO factories provide a way to read data from the server, but what about
updating data? Techniques similar to those used for reading server-side data
can be used for updating data. That is, clients can pass either a domain DTO or
a custom DTO to the server, where it can, in turn, perform Create, Read,
Update, Delete (CRUD) operations on entity beans or other data stores on the
server side.

For domain DTOs (which are typically made mutable), a client will perform
its updates onto a DTO locally, and then update the server by passing a
domain DTO to an updateXXXEntity method on a DTO factory, which would
copy the attributes of the DTO into the appropriate entity bean, using fine-
grained set methods on the entity bean’s local interface. Clients can similarly
create entity beans by populating a domain DTO locally and passing it to a
createXXXEntity method on the factory.

Figure 1.12 Achieving entity bean reuse with data transfer object factories.

EJB Team A

EJB Team B

Application Server

Team A's
Factory

Stateless SB

Team B's
Factory

Stateless SB

Car Entity Bean

Manufacturer
Entity Bean

EJB Layer Architectural Patterns 29

Using the previous example, if the application administrator wanted to
update a particular car or manufacturer, these updates would be done with
separate UI displays (one for the car, and one for the manufacturer). Updates
would be performed, and either a Car or a Manufacturer domain DTO would
be sent back to the server for updating in a single transaction, as shown in
Figure 1.13.

For performing any sort of update above and beyond CRUD updating of
domain objects, the server should be updated by passing custom DTOs to the
session/message façade. Remember that the façade is supposed to contain all
the business logic required to execute use cases in an application, such as plac-
ing an order on Amazon, or transferring funds at a bank. For these types of
operations, a client will typically create a custom DTO that contains all the
data required to perform the update, pass this DTO to the façade, which will
in turn create, update, or delete any number of server-side resources.

The advantages to the data transfer object factory approach are numerous:

�� Better maintainability. Separating your application logic (use cases)
and your data object model (entity beans), so the two can evolve sepa-
rately. Entity beans no longer need to be changed and recompiled when
the needs of the client change.

�� Encourages entity bean reuse. Entity beans can be reused across pro-
jects, since different DTO factories can be written to suit the needs of
different applications.

Figure 1.13 Updating data by using a data transfer object factory.

findByPrimaryKey(carPK)

Servlet CarDTO CarLocalHomeCarDTOFactory Car

Network

getCarPK()

findByPrimaryKey(carPK)

setName(aName)

updateCar(aCarDTO)

setYear(aYear)

setColour(aColour)

setPrice(aPrice)

set other attributes...

30 Chapter One

�� Allow for creating complex graphs of DTOs. By writing DTO creation
logic up front, developers can create complex graphs/hierarchies of
DTOs that can be used to transfer the data from complex entity bean
hierarchies containing one-to-one, one-to-many, many-to-many, and
cyclic relationships, and combinations of such relationships. This pro-
vides clients with fine-grained control over what parts of entity bean
data they need to display. For non-Web clients such as Java applications
and applets, the ability to get non-tabular data is particularly important.

�� Increases performance. When the DTO factory is used as a session
façade, attributes from multiple entity beans can be passed to the client
with just one network call.

The Data Transfer Object Factory pattern can build maintainable and flexi-
ble systems, providing a simple and consistent method for creating arbitrarily
complex data transfer objects and passing them to the client in one bulk network
call, without causing dependencies between data transfer objects and other
components in a J2EE system.

Related Patterns
Session Façade
Data Transfer Object
Value Object Assembler (Alur, et al., 2001)

EJB Layer Architectural Patterns 31

Generic Attribute Access

An entity bean client needs to access the attributes of an entity bean.

How can an entity bean client efficiently access and manipulate the
attributes of an entity bean in a bulk, generic fashion?

* * *
In usual practice, entity beans are accessed through either local interface

get/set methods (for entity beans written for EJB 2.X and up) or via bulk data
transfer objects off the remote interface (for EJB 1.X entity beans). With the for-
mer, methods on the session façade or data transfer object factory interact with
the entity bean by calling multiple fine-grained getters and setters, in order to
access and manipulate attributes, as required by the particular use case.
Through the latter, data transfer objects are used to access and manipulate the
entity bean state in bulk, in order to minimize network calls associated with
communication with the remote interface. The use of DTOs as a mechanism to
manipulate entity beans is a common pattern for optimizing communications
with EJB 1.X entity beans.

The trade-off for using DTOs to access EJB 1.X entity beans is reduced main-
tainability of the entity bean layer (see the DTO Factory pattern). With the
advent of EJB 2.0, local interfaces allow the extraction of DTO creation and
consumption logic into a data transfer object factory; here the DTO factory
interacts with an entity bean via fine-grained get/sets on the local interface,
alleviating some of the problems with using DTOs.

Unfortunately, EJB 1.X entity beans do not have local interfaces. The conse-
quence of this is that DTO creation/consumption logic cannot be extracted
from an entity bean into a DTO factory (because it is bad for performance for a
DTO factory to make multiple fine-grained calls on an entity bean’s remote
interface). Some other mechanism is needed, one that will allow bulk access to
entity bean data through the remote interface, without cluttering it up with
DTO creation/consumption logic.

Even for local interfaces, there are cases in which exposing multiple fine-
grained get/set methods is not a good idea:

�� Does not scale well from small to large entity beans. Imagine a
stock/bonds entity bean for a financial application. Such an entity bean
could have well over 200 attributes. To write and expose getters/setters
for all of those attributes could result in a nightmare of tedious coding
and an explosion in interface size.

�� Results in tightly coupled, hard-coded clients. Entity bean clients
(such as the session façade) need to be tightly coupled to the interface
of the entity bean, making it sensitive to even minute changes that can
frequently occur—such as the adding or removing of an attribute.

32 Chapter One

The takeaway point is that some other mechanism is needed to access entity
bean data, one that that can allow a DTO factory to use the remote interface to
dynamically grab different subsets of the entity bean state in one bulk network
call, and also help decouple entity bean clients from an entity bean’s attribute
accessors, when using a local interface.

Therefore:

Abstract entity bean attribute access logic into a generic attribute
access interface, using HashMaps to pass key-value attributes in and
out of entity beans.

The attribute access interface is implemented by entity beans on the remote
or local interface, and looks like this:

public interface AttributeAccess {

public Map getAttributes(Collection keysOfAttributes);

public Map getAllAttributes();

public void setAttributes(Map keyAndValuePairs);

}

Attribute Access provides a generic interface that allows arbitrary sets of
data to be get or set from an entity bean dynamically. The interface allows EJB
1.X entity beans to use a DTO factory to extract DTO creation logic and opti-
mize on remote calls, as well as allowing EJB 2.X entity beans to simplify their
local interfaces by removing the need for fine-grained get/set methods. The
only dependency been client and entity bean code is the naming conventions
placed on the keys used to identify attributes, described later in this pattern.

The session façade or DTO factory can access an entity bean’s attributes
through the attribute access interface. Figure 1.14 illustrates a typical case.
Here, a client is interested in gathering a subset of the data of a “Car” entity
bean relating to its engine. A client calls the getCarEngineData method on the
session façade, which in turn asks an entity bean for the exact attributes that
are part of the car engine, by first creating a collection that includes the key val-
ues of the attributes of interest (horsepower, volume, and so on), then passing
this collection to the getAttributes(collection) method on the entity bean, which
will return a HashMap with this exact subset.

After receiving the populated HashMap from the Car entity bean, the session
bean can:

1. Return the HashMap to a remote client. Here the session bean uses the
HashMap as serializable container for transferring data across the net-
work (as described in the Data Transfer HashMap pattern in Chapter 2).

2. Convert HashMap into a DTO and return it. As a DTO factory, the ses-
sion bean can extract the values of the HashMap and add them to a data
transfer object, returning the DTO to the client.

EJB Layer Architectural Patterns 33

Figure 1.14 Using the attribute access interface.

Which option to choose, is up to the developer. As a mechanism for data
transfer, HashMaps provide many advantages over data transfer objects (as
described in the Data Transfer HashMap pattern), but also come at the expense
of significant additional complexity. If the attribute access interface is used
behind a DTO factory, dependencies between key/value names can be kept
localized to the server, where the session beans need to be aware of the entity
beans anyway.

Using the attribute access interface, a session bean can thus dynamically
decide which subsets of entity bean data it requires at run time, eliminating the
need for manual, design time programming of data transfer objects.

Like the interface itself, the implementation of the attribute access interface
is generic. Under Bean-Managed Persistence (BMP), an entity bean can be fur-
ther simplified by storing all of its attributes in a private, internal HashMap,
rather than the relying on the obvious hard-coding of attributes that usually
takes place. For large entity beans, this optimization can simplify an entity
bean’s code greatly. Using this internal HashMap, the implementation of the
methods on AttributeAccess thus become completely generic and reusable
across BMP entity beans:

private java.util.HashMap attributes;

/**

* Returns key/value pairs of entity bean attributes

* @return java.util.Map

*/

setAttributes(anArrayList)

Client ArrayList CarEntityBeanSessionFacade

Network

new()

add("horsepower")

add("volume")

updateCar(aCarDTO)

add("engineType")

add("engineModel")

setAttributes(anArrayList)

34 Chapter One

public Map getAllAttributes()

{

return(HashMap)attributes.clone();

}

/**

* Used by clients to specify the attributes they are interested in

* @return java.util.Map

* @param keysofAttributes the name of the attributes the client is

* interested in

*/

public Map getAttributes(Collection keysofAttributes)

{

Iterator keys = keysofAttributes.iterator();

Object aKey = null;

HashMap aMap = new HashMap();

while (keys.hasNext())

{

aKey = keys.next();

aMap.put(aKey, this.attributes.get(aKey));

}

//map now has all requested data

return aMap;

}

/**

* Used by clients to update particular attributes in the entity bean

* @param keyValuePairs java.util.Map

*/

public void setAttributes(Map keyValuePairs)

{

Iterator entries = keyValuePairs.entrySet().iterator();

Map.Entry anEntry = null;

while (entries.hasNext())

{

anEntry = (Map.Entry)entries.next();

this.attributes.put(anEntry.getKey(), anEntry.getValue());

}

}

In Container-Managed Persistence (CMP), using an internal map of attrib-
utes is not possible, since the implementation of an entity bean’s classes is
abstracted behind container generated get and set methods. When using an
internal map is not possible, the attribute access interface can be implemented
generically using the Java Reflection API. That is, in setAttributes, reflection can

EJB Layer Architectural Patterns 35

be performed on the key-value of the attribute a client wants to set. Specifi-
cally, if the key-value is XXX the setAttribute implementation will attempt to
call setXXX(...) on the entity bean. Similarly, in the getAttributes method, reflec-
tion can be used to find all get methods on an entity bean, invoke them and
populate a map for the client. If a developer would prefer not to use the Reflec-
tion API, then implementing the Attribute Access method cannot be done
generically for CMP. The developer will need to interlace his Attribute Access
implementation with IF statements that call hard-coded get/set methods on the
entity bean, depending on the key-value string.

In order to make the Attribute Access implementation code reusable across
all entity beans, a superclass can be used to implement the interface methods,
which are completely generic, whether we use the reflection method or the
internal map of attributes style of implementation. All entity beans wanting to
make use of the Attribute Access services need only to subclass the superclass
implementation, thus automatically exposing this unified interface to their
attributes with no extra coding required.

The final piece of the puzzle is how to name the keys, which identify the
attributes of an entity bean. Not only do the attributes need to be identified by
key, but both the logic that accesses an entity bean via the attribute access
interface and the entity bean itself need to agree on the naming conventions.
Some sort of “contract” is required between client and server. Several possibil-
ities are discussed:

�� Establish a consistent, well-documented naming convention. The
client and the entity bean can agree upon a well-documented, consis-
tent naming convention for attributes. For an Account entity bean,
“com.bank.Account.accountName,” or simply “accountName” would be an
example of a consistent convention. The drawback with this approach
is that the contract exists in the minds of developers and on paper only.
When developing, it is easy to misspell the attribute name, resulting in
costly development errors that are hard to track down.

�� Define static final member variables in the entity bean remote or
local interface. An entity bean client can make calls to the entity bean
using references to static final variables containing the correct key-
string required to get an attribute. For example, in order to retrieve the
attributes from an Employee entity bean; a session bean could use the
following code:

//Ask employee for personal attributes

Collection aCollection = new ArrayList();

aCollection.add(Employee.NAME);

aCollection.add(Employee.EMAIL);

aCollection.add(Employee.SEX);

36 Chapter One

aCollection.add(Employee.SSN);

Map aMap = employee.getAttributes(aCollection);

Where the entity beans local interface contains the following definitions:

public interface Employee extends EJBLocalObject, AttributeAccess

{

//Since attributes are stored in a hashmap in the entity bean,

//we need a central place to store the ‘keys’ used to reference

//attributes, so that the clients and the entity bean won’t need

//need to be hard-coded with knowledge of the attribute key strings

public final static String ID = “EMPLOYEEID”;

public final static String NAME = “NAME”;

public final static String EMAIL = “EMAIL”;

public final static String AGE = “AGE”;

public final static String SSN = “SSN”;

public final static String SEX = “SEX”;

...

}

This approach works great for the DTO factory approach, where a ses-
sion bean is querying the entity bean directly for its attributes, with the
intention of returning a hard-coded data transfer object to the client,
instead of a HashMap. Here, only the session bean and the entity bean
need to agree on the names of the attribute keys, making the local/
remote interface a good place to localize names of the attributes. This
approach breaks down when using the Data Transfer Hashmap pattern,
since the client also needs to know the names of the key-values, but the
client does not have access to the entity bean’s remote/local interface.

�� Shared class with static final member variables. Here we can create a
class that is shared by both the client classes and the server classes,
which is used to encapsulate the actual strings used to populate and
read strings from a HashMap behind a hard-coded final static variable,
accessible by both client and server. For example, a client would query
a hashmap for an attribute as follows:

accountMap.get(Names.ACCOUNTBALANCE)

Where the shared class called Names would look like:

public class Names {

public final static String ACCOUNTBALANCE = “BALANCE”;

...

}

EJB Layer Architectural Patterns 37

One disadvantage to this method is that should the key mappings need
to be updated or added to, the new class would need to be redistributed
to the client and the server (and their JVM would thus need to be
restarted).

�� Place the Attribute contract in a JNDI tree. In this approach, a single-
ton of sorts is maintained by placing a class containing the keys in a
JNDI tree, accessible by client and server. Client and server code would
not need to be recompiled or rebooted, when keys were changed/
updated, since a central object in a JNDI tree would always contain the
freshest copy of keys. The trade-off with this solution is the overhead
incurred in grabbing the contract from the JNDI tree whenever key-
values are required.

The Generic Attribute Access pattern has many advantages:

�� One interface across all entity beans. Entity bean clients can manipulate
entity beans consistently via the attribute access interface, simplifying
client code. Entity beans are also simplified, because the attribute access
can be encapsulated in a superclass.

�� Scales well to large entity beans. Whether an entity bean has 20 or
2000 attributes, attribute access logic is simplified to just a few lines.

�� Low cost of maintenance over time. New views of server-side data can
be created that do not require any server-side programming. Clients can
dynamically decide which attributes to display.

�� Allows for dynamic addition of attributes at run time. When using
BMP, this pattern can easily be extended to allow for the ability to add
and remove attributes from an entity bean dynamically. This can be
achieved by adding an addAttribute and removeAttribute method to the
interface, which simply performs operations on the attribute HashMap.

Like all patterns, using Generic Attribute Access has its trade-offs:

�� Additional overhead per method call. For each attribute call, clients
must use an attribute key to identify attributes. Finally, attributes need
to be cast to their appropriate type after being extracted from the
HashMap object.

�� Need to maintain a contract for attribute keys. Since attributes are
requested by string, clients need to remember the key-strings used to
identify attributes. Defining a key-attribute contract (discussed earlier
in this pattern), can alleviate these dependencies.

�� Loss of strong typing/compile-time checking. When we use DTOs,
values passed by gets or sets are always of the correct type; any errors
would be passed at compile time. When we use Generic Attribute

38 Chapter One

Access, attribute access must be managed by the client at run time by
casting objects to their correct type and associating the correct attribute
type with the correct key.

Overall, the Generic Attribute Access pattern provides a generic method of
managing the state of entity beans, eliminating the bulky repetitive code asso-
ciated with domain-specific entity bean data access.

Related Patterns
Property Container (Carey, et al., 2000)
Data Transfer HashMap

EJB Layer Architectural Patterns 39

Business Interface

The EJB specification mandates that the enterprise bean class provide an
implementation of all methods declared in the remote or local interface, but
the bean cannot directly implement these interfaces.

How can inconsistencies between remote/local interface methods
and the enterprise bean implementation be discovered at compile
time?

* * *
One of the most common errors experienced during the EJB development

process is the lack of consistency between the business method definitions in
the remote or local interfaces and implementations in the enterprise bean class.
The EJB specification requires that the enterprise bean properly implement all
the business method signatures defined in the remote/local interface, but does
not provide for an automatic way to detect problems with this at compile time.
Many types of errors can arise from this decoupling of interface definition and
implementation, including mistyping of method names, parameter types,
exceptions, inconsistent parameters, and so on. As a result, these types of
errors cannot be detected at compile time, the EJB developer must manually
maintain consistency between interface definition and bean implementation.

The errors can only be detected when using your EJB server vendor’s pro-
prietary postcompilation tool. These tools are typically used to take compiled
Java classes and test them for compliance to the EJB spec, before packaging
and deploying them. These postcompilation tools are typically slow and ardu-
ous to use, and are less viable for incremental compilation practices that devel-
opers often use to catch errors early. The end result is that development errors
are caught later on in the development process.

One solution would be to have the enterprise bean directly implement the
remote or local interface in the bean class. This would enforce consistency
between method definition and implementation, using any standard Java
compiler. Unfortunately, the EJB specification advises against this practice,
and with good reason. The remote interface extends javax.ejb.EJBObject inter-
face, and the local interface implements the javax.ejb.EJBLocalObject interface,
as shown in Figure 1.15. These interfaces define extra methods (isIdentical, get-
PrimaryKey, remove, etc), which are meant to be implemented by the EJBObject
and EJBLocalObject stubs, not by the enterprise bean class.

40 Chapter One

Figure 1.15 EJBObject and EJBLocalObject interfaces.

In order to make your bean compile, you would have to clutter your enter-
prise bean class by writing dummy implementations of these extra methods.
Furthermore, if the enterprise bean class directly implemented the remote or
local interface, the bean could be directly cast to one of these interfaces, allow-
ing a developer to pass an instance of this to a client. This behavior is not
allowed by the EJB specification. To pass a reference to oneself, a bean needs to
first get a reference to itself by calling getEJBObject or getEJBLocalObject from
the SessionContext or EntityContext interface.

EJB developers should not implement the remote or local interfaces directly
in their enterprise bean class, but developers need a mechanism that would
allow compile-time confirmation of consistency between remote/local inter-
face method definitions and implementations in the bean class.

getEJBLocalHome()
getPrimaryKey()
isIdentical(obj)
remove()

<<interface>>
javax.ejb.EJBLocalObject

getEJBHome()
getHandle()
getPrimaryKey()
isIdentical(obj)
remove()

<<interface>>
javax.ejb.EJBObject

<<interface>>
java.rmi.Remote

businessMethod1()
businessMethod2()
....

<<interface>>
Remote

<<interface>>
Local

businessMethod1()
businessMethod2()
....

EJB Layer Architectural Patterns 41

Therefore:

Create a superinterface called a business interface, which defines
all business methods. Let both the remote/local interface and the
enterprise bean class implement this interface, forcing compile-time
consistency checks.

A business interface is a plain Java interface that defines the method signa-
tures for all the business methods that an enterprise bean chooses to expose.
The business interface is implemented by the remote or local interface, and the
enterprise bean class, as shown in Figure 1.16. By creating this superinterface,
errors in consistency between the method signature definitions in the remote/
local interface and the enterprise bean class can be caught at compile time.

The business interface does not implement javax.ejb.EjbObject or javax.ejb.
EJBLocalObject, so the bean class developer does not have to implement dummy
methods. Furthermore, the developer cannot cast the bean class directly to its
remote or local interfaces, keeping the bean developer from passing this to its
clients.

Figure 1.16 Business interface for remote and local beans.

businessMethod1()
 throws RemoteException()
businessMethod2()
 throws RemoteException
....

<<interface>>
BusinessRemote

<<interface>>
javax.ejb.EJBLocalObject

getEJBHome()
getHandle()
getPrimaryKey()
isIdentical(obj)
remove()

<<interface>>
javax.ejb.EJBObject

<<interface>>
java.rmi.Remote

<<interface>>
Remote

businessMethod1()
businessMethod2()
....

<<interface>>
BusinessLocal

getEJBHome()
getPrimaryKey()
isIdentical(obj)
remove()

<<interface>>
Local

EnterpriseBean

attribute1
attribute2
...

businessMethod1()
businessMethod2()
....
//EJB Methods
....

EnterpriseBean

attribute1
attribute2
...

businessMethod1()
businessMethod2()
....
//EJB Methods
....

42 Chapter One

The business interface pattern differs slightly, depending on whether the
enterprise bean exposes its business methods on the local interface or the
remote interface. If the entity bean exposes the remote interface, all method
signatures on the business interface need to throw java.rmi.RemoteException
(but do not need to extend java.rmi.Remote). Note that the method implemen-
tations in the enterprise bean class should not throw RemoteException, this has
been deprecated by the EJB specification. Instead, business methods can throw
EJBException from within the body of a method, without declaring it in the
throws clause, since EJBException is a subclass of RuntimeException.

When using the business interface with a local interface, the business inter-
face need not implement any other interface, and the business method signa-
tures can be written without any special rules.

There is one dangerous side effect of using the Business Interface pattern.
For methods whose return values are the remote/local interface of the bean
itself, implementing the business interface allows the bean developer to return
this without any compile-time problems being detected. This is possible
because both the bean class and the remote/local interface implement the
business interface. Returning this is always caught at compile time when the
Business Interface pattern is not used (since the bean class doesn’t implement
the remote/local interface). Thus, special care must be taken by bean developers
using a business interface pattern to not return this, or unpredictable errors can
occur at run time.

The Business Interface pattern is a common pattern in EJB development. It
allows developers to catch common programming errors at compile time, ensur-
ing consistency between business method definition and implementation.

EJB Layer Architectural Patterns 43

45

Inter-tier data transfer patterns answer the fundamental question: How can
you get data from the server to the client and back? The notion of transferring
copies of server-side data across tiers can be very confusing for first-time
developers of distributed systems, because there isn’t really a similar paradigm
in non-distributed Java application development world.

This chapter covers the following patterns:

Data Transfer Object. The essential design pattern. Discusses why, how,
and when to marshal data across the network in bulk bundles called
data transfer objects (DTOs). The two follow-up patterns (Domain and
Custom DTO) provide guidance about how DTOs should be designed.

Domain Data Transfer Object. Interacting with the domain model is an
intuitive practice that is unfortunately a performance killer in the EJB
world (see the Session Façade pattern for explanation). The Domain
DTO pattern describes how DTOs can be used to marshal domain model
copies to the client in place of the domain objects themselves.

Custom Data Transfer Object. The opposite approach to domain DTOs,
custom DTOs do not represent any server-side domain object, rather,
they are structured according to the needs of the client.

Inter-Tier Data
Transfer Patterns

C H A P T E R

2

Data Transfer HashMap. Discusses how HashMaps can be used as methods
of inter-tier communication, eliminating the need to write a layer of DTOs.

Data Transfer RowSet. When the data being passed to the client is read-
only and tabular, the RowSet interface provides an excellent abstraction
for passing tabular data to the client straight out of a ResultSet.

46 Chapter Two

Data Transfer Object

The client tier in an EJB system needs a way to transfer bulk data to and from
the server.

How can a client exchange bulk data with the server without making
multiple fine-grained network calls?

* * *
In any distributed application there are generally two reasons why a client

may interact with a server. The first is to read some data from the server for
display purposes; the second is to change some data on the server by creating,
updating, or removing data. In an EJB context, these types of operations typi-
cally involve the exchange of data between the client (servlet, applet, and so
on), and a session bean, entity bean, or message-driven bean.

When large amounts of data need to be exchanged, this can be achieved by
loading many parameters into a method call (when updating data on the
server), or by making multiple fine-grained calls to the server to retrieve data
(when a client needs to read data from the server). The former option can
quickly get out of hand when dealing with large amounts of parameters, and
the latter option can be a performance killer.

Imagine the scenario where a client UI needs to display a set of attributes
that live on the server; these attributes could live in an entity bean or be acces-
sible through a session bean. One way that the client could get the data it needs
is by executing multiple fine-grained calls to the server, as shown in Figure 2.1.

Figure 2.1 An inefficient way to get data from the server.

Client EJB
Network

getAttribute1()

getAttribute2()

getAttribute4()

getAttribute5()

getAttribute3()

Inter-Tier Data Transfer Patterns 47

The problem with this approach is that each call to the server is a network
call, requiring the serialization and deserialization of return values, blocking
on the client while the EJB server intercepts the call to the server and performs
transaction and security checks, and of course the retrieval of the attribute in
question. Furthermore, each method call might actually execute in its own
separate transaction if the client is not using Java Transaction API client-
demarcated transactions.

Executing multiple network calls in this fashion will contribute to signifi-
cant degradation in performance. A better alternative is required, one that
would allow the client to get all the data it required in one bulk call.

Therefore:

Create plain Java classes called data transfer objects, which contain
and encapsulate bulk data in one network transportable bundle.

A data transfer object is a plain serializable Java class that represents a snap-
shot of some server-side data, as in the following example:

import java.io.Serializable;

public class SomeDTO implements Serializable {

private long attribute1;

private String attribute2;

private String attribute3;

...

public long getAttribute1();

public String getAttribute2();

public String getAttribute3();

...

}//SomeSTO

Data transfer objects can be used both for the reading operations and the
updating operations in a distributed system. When a client needs to update
some data in the server, it can create a DTO that wraps all the information the
server needs to perform the updates, and send it to the server (usually to a ses-
sion façade) for processing. Of course, it could also send data to the server
using zillions of fine-grained parameters, but this is a very brittle approach.
Whenever one parameter needs to be added or removed, the method signa-
ture needs to change. By wrapping method parameters with a DTO, changes
are isolated to the DTO itself.

Where data transfer objects are clearly needed is for reading operations.
When a client needs to read some server-side data (usually for the purpose of

48 Chapter Two

populating a client-side UI), the client can get all the data it needs in one bulk
network call by wrapping the data in data transfer object form.

Using the previous example, the server-side EJB would create a DTO (as
shown in Figure 2.2) and populate it with the attributes that the client
required. This data would then be returned to the client in one bulk return
value—the data transfer object. Data transfer objects are basically “envelopes,”
used to transport any kind of data between the tiers in a J2EE system.

A common problem that developers face when using data transfer objects is
choosing what granularity to design into them. That is, how do you choose
how much data to wrap with a DTO? At what point do you decide that a DTO
is necessary? As the primary method of exchange between client and server,
data transfer objects form part of the interface that separates client developers
and server developers. At the beginning of a project, client and server devel-
opers need to agree on the data transfer object design at about the same time
they need to decide upon what EJB interfaces to use. Despite this need, design-
ing data transfer objects at the beginning of a project can be difficult since
developers often don’t completely understand exactly what units of data
should be transferred between the client and server.

An easy way to start in designing data transfer objects is as copies of server-
side entity beans (or domain objects), as described in the Domain Data Transfer
Object pattern. Designing domain data transfer objects is easy, because project
teams usually have a good idea of the domain model that a project will utilize
early on, since these requirements are established in the initial design phases
of a project. Thus, making Domain DTOs the unit of exchange between client
and server can help get a team up and running more quickly.

Figure 2.2 An efficient way to read data from the server.

Client EJBSomeDTO

Network

getAttribute1()

getAttribute2()

getSomeDTO()

getAttribute3()

Inter-Tier Data Transfer Patterns 49

Ultimately, data exchanged between the client and server should be
designed to fit the client’s needs. Thus, as the project progresses and the needs
of the clients become finalized, domain data transfer objects often become
cumbersome as units of exchange, too coarse-grained to be useful to the fine-
grained needs of the client. A client may need access to data that simply isn’t
encapsulated in any domain data transfer objects. At this point, developers can
design custom data transfer objects, that is, data transfer objects that wrap arbi-
trary sets of data, completely driven on the particular needs of the client.

The differences between these two design paradigms can have significant
impact on the design of the application as a whole. Although they represent con-
tradictory approaches, they can and usually do coexist in any J2EE application.

When deciding where to put the logic to create and consume data transfer
objects, the Data Transfer Object Factory pattern illustrates a proven and main-
tainable solution. One major issue that occurs with any sort of data transfer
across tiers (be it with DTOs, HashMaps, or RowSets), is that as soon as the
data reaches the client, it has the potential of being stale. The Version Number
pattern (see Chapter 3) can help protect against problems with staleness.

Related Patterns
State Holder
Value Object (Alur, et al., 2001)
Details Object

50 Chapter Two

Domain Data Transfer Object

A client wants to access and manipulate data from the server-side domain
object model.

How can a client access and manipulate the server-side domain
(entity bean) object model without the performance overhead of
remote calls?

* * *
A domain model, or domain object model refers to the layer of objects in

your system that map to real-world concepts, such as a person, a bank account,
or a car. In an EJB setting, the most common example of a domain model is
your application-specific layer of entity beans. A domain object in this sense is
a particular entity bean, such as a Car entity bean. Other technologies for cre-
ating domain models can also be used in an EJB setting, such as Java data
objects, data access objects, or the proprietary domain object layer provided by
an object-relational mapping tool.

In a distributed scenario, domain object models live completely on the
server. However, depending on the implementation technology chosen (entity
beans, JDO, and so forth), a domain object model can manifest itself into two
types: one that can be accessed by clients remotely across a network (entity
beans), and one that cannot be accessed by clients remotely (JDO, proprietary
frameworks, and so on). For the latter, only other business components living
on the server can access the domain model.

Entity beans are remotely accessible. A client can access an EJBObject stub
that maintains a direct connection to a particular entity bean living on the EJB
server across a network. However, as explained in the Session Façade pattern,
accessing entity beans remotely is a very poor practice. The most powerful
way to optimize on entity bean access is not to access entity beans from the
client at all. Instead, a client would execute a method on a session façade,
which would directly interact with entity beans through their local interfaces,
allowing complex operations to be completed in one network call. When we
use the Session Façade pattern, entity beans are thus no longer accessible by a
client across a network.

This addresses the performance problems associated with using entity
beans directly from clients, but puts the client in a difficult situation: If the
client cannot access entity beans (or any type of domain object), how can it
work with the same data object abstractions (the same domain model) on the
client side as are being used on the server side? How is a client to read and dis-
play the attributes of a particular domain object that lives on the server side,
and work with this data using the same object-oriented semantics on the client
side?

Inter-Tier Data Transfer Patterns 51

For example, consider a car dealership application, in which the business
requirements of the system define the notion of a Car and a Manufacturer,
implemented as entity beans on the server side. For the client-side portion of
this application, the most intuitive thing to do would be to also display and
update similar Car and Manufacturer abstractions on the client side. A client
would like to read data from Car and Manufacturer, update values on Car and
Manufacturer, and naturally traverse relationships to other related entity
beans if it needed data from them.

Performance concerns require that the client not have direct access to the
entity bean domain object model, and other types of object domain models
cannot even be accessed remotely. However, to be able to work with an appli-
cations domain model on the client side is desirable. Thus, a mechanism is
needed to allow clients to traverse and manipulate the same data object
abstractions as exist on the server.

Therefore:

Design data transfer object copies of the server-side domain objects
(entity beans). Clients may operate on local DTO copies of domain
object data, performing bulk reads and updates.

Domain data transfer objects are a special application of the Data Transfer
Object pattern. Whereas the Data Transfer Object pattern simply says to use
DTOs to exchange data between client and server, the Domain Data Transfer
Object pattern says that data transfer objects can be used to provide clients
with optimized local access to data transfer object copies of server-side
domain objects. Thus, domain data transfer objects have one-to-one corre-
spondence with domain objects on the server side. If you have an Account
entity bean, then you will have an Account DTO, as shown in Figure 2.3.

Figure 2.3 Account EJB and Account domain DTO.

accountNumber
name
password
balance

//ejb methods
ejbLoad()
ejbStore()
...

AccountBean

accountNumber
name
password
balance

getAccountNumber()
getName()
getPassword()
getBalance()
setAccountNumber()
setName()
setPassword()
setBalance()

AccountDTO

52 Chapter Two

Using domain data transfer objects provides a simple way for clients to
interact with the entity bean object model in a distributed application:

�� Displaying entity bean data. When a client wants to display the data
from an Account entity bean, it could call a getDTO method on Account,
which would retrieve an AccountDTO, containing a copy of all the
attributes of the account entity bean. The client could then perform
multiple get calls on this local data transfer object, without the burden
of network calls.

�� Modifying entity bean data. If a client wants to modify the contents
of the Account entity bean, it would perform its update by calling set
methods on its local copy of the AccountDTO, then pass this updated
data transfer object to the server for merging with the Account entity
bean.

�� Displaying data from that spans related entity beans. Entity beans can
contain references to other entity beans in a one-to-one, one-to-many, or
many-to-many fashion. Often a client will be interested in getting data
from multiple related entity beans, but manually traversing the entity
bean objects to get separate data transfer object copies would involve
significant network call overhead. A better solution would be to assem-
ble a data transfer object copy of these related entity beans on the server
side, and pass it to the client in one network call. This can be achieved
by using special data transfer objects called aggregate data transfer objects
(domain data transfer objects that contain references to other domain
data transfer objects). Aggregate data transfer objects can be created
that contain data transfer object copies of hierarchies of related entity
beans. The client would navigate this local hierarchy of data transfer
objects just as it would navigate the remote entity beans themselves.

�� Creating entity beans. To create a new Account, a client could locally
create and populate an AccountDTO, and pass this object to the session
façade, which would use it in the ejbCreate method on AccountHome.
The less maintainable alternative would be to pass all the attributes of
Account as method parameters to the session façade and then to ejb-
Create(). For example, which looks more maintainable: ejbCreate(attrib1,
attrib2, attrib3, attrib4, attrib5, ...), or ejbCreate(aDTO)?

Much debate has arisen as to whether domain data transfer objects should
be mutable or immutable. That is, should a client be allowed to modify a domain
DTO (by calling set methods on it), or should domain DTOs be read-only, with-
out set methods. When using domain DTOs, it makes sense to make them
mutable. The client knows it is interacting with a client-side copy of an entity
bean, it can read and update the data transfer object as though it were doing so

Inter-Tier Data Transfer Patterns 53

on the entity bean itself. Since the client knows the data transfer object came
from the server, it is reasonable to give it the responsibility of knowing to send
the DTO back to the server once modifications have been made. Where
immutable data transfer objects make sense is when data transfer objects don’t
represent server-side entity beans, as in the Custom Data Transfer Object
pattern. Here, data transfer objects simply represent arbitrary collections of
read-only data.

Designing domain data transfer objects as copies of server-side entity beans
has the following benefits:

�� Domain model data structures are replicated to client in one network
call. Copies of entity beans and even multiple entity beans can be
assembled on the server and passed to the client in one network call.
The client can then traverse the local data transfer objects, reading and
updating them without incurring network call overhead. A client can
then update the server by passing the data transfer object back.

�� It is easy to quickly build a functional site. Early in the development
process, the specific data access needs of the client are unclear and
always changing. Whereas the needs of the client UIs are unclear, the
application’s entity bean’s object model has usually already been built.
A functional application can quickly be built using the entity bean data
transfer objects as the medium of exchange between client and server.

�� Client-side attribute validation. Syntactic validation of entity bean
attributes can be performed on the client side by embedding this vali-
dation logic in domain data transfer object set methods. This allows
errors with entity bean editing and creation to be caught on the client
side instead of using up a network call only to have exceptions be
thrown from the server. Of course, the semantic/business validation
of attributes still needs to occur, and this generally can only be done
on the server.

The process also has the following trade-offs:

�� Couples the client to the server-side domain object model. With the
Domain Data Transfer Object pattern, a client is working with a direct
copy of a server-side domain object (entity bean). Thus, session façade
or not, the client is effectively coupled to object model that lives on the
server. If an entity bean is changed, its corresponding data transfer
object must be changed, thus any clients using that data transfer object
must be recompiled.

�� Does not always map well to the needs of clients. The entity bean
object model used on the server side often does not map well to the
client’s needs. Different UIs may require different sets of data that simply

54 Chapter Two

don’t map to “bundles of data” that entity bean data transfer objects
provide. A client may want one or two attributes of an entity bean that
has 20 attributes. To use a domain DTO to transfer 20 attributes to the
client when only two are needed is a waste of network resources.

�� Results in a parallel hierarchy. Domain DTOs duplicate objects in the
domain model, resulting in duplicate attributes and methods.

�� Cumbersome for updating domain objects. Merging changes from an
aggregate data transfer object (a domain object that contains other
domain objects) is difficult and cumbersome. What if only one domain
data transfer object deep in the tree was changed? Ugly code needs to
be written to detect this.

The reader may have noted that the above examples have implied that
domain data transfer objects could be created and consumed by the entity
beans themselves. Back in the EJB 1.X days (before entity beans had local inter-
faces), it was common to see entity beans expose a getDTO and a setDTO
method, instead of fine-grained getAttribute/setAttribute methods. Every entity
bean in an application housed logic that created a data transfer object copy of
itself (getDTO) and logic that updated itself based on changed values in a data
transfer object (setDTO). The reason was that all calls to an entity bean were
potentially remote calls, even if they came from session beans or other entity
beans collocated in the same server. The Data Transfer Object pattern arose out
of this need to optimize calls to entity beans, be they from non-ejb clients or
from other session and entity beans. With the introduction of EJB 2.0 local
interfaces, session beans and other entity beans no longer need to use data
transfer objects to optimize entity bean data access. Instead, they can simply
use fine-grained getAttribute/setAttribute methods on the entity bean, now data
transfer objects can be used properly: to exchange domain object copies
between client and server.

Since domain data transfer objects should not be created and consumed on
the domain objects themselves, this raises the question: Where should data
transfer objects be created and consumed? The Data Transfer Object Factory
pattern provides a best practice for this type of code. Another related pattern
is the Custom Data Transfer Object pattern, which takes the opposite perspec-
tive to the Entity Bean Data Transfer Object pattern: Data transfer objects
should be immutable and map to the specific needs of the client, not the
domain model.

Inter-Tier Data Transfer Patterns 55

Custom Data Transfer Objects

A client finds that the domain object model and associated domain data trans-
fer objects don’t map well to its needs.

How can data transfer objects be designed when domain data transfer
objects don’t fit?

* * *
The Data Transfer Object pattern introduced the notion of using a data

transfer object to pass bulk data between the client and server. The Data Trans-
fer Object pattern described a common method of designing data transfer
objects—by mapping directly to the object model used on the server side.
Although this method of designing data transfer objects works well early on in
a project, EJB clients often have much more fine-grained data access needs.

For example, consider a Car entity bean. A car could potentially be
described by hundreds of attributes (color, weight, model, length, width,
height, year, etc.). In most typical scenarios, a client is only interested in a small
subset of those attributes. For example, consider a Web page that lists a car’s
model, year, and type. To populate this page, it would be extremely wasteful
to transfer a CarValueObject (with all its attributes) to the client, when it only
wants to list three simple attributes from the car.

A client may have even more complicated needs. Imagine a client that
required just one or two attributes from five different related entity beans. In
order to optimize network calls, a data transfer object representation could be
constructed on the server side that wraps all the required data into one network
transportable bundle. One solution would be to create a data transfer object
that contains links to other domain data transfer objects. Thus the hierarchy of
entity beans on the server side would be copied into a symmetric hierarchy
of domain data transfer objects. This approach is terrible for performance and
cumbersome in practice. If a client only needs one or two attributes from each
server-side entity bean, transferring the complete domain object model as data
transfer objects to the client would waste time and network bandwidth.

Another problem is that often a client may be require data that comes from a
variety of data sources other than the domain objects on the server. Data sources
such as straight JDBC calls and Java Connector Architecture (JCA) adapters, also
need to be wrapped in data transfer objects and returned to the client.

Therefore:

Design custom data transfer objects that wrap arbitrary sets of data
as needed by the client, completely decoupled from the layout of the
domain model on the server.

56 Chapter Two

Custom data transfer objects are just like normal data transfer objects,
except that they are typically immutable and don’t map to any specific data
structures on the server (in contrast to mutable domain data transfer objects).
Custom data transfer objects advocate a use-case-driven approach, in which
data transfer objects are designed around the needs of the client.

From the Car example, imagine that a client only wanted to display the
attributes of a car that related to its engine. In this case, a data transfer object
that wraps those particular attributes should be created and passed to the
client. This custom data transfer object would contain a subset of the car’s
attributes, as shown in Figure 2.4.

In general, if an EJB client requires attributes X,Y, and Z, then a data transfer
object that wraps X,Y, and Z, and only those attributes would be created. With
this approach, a data transfer object acts as contract that provides the client
with the data it needs, while encapsulating the data that the server has. Cus-
tom data transfer object design works perfectly with the Session Façade pat-
tern, in which the details of the entity bean object model are hidden behind a
set of session beans. The correct way to think of data transfer objects in this
respect is merely as data and not as representing any server-side business
abstraction such as an entity bean. If all of the data happens to come from one
entity bean, fine, but if not, it’s the server’s problem how to populate the data
transfer object and this doesn’t concern the client.

Figure 2.4 A Custom data transfer object wrapping a subset of data.

color
weight
model
length
width
height
year
horsepower
volume
engine type
engine model
...

//ejb methods
ejbLoad()
ejbStore()
...

CarBean

horsepower
volume
engine type
engine model

getHorsePower()
getVolume()
getEngineType()
getEngineModel()

CarEngineDTO

Inter-Tier Data Transfer Patterns 57

A typical J2EE application will have a proliferation of custom DTOs, so
many so that often developers may be willing to accept slightly more coarse-
grained DTOs (that may contain more attributes than needed) rather than
writing new custom DTOs from scratch. As long as there is not too much
redundant data being returned, this practical approach is fine. As with any
pattern, it is up to the developers to balance the concerns of maintenance
versus performance in deciding how far to go in its use.

Custom data transfer objects are typically used for UI-specific read-only
operations, and are made immutable. That is, custom DTOs cannot be
changed; they are only for display purposes. Since a custom data transfer
object is merely a grouping of data, and not really related to any server-side
business object, it doesn’t make sense to update it. Typically, updates are done
via entity bean data transfer objects (since they represent real business objects
and can encapsulate validation logic) or through use-case-specific methods on
session façades.

Custom DTOs are almost always created via a DTOFactory (see the Data
Transfer Object Factory pattern), and are tied to the specific needs of the client.

58 Chapter Two

Data Transfer HashMap

A client needs to exchange bulk data with the server in a generic fashion.

How can arbitrary amounts of data be efficiently transferred across
tiers in a generic fashion?

* * *
As discussed in the Data Transfer Object and Session Façade patterns, per-

formance in an EJB system is realized by minimizing the number of network
calls required to execute a given use case. In particular, data transfer objects
provide a way to transfer data across a network in bulk, keeping the client
from executing more than one network call to an EJB in order to send or
receive some data.

The most common way to use DTOs is to use custom DTOs with a DTO-
Factory. Here, a new DTO is written for every new use case in the system,
providing the client with an object-based wrapper that acts as an envelope to
transfer whatever data the use case requires. Despite the simplicity of this
approach, using DTOs in this manner also suffers from several drawbacks:

�� High cost of change over time. The use cases in an application change
over time. Different clients may need to access different views or sub-
sets of server-side data than were initially programmed. When we use
the custom data transfer object approach (even with DTOFactories),
server-side code (such as new DTOs and associated creation logic) must
be written to satisfy the changing data access needs of the client. Once
an EJB project has been launched, access to server-side programmers
tends to be expensive, as is the EJB redeployment process.

�� Need to create a data transfer object layer. Data transfer objects create a
new layer, which can explode to thousands of objects in a large applica-
tion. Imagine a distributed system with 30 entity beans. Each of those
30 entity beans would likely have a domain DTO to marshal their state
to and from the client tier. The application’s use cases may also require
that data from those entity beans be used in several custom DTOs.
Thus, a medium-sized system could require hundreds of DTOs, each
with a particular Factory method to create it. Since the DTO layer gen-
erally represents attributes in the entity bean layer, changes in entity
bean attributes will cause ripples that could require changes in multiple
DTOs as well. In large applications, the DTO layer can prove to be very
difficult to maintain.

�� Client UIs tightly coupled to the server. When using custom DTOs,
each client UI is tightly coupled to the DTO it uses to populate itself.
When the DTO changes, the client needs to be recompiled, even if the

Inter-Tier Data Transfer Patterns 59

changes don’t necessarily affect that particular client. On a typical
system with tons of different UIs (imagine a large Web site with many
JSPs), that represents a lot of dependencies that need to be maintained.

If the domain of an application is relatively simple, data transfer objects are
a great way to get the job done. If your domain requirements are more com-
plex, an alternative to data transfer objects may be needed; one that decouples
the data being transferred from the object that contains the data, but still
allows bulk access and transport of data across tiers.

Therefore:

Use HashMaps to marshal arbitrary sets of data between the client
and the EJB tier.

Plain JDK HashMaps (available since JDK 1.2) provide a generic, serializ-
able container for arbitrary sets of data, that can replace an entire layer of data
transfer objects. The only dependency in client and server-side code is the
naming conventions placed on the keys used to identify attributes, described
later in this pattern.

Clients request HashMaps by going through the session façade. For example,
for the use case of getting all data in an account, a client would call a getAccount-
Data method on the session façade, which would return a HashMap populated
with all the data in an account, as shown in Figure 2.5. Updates can be made
on the same HashMap locally. Once updates are complete, the client simply
passes the updated HashMap back to the session façade for updating.

Figure 2.5 Using a data transfer HashMap.

Client SessionFacadeAccountHashMap

Network

get("name")

get("accountNumber")

get("password")

get("balance")

put("balance", new Integer 123)

setAccountDate(asHashMap)

getAccountData()

60 Chapter Two

Instead of implementing custom data transfer objects for every use case, a
client can simply be passed a HashMap that contains different sets of data, as
needed by the particular use case. For example, if a client needs a smaller sub-
set of data than a HashMap with all the Account attributes, the session façade
can simply be coded to return a HashMap with fewer attributes.

Using a HashMap instead of a data transfer object comes at the cost of addi-
tional implementation complexity, since the client now needs to explicitly
know the strings used as keys to query the HashMap for the attributes of inter-
est. Furthermore, both the session façade and the client need to agree on the
strings to be used to populate and read from a HashMap. For a discussion of
common solutions to this problem, see the Generic Attribute Access Pattern.

The advantages of using HashMaps for data transfer are:

�� Excellent maintainability—eliminates the data transfer object layer.
The extra layer of domain-specific data transfer objects and all that
repetitive data transfer object creation logic is now eliminated in favor
of the generic reusable map and attribute access interfaces. This repre-
sents a potential reduction of thousands of lines of code, particularly
when used in conjunction with the Generic Attribute Access pattern.

�� One data object (map) across all clients. A map of attributes is reusable
from the session façade down to the JSPs. In particular, using a map as
a data container significantly reduces the complexity of the JSP code,
because pages don’t need to be written with use-case-specific data
transfer objects that are tightly coupled to the entity bean layer.

�� Low cost of maintenance over time. New views of server-side data can
be created that do not require any server-side programming. Clients can
dynamically decide which attributes to display.

The trade-offs of using HashMaps for transferring data across the network
are:

�� Need to maintain a contract for attribute keys. Whereas attribute
names are hard-coded in the get methods of a DTO, clients need to
remember the key-values of attributes when using a HashMap. Further-
more, the client and server need to agree on the keys, creating an extra
dependency between client and server. Good and thorough documenta-
tion can also help alleviate these problems.

�� Loss of strong typing/compile-time checking. When we use data trans-
fer objects, values passed by gets or sets are always of the correct type;
any errors are passed at compile time. When we use HashMaps,
attribute access must be managed by the client at run time by casting
objects to their correct type and associating the correct attribute type
with the correct key.

Inter-Tier Data Transfer Patterns 61

�� Primitives need to be wrapped. Primitive attributes such as int, double,
and long cannot be stored in a map, since they aren’t a subclass of
Object. Primitives need to be manually wrapped with the appropriate
object (Integer for ints, Long for long, Double for double, and so on)
before being placed into a map.

�� Casting required for every read. Whenever data is read from a
HashMap, it needs to be cast from Object to the appropriate type. This
can complicate client code and reduce performance.

Using HashMaps for genericising a DTO layer comes with some very
pyrotechnic advantages as well as disadvantages. Most developers find them-
selves most comfortable using proper data transfer objects. They have well-
understood usage patterns, and it is very difficult for client-side developers to
make mistakes when using them. Data transfer HashMaps are a double-edged
sword that solve many maintenance problems but also add others. The deci-
sion on which method to use is a judgment that should be made based on your
own project needs.

62 Chapter Two

Data Transfer RowSet

When using JDBC for Reading, relational data needs to be transferred across
the network tier from the session façade to the client.

How can relational data be transferred to the client in a generic, tab-
ular format?

* * *
The JDBC for Reading pattern advocates the practice of using session beans

to perform straight JDBC calls to the database (instead of querying through the
entity bean layer) when performing a common read-only listing of tabular
data, such as populating tables on HTML pages or applets. This practice can
improve performance if you are using BMP, or if your CMP engine does not
support the bulk loading of entity bean data, or if you cannot make use of
entity bean caching (see the JDBC for Reading pattern for more info).

With the session façade performing JDBC calls, the question then becomes:
What is the best way to marshal this data across to the client? The most com-
mon solution is to use data transfer objects. For example, consider the
Employee/Department example used in the JDBC for Reading pattern. Here
we want to populate a table that lists all employees in a company with their
department, as shown in Figure 2.6.

Data transfer objects can be used to populate this table by creating a custom
EmployeeDepartmentDTO, which looks like the following:

public class EmployeeDepartmentDTO {

public String employeeName;

public String employeeTitle;

...

public String departmentName;

public String departmentLocation;

...

}

Figure 2.6 HTML table of employees.

Employee

Adam Berman
Eileen Sauer
Ed Roman
Clay Roach

Department

Development
Training

Management
Architecture

Inter-Tier Data Transfer Patterns 63

Here, the session bean will perform a JDBC call to get a ResultSet that con-
tains information about an employee and his or her department. The session
bean will then manually extract fields from the ResultSet and call the neces-
sary setters to populate the DTO. Each row in the ResultSet will be transferred
into a DTO, which will be added to a collection. This collection of DTOs now
forms a network-transportable bundle, which can be transferred to the client
for consumption.

As explained in the Data Transfer HashMap pattern, using DTOs as a data
transport mechanism causes maintainability problems because of the often
very large DTO layer that needs to be created, as well as the fact that client UIs
are tightly coupled to the DTO layer. When using JDBC for Reading, DTOs suf-
fer an additional problem:

�� Performance: tabular to Object Oriented (OO) and back to tabular is
redundant. With the data already represented in rows in tables in a
result set, the transferring of the data into a collection of objects and
then back into a table (on the client UI) consisting of rows and columns
is redundant.

When using JDBC for Reading, ideally a data transfer mechanism should be
used that can preserve the tabular nature of the data being transferred in a
generic fashion, allowing for simpler clients and simpler parsing into the client
UI.

Therefore:

Use RowSets for marshalling raw relational data directly from a
ResultSet in the EJB tier to the client tier.

Introduced in as an optional API in JDBC 2.0, javax.sql.RowSet is an inter-
face, a subinterface of java.sql.ResultSet (RowSet joined the core JDBC API as of
JDBC 3.0). What makes RowSets relevant to EJB developers is that particular
implementations the RowSet interface allow you to wrap ResultSet data and
marshal it off to the client tier, where a client can operate directly on the rows
and fields in a RowSet as they might on a Result Set. This allows developers to
take tabular data directly out of the database and have them easily converted
into tables on the client tier, without having to manually map the data from the
ResultSet into some other form (like data transfer objects) and then back into a
table on a UI, such as a JSP.

The type of RowSet implementation that can be used to pass data to the
client tier is must be a disconnected RowSet, that is, a RowSet that does not keep
a live connection to the database. One such implementation provided by Sun
is called the CachedRowSet. A CachedRowSet allows you to copy in ResultSet
data and bring this data down to the client tier, because a CachedRowSet is dis-
connected from the database. Alternately, you could create your own custom,
disconnected implementations of the RowSet or ResultSet interfaces and use
them to marshal tabular data to the client.

64 Chapter Two

In our Employee and Department example, using RowSets would allow us
to retrieve an entire table of Employee and Department data in one object and
pass that on to the client tier. Figure 2.7 illustrates how the RowSet approach
differs from the Data Transfer Object approach.

To create this RowSet, the method on the session façade that performs the
direct JDBC call would be written as follows:

...

ps = conn.prepareStatement(“select * from ...”);

ps.execute();

ResultSet rs = ps.getResultSet();

RowSet cs = new CachedRowSet();

cs.populate(rs);

return cs;

...

On the client tier, the data from the RowSet can now be directly mapped to
the columns and rows of a table.

Figure 2.7 Data transfer objects versus RowSets.

Employee

Adam Berman
Eileen Sauer
Ed Roman
Clay Roach

Department

Development
Training

Management
Architecture

Adam Berman | Development

Eileen Sauer | Training

Ed Roman | Management

Clay Roach | Architecture

Collection of
Employee

Department
Custom Date

Transfer
Objects

Single
RowSet
Object

Adam Berman
Eileen Sauer
Ed Roman
Clay Roach

Development
Training
Management
Architecture

Client side
Table Ul

OR

Inter-Tier Data Transfer Patterns 65

RowSets offer a clean and practical way to marshal tabular data from a
JDBC ResultSet, straight down to the client-side UI, without the usual over-
head of converting data to data transfer objects and then back to tabular client-
side lists.

Using RowSets as a method of marshalling data across tiers brings many
advantages:

�� RowSet provides a common interface for all query operations. By
using a RowSet, all the clients can use the same interface for all data-
querying needs. No matter what the use case is or what data is being
returned, the interface a client operates on stays the same. This is in
contrast to having hundreds of client UIs tightly coupled to use-
case-specific Custom DTOs. Whereas data transfer objects need to be
changed when the client’s data access needs change, the RowSet inter-
face remains the same.

�� Eliminates the redundant data translation. RowSets can be created
directly from JDBC ResultSets, eliminating the translation step from
ResultSet to DTO and then back to a table on the client side.

�� Allows for automation. Since the RowSet interface never changes, it is
possible to create graphical user interface (GUI) builders, such as
taglibs, that know how to render RowSets, and then reuse these same
tools over and over again across use cases. Contrast this with the DTO
approach, in which every different DTO requires custom code to dis-
play itself.

Here are the trade-offs:

�� Clients need to know the name of database table columns. Clients
should be insulated from persistence schema details such as table col-
umn names. Using RowSets, a client needs to know the name of the col-
umn used in the database in order to retrieve an attribute. This problem
can be alleviated by maintaining a “contract” of attribute names
between client and server (or very good documentation), as described
in the Generic Attribute Access pattern.

�� Ignores the domain model (not OO). The move away from the object
paradigm may seem somewhat contrary to most J2EE architectures
based on data transfer object/entity beans. After all, dumping a bunch
of data into a generic tabular object appears to be a very non-OO thing
to do. When using RowSets, we are not attempting to mirror any busi-
ness concept, the data itself is the business concept that is being pre-
sented to the user, and not any relationships between the data.

66 Chapter Two

�� No compile-time checking of query results. Rather than calling
getXXX() on a data transfer object, a client must now call
getString(“XXX”) on the RowSet. This opens up client-side develop-
ment to errors that cannot be caught at compile time, such as the
mistyping of the attribute name a client wants to retrieve from the
RowSet.

One important point to remember is that although some implementations of
the RowSet interface are updateable and can synchronize their changes with
the database, a developer should never use this facility to perform updates in
an application. Updates should be performed by passing parameters to meth-
ods on the session façade or using data transfer objects.

Another item to consider is that there is nothing magic about the javax.sql.
RowSet interface in particular, other than that it is part of the official JDBC
spec, and working implementations of it exist. Developers can write their own
RowSet-like classes (or simply wrap a CachedRowSet) and derive all the same
benefits. One reason for creating a custom implementation that does not
extend the RowSet interface is to hide all the mutator (insert/update/delete)
methods the RowSet interface exposes, since these should never be used by the
client tier.

Data transfer RowSets are only used for read-only data, in conjunction with
the JDBC for Reading pattern.

Inter-Tier Data Transfer Patterns 67

69

This chapter contains a set of diverse patterns that solves problems involving
transaction control, persistence, and performance. The chapter includes:

Version Number. Used to program your entity beans with optimistic con-
currency checks that can protect the consistency of your database, when
dealing with use cases that span transactions and user think time.

JDBC for Reading. The section on this performance-enhancing pattern dis-
cusses when to disregard the entity bean layer and opt for straight JDBC
access to the database, for performance reasons, and discusses all the
semantics involved with doing so.

Data Access Command Bean. Provides a standard way to decouple an
enterprise bean from the persistence logic and details of the persistence
store. Makes it really easy to write persistence logic.

Dual Persistent Entity Bean. A pattern for component developers, the
Dual Persistent Entity Bean pattern shows how to write entity beans that
can be compiled once and then deployed in either a CMP or a BMP
engine-simply by editing the deployment descriptors.

Transaction and
Persistence Patterns

C H A P T E R

3

Version Number

When a client initiates an update on the server side, based on data that it has
read in a previous transaction, the update may be based on stale data.

How can you determine if the data used to update the server is stale?

* * *
Transactions allow developers to make certain assumptions about the data

they handle. One of these assumptions is that transactions will operate in iso-
lation from other transactions, allowing developers to simplify their code by
assuming that the data being read and written in a transaction is fresh and
consistent.

In an EJB context, this means that when a use case is executed (usually as a
method on the session façade running under a declarative transaction), the
code can update a set of entity beans with the assumption that no other trans-
actions can modify the same entity beans it is currently modifying.

While transaction isolation works well when a use case can be executed in
just one transaction, it breaks down for use cases that span multiple transac-
tions. Such use cases typically occur when a user needs to manually process a
piece of data before performing an update on the server. Such a use case
requires an interval of user think time (that is, a user entering updates into a
form). The problem with user think time is that it is too long, which makes it
infeasible (and impossible in EJB) to wrap the entire process of reading from
the server, thinking by the user, and updating of the server in one transaction.
Instead, data is usually read from the server in one transaction, processed by
the user, and then updated on the server in a second transaction.

The problem with this approach is that we no longer have guarantees of iso-
lation from changes by other transactions, since the entire use case is not
wrapped in a single transaction. For example, consider a message board
administrative system, in which multiple individuals have moderator access
on a forum of messages. A common use case is to edit the contents of a user-
posted message for broken links or improper content. At the code level, this
involves getting a message’s data in one transaction, modifying it during user
think time, and then updating it in a second transaction. Now consider what
can happen when two moderators A and B try to edit the same message at the
same time:

1. Moderator A reads Message X in a transaction.

2. Moderator B reads Message X in a transaction.

3. Moderator A performs local updates on his copy of the Message.

4. Moderator B performs local updates on her copy of the Message.

70 Chapter Three

5. Moderator A updates Message X in one transaction.

6. Moderator B updates Message X in one transaction.

Once Step 6 occurs, all updates executed by Moderator A will be overwrit-
ten by those changes made by Moderator B. In Step 5, Moderator A success-
fully updated Message X. At this point, any copies of the message held by
other clients is said to be stale, since it no longer reflects the current state of the
Message entity bean. Thus, Moderator B updated the message on the basis on
stale data.

In a message board system, such issues may not be much cause for concern,
but imagine the ramifications of similar events happening in a medical or a
banking system—they could be disastrous. The crux of the problem here is
that the Moderator A’s and Moderator B’s actions were not isolated from each
other. Because separate transactions were used for the read and update steps,
there was no way to automatically check when the data used to update the
server was based on a read that had become stale.

Therefore:

Use version numbers to implement your own staleness checks in
entity beans.

A version number is simply an integer that is added to an entity bean (and
its underlying table) as a member attribute. The purpose of this integer is to
identify the state of an entity bean at any point in time. This can be achieved by
incrementing the bean’s version number whenever an entity bean is updated.
This incrementing of versions allows the detection of updates based on stale
data, using the following procedure:

1. Carry the version number along with any other data read from an
entity bean during read transactions. This is usually done by adding
an entity bean’s version number to any data transfer objects used to
copy its data to the client.

2. Send the version number back to the entity bean along with any
updated data. When it comes time to perform the update, carry the
original version number back with the newly updated data, and com-
pare it with the entity bean’s current version before performing any
updates.

3. Increment the entity bean’s version number when performing an
update. If the current version of the entity bean is equal to that of the
updated data from the client, then update the entity bean and incre-
ment its version.

4. Reject the update if the version numbers do not match. An update
carrying an older version number than currently in the entity bean
means that the update is based on stale data, so throw an exception.

Transaction and Persistence Patterns 71

Using version numbers in this manner will protect against the isolation
problems that can occur when a use case spans multiple transactions. Con-
sider the forum moderator example. If, before Step 1, the version number of
message X was 4, then both Moderator A and Moderator B will retrieve this
version number in their local copy of the message. At Step 5, Moderator A’s
update will succeed, since the version he is carrying (4) matches that in Mes-
sage X. At this point, Message X’s version number will be incremented from 4
to 5. At Step 6, Moderator B’s update will fail, since the version number this
moderator is carrying (4) does not match the current version of Message entity
bean X, which is currently 5.

When a stale update is detected, the usual recovery procedure is to notify
the end user that someone has beat them to the update, and ask them to reap-
ply their changes on the latest copy of server-side data.

The implementation of the Version Number pattern differs slightly, depend-
ing on the mechanisms used to access the entity beans. If we use data transfer
objects to get and set data in bulk on the entity beans directly (as done with EJB
1.X applications), then the version number is added to the DTO in the entity
bean’s getXXXDTO method, and the version number is checked with the current
version in the entity bean’s setXXXDTO method, as in the following code block:

public void setMessageDTO(MessageDTO aMessageDTO)

throws NoSuchMessageException

{

if (aMessageDTO.getVersion() != this.getVersion())

throw new NoSuchMessageException();

this.setSubject(aMessageDTO.getSubject());

this.setBody(aMessageDTO.getBody());

}

However, as discussed in the DTOFactory pattern, using DTOs as a mecha-
nism for accessing entity beans directly is a deprecated practice as of EJB 2.0.
Instead, the DTOFactory/session façade is responsible for getting data from
an entity bean and updating the entity bean by directly calling get/set methods
via the entity bean’s local interface.

Using this paradigm, a session bean is responsible for updating an entity
bean directly via its set methods; thus the entity bean can no longer automati-
cally check the version of a set of data before it updates itself. Instead, devel-
opers must adopt a programming convention and always remember to pass
the version of a set of data they are about to update before beginning the
update procedure, as in the following session bean method:

public void updateMessage(MessageDTO aMessageDTO)

{

Message aMessage;

72 Chapter Three

try //to update the desired message

{

aMessage = this.messageHome.findByPrimaryKey(

aMessageDTO.getMessageID());

aMessage.checkAndUpdateVersion(aMessageDTO.getVersion());

//update the message

aMessage.setBody(aMessageDTO.getBody());

aMessage.setSubject(aMessageDTO.getSubject());

}

catch(IncorrectVersionException e)

{

this.ctx.setRollbackOnly();

throw new StaleUpdateException();

}

catch (...)

...

}

Upon the call to checkAndUpdateVersion, the Message entity bean will check
the version with its own internal version number and throw an IncorrectVer-
sionException if the versions do not match. If the versions do match, then the
entity bean will increment its own internal counter, as in the following code
block:

public void checkAndUpdateVersion(long version)

throws IncorrectVersionException

{

int currentVersion = this.getVersion();

if(version != currentVersion)

throw new IncorrectVersionException();

else

this.setVersion(++currentVersion);

}

The version numbering scheme described here can also be thought of as
implementing your own optimistic concurrency. Instead of having entity
beans being used by a long-running use case be locked from concurrent access,
we allow multiple users to access the data, and only reject an update when we
detect that stale data was used as a basis for the update. Databases that imple-
ment optimistic concurrency use a similar scheme to allow multiple clients to
read data, only rejecting writes when collisions are detected.

Similar implementations can be found that use timestamps instead of ver-
sion numbers. These two implementations are basically identical, although
using version numbers is simpler and protects against possible problems that
can occur in the unlikely event that the server’s clock is rolled back, or if the
database date and time come down to a small enough interval to eliminate the
possibility of invalid staleness checks.

Transaction and Persistence Patterns 73

The Version Number pattern guarantees that use cases executed across
transactions will be properly isolated from each other’s changes, in the same
way that use cases that execute within a single transaction are guaranteed to
be isolated from the operations of other transactions. However, what happens
in the infrequent event that both moderators attempt to update the server
(Steps 5 and 6) at the exact same time? In this example, two instances of the
Message entity bean could be loaded into memory with both containing the
same version number. The call to checkAndUpdateVersion will thus succeed in
both instances. Once the first transaction commits, the question then becomes:
what happens when the second transaction attempts to commit?

The answer is that the second transaction will be correctly rolled back. Since
both transactions are happening at the same time, the same transaction isola-
tion level semantics that protect use cases that execute within one transaction
will protect this particular operation from conflicts. The way it achieves this
depends on how your database/application server handles concurrency:

�� Isolation of READ_COMMITTED with application server CMP veri-
fied updates. Here the application server will compare the changed
attributes in the Message entity bean (including the version number)
with that in the database before committing. If the contents do not
match (because a previous transaction incremented the version number
and other attributes), then the application server will roll back the
transaction. This is an optimistic concurrency check implemented at the
application server level, allowing you to use a transaction isolation
level of just READ_COMMITTED, since the application server guaran-
tees consistency.

�� Isolation of READ_COMMITTED with verified updates imple-
mented in BMP. BMP developers can manually implement verified
updates by comparing the version number in the current bean to that in
the database in ejbStore. This can be achieved by modifying the SQL
UPDATE statement to include a where version=X clause. Even if Moder-
ator A’s transaction updated the database milliseconds before, this
where clause will fail and the developer can manually roll back the
exception.

�� Isolation of SERIALIZABLE with Database (DB) that supports opti-
mistic concurrency. If optimistic concurrency is not implemented at the
application server level, then a transaction isolation level of SERIALIZ-
ABLE must be used to ensure consistency. If the database itself imple-
ments optimistic concurrency checks, then it will automatically roll
back the transaction of Moderator B’s when it detects that ejbStore is try-
ing to overwrite the data inserted by the first transaction.

�� Isolation of SERIALIZABLE with a DB that uses pessimistic concur-
rency. Again, SERIALIZABLE must be used since the application server

74 Chapter Three

won’t enforce consistency. However, since the database is using a pes-
simistic concurrency strategy, it will lock Message X’s row in the data-
base, forcing the MessageEntity.ejbLoad() of the second transaction to
wait until the MessageEntity.ejbStore() from the first transaction com-
pletes and commits. This means that when Moderators B’s transaction
calls checkAndUpdateVersion this check will correctly fail, since the mes-
sage X was not ejbLoad()’ed until after Moderator A’s transaction had
committed.

�� Isolation of SERIALIZABLE with a SELECT FOR UPDATE. Some
application servers allow the CMP engine to be configured to issue
a SELECT FOR UPDATE during ejbLoad, by editing a deployment
descriptor setting. The purpose of this is to force a database that uses
optimistic concurrency to actually lock the underlying row. This will
cause the transactions to execute as in the previous option.

The takeaway point here is that, in the rare instance where the updates are
happening at the same time, consistency is maintained, and either the second
transaction will be detected at checkAndUpdateVersion time or the application
server or database will detect the collision and roll back the transaction—
either way, consistency is maintained.

Another important point to consider when using the Version Number pat-
tern is that it can cause problems when you have legacy or non-Java applica-
tions updating the same data as your EJB application. Legacy applications will
probably be using version numbers, resulting in consistency problems
between the EJB application and the legacy application. If it is under your con-
trol, ensure that other non-Java or legacy applications also properly update the
version number when performing updates. If changing the legacy applications
is completely beyond your control, then another solution is to implement trig-
gers in the database that will update the version numbers in the database auto-
matically. If you take this approach, don’t forget to remove the version number
incrementing code from your entity bean.

The Version Number pattern is most often used as a way to protect against
stale updates that occur when using data transfer objects. Once a DTO is used
to copy some data off of the server, this data could potentially be stale. Version
numbers help us detect the stale data at update time.

Transaction and Persistence Patterns 75

JDBC for Reading

In an EJB system that uses a relational database in the back end, an EJB client
needs to populate a tabular user interface with server-side data, for display
purposes.

When should a session façade perform direct database access
instead of going through the entity bean layer?

* * *
Perhaps the most common use case encountered in distributed applications

is the need to present static server-side data to a client in tabular form. Exam-
ples of tabular UIs constitute the majority of Web pages, where data is listed in
tables or rows, such as a list of items in a catalog (as opposed to nontabular UIs
such as the rare treelike or circular UI). Furthermore, this tabular data is usu-
ally read-only; clients tend to do a lot more browsing than updating of the
pages they surf.

One common scenario is an application that requires the presentation of a
large amount of read-only data to the user, perhaps in the form of an HTML
table. The table may represent line items in a large order, information on all
employees in a company, or the characteristics of all products a company pro-
duces.

In Figure 3.1, each row in the table corresponds to one employee in the sys-
tem and his/her department. On the server side, we would model this with an
Employee and a Department entity bean. One way to populate the table would
be to call a getEmployees() method on a session façade/data transfer object fac-
tory, which would call a finder method on an EmployeeHome object, return all
employee’s, find each employee’s related Department entity bean, and create
a custom data transfer object with the combined data from these two entity
beans. The session bean would then return a collection of EmployeeDepart-
mentDTOs to the client.

Figure 3.1 HTML table of employees.

Employee

Adam Berman
Eileen Sauer
Ed Roman
Clay Roach

Department

Development
Training

Management
Architecture

76 Chapter Three

Depending on the EJB Server and applications, there are numerous prob-
lems with this approach:

�� The n + 1 entity bean database calls problem. With BMP and certain
implementations of CMP, retrieving data from N entity beans will
require N + 1 database calls. Although a good CMP implementation
will allow bulk loading, developers should be aware of this dire prob-
lem. The N + 1 calls problem is as follows: In order to read data from N
entity beans, one must first call a finder method (one database call). The
container will then execute ejbLoad() individually on each entity bean
returned by the finder method, either directly after the finder invoca-
tion or just before a business method invocation. This means that
ejbLoad() (which will execute a database call) will need to be called for
each entity bean. Thus, a simple database query operation requires N +
1 database calls when going through the entity bean layer! Each such
database call will temporarily lock a database connection from the pool,
open and close connections, open and close result sets, and so on. Since
most distributed systems have a separate box for the database, each of
these database round trips would require a network call, slowing down
the speed of each round trip and locking valuable database resources
from the rest of the system. For our Employee and Departments exam-
ple, running this use case will actually require 2N + 1 database calls
(one finder, N Emlpoyee ejbLoads(), and N Department ejbLoads()).

�� Remote call overhead. If it goes through the entity bean remote inter-
face (as opposed to the local interface), this method would also require
3N remote calls for N rows of employee and department data. The
remote calls break down as follows:

�� N calls to getValueObject() for each Employee.

�� N calls to getDepartment() on each Employee.

�� N calls to getValueObject() on each Department.

After grabbing each set of value objects, the session bean would then
combine the value objects into the EmployeeProjectViewObjects.

�� Cumbersome for simple join operations. Whether we use BMP or
CMP, this typical use case requires the instantiation of multiple entity
beans and traversal of their relationships. Imagine a slightly more com-
plex scenario in which the table needed to list data from an Employee
and a related Department, Project, and Company. This would not only
require tens of lines of spaghetti code, but would significantly slow
down a system because of the database calls, remote calls, and all the
application server overhead incurred when traversing multiple entity
bean relationships.

Transaction and Persistence Patterns 77

When the client side mainly requires tabular data for read-only listing pur-
poses, the benefits of querying through the entity bean layer are less clear.
Using local interfaces and a good CMP implementation will definitely reduce
the performance problems with listing data via entity beans, but BMP devel-
opers are not so lucky. In BMP, these problems can only be alleviated by turn-
ing on entity bean caching, a luxury usually only available for single EJB
server (or nonclustered) deployments in which the database is never modified
outside of the EJB application The remaining BMP developers are faced with a
serious performance problem. Querying through the entity bean layer simply
to list read-only data causes unacceptable performance problems

Therefore:

In BMP, perform listing operations on relational databases using
JDBC. Use entity beans for update operations.

If the data that the client UI requires is mainly used for listing purposes,
then using JDBC to directly read the rows and columns required by the client
can be far faster and more efficient then going through the entity bean layer.
Using the previous example, the entire table of employees and departments
could be read in bulk from the database in just one JDBC call, as opposed to the
potentially required 3N remote calls and N + 1 database calls required if it is
read through the entity bean layer.

After reading in the ResultSet, the data could then be added to Employee-
DepartmentDTOs just as in the previous example, or it could be marshaled to
the client by using HashMaps (as in the Data Transfer HashMap pattern) or in
tabular form using RowSets, as in the Data Transfer Rowset pattern.

The decision to use straight JDBC instead of entity beans for reading data is
a tough one for most developers, and has been the subject of raging debates
ever since the advent of entity beans. After all, entity beans provide a nice
encapsulation of data and data logic, they hide the persistence details such as
the type of database being used, they model the business concepts in your sys-
tem, and they make use of many container features such as pooling, concur-
rency, transactions, and so on. To go to a non-OO method of data access seems
like a step back. Like all design patterns, there are trade-offs.

Using JDBC for reading purposes has the following advantages:

�� No transactional overhead for simple query operations. Read-only
operations do not need to use transactions. Querying the database from
a stateless session bean with transactions turned off is more lightweight
than querying entity beans. Often it is impossible to query an entity
bean without a transaction.

�� Takes advantage of DB built-in caching. Databases have sophisticated
and powerful caches. By using JDBC for these operations we can make
better use of the DB’s built-in cache. This becomes important when exe-
cuting queries that span tables, because the database can cache the

78 Chapter Three

results of this one bulk query, rather than cache individual table queries
generated by entity bean ejbLoads calls. The next time a query is run, the
one bulk JDBC query will come directly from the database cache.

�� Retrieve the exact data your use case requires. Using JDBC, you can
select the exact columns required across any number of tables. This
stands in contrast to using an entity bean layer, in which the client may
only need a couple of attributes from a variety of related entity beans.
Those entity beans will need to load all of their attributes from the data-
base even if a client only needs one attribute.

�� Perform queries in ONE BULK READ. All the data a client requires is
grabbed in one bulk database call. This is in direct contrast to the N+1
database calls problem associated with entity beans.

Here are the trade-offs:

�� Tight coupling between business and persistence logic. When work-
ing with an entity bean, a developer doesn’t know what the underlying
persistence mechanism is. With this pattern, session bean data querying
logic is now coupled to the JDBC APIs and is thus coupled to a rela-
tional database. However, other design patterns such as the Data Access
Object pattern (not covered in this book) can be used to alleviate this
problem.

�� Bug prone and less maintainable. Bug-prone JDBC code is now mixed
around the session bean layer, instead of nicely encapsulated behind
entity beans. Changes to the database schema will require changes to
multiple code fragments across the session façade. Again, the Data
Access Object pattern can help here.

Finally, this pattern does not imply that entity beans should not be used at
all, only that there are more efficient alternatives when the client needs to tem-
porarily list data. In this pattern, JDBC is used for listing behavior, and the
entity bean layer is used for updating behavior in an application.

Whereas the integrity of business/data objects and their relationships with
other business objects are not that important when listing tables of data on a
client, these concepts are critical when performing updates. Entity beans (or
any other data object framework) encapsulate both data and rules for changing
that data. When updating an attribute on an entity bean, the entity bean may
need to perform validation logic on its changes and institute updates on other
entity beans in an application.

For example, consider an application with Book and Chapter entity beans.
When modifying the title of a Chapter entity bean, the Chapter will need to
perform validation on the new title, and internally call and modify its Book
bean to notify it to change its table of contents. The Book entity bean may then
need to modify other entity beans, and so on.

Transaction and Persistence Patterns 79

Performing updates via JDBC from the session façade forces a developer to
write spaghetti code that mixes business logic with the complexities of data
logic. All the rules, relationships, and validations required by particular busi-
ness concepts would have to be hacked in the form of updates on rows and
tables. The system would become very brittle to changes in the business
requirements of the application.

Thus, where the client UI requires read-only tabular data and entity bean
caching is not possible, use JDBC to read in data from the database, instead of
going through the entity bean layer. All updates should still go through the
domain object (entity bean) layer.

The JDBC for Reading pattern occurs behind a session façade or a data
transfer object factory. Depending on what type of object is used to transfer the
ResultSets contents to the client. (DTOFactory implies that DTOs will be
returned to the client, whereas HashMaps or RowSets can be returned from
the session façade).

Related Patterns
Fast Lane Reader (J2EE Blueprints)

80 Chapter Three

Data Access Command Beans

An enterprise bean needs to access a persistent data store.

How can persistence logic and persistent store details be decoupled
and encapsulated away from enterprise bean business logic?

* * *
When programming with a session bean layer that directly accesses the

database (no entity beans), or when writing bean-managed persistent entity
beans, a common practice is to mix the persistence logic in with the session
bean or entity bean. For session beans, this usually entails writing data-store-
specific access code (such as JDBC) mixed in with business logic. For entity
beans, the standard practice is to write JDBC in the ejbCreate(), ejbLoad(), ejb-
Store() and ejbRemove() methods.

Although this gets the job done, this approach suffers from several drawbacks:

�� Data logic mixed in with business logic. Mixing persistence logic in
with business logic has terrible consequences for maintainability. Busi-
ness logic becomes harder to distinguish among spaghetti persistence
code, and persistence code becomes spread across the business layer
instead of localized to one layer.

�� Tight coupling to a particular persistent data store (database) type. By
coding a particular persistence API into your business logic (such as
JDBC), you tightly couple your application to one particular data store
type (OODBMS, RDBMS, LEGACY). This makes it difficult to switch
between data store types. Furthermore, on projects that include a legacy
integration as well as a more modern data store, two different persis-
tence APIs would be mixed in with business logic, making the code
even more convoluted.

�� Vulnerable to data schema changes. Minor schema changes in the
database will require modification and recompilation of the persistence
logic and also the business logic, since the two are tightly coupled.

�� Replication of logic. JDBC programming requires repetitive coding
(finding data sources, getting the connection, declaring prepared state-
ments, parsing the results of a ResultSet, closing statements and con-
nections, and so on) that needs to be replicated across all the EJBs that
access the database.

The problems with coupling and maintainability described above make it
difficult to write truly reusable business components. In many cases, reusabil-
ity across data store types is not that important. Only projects whose require-
ments dictate the use of multiple types of data stores (RDBMS, ODBMS, LDAP,
and so on), now or in the future, need to be concerned with the coupling of the

Transaction and Persistence Patterns 81

persistence logic to the details of the database implementation. However, cou-
pling or not, the mixing of persistence logic with enterprise beans still poses
significant maintainability problems.

Therefore:

Encapsulate persistence logic into data access command beans,
which decouple enterprise beans from all persistence logic.

A data access command bean (DACB) is a plain Java bean style object that
exposes a simple get/set/execute interface to the enterprise bean clients. Data
access command beans encapsulate persistence logic and all details about the
persistent data store, forming a separate, decoupled persistence layer that
exists beneath the EJB layers.

A Data Access Command Bean pattern is similar to the original Command
pattern (Gamma, et al., 1994), in that it exposes a very simple interface to its
clients (see Figure 3.2). All a client needs to do is create a data access command
bean, set any information it needs to perform its task, call execute, and then call
getters to retrieve the data from the command, as well as a next method if the
command returns multiple rows of values.

For example, consider an EmployeeServices session bean that handles all
the management of employees for a company. EmployeeServices exposes
(among others) methods to create and to search for employees within an orga-
nization. An example of the session façade, this bean doesn’t use a domain
model, instead it interacts directly with the database.

To decouple the EmployeeServices bean from persistence logic, two data
access command beans would be created, one that handles the creation of an
employee, and one that handles finding all employees with the same name.
The class diagrams for these DACBs are listed in Figure 3.3.

Figure 3.2 Using a data access command bean.

Client aCommand

(instantiate the bean)

setInputPropertyA()

setInputPropertyB()

execute()

getOutputPropertyA(arg)

82 Chapter Three

Figure 3.3 Data access command beans example.

By using these data access command beans, the code in EmployeeServices is
greatly simplified. The following code shows how the EmployeeServices ses-
sion bean interacts with the InsertEmployeeCommand:

InsertEmployeeCommand insEmp = null;

try

{

insEmp = new InsertEmployeeCommand();

insEmp.setEmail(“me@home.com”);

insEmp.setId(id);

insEmp.setName(“Ed”);

} catch (DataCommandException e)

{

this.ctx.setRollbackOnly();

throw new EJBException(e.getMessage());

}

Using the QueryEmployeeByName command is slightly different, since the
command could potentially return multiple employees by the same name:

try

{

QueryEmployeeByNameCommand query =

new QueryEmployeeByNameCommand();

query.setName(name);

query.execute();

uses

uses

createEmployee
getEmployeesByName
...

EmployeeServices

setID
setEmail
setName

execute

InsertEmployee
Command

setName

execute

getID
getName
getEmail

next

QueryEmployee
ByNameCommand

uses

uses

Transaction and Persistence Patterns 83

Vector employees;

EmployeeDTO anEmployee;

while (query.next())

{

anEmployee = new EmployeeDTO(query.getId(),

query.getName(),

query.getEmail());

}

return employees;

} catch (DataCommandException e)

{

this.ctx.setRollbackOnly();

throw new EJBException(e.getMessage());

}

Note that the data access commands throw a DataCommandException, a
generic exception that serves to completely decouple the session bean client
from the fact the details of the database type.

Data access command beans are implemented in an inheritance hierarchy as
illustrated in Figure 3.4. Every data access command inherits from one of two
abstract classes: the BaseReadCommand and the BaseUpdateCommand.
These two reusable classes centralize all the setup, database execution and
cleanup code common in persistence logic.

Figure 3.4 Command inheritance implementation.

setID
setEmail
setName

execute

InsertEmployee
Command

setName
execute
getID
getName
getEmail
next

static statementString
static dsJNDI

QueryEmployee
ByNameCommand

execute
next

dbConnection
prepStatement
resultRowSet

BaseRead
Command

dbConnection
prepStatement

execute

BaseUpdate
Command

84 Chapter Three

Implementing data access command beans is simple. If you are implementing
an insert, update, or delete, then the class must extend from BaseUpdateCom-
mand. If you are implementing a query, then extend from BaseReadCommand.
The abstract superclasses remove most of the details of persistence logic even
from the data access command bean developer, who only needs to code in the
JNDI name of the data source used, the actual use cases specific SQL string to be
executed, and all the use-case-specific gets/sets:

public class InsertEmployeeCommand extends BaseUpdateCommand

{

static String statement =

“insert into Employees (EMPLOYEEID,NAME,EMAIL) values (?,?,?)”;

static final String dataSourceJNDI = “bookPool”;

protected InsertEmployeeCommand() throws DataCommandException

{

super(dataSourceJNDI, statement);

}

public void setEmail(String anEmail) throws DataCommandException

{

try{

pstmt.setString(3, anEmail);

} catch (SQLException e) {

throw new DataCommandException(e.getMessage());

}

}

... //more sets

}

The advantages to the Data Access Command Bean pattern are:

�� Decouples business logic from persistence logic. All the tedious and
repetitive persistence logic is encapsulated behind a simple Java
bean/command style interface. Business logic no longer needs to worry
about ResultSet parsing, driver/statement tracking, and so on.

�� Creates a persistence layer. Extracting all persistence logic to a layer of
data access command beans (beneath the EJB layers) helps both layers
to change independently of each other, helping to minimize the effects
of changes to one layer on the other.

�� Data source independent. DACBs can access relational database man-
agement systems (RDBMSs), object-oriented database management
systems (OODBMSs), legacy adaptors, or any persistence store, all

Transaction and Persistence Patterns 85

transparently to the client. In fact, migrations between databases are
easier since persistence logic is localized to one layer.

�� Useable on any tier. Although this chapter illustrates the pattern in an
EJB context, data access command beans can provides a clean, robust
persistence mechanism in any scenario (EJB, Servlets, JSPs, Taglibs, and
so on).

�� Consistent interface. The command style interface remains consistent
for all DACBs. Even multiple types of data stores can be supported, all
transparent to the user.

The cons of this pattern are:

�� Adds an extra layer of objects. An extra layer of command beans must
be written to separate the persistence logic from the other layers.

�� Doesn’t support advanced JDBC features. Features such as batch
updating are not explicitly supported by the data access command bean
(as illustrated here).

The Data Access Command Bean pattern provides a simple extensible way
to decouple persistence logic from enterprise beans, making it an attractive
mechanism for handling persistence behind the session façade and BMP entity
beans. DACBs should be used in parallel with the JDBC for Reading pattern.
The interface of the command beans can also be slightly modified to support
returning RowSets directly, for the Data Transfer RowSet pattern.

Related Patterns
Data Access Command Bean (Matena and Stearns, 2001)
Data Access Object (J2EE Blueprints; Alur, et al., 2001)

86 Chapter Three

Dual Persistent Entity Bean

An EJB developer needs to write entity bean components that support both
CMP and BMP.

How can an entity bean be designed to support either CMP or BMP
at deployment time?

* * *
The environment in which an entity bean component will be deployed can

vary widely from project to project. In the best case, a team will have access to
an application server with a good CMP implementation, which they can use to
gain significant performance enhancements that are not possible when using
BMP. Often a team will be using an application server with poor CMP support
or lack of support for their database. In this case, BMP is a requirement. This
puts an entity bean component developer in a tough situation. How can they
provide a component that can fit both situations?

One way to achieve this is to ship two separate versions of the same entity
bean component. One packaged for CMP, the other for BMP. Unfortunately,
this approach would require that the component developer maintain two sep-
arate code bases/components, making testing, debugging, and maintenance
more difficult.

A truly portable EJB component should be deployable in any J2EE-compli-
ant server, in a wide variety of environments and configurations. By portable,
this means that the component should be customizable without any repro-
gramming or compiling. The only source of modification should be the
deployment descriptors.

Therefore:

To build more portable components, write entity beans that support
both CMP and BMP, by separating business logic into a CMP-com-
pliant superclass and BMP persistence logic into a subclass. Deploy-
ment descriptor settings can be used to select between the two at
deployment time.

Entity beans can be made to support both CMP and BMP by splitting entity
bean logic into two classes: a CMP-compliant superclass, and a subclass that
extends the superclass implementations of ejbStore, ejbLoad, and other methods.
This new component can be used to choose its persistence mode at deploy-
ment time, by making minor changes to the standard ejb-jar.xml file.

For example, consider an Account entity bean. The Account entity bean
contains two attributes: an account id and a balance. It also has three business
methods: deposit, withdraw, and balance, and one special finder method: findBy-
Balance(int). As a dual persistent entity bean, the Account entity bean would
look like Figure 3.5.

Transaction and Persistence Patterns 87

Figure 3.5 A dual persistent entity bean.

The CMP superclass contains the business methods and abstract get/set
methods (abstract attribute accessors are required by EJB 2.X CMP), and sim-
ple implementations of required EJB methods such as set/unSetEntityContext
and ejbCreate(). Note that the implementations of ejbLoad, ejbStore, and ejbRe-
move are empty implementations. Finder methods do not need to be
implemented in the CMP class, since these are declared separately in the
deployment descriptor.

The BMP subclass provides concrete implementations of the accountID and
balance attributes, and their get/set accessors. Other than that the only extra
logic this class requires is real implementations of persistence-related meth-
ods: ejbCreate, ejbLoad, ejbStore, and ejbRemove. Finder methods also need to be
implemented, whereas the CMP superclass relied on query definitions in the
ejb-jar.xml file. Note that the BMP does not need to reimplement the business
logic methods, set/unSetEntityContext, or ejbActivate/Passivate, since these are
inherited from the superclass.

At deployment time, the CMP or BMP classes can be chosen simply by
changing the ejb-jar.xml file. Specifically, the <ejb-class> tag will need to refer to
either the CMP superclass or the BMP subclass. Obviously, the <persistence-
type> tag will need to select “container” or “bean managed” as well. If you

entityContext ctx

//EJB 2.0 accessors
abstract getBalance()
abstract setBalance(int)
abstract getAccountID()
abstract setAccountID(int)

//business methods
withdraw(int)
deposit(int)
balance()

//ejb required methods
setEntityContext(ctx)
unSetEntiyContext()
ejbCreate(id, balance)
ejbPostCreate(id, balance)
ejbStore()
ejbLoad()
ejbRemove()
ejbActivate()
ejbPassivate()

abstract AccountCMPBean

entityContext
accountID
balance

//overridden accessors
getBalance()
setBalance(int)
getAccountID()
setAccountID(int)

//overridden ejb methods
ejbCreate(id, balance)
ejbStore()
ejbLoad()
ejbRemove()

//hard coded finders
ejbFindByPrimaryKey()
ejbFindByBalance(int)

AccountBMPBean

inherits from

88 Chapter Three

choose CMP, the ejb-jar.xml will need to be configured with CMP specific tags
to add a schema, attributes, finders, and so on. The schema will also need to be
mapped to an underlying data store using the proprietary mechanism pro-
vided by the application server it is being deployed on. On the other hand, if
you deploy with BMP, the ejb-jar.xml will likely need to add a SQL DataSource
via the <resource-ref> tags, and that’s it.

Besides creating more portable entity beans, another use of this pattern is
migrating BMP entity beans to CMP. Many pre-EJB 2.0 applications were writ-
ten in BMP. The CMP support provided by the EJB 1.X specifications were
often insufficient for the needs of nontrivial applications, furthermore, many
CMP implementations available on the market at the time suffered from poor
performance. All of these legacy EJB applications could benefit by moving from
EJB 1.X BMP to newer and more sophisticated CMP. Unfortunately, the migra-
tion process from BMP to CMP can be very tricky. One solution would be to
completely rewrite the component using CMP. This option would require a lot
more up-front work, and would essentially require cutting and pasting busi-
ness logic from one entity bean to the other. This is hardly an efficient way to
convert BMP beans to CMP. Using the Dual Persistent Entity Bean pattern, an
existing BMP entity bean can be refactored into CMP by creating a superclass
and moving code to it, leaving only the attributes, attribute accessors, and per-
sistence-related methods in the subclass. The new superclass can be tested and
deployed, and the subclass can be removed later if necessary.

Transaction and Persistence Patterns 89

91

Determining the best way to use EJBs is perhaps more complicated than
writing them. The two patterns in this chapter outline how to improve the
maintainability of your client-side EJB applications, as well as improve
performance:

EJBHomeFactory. Provides a best practice for interacting with the EJB
layer: caching the home objects in a singleton factory, which also encap-
sulates all the complexity involved with looking up EJBHomes and han-
dling errors.

Business Delegate. Used to decouple the client layer from the session or
message façade layers, abstracting away all the complexities of dealing
with the EJB layer, enabling better separation of client and server devel-
opment team concerns.

Client-Side EJB
Interaction Patterns

C H A P T E R

4

EJBHomeFactory

An EJB client needs to look up an EJBHome object, but multiple lookups of the
same home are redundant.

How can a client look up an EJBHome only once in the lifetime of its
application, and abstract the details of that lookup?

* * *
The JNDI lookup of an enterprise bean’s home method is the first step to

getting access to the remote interface of an EJB. In order to get access to this
interface, the client must go through the code-intensive and expensive process
of getting access to the InitialContext, followed by performing the actual
lookup of the EJBHome, casting it, and handling exceptions, as depicted in the
following code:

try //to get the initial context

{

Properties properties = new Properties();

// Get location of name service

properties.put(Javax.naming.Context.PROVIDER_URl,

“some providers url”);

// Get name of initial context factory

properties.put(Javax.naming.Context.INITIAL_CONTEXT_FACTORY,

“some name service”);

initContext = new InitialContext(properties);

}

catch (Exception e) { // Error getting the initial context ... }

try //to look up the home interface using the JNDI name

{

Object homeObject = initContext.lookup(“aHomeName”);

myHome = (MyHome) Javax.rmi.PortableRemoteObject.narrow(

homeObject, MyHome.class);

}

catch (Exception e) { // Error getting the home interface ... }

//get EJBObject stub

MyEJB anEJB = myHome.create();

The code example illustrates how complex and repetitive EJBHome lookups
can be. The problem is that a typical application makes use of many EJBHome
references—one for each EJB a client needs to access. Thus, writing lookup
code for each EJBHome essentially duplicates code.

92 Chapter Four

Furthermore, this code is complex and requires tedious error handling
(ClassCastExceptions, NamingExceptions, and so on). Duplicating this code
all over the clients is simply a messy affair.

Even worse, once the home is retrieved, it is only used once (to get the
EJBObject stub). Performing a JNDI lookup every time an EJBHome is needed
can be expensive for the following reasons:

�� Requires a network call if the JNDI server is on a different machine.
If the client is not collocated on the same machine as the JNDI server,
then the call to JDNI will require a network call. This may occur, for
example, in a clustered scenario, where the Web server/servlet engine
is on a different box than the EJB server, where the JNDI server is usu-
ally part of the EJB server.

�� May require interprocess communication (IPC) if the JNDI server is
on the same box. If the client is running on the same box as the EJB
server but is not running within the same virtual machine (VM), then
there is IPC overhead in looking up an EJBHome.

Even if the client (such as a servlet client) is running within the same VM as
the JNDI server, looking up an EJBHome for every Web request can only hurt
performance, since an EJBHome never goes stale and can be reused for the life-
time of the client application. Imagine a highly trafficked Web site (such as
TheServerSide.com), in which a particular page may be viewed about 500
times per minute. The performance overhead of looking up the same object
500 times for 500 different clients is significant, and completely unnecessary.

A better way is needed to look up an EJBHome, one that allows lookup code
to be abstracted, and one that can reuse the same EJBHome instance through-
out the lifetime of the client.

Therefore:

Abstract EJBHome lookup code into a reusable EJBHomeFactory,
which can cache EJBHomes for the lifetime of a client application.

An EJBHomeFactory is a plain Java class implemented as a singleton, as in
Figure 4.1. The factory encapsulates EJBHome lookup logic (making lookup
logic reusable for any type of EJBHome) and caches homes internally, passing
the cached home to clients upon subsequent requests. An EJBHome factory is
generic, the same class is reusable across any application. This reusability is
achieved because it does not contain any domain-specific lookup code, such as
getAccountHome, or getXXXHome; rather, it defines a single lookUpHome
method. The factory is intended to be used from EJB clients such as applets,
servlets, and standalone applications, but can also be used by EJBs (EJBs
usually simply cache the required homes in setSession/Entity/MessageContext
method), as a method to encapsulate and optimize EJBHome lookups.

Client-Side EJB Interaction Patterns 93

Figure 4.1 EJBHomeFactory implementation.

Using an EJBHomeFactory is simple. A client is completely abstracted from
the home lookup and creation logic, reducing client lookup code to just one
line. For example, an Account bean client would call the following code
(exception-handling code left out for clarity):

AccountHome accountHome = (AccountHome)EJBHomeFactory.getFactory()

.lookUpHome(AccountHome.class);

uses

uses singleton

- HashMap ejbHomes;
- EJBHomeFactory aHomeSingleton
- InitialContext ctx;

+ static getFactory() : EJBHomeFactory
+ lookUpHome(Class aHomeClass) :
EJBHome

EJBHomeFactory

EJBClient ParticularHome

<<interface>>
EJB Home

uses

uses singleton uses singletonlooks up/caches

94 Chapter Four

HOME CACHING AND STALENESS, CLUSTERING ISSUES

Questions have been raised as to whether this pattern invalidates clustering, or
whether it is possible for cached EJBHomes to go stale in a clustered or
nonclustered environment. The truth is that clustered servers almost always
implement cluster-aware home stubs (Weblogic and Webshere, at least, take
this approach), meaning that a home is not tied to a particular server in the
cluster. Servers can fail and restart, and the cached home stubs will be able to
communicate with the live or restarted servers in the cluster. As for single-
server deployments, again, the home stubs of majority of servers can survive
redeployment and even server restarts. However, you should verify the
semantics of your particular application server and code the HomeFactory
defensively if your server can allow stale homes.

The first time a client calls the EJBHomeFactory for a particular home object,
the factory will look up the home through JNDI, and then cache the home
object internally in a HashMap. On subsequent calls, the factory will pass out
the cached copy of EJBHome, completely optimizing on home calls.

Note that the client passes in the .class qualification on the AccountHome
interface, instead of a JNDI name. Using the EJBHomeFactory, the client is fur-
ther abstracted from even the JNDI names of the EJBs. All a client needs to
know is the interface of the home object in question (to pass in as a .class
parameter, and then to cast the EJBHome returned). Since the client needs to
use this EJB’s home interface anyway, by passing in the class to lookupHome,
the amount of information the client needs to know is minimized, thus keep-
ing client code simple and lean. In order to allow the factory to find a home via
JNDI using only a class as a parameter, one of three things must be true:

1. JNDI name of deployed EJBs must be equal to the fully qualified
names of the EJBs’ home interfaces. If you have control over the
deployment properties of the EJBs in your application, then adopting a
naming convention of using the fully qualified class name of an EJB’s
home interface (that is, com.xxx.xxx.xxxHome) as the EJBs JNDI name
will allow you to use the xxxHome.class alone as a parameter to
lookUpHome. On large projects, this may be too much to ask for.

2. Use the EJB-REF tag to decouple the JNDI name. By far the most ele-
gant solution is to use an EJB-REF tag in your web.xml file to map
com.xxx.xxxHome to the actual deployed JNDI name of the EJBs you
need to use. Note that this implies that the EJBHomeFactory class must
be deployed in the WEB-INF\lib directory of your application, in order
for the singleton to make use of the web.xml’s ejb-ref mappings. For
EJBs making use of EJBHomeFactories, using EJB-REFs in the ejb-
jar.xml can also be used for this purpose (and likewise, the factory class
will need to be packaged with the ejb-jar in-order make use of the ejb-
ref mappings defined in this layer).

3. Read in .class to JNDI name bindings from a resource file. If you are
working with older application servers and don’t have access to EJB-
REFs, then you can code the EJBHomeFactory to read in .class to JNDI
name bindings from a factory file.

By far the most elegant and portable solution is Option 2, using the EJB-REF
tags to map the EJB’s home class name to the actually JNDI name. This allows
the home factory to be written with the assumption that the JNDI name of the
EJB is the fully qualified name of its home interface, because the deployer can
perform this mapping from home class name to JNDI name at deployment
time. To illustrate how the ejb-ref mapping works, consider a bank account

Client-Side EJB Interaction Patterns 95

example. The following ejb-ref tag would be placed in the web.xml file, which
would define com.bankapp.AcccountHome as the logical JNDI name for the
Account:

<ejb-ref>

<ejb-ref-name>

com.bankapp.AcccountHome

</ejb-ref-name>

<ejb-ref-type>

Session

</ejb-ref-type>

<home>

com.bankapp.AcccountHome

</home>

<remote>

com.bankapp.Acccount

</remote>

</ejb-ref>

This declaration of com.bankapp.AccountHome as the logical JNDI name
for the account is then mapped to the actual JNDI name at deployment time.
In Weblogic, this is achieved by placing the following code in the weblogic.xml
descriptor (which is used for WARS):

<reference-descriptor>

<ejb-ref-name>

com.bankapp.AcccountHome

</ejb-ref-name>

<jndi-name>

AccountHomeActualJNDINAme

</jndi-name>

</reference-descriptor>

Using this scheme allows EJBHomeFactory to simply lookup a home object
by passing in the fully qualified class name of the home class passed in by the
client in lookUpHome, while behind the scenes, the servlet or EJB container will
map this string to the real JNDI name declared in the ejb-ref tag.

Note that the choice of using the home interface class as a mechanism for
requesting a home is an implementation decision designed to simplify the
client and factory, but it is not necessary. You could easily change the lookup
method to take in a class and a JNDI name, as follows:

AccountHome accountHome = (AccountHome)EJBHomeFactory.getFactory()

.lookUpHome(“AccountHome”, AccountHome.class);

The disadvantage of this approach is that the client is burdened with the
hard-coded JNDI names of the homes that need to be looked up, which dimin-
ishes the maintenance benefits of the EJBHomeFactory pattern.

96 Chapter Four

The EJBHomeFactory pattern is a simple and efficient way to abstract EJB-
Home lookup complexity from the client in a completely generic, reusable
format. By caching EJBHomes, performance is increased significantly by elim-
inating costly redundant home lookups. The EJBHomeFactory provides a con-
sistent interface to home object lookup, and is reusable in any environment
(applet, servlet, standalone, even in between EJBs).

Related Patterns
Service Locator (Alur, et al., 2001)
Factory (Gamma, et al., 1995)

Client-Side EJB Interaction Patterns 97

A SERVLET-CENTRIC ALTERNATIVE

A common practice among servlet developers is to place EJB home
initialization logic in Servlet.init(), and cache EJB homes in the ServletContext
object, since it is shared across the application. This approach shares the same
benefits as EJB home factory (performance, simplicity), but complicates code a
bit more. Common presentation layer constructs—such as Java bean helpers—
do not have access to the ServletContext, and would have to be manually
passed one in, in order to get access to an EJB home. Since the home factory is
a singleton, it can exist anywhere in your Web application and can thus
simplify your code.

Business Delegate

When using session and/or message façade, the client is tightly coupled to the
EJB layer, creating dependencies between client and server that affect devel-
opment, run-time, and project management concerns.

How can an intermediary between a client and the session façade be
created to facilitate decoupling the client from the EJB layer?

* * *
In a good EJB design, use cases should be divided up over a layer of session

and/or message-driven beans, as described in the Session and Message
Façade patterns, respectively. A common way to interact with this layer is via
direct invocation from client code. That is, your presentation layer will directly
interact with EJBHomes, and EJBObjects for session beans, and send JMS mes-
sages when talking to message-driven beans.

Ironically, programming directly to the EJB APIs is not always the best way to
program EJB applications. Various issues can arise, all of which revolve around
the problems created by tightly coupling the client layer to the EJB layer:

�� Reduces separation of roles between client programmers and server
programmers. On large projects, speed and efficient project completion
depend upon the ability of the client tier (that is, servlet/JSP) developers
and the server-side EJB developers to work independently. One com-
mon dependency that can arise between teams is the availability of the
complete and compiled session bean layer. Client programmers depend
on the implementation of the session façade in order to compile and test
their code, creating a terrible bottleneck between the two teams.

�� Places optimistic concurrency recovery responsibility on clients.
Often a transaction will fail due to an optimistic concurrency conflict at
the application server or database level, catchable by the client as Trans-
actionRolledBackException or TransactionRolledBackLocalException.
For certain types of use cases (such as idempotent operations), it may
not be necessary to propagate this error down to the end application
users and ask them to retry (usually by clicking submit again on a Web
form). Instead, client code should automatically reexecute the transac-
tion. When coding directly to the EJB APIs, client code needs to explic-
itly catch these exections and retry the transaction, which places a large
responsibility on the client developer (who may not fully understand
the nature of the use case implementation, since they didn’t write the
EJB layer), as well as cluttering up their code.

98 Chapter Four

�� Complicates client logic with complex error handling. Clients need
to be burdened with the ability to catch and react to the myriad number
of errors that can occur when looking up and using EJBs, including
exceptions thrown when looking up components, RemoteExceptions,
EJBException (when using local interfaces), and so on. Remote or
EJBExceptions in particular can occur for a variety of different reasons
(such as optimistic concurrency conflicts described above), placing the
responsibility on the client to implement messy code required to parse
an exception and determine how to react to it.

�� Couples the clients directly to EJB and JMS APIs. Even when execut-
ing simple use cases, clients need to be loaded with EJB- or JMS-
specific code required to discover, create, execute, and recover from
business logic implemented in the session or message façade layers.
This creates inconsistency in the client code (different types of business
services are explicitly executed with very different APIs) and compli-
cates even the simplest of use cases, resulting in lower maintainability
as a whole.

Despite the performance and maintenance benefits of the Session/Message
Façade patterns, using these layers explicitly from the clients creates a tight
coupling that affects project development and overall maintainability of client
code.

Therefore:

Create a layer of business delegates: plain Java classes that hide EJB
API complexity by encapsulating code required to discover, delegate
to and recover from invocations on the session and message façade
EJB layers.

A business delegate is a plain Java class that serves as an intermediary
between client and server. Clients locally invoke methods on the business del-
egate, which then usually delegates directly to a method with the same signa-
ture on the session façade, or populates a JMS message and send it off to the
message façade.

Business delegates map one-to-one to session beans on the session façades
and can be written to wrap multiple message-driven beans. For example,
consider a forum message board application. Here we could expose our use
cases (postMessage, addReply, and so on) on a ForumServices session bean,
or each use case could be asynchronously executed by using separate mes-
sage-driven beans. Figure 4.2 illustrates how business delegates would map
to both architectures.

Client-Side EJB Interaction Patterns 99

Figure 4.2 Fronting session/message façades with business delegates.

In either case, the client code interacts only with the business delegate,
oblivious to the APIs and processes being executed by the delegate itself.
When a method is executed on a business delegate, it can perform the follow-
ing functions:

�� Delegate method calls to an EJB. The delegate will take all the parame-
ters passed in from the client and simply delegate this call to a method
on the session façade, or pack the parameters into a JMS message and
send them to a message-driven bean.

�� Hide EJB-specific system exceptions. API-specific system exceptions
such as RemoteException, EJBException, or JMS exceptions are caught
in the business delegate and rethrown to the client as a non-ejb-specific
exceptions, such as a BusinessDelegateException. Application-level
exceptions are still passed to the client.

�� Cache data locally. A business delegate can cache the return results
from a session bean method call locally and pass that out to clients on
subsequent requests.

�� Transparently retry failed transactions. Business delegates can imple-
ment the complicated error-handling code required to determine the
cause of a failed transaction (such as an optimistic concurrency conflict,
described above), and retry the transaction by reexecuting the method
on the session façade. Business delegates shield clients from this deli-
cate, complicated process.

sends JMS Messsage to

sends JMS Messsage to

postMessage
addReply
createForum

ForumServices
Delegate

postMessage
addReply
createForum

ForumServices
Delegate

postMessage
addReply
createForum

ForumServices
Delegate

delegates to

PostMessageMDB

AddReplyMDB

createForumMDB

sends JMS Messsage to

sends JMS Messsage to

sends JMS Messsage to

100 Chapter Four

�� Execute business logic locally or create dummy data for clients. As
mentioned in the first problem with coupling clients to EJB APIs, the
client-side project team is dependent on the existence of the session
façade in order to compile and test their code. Business delegates pro-
vide a way for client programmers to write, compile, and test working
code without the existence of the session façade. Prototype business
delegates can be written that simply return dummy data (very useful
for unit testing), or even execute business logic locally (good for quickly
creating a working prototype). As the server-side EJBs get built, the
business delegate classes can be refactored to work with the EJB layer,
all transparently to the client developers, who are no longer dependent
on the EJB project team.

Implementing business delegates is simple. For every session bean in your
application, simply create a local Java class with the same method signature.
Internally, the business delegate can perform any of the tasks outlined above,
within its business methods. The only other piece of code that needs to be writ-
ten is a constructor and a reference to the session bean that this delegate is
fronting. In the delegate’s constructor, it should call an EJBHomeFactory (see
the EJBHomeFactory pattern) to acquire a home for the session bean it repre-
sents and create an instance of the session bean, storing it locally as a member
variable. On subsequent calls to business methods on the delegate, it should
delegate these calls to the session bean reference stored internally, as in the fol-
lowing code:

public class ForumServicesDelegate

{

ForumServices sb;

public ForumServicesDelegate() throws DelegateException

{

try

{

ForumServicesHome home = (ForumServicesHome)

EJBHomeFactory.getFactory().lookUpHome

(ForumServicesHome.class);

this.sb = home.create();

}catch(Exception e)

{

throw new DelegateException();

}

}

public long addForum(long categoryPK, String forumTitle,

String summary)

throws NoSuchCategoryException,DelegateException

{

Client-Side EJB Interaction Patterns 101

try

{

return sb.addForum(categoryPK, forumTitle, summary);

}

catch(CreateException e)

{

throw new DelegateException();

//log errors, etc

} catch(RemoteException e)

{

throw new DelegateException();

//log errors, etc

}

}

... //more similarly implemented business methods

}//ForumServicesDelegate

For message-driven beans, the business delegates are created to group sim-
ilar use cases (that map to different message-driven beans, as shown in Figure
4.2), together in one class. Implementation is similar to that in the session bean
example, except that all methods return void.

The client view of a business delegate is simple. When a method needs to be
executed, it simply creates a new delegate and calls a method on it. Behind the
scenes, the business delegate initializes itself (using an EJBHomeFactory) in
the constructor, and then delegates the method call. Since EJB homes are
cached in the EJBHomeFactory, creating and using a business delegate is rela-
tively lightweight.

The only time when the semantics of using a business delegate change is
when using them to front stateful session beans. In this case, a client does not
create new business delegates upon every request, rather, it needs to create it
once and then cache it locally, reusing the same delegate (which internally
maintains a reference to the same stateful session bean). In a servlet applica-
tion, delegates are cached in the ServletSession. In order to support storing the
stateful Business Delegate in the HTTPSession, some changes need to be made
to the way the business delegates are written:

�� Business Delegate must be serializable. Since the delegate is stored in
the ServletSession, it should be declared as Serializable, in order to sup-
port servlet engines that passivate HTTPSessions, or support session
replication in a cluster.

�� Must use an EJB handle to support serialization. Since the delegate
can be serialized, it cannot simply contain a reference to the EJBObject,
as in the code sample shown earlier. EJBObjects are not guaranteed to
be serializable, thus the delegate must be written to use a handle object
so that the reference to the stateful session bean will remain intact, even
through serialization.

102 Chapter Four

One important side effect of using a business delegate to front a stateful ses-
sion bean is that the class and its methods can be synchronized, which protects
a client from making concurrent calls to the same stateful session bean (which
is disallowed by the EJB specification, since EJBObjects are not threadsafe).
This problem can occur in Web sites that use frames (where each frame needs
to make a request that ends up going through the same stateful session bean),
but is corrected transparently to the developer by using a business delegate.

Another atypical use of the Business Delegate pattern is as a method for
integration between non-Java applications and EJB. Since business delegates
are just simple Java objects, they can easily be wrapped with non-Java code
using JNI or some Java-com bridge. Because all the J2EE Javax interfaces are
hidden from the client, you don’t have to provide non-Java versions of them.
This approach to integration removes the dependencies between non-Java
applications and the application server vendor’s ORB. Because of the age-old
ORB interoperability problems, having non-Java applications communicate
with EJB via business delegates guarantees that clustering and security will
function correctly.

When should the Business Delegate pattern be used? For projects in which
the same developers are writing both the client- and the server-side code, the
benefits of decoupling the client code from the server APIs may not be large
enough to warrant the extra legwork in writing and maintaining this layer.
However, for large projects, where the Web team is separate from the EJB team,
business delegate can result in better decoupling between client and server-
side developers which can more than make up for the implementation work.

Related Patterns
Business Delegate (Alur, et al., 2001)

Client-Side EJB Interaction Patterns 103

105

Generating primary keys (PK) in a portable, scalable, and reliable fashion is a
great challenge in EJB. Many application servers provide a proprietary way to
create primary keys for entity beans. For example, Weblogic allows you to
automatically generate a primary key by transparently using your database’s
built-in sequence/counter. While in many cases this is a simple and viable
solution, the problem with this approach is that when migrating code from
one application server to another, the PK generation mechanisms between the
different CMP implementations may not be compatible. The only way to
achieve true portability for entity bean primary key generation is to call some
external, user-created structure.

This section will go over three different primary key generation best prac-
tices, used in creating primary keys for entity beans:

Sequence Blocks. Provides a pattern for creating incrementing, integer pri-
mary keys with very few database accesses. The pattern uses a stateless
session bean and a CMP entity bean in its solution.

UUID for EJB. Provides an algorithm and implementation for a PK-
generation service that creates string-based primary keys in memory,
without the need for a database- or an application-wide singleton.

Stored Procedures for Autogenerated Keys. Describes when to use your
database’s built-in key generation service, and how it can be used in a
portable fashion from a BMP entity bean.

C H A P T E R

5
Primary Key

Generation Strategies

Sequence Blocks

An entity bean developer needs a way to generate integer-based primary keys
in an incrementing fashion and doesn’t mind possible gaps between keys.

How can integer-based incrementing primary keys be generated in a
portable, efficient manner?

* * *
Using a simple incrementing number as a primary key mechanism provides

a very efficient and maintainable solution for primary keys. Integers are effi-
cient from a database perspective because they are more easily and efficiently
indexed than large string-based integers (such as those generated by the Uni-
versally Unique Identifier [UUID] for EJB pattern or the High/Low pattern).
They are more maintainable from a developer’s perspective because the pri-
mary keys start from 0 and increment upwards, resulting in short keys that can
easily be manipulated by a database administrator (DBA) for quick and easy
reporting purposes.

The Stored Procedures for Autogenerated keys pattern provides an easy
solution for working with autoincrementing keys built into an RDBMS data-
base, but this pattern only works for BMP entity beans and requires a database
that supports autoincrementing keys, and requires the writing of an extra
layer of stored procedures in between your entity beans and the database.

What is needed is some way to create sequences of integer primary keys,
callable from CMP or BMP entity beans. One solution is to create an entity
bean that represents a sequence. That is, an entity bean that simply stores an
integer in the database and increments it every time a client requests a primary
key. An example Sequence entity bean is shown in Figure 5.1. The entity bean’s
primary key would be a string that represented its name, allowing the exis-
tence of multiple sequences, each maintaining a different currentKeyValue.

Figure 5.1 Simple incrementing Sequence entity bean.

SequenceEntityBean

String sequenceName
int currentKeyValue

int getNextKey()
findByPrimaryKey(String seqName)
//other ejb methods
. . .

106 Chapter Five

Other entity beans would call the Sequence entity bean from their ejbCreate
methods. For example, a Bank Account entity bean would execute code similar
to the following pseudocode:

int ejbCreate(attrib1, attrib2, ...)

{

Sequence aSequence = SequenceHome.findByPrimaryKey(“Account”);

this.id = aSequence.getNextKey()

...

}

There are many problems with this approach:

�� Performance. The Accounts ejbCreate will result in four database calls,
breaking down as follows: one call each to SequenceHome.findBy,
Sequence.ejbLoad, Sequence.ejbStore, and, finally, one to the Account entity
bean’s insert. To optimize the process, the reference to the “Account”
sequence could have been cached in the Account entity bean, but that
would still result in database three calls.

�� Scalability. If the getNextKey method is running with an isolation level
of serializable, this will result in an unacceptable loss of scalability, as
there could potentially be hundreds of entity beans waiting in line to
get their primary key.

�� Need to code optimistic concurrency logic into ejbCreate. If the appli-
cation server or underlying database uses an optimistic concurrency
strategy, then the entity beans making use of the sequence entity bean
will have to catch TransactionRolledBack exceptions and retry the call
to getNextKey(), resulting in cluttered ejbCreate code and many retries,
as many entity beans fight to make use of the same sequence.

A Sequence entity bean would provide a simple way to generate integer-
based primary keys, but having clients directly interact with this entity bean to
increment keys one by one results in poor performance and encapsulation of
code. A better mechanism is needed, one that allows entity beans to make use
of incrementing integers as primary keys but optimizes on the mechanism
used to generate those numbers.

Therefore:

Front a Sequence entity bean with a session bean that grabs blocks
of integers at a time and caches them locally. Clients interact with
the session bean, which passes out cached keys and hides all the
complexity from the other entity bean clients.

Primary Key Generation Strategies 107

The previous solution of using a sequence entity bean to increment a counter
can be improved upon by modifying the Sequence entity bean to increment by
blocks of integers (instead of one number at a time), and using a session bean
to front the entity bean and cache blocks of keys locally, as shown in Figure 5.2.
The Session bean becomes a primary key generation service, maintaining
blocks of keys for any number of different sequences, and providing fast access
to new keys in memory, without having to access the Sequence entity bean
(and thus the database) every time some entity bean needs a primary key.

When an entity bean needs a primary key in ejbCreate, it will call the local
interface of the Sequence session bean and ask it for the next available key.
Using the Bank Account example, ejbCreate in the Account entity bean would
contain the following code:

//home and sequence session lookup (this could be done just one

//once and cached in setEntityContext)

SequenceSessionLocalHome ahome = (SequenceSessionLocalHome)

(new InitialContext()).lookup(“SequenceSessionLocal”);

SequenceSessionLocal aSequence = aHome.create();

//get next key

this.id = aSequence.getNextNumberInSequence(“Account”));

A pseudocode description of getNextNumberInSequence is provided:

1. Check its local cache of blocks for a block corresponding to the
Sequence “Account.”

2. If none exists or if the cached block has run out of keys, then the
Sequence Session will call the Sequence entity and get the next block
of integers available for sequence “Account.”

3. When grabbing the next block, catch any transaction rollbacks
(explained below) and retry a specified number of times.

4. Pass a key from its local block of keys directly to the client entity bean.
The session bean will pass out keys from its local block for all subse-
quent requests, until the block runs out, at which point repeat Step one.

The Sequence entity bean can be implemented as a simple CMP bean whose
primary key is a string corresponding to the name of the sequence. The only
other value it needs to maintain is the current highest key. As in Figure 5.2, the
Sequence entity exposes only one method—getNextKeyAfterIncrementingBy-
(block- size). This method simply takes in a block size, and increments itself by
that size, returning the new highest key to the Sequence session bean that
called it. The Sequence entity bean maps to a simple column in the database,
whose rows correspond to the current value of different sequences, as shown
in Figure 5.3.

108 Chapter Five

Figure 5.2 Sequence blocks architectural layout.

Figure 5.3 Mapping of a Sequence entity bean to a database table.

Despite the ultimate simplicity of this CMP bean, special care must be
taken to mark the getNextKeyAfterIncrementingBy method as TRANSACTION_
REQUIRES_NEW in the deployment descriptor. Without this special setting,
the block increment would be part of the transaction initiated by the original
client entity bean, which could be a long one depending on the use case. To
limit locking and increase performance, the act of acquiring a new block
should be an atomic operation, kept as short as possible.

The transaction and concurrency semantics of this pattern depend on the
application server and database combination in use. In order to make the
sequence session portable across different systems, it should be encoded to
with a try/catch block that catches TransactionRolledBackLocalExceptions, in
order to catch possible optimistic concurrency conflicts. An example of such a
conflict is two Account entity beans in a cluster that both request a primary key
at the same time, and in both servers, the Sequence session bean needs to grab
the next block at the same time. If not properly configured, the two instances of
Sequence session beans may end up getting the same block of keys. The con-
figuration required to correct this depends on how your database or applica-
tion server handles concurrency:

1. Isolation of READ_COMITTED with application server CMP verified
updates. In this case, the application server will compare the contents of

name

Account
Person

Country

value

80
30

100

SEQUENCES TABLE

int getNextKeyAfterIncrementingBy(blocksize)
findByPrimaryKey(String seqName)

//other ejb methods
. . .

String sequenceName
int currentKeyValue

SequenceEntityBean

int

uses uses

getNextNumberInSequence(name);

//other ejb methods
. . .

HashTable blocks;
int blockSize;
int retryCount;

SequenceSessionBean

ClientEntityBean

Primary Key Generation Strategies 109

the Sequence entity bean to that in the database before transaction commit
time. If it is discovered that a previous transaction has already gotten
the next block, an exception will be thrown. This is an optimistic con-
currency check implemented at the application server level, allowing
you to use a transaction isolation level of just READ_COMMITTED,
since the application server guarantees consistency.

2. Isolation of SERIALIZABLE with a DB that supports optimistic con-
currency. If optimistic concurrency is not implemented at the applica-
tion server level, then a transaction isolation of SERIALIZABLE must be
used to ensure consistency. If the database itself implements optimistic
concurrency checks, then it will automatically roll back the transaction
of the second sequence entity bean when it detects that ejbStore is trying
to overwrite the data inserted by the first transaction.

3. Isolation of SERIALIZABLE with a DB that uses pessimistic concur-
rency. Again, SERIALIZABLE must be used since the application server
won’t enforce consistency. However, since the database is using a
pessimistic concurrency strategy, it will lock the “Account” row in
the sequences table, forcing the SequenceEntity.ejbLoad() of the
second transaction to wait until the SequenceEntity.ejbStore() from
the first transaction completes and commits.

4. Isolation of SERIALIZABLE with a SELECT FOR UPDATE. Some
application servers allow the CMP engine to be configured to issue a
SELECT FOR UPDATE during ejbLoad, by editing a deployment
descriptor setting. The purpose of this is to force a database that uses
optimistic concurrency to actually lock the underlying row, as in
Option 3.

For Options 3 and 4, it is guaranteed that every SequenceSession will get a
unique block of keys, since a second transaction will not be allowed to read the
same row until the first transaction has completed its ejbLoad-inrementBlock-
ejbStore cycle. However, for Options 1 and 2, a try/catch block is necessary in
the sequence session, to retry the call. The takeaway point of this discussion is
that if you keep the try/catch coded in the session bean, then the code itself
will be portable across all possible configurations. Only the isolation levels
and possible vendor-specific CMP options described previously need to be
changed in a deployment descriptor.

The advantages to the Sequence Block pattern are:

�� Performance. Despite the fact that this pattern requires a database, with
a high setting for block size, this pattern approaches the performance of
the UUID for EJB pattern, since most of the generated primary keys are
occurring in memory.

110 Chapter Five

�� Scalability. Even with a transaction isolation of serializable (on the
Sequence entity), this pattern scales well since calls to getNextKeyAfter-
IncrementingBy don’t occur often.

�� Easy reuse. The Sequence Block pattern uses completely generic code.
Once implemented, this pattern can be reused across projects with no
problems.

�� Simplicity. The amount of code required to implement this pattern is
very low. Furthermore, CMP can be reliably used for the Sequence
entity bean.

�� Generates simple keys. The pattern generates simple integer-based
keys, which allows databases to efficiently index primary key columns,
and DBAs to easily work with the primary keys.

The trade-offs are:

�� Keys not guaranteed to be ordered. The primary keys of four different
entity beans that are created one after the other (but that went through
two instances of Sequence session beans) can be 10, 20, 11, 12 respec-
tively, using a block size of 10. This is because different Sequence session
beans in the pool all have different blocks assigned to them.

�� Keys can be “lost” during pool resizing. Using a stateless session bean
to maintain a cache of keys, keys will be lost when the application
server decides to remove session bean instances. Most application
servers use pools of session beans that are demand based—new beans
are created based on current traffic and removed when traffic subsides.
This loss of keys is, practically speaking, not a point of concern (there
are a lot of numbers in the world); it will not affect the uniqueness of
keys passed out to entity bean clients.

Overall, the Sequence Block pattern provides a simple, cluster-safe mecha-
nism for generating integer-based primary keys in a efficient, portable manner.

Primary Key Generation Strategies 111

UUID for EJB

An entity bean developer needs a way to generate a string-based, universally
unique primary keys in memory, without a database or a globally unique
singleton.

How can universally unique primary keys be generated in memory
without requiring a database or a singleton?

* * *
For many primary key generation schemes, the database is used to maintain

the state of the primary key and is used to synchronize access to the key, such
as in the EJB Sequence pattern. While these schemes work, the very fact that
they require database infrastructure makes them difficult to implement,
because they need to be coded to be portable across different databases, which
becomes difficult due to the different ways in which databases handle issues
such as row locking, and so on.

Many non-database primary key generation schemes require the use of a
Singleton, that is, an object of which only one instance exists across an entire
application. Instead of a database, a singleton could now manage primary
keys and be the point of synchronization for any clients (such as entity beans)
that require a primary key.

The problem with this approach is that it is difficult to create a true single
instance of an object across a J2EE application. A traditional Java singleton (a
class which contains a synchronized static instance of itself) only guarantees
one instance per classloader, and a typical J2EE server will contain multiple run-
ning classloaders per VM. Another approach is to use a networked RMI object
singleton, that is, an object that only lives on one server in your application,
callable via RMI, thus achieving only one instance across your entire applica-
tion. The problem now becomes scalability: every entity bean in your potential
cluster of servers must synchronize access to this one RMI object, which can
become a bottleneck, and also a single point of failure.

Another solution is to use the java.rmi.server.UID class, which is provided
with the JDK. The problem with IDs generated via this class is that they are not
unique across boxes, they need to be appended to an InetAddress to achieve
such uniqueness. More importantly, the implementation of the UID class
makes use of Thread.sleep(), which is not allowed in an EJB environment.

A better approach would be a primary key generation mechanism that does
not require synchronization around a database or a global singleton. Such a
mechanism would need to be decentralized (since there is no point of synchro-
nization), allowing multiple instances of it to concurrently generate primary
keys that are still unique.

112 Chapter Five

Therefore:

Create primary keys in memory by creating a universally unique
identifier (UUID) that combines enough system information to make
it unique across space and time.

A UUID is a primary key encoded as a string that contains an amalgamation
of system information that makes the generated UUID completely unique over
space and time, irrespective of when and where it was generated. As a com-
pletely decentralized algorithm, there can be multiple instances of UUIDs
across a cluster and even in the same server, allowing for fast and efficient pri-
mary key generation.

The original UUID specification is available in a Network Working Group
Internet Draft by Paul Leach and Rich Salz1, however the algorithms defined in
that original work will not work in an EJB context. The various implementa-
tions described there require proper singletons, access to a synchronized
shared resource (database), and often to the IEEE 802 address hard-coded into
your servers network card. None of these features are possible in an EJB con-
text, but it is still possible to create an equivalent GUID in EJB, which is the
focus of this pattern.

A UUID is a string-based primary key consisting of 32-digits (spaces
inserted only for clarity), encoded in hexadecimal, as in Figure 5.4. The string
is composed as follows:

1. Unique down to the millisecond. Digits 1–8 are the hex-encoded lower
32 bits of the System.currentTimeMillis() call.

2. Unique across a cluster. Digits 9–16 are the hex-encoded representation
of the 32-bit integer of the underlying IP Address (an IP address is
divided into four separate bytes, appended together they form 32 bits).

3. Unique down to the objects within a JVM. Digits 17–24 are the hex
representation of the call to System.identityHashCode(this), which is
guaranteed to return distinct integers for distinct objects within a JVM.
Even with multiple VMs on the same machine, it is highly unlikely that
two UUID generators will return duplicate UUIDs (explained later).

4. Unique within an object within a millisecond. Finally, digits 25–32
represent a random 32 bit integer generated on every method call using
the cryptographically strong java.security.SecureRandom class. Thus,
multiple calls to the same method within the same millisecond are
guaranteed to be unique.

Altogether, a UUID created using this algorithm is guaranteed to be unique
across all machines in a cluster, across all instances of UUID generators within
a JVM on a machine, down to the millisecond and even down to the individual
method call within each millisecond.

Primary Key Generation Strategies 113

1 “UUIDs and GUID,” http://casl.csa.iisc.ernet.in/Standards/internet-drafts/draft-leach-
uuids-guids-01.txt.

Figure 5.4 Layout of GUID in EJB.

There are two ways to implement the UUID pattern in an EJB context: as a
plain Java singleton class or as a stateless session bean. The choice between
implementations is really up to the developers, according to their tastes. The
UUID algorithm is safe no matter how many instances of it are running within
a VM. Implemented as a stateless session bean, the EJB server would pool
instances of the UUID generator and have to intercept requests and perform
the usual server overhead such as security checks, session bean creation, and so
on. As a plain Java singleton there is none of this overhead, entity beans simply
call the singleton instance that lives in their class loader (see the EJB Strategy
Using Java Singletons Is OK if They’re Used Correctly in Chapter 9).

A sample implementation of the UUID as a stateless session bean is pro-
vided below (utility and EJB methods left out for clarity), based on an imple-
mentation by Steve Woodcock (www.activescript.co.uk):

public class UUIDBean implements javax.ejb.SessionBean {

// secure random to provide nonrepeating seed

private SecureRandom seeder;

// cached value for mid part of string

private String midValue;

public void ejbCreate() throws CreateException {

try {

// get the internet address

InetAddress inet = InetAddress.getLocalHost();

byte [] bytes = inet.getAddress();

String hexInetAddress = hexFormat(getInt(bytes),8);

// get the hashcode for this object

String thisHashCode =

hexFormat(System.identityHashCode(this),8);

// set up mid value string

this.midValue = hexInetAddress + thisHashCode;

// load up the randomizer first

System.currentTimeMillis()

IP Address

System.identityHashCode(this)

Random Number

114 Chapter Five

seeder = new SecureRandom();

int node = seeder.nextInt();

} catch (Exception e) {

throw new CreateException (“failure to create bean “ + e);

}

}

public String getUUID() throws RemoteException

{

long timeNow = System.currentTimeMillis();

// get int value as unsigned

int timeLow = (int) timeNow & 0xFFFFFFFF;

// get next random value

int node = seeder.nextInt();

return (hexFormat(timeLow, 8) + mid + hexFormat(node, 8));

}

}

When the session bean is first created, the hex format of the system’s IP
address and hashCode, as well as the SecureRandom seeder are created and
cached for performance. On subsequent calls to getUUID() only the current
time in milliseconds and the current random number need to be hex-formatted
and added with the cached IP and hashcode, to efficiently create a primary key
in memory.

Theoretically, the one problem that could break this pattern is a clock setback.
If somehow the clock on the server got setback and the UUID generators
within the server JVM happen to have the SAME hash codes as any generators
that existed at the new setback time, and the generators create the same random
numbers within the same milliseconds as their counterparts in the past, then there
is a remote possibility of generating a duplicate key.

The other theoretical problem this pattern may have occurs when a cluster
of application servers are on the same machine (multiple VMs per machine).
On single machines that run multi-JVMs under Sun’s JDK 1.3.x and 1.4, the
object identifier used as the middle eight characters of the UUID string (gath-
ered from System.identityHashCode(this)) will be the same for two objects if
application server(s) create the two objects in exactly the same order in the two
JVMs. However, to clash UUIDs, the two objects would need to be called in the
same millisecond and generate the same secure random number, which makes
an UUID clash an extremely remote possibility.

Primary Key Generation Strategies 115

The advantages of the UUID for EJB pattern are:

�� Performance. Primary keys are generated in memory, without requiring
any synchronization around global singletons or databases.

�� Simplicity. The UUID pattern does not require complicated databases
access and synchronization code, and can be deployed as a plain old
Java singleton class.

The trade-offs are:

�� Reliance on IP addresses. UUIDs generated on your local LAN will be
encoded with local 192.168... addresses. However even on the local
LAN, all IP addresses are guaranteed to be unique.

�� Use of 36-digit strings for primary keys. The large strings generated by
the UUID pattern may result in slower indexing capabilities on some
databases. The long strings also make it difficult for DBAs to manipu-
late primary keys (that is, performing regular maintenance tasks,
reporting, and so on).

116 Chapter Five

Stored Procedures for Autogenerated Keys

A BMP entity bean developer using a JDBC 2.X or 1.X driver needs a way to
create a simple integer-based primary key, unique to each entity bean. Most
relational databases offer a proprietary, built-in autogenerated key feature.

How can an entity bean make use of a relational database’s built-in
autogenerated keys in a portable, efficient fashion?

* * *
Most databases offer a primary generation service that automatically gener-

ates a primary key for a newly inserted row. The most common such facility is
an autoincrementing counter (often called a sequence or an identity column),
which allows you to create primary keys by simply incrementing a number,
starting from zero. Autoincrementing counters can be queried for the next
available number, which can then be used to populate the primary key column
in a database table. Often, the autoincrementing counter can be directly
attached to the primary key column in a table, and will automatically populate
the primary key field of an inserted row, with the next number in the sequence.
For BMP programmers, autogenerated keys provide a simple, powerful, built-
in mechanism for creating primary keys.

The EJB specification requires that the primary key of a newly created entity
bean be passed to the container as a return value on the ejbCreate method. This
presents a problem for BMP developers wanting to use autogenerated keys.
When performing a JDBC insert, the returned result set contains a count of the
number of rows inserted, not the primary keys of the inserted rows. The act of
inserting does not give the developer the primary key that was generated.
Given this restriction, how can a developer programmatically retrieve the
value of the row that was just inserted?

In JDBC 3.0 (part of JDK 1.4) this problem has been solved. JDBC 3.0 extends
the statement interface by adding the capability to return the primary key of
any inserted rows using standard API methods, as in the code example below:

PrepartedStatement pstmt = conn.prepareStatement();

stmt.executeUpdate(“insert Into sometable(field1 ,field2)” +

“values (‘value1’, ‘value2’)”, Statement.RETURN_GENERATED_KEYS);

ResultSet rs = pstmt.getGeneratedKeys();

if (rs.next()) {

int myPrimaryKey = rs.getInt(1);

}

Primary Key Generation Strategies 117

Unfortunately, developers who do not have access to JDBC 3.X drivers for
their database cannot make use of this standardized method for using an auto-
generated key.

One solution is to code ejbCreate to perform a SQL select immediately after
the insert, to get the primary key of the row that was just inserted. The prob-
lem with this approach is that there is that there may be no way to uniquely
select the row that was just inserted. Remember that only the primary key is
guaranteed to be unique in a row. If the other inserted fields are not guaran-
teed to be unique, it may be impossible to populate the where clause of the SQL
select with parameters unique enough to select the row that was just inserted.
Even if every inserted field is then used in the where clause (which will result
in a long and poor performing query), it is possible that there may be more
than one such row in the table with the same fields. Another problem is that
this approach would require two database calls (which are network calls when
the database is on a separate machine from the application server): one to per-
form the insert and one to retrieve the key of the last inserted row.

Many databases that support sequences (autoincrementing counters) allow
the creation of a sequence that is not tied to a particular table. Using this
approach, a developer can ask for the next available number in one database
call [usually by selecting on a DB provided procedure such as nextval(“sequence-
name”)], which will both increment the counter and return the next number at
once, and then use this generated number to insert the primary key along with
other contents of the entity bean in the insert call. The primary key can then be
returned from ejbCreate. Along with the fact that this approach requires two
database calls, the main problem with this approach is that it is not portable
across databases. Some databases that provide incrementing counter facilities
(most notably SQLServer) do not allow you to create sequence counters that
are not tied to a particular table. Thus it is impossible to get the next free pri-
mary key before performing an insert.

Autogenerated keys provide a powerful built-in mechanism for creating
primary keys, but hard-coding your entity beans to access a generated key
through some DB-specific mechanism limits their portability and often
requires the use of multiple database calls in ejbCreate. An entity bean’s persis-
tence code should ideally be portable across application servers and databases.

Therefore:

Use stored procedures to insert data into the database and return the
generated primary key in the same call. Entity beans can be written
to use the standard and portable JDBC CallableStatement interface,
to call a stored procedure.

Stored procedures are a feature that all SQL-compliant databases have. They
allow the encoding of complex data access logic directly into the database,
where they are compiled for optimum performance. In JDBC, stored proce-
dures can be accessed in a completely database-independent format, using the

118 Chapter Five

CallableStatement interface. Stored procedures can thus be used to provide a
database-independent method of inserting a row into a database and retrieving
the autogenerated primary key within one database call. By writing your
entity beans to use the standard CallableStatement API, portability across
databases can be achieved, since the database vendor specific coding is stored
in the database, not the EJB layer. Thus, any relational database that supports
autogenerated keys can be used in a standard way, without requiring repro-
gramming of your ejbCreate method if your database needs to be changed.

Using a stored procedure, the code in ejbCreate would execute a JDBC
CallableStatement by passing in all of the entity bean’s attributes that need to
be inserted as parameters. On the database side, the stored procedure would
use vendor-specific mechanisms to perform the insert and get the generated
key, all within one stored procedure.

Using the Bank Account example, the ejbCreate for an Account entity bean
would look like this:

public AccountPK ejbCreate(String ownerName, int balance) throws

CreateException

{

PreparedStatement pstmt = null;

Connection conn = null;

try

(

this.ownerName = ownerName;

this.balance = balance;

conn = getConnection();

CallableStatement call = conn.prepareCall(

“{call insertAccount(?, ?, ?)}”);

call.setString(1, this.ownerName);

call.setInt(2, this.balance);

call.registerOutParameter(3, java.sql.Types.INTEGER);

call.execute();

this.accountID = call.getInt(3);

return new AccountPK(accountID);

}

catch (Exception e)

. . .

In the above code example, a CallableStatement is created that calls an insert-
Account stored procedure. All the entity bean attributes passed in through
ejbCreate are then passed into the insertAccount procedure for insertion. On the
database side, the insertAccount procedure will insert the passed-in data into
the appropriate table, while at the same time determining the autogenerated

Primary Key Generation Strategies 119

key using vendor-specific hooks. The stored procedure will then return the
generated key to the client by placing it in the OUT parameter (in this case the
last question mark in the procedure call), allowing Java code in ejbCreate to
access it after the call has been executed.

The advantages of this approach are:

�� Simplicity. If you are using BMP entity beans and an RDBMS with an
autogeneration facility there is little reason to implement more compli-
cated primary key generation tactics such as those described in the
UUID for EJB and Sequence Blocks patterns.

�� Portability. The CallableStatement interface is a standard JDBC API
that is portable across any database.

The trade-offs are:

�� Increased database infrastructure maintenance. A new insertXXX
stored procedure must be created for every entity bean in the applica-
tion, in order to do the inserts on behalf of ejbCreate. Whenever a column
is added to the underlying table or an attribute added to an entity bean,
the associated insert stored procedure will also have to be updated.
This may not be such a major issue though, since stored procedure
creation code is usually stored in the same scripts as the table creation
code, which will need to be updated anyway.

�� Not all databases support autogenerated keys. All enterprise-class
databases support some form of primary key autogeneration facility.
For the ones that don’t, a simple incrementing counter can be manually
manipulated behind a stored procedure if necessary. For example, a
table that maintains the current highest primary key in use by all other
tables in the database can be maintained, and the insertXXX procedures
can manually increment those rows to maintain a primary key.

When writing BMP entity beans, the Stored Procedures for Autogenerated
Keys pattern provides a fast and portable way to make use of your RDBMS’s
built-in key generation facility. Two other alternatives that are useable in both
BMP and CMP beans are explored in this chapter: the Sequence Blocks and
UUID for EJB patterns.

120 Chapter Five

Best Practices for EJB
Design and Implementation

Two

PA R T

123

So you have this great idea for an application, and you have already gone
through the process of outlining all the use cases that your application must
support. How do you actually map this conceptual understanding of the busi-
ness problem to a J2EE application design? How do the patterns presented in
this book fit in?

Different processes and best practices have been established for going from
a business problem to a concrete design. This chapter will not illustrate any
one process and will not recommend any methodology. Rather, we will take a
set of real-world requirements and show how they can be realized as pattern-
driven architectures.

I recommend that you browse the patterns in Part One before reading this
chapter. You may also need to periodically refer back to the patterns while
reading this. This chapter is also a walk-through of all the patterns presented
in this book. Thus, after having read this chapter, you should have a very good
idea of how all the patterns of this book can be applied to your own real-world
projects.

The application we will design together is the forums subsystem of The-
ServerSide.com J2EE Community, the industry’s source of J2EE news, discus-
sions, patterns, application server reviews, and articles. Note that this book
does not have a long-running example—TheServerSide will only be used in
this chapter to illustrate how pattern-driven designs can be achieved using a
real-world application.

From Requirements to
Pattern-Driven Design

C H A P T E R

6

Launched in May 2000, TheServerSide.com was among the first deployed
J2EE-based Web sites that included an EJB based back end. Funded and created
by The Middleware Company, an enterprise Java training and consulting com-
pany with Ed Roman (author of Mastering EJB (2002)) as its CEO, the purpose
of TheServerSide was to create a community Web site for J2EE developers. On
the back end, this community was basically just a message-board-style appli-
cation based on EJB. In fact, the very first version of TheServerSide only had
one session bean fronting a simple domain model of four entity beans. Since
then, this portion of the site has been localized into a forums component, and
other pieces of functionality (such as surveys, polls, e-mail, and more), were
added to the system as separate components, with session beans as the inter-
face into these components.

TheServerSide’s Forum Messaging System
Use Cases

In our experience, a use-case-driven approach is the most effective approach to
take when designing any software application. In order to build a successful
application, we need to understand the wants and needs of the users of the
application (Carey, et al., 2000). For TheServerSide, this mantra was taken to
the extreme, because it helped us focus on getting a lean and useful Web site
up and running quickly, rather than spend too much time focusing on cool
features and back-end infrastructures that would have delayed the launch of
the portal (back in a time when several similar J2EE community portals were
in the works).

For TheServerSide, we needed to build a forum/message board system that
would allow developers to post messages to each other in a way that could be
organized by topic (forum). Furthermore, replies to messages had to be orga-
nized together along with the original message in order to create a thread of
discussion within a topic. TheServerSide also had to support administration
functions to allow managing of the topics of discussion (forums), managing of
messages posted, and so on.

Using this requirements-first approach, we came up with a set of use cases
that the system needed to support in order to fulfill its purpose. A subset of
these use cases is presented in Figure 6.1. Pay special attention to these use cases,
because we will frequently refer to them when making design decisions in the rest of
this chapter.

124 Chapter Six

Figure 6.1 Use cases for a forum message system.

The rest of this chapter will show you how to take these requirements and
map them to designs. Each use case should have its semantics and user inter-
actions specified in detail at this point, to make sure that all the architects and
other project members (and particularly the clients) understand and agree
upon what each use case means. One such tool that was used when specifying
TheServerSide was a home-brew use case diagram, such as the one illustrated
in Figure 6.2.

ViewThread

PostMessage

ViewThreads
Summaries

AddReply

Login

Signup

CreateForum

EditMessage

administratoruser

...

...

From Requirements to Pattern-Driven Design 125

Figure 6.2 Post Message use case realization.

With a solid understanding of the use cases a system must support, the next
step is to analyze the use case model and begin coming up with concrete
designs of the application, including the domain model and other structures.
Rather than go through this design process (which is out of scope for this
book), we will instead take a pattern-driven approach, using the patterns in
this book to map the use cases presented into possible J2EE architectures.

But first, we need to cover some essential background material that every
distributed systems architect and developer needs to understand.

A Quick Referesher on Design Issues
and Terminology

When we discuss architecture and design, it is necessary that we agree on
some basic terminology, in order to be able to treat this subject with the detail
it needs. If you haven’t been involved in the design and architecture of large
object-oriented systems before, we strongly suggest reading this section before
continuing, because the rest of the chapter (and Chapter 7) makes heavy use of
the concepts covered in this section. If you have designed many systems in the
past, we recommend you still read this section as a refresher.

What Is a Domain Model?
A domain model represents all the nouns in a business problem: the people,
places, things, and ideas. Domain objects in the model are most often derived
by inference from the use cases in an application, or by consultation with the
domain experts, people who understand the business problem really well (for
example: the customer who is sponsoring your project).

click

post
validation

valid
entries

Thank you
Page

Post
Message

Page

press
submit

invalid entries

check if
logged in yes

login

no

126 Chapter Six

Using TheServerSide’s use case model as a starting point, we can derive all
of the domain objects in the application. For example, taking the PostMessage
use case, we can infer the existence of and the need to model a Message. Also,
Messages need to be posted into some sort of topical category, which we can
call a Forum. Taking the AddReply message, we know that we need a way to
string together a message and its hierarchy of replies. A Thread is the mecha-
nism by which we can do this, hence the ViewThread use case. Finally,
Messages need to be associated with the identity of the person who posted
them (there is no anonymous posting on TheServerSide), thus we need to
model the main actor in this drama: the User.

The end result is the realization of our domain model, which usually maps
directly to a similarly structured model of entity beans (or other persistent
object technology). Figure 6.3 illustrates the domain model that would be
derived after analyzing the use cases in Figure 6.1.

Understanding the Layers
in a J2EE System
A J2EE-based application (or any distributed system for that matter) can in
general be classified into a set of layers corresponding to Figure 6.4. These lay-
ers will be referred to frequently in the rest of this chapter and Chapter 7.

Figure 6.3 TheServerSide’s simple domain model.

Domain Model

User
Forum

Thread Thread

Message Message

...

...

From Requirements to Pattern-Driven Design 127

Figure 6.4 The layering in a J2EE system.

The layers break down as follows:

Presentation. All the actual UI parts of an application, such as HTML, JSP,
Flash, Swing, or AWT classes. JSP Tag Libraries (when used only for for-
matting purposes) can also be considered to be part of this layer.

Application. The application layer binds an application together by pro-
viding the glue and workflow between components on the presentation
layer and the services layer. In general, this layer is responsible for man-
aging client-side state (HTTPSessions), performing syntactic validation
on client input, and delegating to the services layer for business logic.
Taglibs can be considered part of this layer if they make calls to the
EJB layer.

Services. The services layer (session beans) is the main entry point into the
EJB side of things, and serves as the layer that the application layer calls
to invoke business logic specific to particular use cases. The services
layer is usually implemented with the Session Façade pattern (Chapter
1). The main function of the services layer is to provide ways to invoke
the business logic of a use case (on a domain object), controlling the
transactions that the use cases run under, and handling any delegation
and workflow between domain objects required to fulfill a use case.
A key distinction here is that multiple application layers can access the
same services layer, such as a Web site and a thick client both accessing
the same session bean layer.

Domain. The domain layer (for example, entity beans) is where all the
objects that came out of an object-oriented analysis of the business prob-
lem (the domain model) reside. The services layer delegates many of the

Presentation

Application

Services

Domain

Persistence

Layer Name Responsibilities

User interface

Use-case UI workflow, syntactic

validation, interaction with services

Controlling txns, business/

workflow logic, acting as facade

The domain model, domain/

business logic, semantic validation

Persistent storage of domain

object state

Implementation Technology

JSP/HTML/JavaScript,

java.awt.Component subclasses

Servlets, <usebean> targets,

java.awt.Panel subclasses

EJB Session Beans

EJB Entity Beans, Plain Old

Java Objects,

UI
Layers

O/Rmappers,OODBMS,EJB

Entity Bean BMP/CMP

typ
e dep

endency

128 Chapter Six

requests it receives to the domain layer (Fowler and Mee, 2001). Thus,
the domain layer is definitely where the meat of the business problem
resides, and is often application-independent (reusable across applica-
tions/projects).

Persistence. The persistence layer contains all of the plumbing logic
required to make your domain model persist in a data store. For CMP
entity beans, JDO, and O/R, the developer does not need to do any cod-
ing for this layer, rather, external tools are used to map domain objects to
a data store. For BMP entity beans, and session beans, this layer can be
implemented with the Data Access Command Bean pattern in Chapter 3.

BUSINESS LOGIC VERSUS DOMAIN LOGIC

There is a great deal of confusion about the meaning of business logic and
domain logic, and where each type of logic resides in the five-layer system
described earlier.

Domain logic is logic that acts upon the domain objects in a system. Most of
the logic in an application is logic that acts upon the domain objects (the
business things in an application), and thus belongs on the domain objects
themselves (if you care about good OO principles such as encapsulation, that
is). However, since this logic solves a business problem, it is also considered by
many to fit the description of business logic. For example, the PostMessage use
case would be implemented by a PostMessage method on a forum object, since
only a forum should know how to post messages to itself. Thus the logic that
posts a message in a forum is domain logic and belongs in the domain layer.

But if business logic and domain logic are the same thing, then what goes on
the session bean methods in the services layer? Oddly enough this logic is also
a form of business logic, but is can be differentiated from business logic in the
domain layer if you think of workflow. That is, business logic in the services
layer is logic that acts across multiple (possibly unrelated) domain objects, or
external systems (systems exposed via JMS or Java Connector Architecture) in
order to fulfill a use case. For example, before calling Forum.postMessage-
(aMessage), the session bean must first create the Message in question and
then pass it to the Forum (a trivial example of workflow). Other examples of
business/workflow logic is sending JMS messages to message-driven beans,
e-mails, transaction logging, interactions with legacy systems via Java
Connector Architecture, and so forth. Business/workflow logic on the services
layer is basically any sort of logic that is needed to fulfill a use case, that simply
doesn’t match the concepts embodied by a domain object (and thus shouldn’t
be encapsulated behind a domain object).

The answer to the original quandary is that there are two kinds of business
logic, one that basically is domain logic, and one that involves workflow that
doesn’t belong in the domain model (and thus lives in the services layer).

From Requirements to Pattern-Driven Design 129

Pattern-Driven EJB Architectures

Now that we have the use cases and necessary architectural background in
hand, we are ready to apply the design patterns in this book to a real applica-
tion design. The approach we will take is to design TheServerSide layer by
layer, applying the most essential patterns in this book and looking at all the
alternate architectures that these patterns will allow.

Since all the other layers in our system depend on the domain and persis-
tence layers, this is the best place to start.

Domain and Persistence
Layer Patterns
When we design the back end of our system, the architecture and patterns that
we use will vary depending on whether our application has a domain layer
(such as entity beans) or no domain layer at all (such as session beans using
JDBC, or stored procedures. Let’s explore both approaches: first we’ll design a
system without a domain layer, and then again with a domain layer

WHY GO STRAIGHT TO THE DATABASE?

Some nonreligious reasons why one might opt for direct database calls are:

Enables quick building of prototypes. Direct database access can help
when throwing together quick prototype applications that are not
intended to have a long life span or be changed much over time.

Provides trivial domain models. If an application is very simple, then it
can be very quick to hack together an application by not putting in the
up-front time to build a nice domain model. For example, the forums
subsystem of TheServerSide is extremely simple—there are only four
domain objects. Thus, the initial launch of TheServerSide (which only
had a forums subsystem at the time), could have arrived a lot quicker if
time wasn’t spent writing a nice BMP-entity-bean-based domain model.
Luckily, this course of action was not taken. TheServerSide ended up
growing and changing with the times, and the OO domain model back
end helped ease the maintenance burden along the way.

Able to circumvent the domain model for performance reasons.
Developers may want to at least circumvent a domain model and write
persistence logic themselves when implementing a use case that is read-
only in nature, such as ViewThreadSumaries or ViewThread. For the
reasons expressed in the JDBC for Reading pattern (Chapter 3), it can be
a lot faster to circumvent the domain model and go straight to the
database for these types of operations.

130 Chapter Six

Persistence Layer Patterns without a
Domain Layer

When designing a system without a domain layer, then the Data Access
Command Bean pattern (Chapter 3) provides a best practice for architecting a
persistence layer. Using this pattern, the persistence layer implementation of
the PostMessage and ViewThreadSummaries use cases would be implemented
using data access command beans, as shown in Figure 6.5.

In a similar fashion, all of the use cases in our system would eventually map
down to a DACB that handles its persistence. Data access command beans
provide a standard and efficient way to completely encapsulate persistence
logic behind a set of command beans. In effect, they become the persistence
layer and the domain layer in an application.

Persistence Layer Patterns with a
Domain Model

If you have made the good decision to model your business problem with an
object-oriented domain model, then the question of what patterns apply in the
persistence layer depends on what technology you are using to implement
your domain model. The domain model implementation technology choices
can be divided into two types: those that generate the persistence code for you
and those that do not, as explained below:

Figure 6.5 Persistence layer with data access command beans.

setTitle(...)
setSubject(...)
setBody(...)
setUserID(...)
setForumID(...)

execute()

getMessageID()

//input parameters
title
subject
body
userID
forumID

//return values
messageID

PostMessage
DACBean

setTitle(...)
setSubject(...)
setBody(...)
setUserID(...)
setForumID(...)

execute()

getThreadID()
getThreadTitle()
getThreadSummary()
getUserFirstName()
getUserLastName()
getMessageCount()
getMessageID()

next()

//input parameters
forumID

//return value container
RowSet forums;

ViewThreadsSummaries
DACBean

From Requirements to Pattern-Driven Design 131

Use generated Persistence Logic. CMP entity beans, JDO, and the use
of object/relational mapping tools provide you with a technology for
implementing your domain model without having to write any persis-
tence logic. They allow you to write your domain objects and have a tool
automatically persist your domain objects to a data store. Since the per-
sistence layer is generated, there is no place for developers to apply any
patterns.

Do it yourself. Bean-managed persistent entity beans are an example of a
domain model technology that requires the developer to write all the
persistence logic. Despite the fact that BMP beans allow (and encourage)
you to write your persistence code directly into the domain object itself
(in the ejbLoad/Store/Create/Find/Delete), developers should still
consider creating a separate persistence layer, and here there are design
patterns to help you out.

A persistence layer can be created beneath a BMP entity bean domain layer
using the Data Access Command Bean pattern (Chapter 3), much in the same
way that it was applied in Figure 6.5. This will allow you to keep your BMP
entity beans free of any persistence logic, localizing the logic to its own well-
encapsulated layer of classes. Another useful pattern for this is the Data Access
Object pattern (Alur, et al., 2001).

Patterns for the Domain Layer

At the domain layer, numerous patterns apply, depending on the context and
problem being solved. In this section, we will evaluate the requirements of
TheServerSide and choose implementations depending on factors affecting
concurrency, portability, maintainability, the use of tools, and the need to gen-
erate primary keys.

Concurrency. Among the use cases outlined in Figure 6.1, the EditMessage
use case opens the potential for corruption of the underlying database
unless special precautions are taken. Figure 6.1 shows that only site
administrators can edit a message. But what happens when two differ-
ent administrators attempt to edit the same message? As explained in
the Version Number pattern (Chapter 3), there is a potential for the two
administrators to overwrite each other’s changes. The solution is to use
the Version Number pattern, which would cause us to add optimistic
concurrency checks to the domain objects that have use cases that could
potentially result in database corruption.

132 Chapter Six

Tools. Most modern EJB development tools automate many of the tedious
development tasks required to use EJB—including maintaining consis-
tent business method signatures between the remote/local interface and
the bean class. If, however, you find yourself in need of writing your
EJBs with a text editor (VI is my favorite), then the Business Interface
pattern (Chapter 1) can help you catch errors that occur between incon-
sistent method signatures on the remote/local and bean classes. This
pattern applies to all EJBs, not just entity beans.

Portability. If you are in a situation in which you are designing an entity
bean domain model that could potentially be used in diverse and unpre-
dictable application server environments, then it is likely that the differ-
ent application servers will have different levels of support for CMP and
BMP. The Dual Persistent Entity Bean pattern (Chapter 3) presents a
solution this problem. Since The Middleware Company (who built The-
ServerSide.com) is in the training business and not the component resale
business, there is no use case on TheServerSide that requires portability
across CMP and BMP, thus this pattern won’t affect the designs in this
chapter.

Maintainability. If you are programming in an EJB 1.X environment (with-
out remote interfaces) and want to make use of the Data Transfer Object
pattern, or if you are working in an application with very large entity
beans (with many attributes), then the Generic Attribute Access pattern
shows how to give your entity beans a generic, HashMap-based inter-
face, thus reducing simplifying the implementation and interfaces of
your entity beans.

Primary Key Generation. Domain objects in a distributed system require
the use of primary keys in order to be able to distinguish one instance of
an object from another. In particular, entity beans require that a primary
key be returned to the container when ejbCreating an entity bean. But
how does a developer generate primary keys for their entity beans?
Chapter 5 offers three design patterns, none of which change the archi-
tecture of the entity beans themselves, but some of which provide some
pretty creative utility EJB to generate primary keys.

Services Layer Patterns

When deciding how to design the architecture of the services layer of our use
cases, a simple first question to ask is whether the use case is synchronous or
asynchronous in nature.

From Requirements to Pattern-Driven Design 133

Asynchronous Use Cases
Asynchronous use cases are those that a client can initiate but doesn’t need to
wait for a response for. That is, once the client initiates the use case, he or she
can continue using the application, while the use case executes in parallel.
Developers can identify asynchronous use cases as those that don’t require
returning any sort of immediate return value or confirmation to the user. For
example, most online bookstores implement the equivalent of the purchase-
Books use case asynchronously. Once users have entered in all the information
and clicked the final submit button, they don’t sit and wait while their credit
card gets billed or the book is located in inventory and wrapped for shipping.
Instead, the use case is triggered in the back end, and then the users are free to
browse the rest of the site.

On TheServerSide, the PostMessage and AddReply use cases could be exe-
cuted asynchronously, because once a message is typed in and submitted to
the server, the client doesn’t necessarily need to wait for it to be added to the
forum. For these use cases, the Message Façade pattern (Chapter 1) provides
an architecture for implementing the business logic for these use cases asyn-
chronously. The Message Façade pattern advocates using a message-driven
bean to encapsulate the business logic for a use case. Thus, the PostMessage
and AddReply use cases could have their services layers implemented as in
Figure 6.6.

Synchronous Use Cases
Synchronous use cases require the client to block and wait while a use case
executes. All use cases that read in data from the server are synchronous, as are
other use cases such as CreateForum or EditMessage, which require that the
administrator know if the use case executed successfully.

Figure 6.6 Services Layer with Message Façade pattern.

sends JMS Messsage tosends JMS Messsage to

sends JMS Messsage to

onMessage()

AddReply
MDB

onMessage()

PostMessage
MDB

134 Chapter Six

Accounting for the vast majority of use cases, synchronous use cases can
have their services layer implemented with one of two patterns, the Session
Façade pattern, and the EJB Command pattern (Chapter 1).

Session Façade

The Session Façade pattern is the most commonly used EJB design pattern,
and is a building block for other patterns in this book. In fact, the Session
Façade pattern is the services layer. It advocates hiding the domain layer in an
EJB application behind a layer of session beans that encapsulate all the busi-
ness logic in a J2EE system from the application layer.

For example, if we needed to change the specification of the PostMessage
and AddReply use cases to allow the user to browse the message that he just
submitted, then the user would have to block and wait while the back end
actually added the message to the forum (and thus these use cases would now
become synchronous in nature).

In the services layer, these use cases would be implemented as two methods
on a stateless session bean: postMessage and addReply. For example, the business
logic of the postMessage use case would be encapsulated on a session bean
method, and consist of creating a Message and passing it to the postMessage
method on a Forum. Thus, domain logic is maintained on the domain model,
but the workflow required to fulfill the use case (creating the Message and
then passing it to the Forum), is on the session bean, as in Figure 6.7.

Figure 6.7 Post Message use case on a session façade.

findByPrimaryKey(forumID)

postMessage(aMessage)

findByPrimaryKey(carPK)

Network

Forum
LocalHome

create(...)

ForumServices Message
LocalHome

findByPrimaryKey(forumID)

postMessage(aMessage)

Application
Layer

postMessage(...)

Forum

From Requirements to Pattern-Driven Design 135

When we use the Session Façade pattern to design the architecture of a ser-
vices layer, use cases and processes of a similar nature should be grouped
together as methods of the same session bean (see the Session Façade pattern
for more info). Thus, services layer of our application could potentially be split
into two session beans, one that contains all the use cases that are forum-mes-
sage board related, and one that is related to users and use cases surrounding
users, as shown in Figure 6.8.

The only other way to implement the architecture of the services layer is by
using the EJB Command Pattern, which replaces the session façade.

EJB Command Pattern

The EJB Command pattern (Chapter 1) is an alternate way to implement a use
case’s services layer business logic. The easiest way to think of the Command
pattern is as a lighter-weight session façade, that also has the benefit of decou-
pling the client from the details of EJB (similar to the Business Delegate pat-
tern, covered later in this chapter).

Using the Command pattern, the business logic from each use case is encap-
sulated into small, lightweight command beans, resulting in a services layer
consisting of many fine-grained commands (one per use case) that looks like
Figure 6.9.

Figure 6.8 Session Façade Services Layer for TheServerSide.

postMessage
addReply
updateMessage
createForum
...

ForumServices

createUser
editUser
editUserPreferences
getUserProfile
...

UserServices

136 Chapter Six

Figure 6.9 Services Layer with Command pattern.

Other Services Layer Patterns
The Session Façade, Message Façade and Command patterns illustrated how
our use case’s business logic could be constructed on the services layer. How-
ever, certain use cases require that the business logic within the façade and
command patterns be designed differently, to address performance and main-
tainability concerns:

Performance. As mentioned in the persistence layer pattern, for use cases
that are read-only in nature, the JDBC for Reading pattern (Chapter 3)
can help improve performance by circumventing the entity bean domain
layer in favor of direct database access. Using this pattern, the
ViewThread and ViewThreadSummaries use cases would have their ser-
vices layer business logic skip the Forum and Thread domain objects, in
favor of interacting directly with the persistence layer (using the Data
Access Command Bean pattern).

Maintainability. The Data Transfer Object pattern suggests particular best
practices for how the services layer should construct data transfer objects
and return them to the client. The implementation of this pattern lives in
the services layer, but we will cover it in the next section, after introduc-
ing the Data Transfer Object pattern in relation to our sample case.

Inter-Tier Data Transfer Patterns

Each use case in our application involves communication between the appli-
cation layer and the services layer, and needs a mechanism to transfer data
from one layer to the other.

//setter methods
...
execute()
//getter methods
...

PostMessage
Command

//setter methods
...
execute()
//getter methods
...

AddReply
Command

//setter methods
...
execute()
//getter methods
...

CreateUser
Command

...

From Requirements to Pattern-Driven Design 137

The Data Transfer Object pattern in combination with the Session Façade
pattern is the most commonly used architecture among EJB developers. The
DTO pattern advocates creating a plain, serializable Java class that acts as an
envelope, carrying large amounts of data (in one network call) from server to
client and from client to server. As an alternative, HashMaps can also be used
in place of DTOs (explained below).

RowSets also provide an excellent alternative to DTOs, when transferring
read-only data intended for tabular display (explained below).

Data Transfer Objects

Applied to TheServerSide, a DTO would need to be created for almost every
use case, since all of them (except for the login use case) require some transfer
of data between application and services layer. Using the DTO pattern, a layer
of DTOs would be created, as shown in Figure 6.10. Note the method names on
the ForumServices class.

Figure 6.10 Message Domain DTO.

getMessageDTO(messageID)

updateMessage(aMessageDTO)
...

ForumServices
SessionBean

get/setTitle

get/setBody

...

title

body

userID
...

MessageDTO

Related Services Layer
Methods

DTOs (interlayer)Use cases

EditMessage

getMessageThreadSummaryDTOs
(forumID)

...

ViewThread
Summaries

getThreadID()
getXXX
...

threadID

threadTitle

threadSummary

messageCount
userFirstName

userLastName

messageID

ThreadSummaryDTO

ForumServices
SessionBean

138 Chapter Six

Here we show the two types of data transfer objects: domain and custom.
Message DTO is a domain DTO, because it maps directly to a Message domain
object. It is used both for retrieving a Message’s data on the client and for send-
ing an updated version back to the server. ThreadSummary DTO on the other
hand, is a custom DTO that contains attributes from three different domain
objects: Thread, User, and Message. The ThreadSummary DTO is completely
UI-specific and is used to show a summary of threads, such as on TheServer-
Side.com’s home page.

Data Transfer Object Factory

The Data Transfer Object pattern advocates encapsulating DTO creation and
consumption logic into a DTOFactory, which keeps entity beans clean of DTO
creation and consumption logic. Applied to our example, a DTOFactory
would extract DTO-related method from the ForumServices session bean,
either by implementing DTOFactory as another session bean, or as a plain Java
class that ForumServices delegates to, as shown in Figure 6.11.

Figure 6.11 DTOFactory Implementation options.

ForumServices
SessionBean

ForumServices
SessionBean

postMessage

addReply

signup

updateMessage

getMessageDTO(messageID)

updateMessage(aMessageDTO)
...

DTOFactory as a
plain class

getMessageThreadSummaryDTOs

(forumID)

getMessageDTO(messageID)
updateMessage(aMessageDTO)
...

ForumDTOFactory

postMessage

addReply

signup
...

getMessageThreadSummaryDTOs
(forumID)

getMessageDTO(messageID)

updateMessage(aMessageDTO)
...

ForumDTOFactory
Session Bean

DTOFactory as a
session bean

delegates todelegates to

From Requirements to Pattern-Driven Design 139

Note that the main takeaway point of the Data Transfer Object pattern is that
DTOs should not be used between the services layer and the domain objects,
as was common in EJB 1.X, rather, domain objects should be kept clean of DTO
knowledge.

Data Transfer HashMaps:
A DTO Alternative

The examples shown above only show a limited number of DTOs to keep the
chapter more manageable, but often developers need to deal with an explo-
sion of DTOs. The Data Transfer HashMap pattern (Chapter 2) discusses how
a generic HashMap can be used to replace the entire DTO layer.

Data Transfer RowSets

As a Web-based site, almost every UI on TheServerSide is tabular in nature,
since HTML tables are the main way of organizing data on a Web page.
Furthermore, as a forum-messaging system, users of the site only have read-
only access. Thus, all use cases involving browsing the site (such as ViewThread,
ViewThreadSummaries) are read-only in nature and will be represented in
tabular form on TheServerSide. Thus, the ViewThreadSummaries use case
could be implemented as in Figure 6.12.

Using RowSets requires direct database access, thus, you should use them in
conjunction with the JDBC for Reading and the Data Access Command Bean
patterns.

Figure 6.12 Using RowSets for read-only use cases.

Persistence LayerServices Layer

setTitle(...)

setSubject(...)

setBody(...)

setUserID(...)

setForumID(...)

execute()

getRowSet()

//input parameters

forumID

//return value container
RowSet forums;

GetThreadSummaries
DACBean

getThreadSummaryRowSet(forumID)
...

ForumServices
SessionBean

requests RowSet uses

Application
Layer

140 Chapter Six

Application Layer Patterns

Because this book is about EJB design patterns, it does not contain any patterns
that would change the actual architecture of the application layer (see Core
J2EE patterns [Alur, et al., 2001] for an excellent set of presentation and appli-
cation layer patterns), however, the book contains two important patterns that
provide best practices for how the application layer should interact with the
services layer:

EJBHomeFactory pattern. This pattern provides a clean, encapsulated and
high-performance mechanism for application layer clients to find EJB-
Homes. For example, rather than look up the home for ForumServices,
our use cases can simply call EJBHomeFactory.getFactory().
lookUpHome(ForumServicesHome.class). This also further simplifies
application layer logic by removing the burden of remembering JNDI
names (these are extracted into ejb-ref tags in web.xml).

Business Delegate. The Business Delegate pattern advocates creating a
thin plain Java class that hides the details and complexities of EJB from
the application logic. Using this pattern, application logic would inter-
face only with the business delegate, as shown in Figure 6.13. Note that
business delegates can be optimized by using the EJBHomeFactory.

Figure 6.13 Business delegate.

delegates to

uses

delegates to postMessage
addReply
updateMessage
createForum
...

ForumServices

Application
Logic

uses postMessage
addReply
updateMessage
createForum
...

ForumServices
Delegate

EJBHomeFactory

uses

Services LayerApplication Layer

From Requirements to Pattern-Driven Design 141

The business delegate is most useful in large projects where there is a sepa-
ration between presentation/application layer programmers and EJB develop-
ers working on the service/domain layers, as a mechanism to shield the
details of EJB from the presentation/application layer programmers.

Summary

Up to this point, we took the use cases for TheServerSide.com’s forum-
messaging component and observed how the patterns in this book affect the
implementation of the use cases at each layer in the system. You may feel a bit
unsure about which patterns to choose, because many patterns are mutually
exclusive. I would recommend paying close attention to the context and prob-
lem each pattern solves, as well as the pros and cons. There is a best-fit pattern
for your needs; you must simply evaluate it along with the alternatives, to dis-
cover which one best applies to your particular use case.

Luckily, patterns tend to have an affinity for one another, which results in
our seeing particular combinations of patterns being used again and again
across projects. I like to think of those types of patterns combinations as refer-
ence architectures. That is, certain combinations of patterns give rise to certain
architectures that are consistent across projects.

Probably the most common reference architecture used to build J2EE sys-
tems is the Data Transfer Object + Session Façade pattern combination, which
enforces a strictly distinct and clean services layer. On TheServerSide, the ref-
erence architecture we use is the EJBHomeFactory + DTO + Session Façade +
DTOFactory + Sequence Blocks pattern combination (with a domain model of
course).

142 Chapter Six

143

Suppose that you have a conceptual design in mind for your system. You
know the use cases it must support, and you know the mapping from the use
cases to the methods of the session beans that are on your services layer. You
know the domain model the system will manipulate, at least from the concep-
tual perspective (Fowler, et al., 1997). You also know the approach your system
will use for persistent storage.

Now the question arises of how best to develop the system you’ve designed.
Which code should you write first? How will you deploy the system into the
containers of your J2EE environment? What about unit testing? In general,
what kind of tools and procedures will you need to support the processes of
development, environment administration, testing, and the like?

This chapter provides pragmatic, best practice answers to these questions,
guiding you from a conceptual application design to a running, working, J2EE
system. We will consider real-world topics such as the order of code develop-
ment, what it means to administer a J2EE application environment, unit-test-
ing best practices, and tools and procedures supporting J2EE development.

We assume that a number of potentially conflicting forces are at work
around you. You have selected the J2EE platform for the implementation of
your system, and have designed it consistent with industry best practice pat-
terns such as the ones outlined in this book. However, you have likely com-
mitted to some sort of schedule, so it is important that your development

EJB Development Process:
Building with Ant and Unit

Testing with Junit

C H A P T E R

7

process be efficient. But at the same time, you care about your craft (Hunt,
et al., 1999) and are therefore motivated to maintain a professional level of
quality in your work.

The solution presented in this chapter attempts to strike a balance among
these conflicting forces. Lest anyone form the impression that our advice is
overly prescriptive, let us assure you that our intent is exactly the opposite. We
want developers to be free to do what they do best, which is creatively solving
business problems. We don’t want development teams to become inefficient as
a result of inconsistent environments, breakage of previously working func-
tionality, and general lack of repeatability. On the contrary, we sincerely
believe that adopting certain habits, as presented in this chapter, frees us to be
as productive as we can be.

Order of Development

Which code should you write first? Whether you are the solo developer of an
entire project, or a member of a team that has adopted some strategy for orga-
nizing itself and dividing labor, this question must be confronted. Fortunately,
the forces at work around you combine to suggest a natural solution, which
works for teams of various sizes and organization strategies.

Before proceeding, we assume that you have designed your system with an
architecture that should be conceptually separable into at least five layers, as
illustrated in Figure 7.1 (see the section entitled Understanding the Layers in a
J2EE System in Chapter 6 for a quick refresher).

Figure 7.1 Layered architecture.

Presentation

Application

Services

Domain

Persistence

Layer Name Responsibilities

User interface

Use case UI workflow, syntactic

validation, interaction with services

Controlling txns, business/

workflow logic, acting as facade

The domain model, domain/

business logic, semantic validation

Persistent storage of domain

object state

Implementation Technology

JSP/HTML/JavaScript,

java.awt.Component subclasses

Servlets, <usebean> targets,

java.awt.Panel subclasses

EJB Session Beans

EJB Entity Beans, Plain Old

Java Objects,

UI
Layers

O/Rmappers,OODBMS,EJB

entity bean BMP/CMP

typ
e dep

endency

144 Chapter Seven

One consequence of this layering is that the Java types (classes and inter-
faces) that you will write to implement the layers will exhibit “downward”
type dependencies. That is, at both compilation time and run time, types in
“higher” layers will depend on types in “lower” layers. But per industry best
practices, the converse is not true—objects and layers should not encode
knowledge, via “upward” type dependencies, of the client objects or layers
that use them.

Furthermore, Java compilers are driven by type dependencies. When com-
piling a given source file, a Java compiler will first search the classpath for
compiled classes corresponding to types referenced within that source file,
compiling the referenced types if necessary and possible. This depth-first tra-
versal of the typegraph means that persistence classes must be compiled
before domain classes, and domain classes before services classes, and so on.

These phenomena suggest writing your code in order from “lowest” layer to
“highest” layer. And that, tempered with a few pragmatic alterations, is
exactly what you should do. The first pragmatic alteration is that you may
have some types (notably, exceptions and “utilities”) that transcend layers—
they are used from within various layers. Therefore, they could be coded first.
Second, in order to facilitate user interface development in parallel with per-
sistence layer development, it is helpful to get to a working services layer as
quickly as possible. One way to accomplish this is to initially stub out the per-
sistence layer, returning example data for “read” requests, and implementing
“create,” “update,” and “delete” requests with “no-op” implementations.
Then the “real” persistence layer implementation can be programmed while
the user interface is developed against the service layer API.

Third, and finally, we assume that you are working in the context of an iter-
ative, incremental process—so you don’t need to develop the entire breadth of
a given layer, but only as much breadth as is necessary to support the use cases
you’re working on for the current iteration. The resulting solution—which
might be termed “domain-out development”—is detailed in the following
subsections.

Layer-Independent Code
As mentioned, you may come up with some Java types that do not properly
belong to any “layer”—they are used from within multiple layers. Two pri-
mary examples of these types are “utilities” and exceptions. It is difficult to
predict in advance what “utilities” you may need; they tend to emerge as cod-
ing proceeds. A common example is a class implementing static Foreign Meth-
ods (Fowler, 1999) for string manipulation. But you at least need to have an

EJB Development Process 145

idea in mind for where to collect such methods, and in which package to put
classes collecting such methods (see the sidebar that follows on choosing a
Java package structure). One approach is to create a class named Strings (note
the pluralization) for collecting static Foreign Methods that manipulate
strings, and put the Strings class in some likely package (that is, util).

Exceptions are another matter. You would be wise to give some forethought
to the types of exceptions you will use in your codebase, and which packages
will contain your exception types. Since you won’t be able to compile any class
whose methods reference your exception types until you code your exception
types, this is an unfortunate but necessary starting point. There is a great deal
of discussion on the topic of exception handling in Java on Ward Cunning-
ham’s Portland Pattern Repository (Exception Patterns, 2001), and a large num-
ber of valuable documented patterns as well. We recommend that you pay
particular attention to the patterns named Don’t Throw Generic Exceptions, Let
Exceptions Propagate, Homogenize Exceptions, and Convert Exceptions.

Domain First
Once you have settled on a package structure and approach to exception han-
dling, you are ready to begin coding your domain layer (see the What Is a
Domain Model discussion in Chapter 1). The first choice that will need to be
made is whether to implement the domain model as entity beans or plain Java
objects (see Chapter 8 “Alternatives to Entity Beans”), because each choice has
obvious implications for how you will implement your persistence layer.

Regardless, the domain layer is the proper place to begin, because you will
not be able to compile the session beans in your services layer until you’ve
compiled the domain layer (because your session bean business methods need
to use the classes in the domain layer). Furthermore, domain objects are fairly
straightforward to implement, in either choice of implementation technology.

At this stage, your main objective should be to implement the domain object
classes needed for the current iteration of your project, and get them to com-
pile. Don’t worry too much at this early stage about the persistence of your
domain objects; you can just leave the ejbLoad/Store/remove/find methods empty
for now.

Persistence Second
Once you have a compiling domain layer, your next step is to begin imple-
menting the persistence layer. Experience has shown that implementing per-
sistence layers can be very time-consuming, especially when relational
databases are used for persisting domain object state. Effort is required to
develop the database schema corresponding to the domain model, and to

146 Chapter Seven

develop the mapping from the domain model to the database schema (Brown
and Whitenack, 1995; Stafford, 2001). While all of this development is going
on, your user interface developers are not as productive as they otherwise
might be. Even if they can implement and compile the classes for the UI, they
cannot truly test the UI until some form of persistence is working.

CHOOSING A JAVA PACKAGE STRUCTURE

Another decision you’ll face in your EJB application development process is
how to separate your classes into Java packages. What set of packages will you
use? How will the package structure be organized?

Ideally, you want to group “logically related” classes together into packages
in such a way that the dependencies between classes in different packages are
minimized.

One obvious solution is suggested by the layering of your architecture: create
a package per layer, plus a couple of additional packages for layer-independent
code. This results in a set of packages such as the following:

com.mycompany.mysystem.domain

com.mycompany.mysystem.exceptions

com.mycompany.mysystem.persistence

com.mycompany.mysystem.services

com.mycompany.mysystem.util

com.mycompany.mysystem.web (assuming a web-based application layer)

Another worthwhile approach is to insert an additional level of packaging
according to the container (or tier) in which the packages will be deployed at
run time. In this approach, one must allow for code that will be deployed in
more than one container or tier, hence a “common” package. The resulting
structure is as follows:

com.mycompany.mysystem.common.exceptions

com.mycompany.mysystem.common.util

com.mycompany.mysystem.common.datatransferobjects

com.mycompany.mysystem.ejbcontainer.domain

com.mycompany.mysystem.ejbcontainer.persistence

com.mycompany.mysystem.ejbcontainer.services

com.mycompany.mysystem.webcontainer.web

Within the per layer packages, you may choose to create additional
subpackages as needed—if you have a bunch of conceptually related groups of
classes within a layer, that are distinct from each other, then it makes sense to
add an additional level of packaging within that layer. This often occurs as a
result of “vertical subsystems” within the overall system, that tend to slice
through the layers and derive their names from major “subjects” in the domain
model that they deal with.

EJB Development Process 147

Services Third
It can be surprising that all of the foregoing work is required in preparation for
implementing the session-bean-based services layer of your system, but that is
just a fact of J2EE development. Nevertheless, the services layer is perhaps the
most important layer in the system, and its implementation definitely repre-
sents a culmination, a milestone, in the EJB development process. In addition
to the fact that it defines the API used by clients of the system (including user
interfaces), and sees into the domain and persistence layers, one of the primary
reasons for its importance is that it forms a very high-leverage test point for
your unit test suites—a point we will revisit later in this chapter.

So, given a compiling domain layer, and a working persistence layer, service
layer implementation can be completed. Because service layer “business meth-
ods” are generally drawn from use case names in the system’s requirements
model (or system responses in the use case scenarios), it is very common to
have service layer “business methods” that reflect Create, Read, Update,
Delete (CRUD) operations on domain objects. Even though it may seem mun-
dane, creating and updating and deleting business objects in a system are
common user goals, which translate into use cases (Cockburn, 2000). Typically
the implementations of these business methods will merely delegate to the
CRUD API in the domain and/or persistence layer.

Clients Last
Finally, with a unit-tested services layer supported by a real persistence layer,
you are ready to complete the development and integration of client layers—
including user interfaces, external system interfaces, and so on. There are def-
inite advantages, in terms of consistent validation, transaction control, and
response coordination, to integrating all such clients against your services
layer. After all, the services layer defines the behavioral boundary of your
application.

Be all that as it may, the most significant client of your services layer is usu-
ally your user interface. In fact, the user interface’s needs often inform the set
of business methods required at the services layer, just as much as the system’s
use cases do. The services layer exists to serve clients of the system, and if the
primary client is a user interface, then the services layer API is tailored to the
user interface’s needs. So while the compilation dependency factor has a major
influence on the order of development, the needs of the user interface must be
taken into consideration throughout the process of designing the service layer
API.

And just as the service layer API forms a high-leverage test point, so does
the application layer API. Suppose that the user interface is Web-based, imple-
mented with JSPs and servlets. Chances are the JSP/Servlets use JavaBeans for

148 Chapter Seven

access to the data they display (if not, they should—the division of overall sys-
tem responsibility into the five previously mentioned layers of architecture is
a very well-established pattern within the industry). In fact, the data needs of
the JSP pages form the basis for the contract between the JSP pages and the Jav-
aBeans they use—and the method signatures making up this contract should
return simple data types only, and not domain objects. Furthermore, chances
are that the servlets in the architecture will delegate to “controller” (Brown,
2001) classes within the application layer. These JavaBeans, servlets, and con-
troller classes will have their own APIs, which can be subjected to unit test
suites in an effort to automate regression testing as close to the “glass” as is
possible with Java-based unit test tools.

We will return to the unit-testing discussion later in the chapter, after delv-
ing into deployment of your application into the J2EE containers in your envi-
ronment, and how to automate that.

Automating Environment
Administration with Ant

As soon as you begin writing the code for your system, you will need a way to
compile it, package it for deployment, and deploy it into the containers in your
J2EE environment. How best to do this? Our preferred way to do these things
is with Ant (http://jakarta.apache.org/ant). Ant is a cross-platform, XML-
driven build automation tool from the Apache Jakarta project (http://jakarta.
apache.org), which is very useful for administering the environments of J2EE
applications. After explaining what we mean by these terms, we’ll show how
Ant is used to do these things, and provide template Ant build file targets for
administering J2EE application environments.

What Is a J2EE Application
Environment?
A typical J2EE project utilizes multiple application environments in the life
cycle of the product it produces. Each environment serves a different purpose—
it facilitates a different activity in the software development life cycle. Code
and data are promoted from one environment to the next, in an orderly pro-
gression. A typical, minimal set of environments for a J2EE project consists of:

�� Development environments (typically one or more per developer)

�� QA environment

�� Production environment

EJB Development Process 149

The definition of environment is important because it sets the stage for the
definition of what is involved in administering an environment.

As used herein, an environment refers to the hardware/OS platform(s),
and the collection of processes, files, and environment variables that make up a
running installation of an application. For applications with two or more tiers
of architecture, it is possible, if not likely, that these processes, files, and envi-
ronment variables are divided amongst multiple (heterogeneous) hosts in a
network.

J2EE-based applications generally reflect an architecture defined by the J2EE
platform. This application architecture largely determines the coarse-grained
components (for example, containers, servers, systems, and so on) found in any
environment of such an application. Figure 7.2 illustrates the J2EE platform
that forms the basis of J2EE application architecture by JavaSoft’s Blueprints
team (Kassem, 2000).

Figure 7.2 J2EE application environment.

150 Chapter Seven

© Sun Microsystems, Inc. All rights reserved.

What Does It Mean to Administer
a J2EE Application Environment?
There is a frequent need during the development of a J2EE application to
administer environments of various types: development environments, QA
environments, production environments, and the like.

The administration of a J2EE application environment consists of a number
of steps. In general the assumed starting points are a new (virgin) machine,
and a corporate source code control system (we assume that you’re using a
source code control system; if you’re not, then get one, immediately). The goal
is to get a running configuration of the application onto the machine. The steps
are as follows:

1. Install Environment Components. This step involves installing third-
party products on which the application and its development environ-
ment depend. In the process it may involve creating directory
structures, environment variables, and so on.

2. Check out the application’s codebase. This involves doing transactions
with the corporate source code control system. The transactions need to
be parameterized to allow specification of which projects/modules to
get, and which versions.

3. Compile the checked-out codebase.

4. Package the application and code upon which it depends for deploy-
ment into the containers in which it runs. For example this probably
involves the creation of at least one jar file.

5. Deploy the application into its containers. This may involve configur-
ing the containers for the application.

6. Initialize or update databases. This step involves initializing or updat-
ing any persistent stores or other resources the application may depend
on. For example this may involve running DDL scripts, and loading
any data the application might require to operate.

7. Start the application running.

8. Test the installation, perhaps, using a unit test suite or perhaps even a
load test harness.

The administration of environments needs to be as reliable, repeatable, and
efficient as possible. Few things are more frustrating than spending hours
chasing down an apparent bug in some environment, only to discover the root

EJB Development Process 151

cause is some configuration difference or deficiency. Automation via scripting
is the best approach for achieving these goals, and all but the first step are
scriptable. But to realize the benefits, environment administrators, including
developers, have to consistently use and maintain the scripts—and different
environments use slightly different configurations (partly because developers
have a tendency to like to do things their own way).

Therefore, in order to accommodate different configurations (and developer
preferences) while still delivering the benefits of automation by holding
certain things constant, automation scripts need to offer a fair degree of
flexibility—especially in the areas of being property-driven and location-
independent (with respect to the locations of installed third-party products
and directories checked out from the corporate source code control system).
The design of the environment administration scripts for a J2EE application
needs to account for these conflicting goals.

Using Ant
Ant build files can offer this degree of flexibility and account for these con-
flicting goals. The trick is to set things up so that your Ant build file can hold
certain things constant—such as the steps necessary to administer an environ-
ment, the directory structures that are used in the process, the set of third-
party products (and versions) that are depended upon, and the classpaths
required to compile and run your application—while at the same time accom-
modating configuration differences and location independence by exploiting
properties files and environment variables during environment administra-
tion. Basically the goal is to encode as much knowledge as possible into the
Ant build file about what is involved in environment administration, while
simultaneously minimizing the dependencies and expectations of the Ant
build file on the environment.

To use Ant most effectively for J2EE application environment administra-
tion, you have to take care in the initial setup of your source code control
system and application environments, and you have to organize and implement
your Ant build file with consistency and flexibility in mind. The following sub-
sections expand on these themes.

Initial Setup

Your Ant build file will need to make a certain minimal set of assumptions
about the organization of directory structures and files within your source
code control system and on the filesystems of the hosts in the environments

152 Chapter Seven

you’re administering. Likewise, it will need to make a certain minimal set of
assumptions about the existence of installed third-party products in the envi-
ronment. Therefore, the first step in using Ant effectively for J2EE application
environment administration is to set up your source code control system with
certain directory structures, and your application environments with certain
installed products and environment variables.

Source Code Control System Setup

Source code control systems typically operate on a client/server paradigm. On
the server, there is a repository containing all the versions of all the files in
your codebase. These files are checked out onto a client’s filesystem. The files
in the server’s repository are organized into some directory structure of your
invention, which is preserved when you check out the codebase to a client. The
client typically hosts an application environment (or portion thereof) and, dur-
ing the process of administering that environment, the Ant build file may need
to create additional directories (to hold compiled class files, packaged jar files,
third-party library files, and so on). So, one of the questions that comes up is
how to organize the required directory structures, both in the server repository
and on the client filesystem.

Our answer, which we believe to be representative of industry best practice,
is tabulated in Table 7.1. We assume that there is a top-level project directory,
referred to as <project_dir>, in the server repository, which is checked out into
some parent directory on the client filesystem. It is the structure under this
top-level project directory that is of interest.

We also assume the existence of a “third-party” directory structure in the
server repository. The purpose of this directory structure is to organize, and
store in the source code control system, certain third-party files upon which
your application depends (jar files and product license files being primary
examples). Storing these in source code control and checking them out into the
client environment is a best-practice approach, because it relieves your build
file from having to expect that they exist in the environment, and it allows
your build file to encode which files and which versions are depended upon
by the version of the application you’re administering into the environment.
Another best-practice approach is to organize this third-party directory struc-
ture using a three-level scheme to reflect the vendor, product, and version
represented by third-party file. Doing so relieves you of later having to
reverse-engineer, based on file size and modification date, the API version
corresponding to some jar file (for example, jaxp.jar) laying around in some
environment.

EJB Development Process 153

Table 7.1 Project Directory Structure

DIRECTORY LOCATION CONTENT/USAGE

<project_dir> Server and Client The top-level directory under which the
entire application codebase is organized.
The Ant build file lives at this level.

Bin Server and Client Any shell scripts or executables upon
which your application depends.

Build Client Only A directory created during environment
administration, to hold compiled class
files and Java archive files generated for
deployment.

Archives The location of generated jar files.

Classes The compilation destination directory.

Conf Server and Client Any configuration files used by your
application or third-party products upon
which it depends.

Data Server and Client Any data files that may be required by
your application, for example, reference
data files that are used during database
initialization.

Doc Server and Client Documentation files associated with your
project, for example, package-level
Javadoc files.

Lib Client Only A directory to hold third-party library files
depended upon by your application. Your
Ant build file creates this directory and
populates it with the correct third-party
files and versions stored in the source
code control system. Used in classpaths
for compiling and running the
application.

Src Server and Client The top-level directory under which the
(non-test-related) source code of your
application is organized.

Java The root directory of your Java source
code tree.

Sql Contains any DDL scripts used to
initialize your application’s database.

Web Contains all of your application’s Web
content, including JSPs, static HTML,
graphics, JavaScript files, and so on.

154 Chapter Seven

DIRECTORY LOCATION CONTENT/USAGE

Test Server and Client Contains all code implementing test
harnesses for your application.

Java Contains your JUnit test suite.

Third-party Server Only Top-level directory structure for third-
party product files upon which your
application depends.

<vendor> Names the vendor of the third-party
product.

<product> Names the third-party product.

<version> Contains files associated with the
indicated version of the product.

Standard Environment Setup

While some third-party products upon which your application depends (such
as “minor” APIs and products distributed as jar files) can be stored in your
source code control system, other third-party products, such as database man-
agement systems, application servers, and Web servers simply must be installed
in the environment you’re administering.

In order to deploy your application into these products, and invoke exe-
cutables distributed with these products, your Ant build file needs to know the
filesystem location of the installations of these products. While there are plat-
form-specific conventions that should be followed for product installation
locations (for example, /usr/local on Unix, and \Program Files on Windows),
the Ant build file would be inflexible if it hard-coded expected locations. The
preferred method for passing these installation locations to the Ant build file is
via environment variables. An Ant build file can get access to the environment
variables defined in the shell in which it is run. Therefore, you should define
an environment variable for each installed third-party product whose location
needs to be known by your Ant build file (JAVA_HOME is one example). This set
of environment variables forms almost the entire contract needed between an
Ant build file and the environment in which it is used.

The only other bit of information needed by the Ant build file is the location
on the client filesystem where the project directory was checked out from the
source code control system. All path computations made by the Ant build file
can be made relative to this location. This bit of information is available to the
Ant build file via the basedir attribute of its <project> tag, which defaults to

EJB Development Process 155

the directory containing the build file itself.1 Since the Ant build file is kept
at the root level of the project directory structure, the checked-out location is
therefore available trivially.

Build File Organization and
Implementation

An initial setup such as that described above allows the implementation of the
Ant build file to make a great number of simplifying assumptions, which
enables reliable, repeatable, efficient administration of J2EE application envi-
ronments. Consistency is also facilitated by a strong organizing principle
within the Ant build file.

Ant build files are composed of “targets” (conceptually similar to makefile
targets, but specified in XML), which are categorized as “main” targets and
“subtargets.” So, what set of targets is necessary in an Ant build file to accom-
plish J2EE application environment administration? The answer, and organizing
principle, is one main target (perhaps with supporting subtargets) for each step
involved in the administration process enumerated earlier. Experience across
multiple projects has shown this set of steps to be relevant and appropriate,
regardless of which products have been selected for source code control, appli-
cation serving, and database management. While the implementation details
of certain steps may differ from product to product, the need for those steps
does not. Therefore, let us examine in turn each step and its automation
via Ant.

The Checkout Targets

The first scriptable step of the environment administration process is checking
out the application’s codebase into the environment. Of course this can be
done manually, outside of Ant. But one of the reasons for automating it with
Ant is to also automate checking out the correct versions of required third-
party files into the client’s “lib” directory, which makes your administration
process more self-sufficient than it would be if every such file was expected to
preexist in every environment. The following code shows sample checkout
target implementations, assuming CVS as the source code control system, and
an application dependency on JAXP. Note that the checkout target invokes the
checkout.lib target:

<!-- Checks out the application codebase from the CVS repository.

If property tag is not defined, will check out head revisions

of the main branch.

156 Chapter Seven

1 See the Ant User Manual at http://jakarta.apache.org/ant/manual/index.html.

-->

<target name=”checkout” description=”Checks out the application

codebase”>

<property name=”tag” value=””/>

<cvs package=”<project_dir>” tag=”${tag}” dest=”${basedir}/..”/>

<antcall target=”checkout.lib”/>

</target>

<!-- Checks out third-party jar files on which the application

depends into a local “lib” directory which is then included in

classpaths, deployable archive files, etc.

-->

<target name=”checkout.lib” description=”Checks out third-party jar

files”>

<delete dir=”${basedir}/lib”/>

<mkdir dir=”${basedir}/lib”/>

<!--- insert here: cvs export tasks for required jar files -->

</target>

Of course, using a build file target to check out the codebase creates a bit of
a bootstrapping problem, since the build file itself is kept in the source code
control system. However this can be easily solved with command macros on
windows or command aliases on Unix: simply set up a command macro or
alias that checks out only the build file to some local directory, then changes to
that directory—at which point you’re ready to issue ant checkout.

The Compile Targets

Ant’s javac task makes compiling your codebase pretty easy. It works by recur-
sively descending whatever directory tree you give it, looking for Java source
files with stale or nonexistent class files, and compiling those source files to the
supplied destination directory. Thus, by default, it only compiles source files
that have been modified since their last compilation: to force recompilation of
the entire codebase, one must clean the destination directory of class files.
Since both of these compilation scopes are desirable, we use two targets (com-
pile and recompile) in our Ant build file, as shown in the following Ant script.
To make it easy to clean away class files (and for other reasons), we keep our
class files in a separate directory tree from our source files.

<path id=”classpath.compilation”>

<pathelement location=”${basedir}/build/classes”/>

<pathelement location=”${basedir}/lib/jaxp.jar”/>

<pathelement location=”${env.WL_HOME}/lib/weblogic.jar”/>

</path>

<target name=”compile” description=”Compiles only modified source

files”>

EJB Development Process 157

<mkdir dir=”${basedir}/build/classes”/>

<javac classpathref=”classpath.compilation”

srcdir=”${basedir}/src/java”

destdir=”${basedir}/build/classes”/>

<antcall target=”compile.resources”/>

</target>

<!-- Forces recompilation of the entire codebase by deleting the

classes directory before invoking compile.

-->

<target name=”recompile” description=”Recompiles the entire

codebase”>

<delete dir=”${basedir}/build/classes”/>

<antcall target=”compile”/>

</target>

<!-- “Compiles” (in the collection sense) any additional resources

(besides java class files, i.e., product license files, application

properties files, etc.) upon which the application depends, that

need to be collocated with class files due to being accessed through

class loaders.

-->

<target name=”compile.resources”>

<copy todir=”${basedir}/build/classes”

includes=”${basedir}/src/java/**/META-INF/**”/>

</target>

Note that the compile target references a <path> element as its classpath.
This is one of the benefits of using Ant—classpaths defined in the build file
serve as precise specifications of the dependencies of your codebase. Note also
the invocation of the compile.resources target, which is intended to copy any
classpath-relative resources, loaded at run time, to the root of the classes
directory.

The Package Targets

There are many different ways to package a J2EE application for deployment
into containers. At one end of the spectrum, you could use a single Enterprise
ARchive (ear) file, containing a single Web ARchive (war) file, a single EJB jar
file with all your EJBs, and supporting code. At the other end of the spectrum,
you could deploy everything “exploded,” in which case your “packaging”
step is trivial. Perhaps you’ll use different approaches for different environ-
ments. Depending on which EJB container you use, you may or may not have
to include generated EJB stubs and skeletons in your archive files. These
sources of variability make it difficult to provide a universal template Ant
build file target for packaging, but the following Ant script shows an example
of packaging for deployment of a war file into Tomcat and an ear file (contain-
ing multiple EJB jar files and supporting code) into WebLogic:

158 Chapter Seven

<target name=”package” description=”Packages the application for

deployment”>

<delete dir=”${basedir}/build/archives”/>

<antcall target=”package.ejb.jars”/>

<antcall target=”package.ejb.ear”/>

<antcall target=”package.web.war”/>

</target>

<target name=”package.ejb.jars”>

<antcall target=”packageExampleEJB”/>

<!-- insert calls for other EJBs here -->

<antcall target=”generate.ejb.ear.DD”/>

</target>

<target name=”packageExampleEJB”>

<antcall target=”package.ejb”>

<param name=”package.ejb.ejbname” value=”Example”/>

<param name=”package.ejb.directory”

value=”com/mycompany/mysystem/services/example/”/>

<param name=”package.ejb.implclass”

value=”com/mycompany/mysystem/services/example/ExampleBean.class”/>

<param name=”package.ejb.remoteIFclass”

value=”com/mycompany/mysystem/services/example/Example.class”/>

<param name=”package.ejb.homeIFclass”

value=”com/mycompany/mysystem/services/example/ExampleHome.class”/>

</antcall>

</target>

<target name=”package.ejb”>

<mkdir dir=”${basedir}/build/archives/temp”/>

<jar

jarfile=”${basedir}/build/archives/temp/temp.jar”

basedir=”${basedir}/build/classes”

includes=”${package.ejb.implclass},

${package.ejb.remoteIFclass},

${package.ejb.homeIFclass},

${package.ejb.directory}/META-INF/**”

/>

<java classpathref=”classpath.compilation”

classname=”weblogic.ejbc” fork=”yes”>

<arg line=”${basedir}/build/archives/temp/temp.jar

${basedir}/build/archives/${package.ejb.ejbname}.jar”/>

</java>

<delete dir=”${basedir}/build/archives/temp”/>

</target>

<target name=”generate.ejb.ear.DD”>

<java classpath=”${basedir}/lib/weblogic.jar”

classname=”weblogic.ant.taskdefs.ear.DDInit” fork=”yes”>

<arg line=”${basedir}/build/archives”/>

</java>

EJB Development Process 159

</target>

<target name=”package.ejb.ear” if=”isNonDevelopmentEnvironment”>

<jar

jarfile=”${basedir}/build/archives/myapp.ear”

basedir=”${basedir}/build/archives”

includes=”**”

excludes=”myapp.ear, myapp.war”

/>

</target>

<target name=”package.web.war” if=”isNonDevelopmentEnvironment”>

<mkdir dir=”${basedir}/build/archives/temp/WEB-INF/classes”/>

<mkdir dir=”${basedir}/build/archives/temp/WEB-INF/lib”/>

<copy todir=”${basedir}/build/archives/temp/WEB-INF”>

<fileset dir=”${basedir}/src/web” excludes=”**/CVS/**”/>

</copy>

<copy todir=”${basedir}/build/archives/temp/WEB-INF/classes”>

<fileset dir=”${basedir}/build/classes”/>

</copy>

<copy todir=”${basedir}/build/archives/temp/WEB-INF/lib”>

<fileset dir=”${basedir}/build/archives” includes=”*.jar”

excludes=”*.ear”/>

</copy>

<java classpath=”${env.WL_HOME}/lib/weblogic.jar”

classname=”weblogic.ant.taskdefs.war.DDInit” fork=”yes”>

<arg line=”${basedir}/build/archives/temp”/>

</java>

<jar

jarfile=”${basedir}/build/archives/myapp.war”

basedir=”${basedir}/build/archives/temp”

/>

<delete dir=”${basedir}/build/archives/temp”/>

</target>

The Deploy Target

The meaning of “deployment” differs from container to container. With some
EJB containers, deployment consists of copying files into directories known to
the container; with others, it consists of using a vendor-provided deployment
utility or interface. Furthermore, your approach to deployment may differ
depending on the type of environment you’re administering.

For a development environment, you’ll probably want to “deploy” your
application in exploded form, and avoid copying files to the container’s direc-
tory structure from your local project directory structure. You’ll inform the
container of the location of your application via configuration files and virtual
machine classpaths. The reason for this approach to deployment in a develop-
ment environment is efficiency: when you’re in the “development loop,”

160 Chapter Seven

repeatedly editing and testing code, you’ll frequently need to redeploy your
edited code to the container for testing. And each time you do, you may have
to stop and restart (bounce) the container to make it load your edited code. The
most efficient way to do this loop, it seems, is to deploy your code as described
above, edit the source files in your project directory structure, compile them if
necessary, and bounce the container.

For a nondevelopment environment, however, efficiency is not the emphasis.
Instead, it is more important to know the exact configuration of code deployed
into the environment, and secure that configuration from modification. These
concerns suggest that you should deploy archive files into nondevelopment
environments, by copying them from the location where they are prepared.

Ideally your Ant build file’s deploy target will be sensitive to the type of
environment being administered, and do the right thing for the current envi-
ronment type. Once again it is difficult to provide a universal template deploy
target because of differences between containers; but the following ant script
shows a deploy target that assumes Tomcat as the Web container and
WebLogic 6.1 as the EJB container:

<target name=”deploy” description=”Deploys the application to this

host’s servers”>

<antcall target=”deploy.ejbcontainer”/>

<antcall target=”deploy.webcontainer”/>

<antcall target=”deploy.webserver”/>

</target>

<target name=”deploy.ejbcontainer”>

<antcall target=”create.weblogic.domain”/>

<antcall target=”deploy.ejbcontainer.earfile”/>

<antcall target=”touchRedeployFile”/>

</target>

<target name=”create.weblogic.domain”>

<mkdir dir=

“${env.WL_HOME}/config/${weblogic.admin.domain}/applications”/>

<copy overwrite=”yes” filtering=”yes”

file=”${basedir}/conf/WebLogic/config.xml”

todir=”${env.WL_HOME}/config/${weblogic.admin.domain}”

/>

<copy overwrite=”yes”

file=”${basedir}/conf/WebLogic/fileRealm.properties”

todir=”${env.WL_HOME}/config/${weblogic.admin.domain}”

/>

<copy overwrite=”yes”

file=”${basedir}/conf/WebLogic/SerializedSystemIni.dat” \

todir=”${env.WL_HOME}/config/${weblogic.admin.domain}”/>

</target>

<target name=”deploy.ejbcontainer.earfile”

EJB Development Process 161

if=”isNonDevelopmentEnvironment”>

<copy todir=

“${env.WL_HOME}/config/${weblogic.admin.domain}/applications”>

<fileset dir=”${basedir}/build/archives”

includes=”myapp.ear”/>

</copy>

</target>

<target name=”deploy.webcontainer”>

<copy filtering=”yes”

file=”${basedir}/conf/Tomcat/tomcat.conf”

todir=”${env.TOMCAT_HOME}/conf”

/>

<copy filtering=”yes”

file=”${basedir}/conf/Tomcat/server.xml”

todir=”${env.TOMCAT_HOME}/conf”

/>

<copy

file=”${basedir}/conf/Tomcat/web.xml”

todir=”${env.TOMCAT_HOME}/conf”

/>

<antcall target=”deploy.webcontainer.war”/>

</target>

<target name=”deploy.webcontainer.war”

if=”isNonDevelopmentEnvironment”>

<copy todir=”${env.TOMCAT_HOME}/webapps”>

<fileset dir=”${basedir}/build/archives”

includes=”myapp.war”

/>

</copy>

</target>

The Start/Stop Targets

Using Ant build file targets to start and stop the servers in your environments
provides another example of how Ant centralizes and encodes the knowledge
of what is necessary to administer an environment of your application.
Container vendors typically encourage us to hack the start scripts they supply,
to add our own classpaths and so forth. A more manageable approach is to
include start and stop targets in our Ant build files, and to regard the vendor-
supplied startup/shutdown classes and executables as examples of the usage
of vendor-supplied classes and executables. In this approach the implementa-
tion of the targets can be sensitive to context, such as the type of host or envi-
ronment, and can leverage everything known within the build file in passing
parameters to vendor-supplied classes and executables. Classpaths, in partic-
ular, which are specifications of the dependencies of your application, can

162 Chapter Seven

leverage the environment-variable-based location independence and the “lib”
subdirectory of the project directory. The following and script shows the
implementation of start/stop targets for Apache, Tomcat, and WebLogic
across the Windows and Unix platforms:

<target name=”start.apache” description=”Starts the Apache Server in

this environment”>

<antcall target=”start.apache.unix”/>

<antcall target=”start.apache.windows”/>

</target>

<target name=”start.apache.unix” if=”isUnix”>

<exec executable=”${env.APACHE_HOME}/bin/httpd”

dir=”${env.APACHE_HOME}/..”/>

</target>

<target name=”start.apache.windows” if=”isWindows”>

<exec executable=”${env.APACHE_HOME}/apache.exe”/>

</target>

<target name=”stop.all” description=”Stops all servers in this

environment”>

<antcall target=”stop.apache”/>

<antcall target=”stop.tomcat”/>

<antcall target=”stop.weblogic”/>

</target>

<target name=”stop.apache” description=”Stops the Apache Server in

this environment”>

<antcall target=”stop.apache.unix”/>

<antcall target=”stop.apache.windows”/>

</target>

<target name=”stop.apache.unix” if=”isUnix”>

<echo file=”tempKill” message=”kill “/>

<exec vmlauncher=”false” executable=”cat tempKill

${env.APACHE_HOME}/logs/httpd.pid” output=”tempKillApache”/>

<chmod file=”tempKillApache” perm=”+x”/>

<exec vmlauncher=”false” executable=”tempKillApache”/>

<delete file=”tempKillApache”/>

<delete file=”tempKill”/>

</target>

<target name=”stop.apache.windows” if=”isWindows”>

<exec executable=”${env.APACHE_HOME}/apache.exe”>

<arg line=”-k shutdown”/>

</exec>

</target>

<target name=”start.tomcat” description=”Starts Tomcat in this

EJB Development Process 163

environment”>

<java classname=”org.apache.tomcat.startup.Tomcat” fork=”yes”

dir=”${env.TOMCAT_HOME}”>

<classpath>

<pathelement location=”${basedir}/build”/>

<pathelement

location=”${basedir}/build/applications/myEJB.jar”/>

<pathelement

location=”${env.TOMCAT_HOME}/lib/webserver.jar”/>

<pathelement

location=”${env.TOMCAT_HOME}/lib/jasper.jar”/>

<pathelement location=”${env.TOMCAT_HOME}/lib/xml.jar”/>

<pathelement

location=”${env.TOMCAT_HOME}/lib/servlet.jar”/>

<pathelement location=”${env.TOMCAT_HOME}/classes”/>

<pathelement location=”${env.JAVA_HOME}/lib/tools.jar”/>

<pathelement

location=”${env.WL_HOME}/lib/weblogic.jar”/>

</classpath>

<sysproperty key=”tomcat.home” value=”${env.TOMCAT_HOME}”/>

</java>

</target>

<target name=”stop.tomcat” description=”Stops Tomcat in this

environment”>

<java classname=”org.apache.tomcat.startup.Tomcat” fork=”yes”

dir=”${env.TOMCAT_HOME}”>

<classpath>

<pathelement

location=”${env.TOMCAT_HOME}/lib/webserver.jar”/>

<pathelement

location=”${env.TOMCAT_HOME}/lib/jasper.jar”/>

<pathelement location=”${env.TOMCAT_HOME}/lib/xml.jar”/>

<pathelement

location=”${env.TOMCAT_HOME}/lib/servlet.jar”/>

<pathelement location=”${env.TOMCAT_HOME}/classes”/>

<pathelement location=”${env.JAVA_HOME}/lib/tools.jar”/>

</classpath>

<sysproperty key=”tomcat.home” value=”${env.TOMCAT_HOME}”/>

<arg line=”-stop”/>

</java>

</target>

<target name=”start.weblogic” description=”Starts the WebLogic

Server in this environment”>

<java classname=”weblogic.Server” fork=”yes”

dir=”${env.WL_HOME}”>

<classpath>

<pathelement location=”${basedir}/build/classes”/>

<pathelement location=”${basedir}/lib/toplinkall.jar”/>

164 Chapter Seven

<pathelement

location=”${env.WL_HOME}/lib/weblogic.jar”/>

</classpath>

<sysproperty key=”bea.home” value=”${env.WL_HOME}/..”/>

<sysproperty key=”weblogic.Domain”

value=”${weblogic.admin.domain}”/>

<sysproperty key=”weblogic.Name”

value=”${weblogic.admin.server.name}”/>

<sysproperty key=”weblogic.management.password”

value=”${weblogic.admin.password}”/>

</java>

</target>

<target name=”stop.weblogic” description=”Stops the WebLogic Server

in this environment”>

<java classpath=”${env.WL_HOME}/lib/weblogic.jar”

classname=”weblogic.Admin”>

<arg line=”-url localhost:${weblogic.admin.server.port}

SHUTDOWN -username ${weblogic.admin.username} -password

${weblogic.admin.password}”

/>

</java>

</target>

The Initialize Database Target

When you readminister a J2EE application environment, you’ll typically need
to reinitialize, or perhaps update, the database in that environment. Perhaps
your application requires certain “reference” data to function correctly. Perhaps
your development process benefits from certain example data always being
available for testing and debugging and new development purposes. Perhaps
you develop and test new functionality against an imported copy of a produc-
tion database, and apply migration scripts to implement schema and data
migration. All of these scenarios require the database in an environment to be
properly initialized before the application can be run.

Assuming an RDBMS, database initialization conceptually consists of two
steps. For the migration scenario, the steps are importing the database of
record, and running the migration scripts. For the nonmigration scenario, the
steps are loading the schema, and loading the reference/example data. The
steps for both scenarios can be implemented by Ant build file targets. The fol-
lowing Ant script shows the implementation assuming Oracle as the RDBMS
in use:

<target name=”load.database” description=”Loads schema and generated

data into DB”>

<antcall target=”load.schema”/>

EJB Development Process 165

<antcall target=”load.data”/>

</target>

<target name=”load.schema”>

<exec dir=”${basedir}/src/sql”

executable=”${env.ORA81_HOME}/bin/sqlplus”>

<arg line=”-s

${database.username}/${database.password}@${database.name}

@createtables.sql”/>

</exec>

</target>

<target name=”load.data”>

<java

classname=”com.mycompany.mysystem.persistence.DataGenerator”

fork=”yes”>

<classpath>

<pathelement location=”${basedir}/build”/>

<pathelement location=”${basedir}/lib/toplinkall.jar”/>

<pathelement location=”${basedir}/lib/weblogic.jar”/>

</classpath>

<arg line=”jdbc:weblogic:oracle:${database.name}

${database.username} ${database.password}

weblogic.jdbc.oci.Driver”/>

</java>

</target>

<target name=”export.database” description=”Exports the database to

a dump file”>

<exec dir=”.” executable=”${env.ORA81_HOME}/bin/exp”>

<arg

line=”${database.username}/${database.password}@${database.name}

file=exp.${database.username}.${app.version}.${date}.dmp

owner=${database.username} consistent=y buffer=102400 compress=n”/>

</exec>

</target>

<target name=”import.database” if=”import.file” description=”Import

DB dump (set import.file, import.fromuser)”>

<property name=”import.fromuser” value=”${database.username}”/>

<exec failonerror=”true” dir=”${basedir}/src/sql”

executable=”${env.ORA81_HOME}/bin/sqlplus”>

<arg line=”-s

${database.username}/${database.password}@${database.name}

@droptables.sql”/>

</exec>

<exec executable=”${env.ORA81_HOME}/bin/imp”>

<arg line=”${database.username}/

${database.password}@${database.name}

file=${import.file} fromuser=${import.fromuser}

touser=${database.username} analyze=no”/>

166 Chapter Seven

</exec>

</target>

<target name=”update.database” description=”Updates DB using

appropriate update scripts”>

<exec dir=”${basedir}/src/sql”

executable=”${env.ORA81_HOME}/bin/sqlplus”>

<arg line=”-s

${database.username}/${database.password}@${database.name}

@migrate.sql”/>

</exec>

</target>

The Test Targets

Last but not least, it is convenient to implement a target in your Ant build file
to run your unit test suite. This gives you the opportunity to ensure that any
necessary preconditions for running your test suite (for example, started
servers) have been met. Your target will also, once again, encode a required
classpath—in this case, the classpath required to run your top-level test suite.
We will have much more to say about unit testing in the following section;
meanwhile, the following example shows a template Ant build file target for
running your unit test suite, assuming JUnit as the unit test framework:

<path id=”classpath.compilation.test”>

<pathelement location=”${basedir}/build/classes”/>

<pathelement location=”${basedir}/lib/junit.jar”/>

<pathelement location=”${basedir}/lib/toplinkall.jar”/>

<pathelement location=”${env.WL_HOME}/lib/weblogic.jar”/>

</path>

<path id=”classpath.runtime.test”>

<pathelement location=”${basedir}/build/classes”/>

<pathelement location=”${basedir}/lib/junit.jar”/>

<pathelement location=”${basedir}/lib/toplinkall.jar”/>

<pathelement location=”${env.WL_HOME}/lib/weblogic.jar”/>

</path>

<target name=”compile.test”>

<javac

srcdir=”test/java”

destdir=”build/classes”

classpathref=”classpath.compilation.test”

/>

</target>

<target name=”test” depends=”compile.test” description=”Runs the

project’s test suite”>

EJB Development Process 167

<java classname=”junit.textui.TestRunner”

classpathref=”classpath.runtime.test”>

<arg value=”com.mycompany.mysystem.MySystemTestSuite”/>

</java>

</target>

As can see, the test target depends on compilation of the test suite, and
we’ve introduced classpaths to use for compiling and running the test suite.
The observant reader may also notice that we compile the test suite classes into
the same directory as the code they’re testing. This begs the question of where
to locate your test suite within your project directory and within your set of
Java packages, which are two of the many points on using JUnit that we’ll
address in the next section.

Unit Testing with JUnit

Unit testing—it’s one of those things (like JavaDoc’ing) that we all know we
should do, but that tend to get left behind in the race to revenue. Unfortu-
nately this haste leaves us exposed; the lack of a unit test suite is one example
of “technical debt” (Brown, 2000) that projects and organizations get into.

Let’s face it: developing and maintaining and repeatedly running a worth-
while unit test suite costs a nontrivial amount of time and money. But the
appropriate way to view this cost is as an investment—in the effectiveness of
your development organization, both now and in the future. As it is made, this
investment pays recurring dividends by reaffirming the confidence of develop-
ers, managers, and customers in the correctness of your application’s codebase.

It is a significant milestone on a new project to be able to show successful
execution of a service layer test suite, since this also validates the domain and
persistence layers. Going forward, every time you merge new functionality
into your codebase your unit test suite will tell you whether you have broken
previously working functionality. Later, any time you have to merge code lines
that may have been forked off to support parallel development (of production
bug fixes versus new features, or next-release functionality versus future-
release functionality), your unit test suite will tell you whether you have
merged correctly. The confidence you’ll gain from seeing successful runs of
your unit test suite in these circumstances is the return on your investment in
unit testing.

The risk associated with your investment is that you will pay more than nec-
essary to realize the return; you’ll spend too much time and money develop-
ing and maintaining and running your unit test suite. To minimize this risk,
you’ll need to decide how much test code is enough and who should write it.
You’ll need strategies for organizing your test suite so that it will be easy to
understand and maintain, and quick to run at a selected level of granularity.

168 Chapter Seven

For that latter reason you’ll also need approaches for efficiently setting up
initial conditions before testing, and cleaning up afterward, especially where
persistent storage is concerned. You’ll need to know when to run your tests,
and at what granularity. And you’ll need to know what to do when tests fail
and when bugs are found, so that your test suite (and codebase) remain in a
state of good maintenance.

We will address all these issues below. Before you proceed, we assume that
you have selected JUnit (www.junit.org) as your unit-testing framework, for
which we are eternally grateful to Kent Beck (JUnit is a 1998 Java port, by Kent
Beck and Erich Gamma, of Kent’s original Smalltalk unit test framework,
which debuted in 1995). We further assume that you are developing a J2EE
system with a layered architecture as described earlier in this chapter. The fol-
lowing sections address each issue in turn.

How Much to Test?

The first question you will probably consider, as you contemplate unit testing,
is how much unit test code you should write. How much is enough? How do
we even define “enough”? The party line is to test “anything that could break”
(Jeffries, et al., 2000). But following that to the letter could result in a prohibi-
tively large unit test suite. Assuming that we trust only the simplest getter and
setter methods not to break, we’d have to write at least one unit test for every
other method in the codebase—and probably more than one unit test per
method, in order to vary the inputs to cover all conditional paths and bound-
ary conditions. The result would be a unit test suite method count that was a
multiple of the codebase method count. Where is the point of diminishing
return?

In our experience, the highest-value tests are those that test interfaces at
significant layer boundaries. The services layer, for example, which forms the
behavioral boundary of your application, is one of the highest-value test
points in your architecture. This is true for several reasons:

The service layer interface is relied upon by numerous clients of your
system. User interfaces, database loaders, and external system interfaces
among them. Therefore it is critically important that every exposed ser-
vice layer method function perfectly across the entire range of inputs,
conditional paths, and normal and exceptional circumstances.

The service layer uses the domain and persistence layers. Since the ser-
vices layer fulfills its responsibilities by delegating to the domain and
persistence layers, tests of the services layer will indirectly test the lower
layers upon which it depends. This central role, and leverage is what
makes the services layer a high-value test point.

EJB Development Process 169

Beyond the services layer boundary, your next most significant layer bound-
ary is probably your application layer, which controls your users’ interaction
with your system. The application layer consists of servlets and the controller
classes they use, as well as the JavaBeans used by JSPs via <usebean> tags.
Tests at this layer also wield a high degree of leverage, because this layer
requires even more support underneath it than does the services layer. Fur-
thermore, maintaining a unit test suite at this layer gets you very close to being
able to regression test your user interface from within JUnit instead of a UI test
tool. While tests at this layer are more focused and less general than tests at the
services layer, they are still among the most valuable.

The persistence layer boundary, while crucial in terms of required correct-
ness, offers less leverage than higher-layer boundaries. Given that there are
some 104 scenarios that a persistence layer must support correctly, when one
multiplies the various CRUD operations by interobject relationship types
(association versus aggregation) by existence scenarios (all objects preexisting,
no objects preexisting, some objects preexisting but not others) by other rele-
vant factors, it would be very valuable to have a test suite to demonstrate
correct behavior of the persistence layer in every scenario. On the other hand,
the development of such a test suite would represent a significant investment
and, in the end, the scenarios that you need to function correctly are the sce-
narios that are actually exercised by your service layer API (and tested by its
test suite). The best approach to unit testing the persistence layer probably
involves a compromise between extremes, which grows, over time, toward
full coverage of all scenarios.

The domain layer doesn’t have an obvious boundary against which a test
suite can be written. Instead it consists of a large number of small objects,
which may not have very many complex methods. Therefore developing an
exhaustive test suite within this layer is not as urgent, in a relative sense, as
developing test suites for the other layers. But ideally, you would want com-
plete coverage, so implement it at your earliest opportunity.

What about framework code? What if your application depends on frame-
work code of your own invention? In some cases, such as configuration frame-
works, logging frameworks, and other such utilities, it is very clear how to test
framework code—and very appropriate to do so. But in other cases, it may be
difficult to test framework code except by subclassing it with application code,
and testing the application code. And that’s OK, in our experience. If the appli-
cation uses the framework consistently with the framework’s intentions, and
the application passes its unit tests, then it seems reasonable to conclude that
the framework correctly supports the application. Test as much as you can
within the limits of pragmatism.

Thus, in general, we recommend concentrating your unit testing effort at
layer boundaries, emphasizing the services and application layers to get the
highest value and leverage, but not neglecting any layer (or layer-independent
code or framework) if you can help it.

170 Chapter Seven

Test Suite Organization

The layering of the architecture, and the dependencies between layers, also
forms the basis for the organization of your unit test suite. Furthermore, you
will want to be able to run unit tests at different levels of granularity: perhaps
for just an individual method or an individual class, or maybe an entire layer,
and finally, for your entire application. JUnit facilitates this aggregation of
granularity via the composite pattern (Gamma, Helm, Johnson, and Vlissides,
1995): the TestSuite class may contain TestCases, or other TestSuites, recur-
sively, until a leaf level of all TestCases is reached.

So the organizing principles for your unit test suite are organization by layer
of architecture, and then by classes within a given layer. The structure for
applying the principles is a composition of TestSuites. Along the way, you’ll
need to decide which Java packages to put your TestSuites and TestCases in
and also where in your project directory structure (in your source code control
system) to put them. Each of these points is elaborated below.

Composition of Test Suites

Naturally, the granularity of your top-level test suite should be your entire
application. It should be composed of layer-specific test suites, one for each
layer except presentation. You may also wish to include test suites for layer-
independent code. Within a given layer’s test suite, you’ll probably reference
test suites on a class-by-class basis.

When it comes to ordering TestSuites within a containing TestSuite, keep
two things in mind. First, one of the philosophical principles of JUnit is that
every test should be independent from every other test. Therefore you shouldn’t
attempt to construct an ordering in which one test depends for its initial state
on results left by a preceding test. Second, at the top level of granularity,
you may wish to order your TestSuites from lowest layer of architecture to
highest layer, on the assumption that failures in lower layers will probably
cause failures in higher layers—so when you read the output of running the
top-level TestSuite, you’ll probably see root cause failures first among multiple
failures (assuming you read from top to bottom). The template TestSuite
classes shown in the following code block reflect this approach to test suite
composition.

package com.mycompany.mysystem;

import com.mycompany.mysystem.domain.DomainLayerTestSuite;

import com.mycompany.mysystem.persistence.PersistenceLayerTestSuite;

import com.mycompany.mysystem.services.ServiceLayerTestSuite;

import com.mycompany.mysystem.web.ApplicationLayerTestSuite;

import junit.framework.Test;

EJB Development Process 171

import junit.framework.TestSuite;

/**

* The MySystemTestSuite is a TestSuite that is specialized for

* testing the behavior of My System.

*/

public class MySystemTestSuite

extends TestSuite {

//PROTOCOL: SUITE

/**

* Returns a suite of tests for My System.

*

* @return a suite of tests for My System

*/

public static Test suite()

{

MySystemTestSuite suite = new MySystemTestSuite();

suite.addTest(PersistenceLayerTestSuite.suite());

suite.addTest(DomainLayerTestSuite.suite());

suite.addTest(ServiceLayerTestSuite.suite());

suite.addTest(ApplicationLayerTestSuite.suite());

return suite;

}

}

package com.mycompany.mysystem.services;

import junit.framework.Test;

import junit.framework.TestSuite;

/** The ServiceLayerTestSuite is a TestSuite that is specialized for

* testing the behavior of the services layer of My System.

*/

public class ServiceLayerTestSuite

extends TestSuite

{

//PROTOCOL: SUITE

/**

* Returns a suite of tests for the Back Office System’s

* services layer.

*

* @return a suite of tests for the Back Office System’s

* services layer

172 Chapter Seven

*/

public static Test suite()

{

ServiceLayerTestSuite suite = new ServiceLayerTestSuite();

suite.addTest(MyEJBTestCase.suite());

return suite;

}

}

Packaging and Location Considerations

The observant reader will notice that the TestSuite classes in the code block
above also reflect our preferences regarding the Java packages in which test
code is placed. However it is not obvious from the listing where we put the test
classes in our project directory structure. Both of these issues are the subject of
mild debate in public Java-related forums.

It seems logical to put test classes in Java packages that are somehow related
to the packages containing the code being tested. One school of thought would
have you create “test” subpackages of the target packages, and place your test
classes in those “test” subpackages. However, this only causes you to have to
add numerous additional import statements to your test classes’ source files;
therefore we don’t like it (we’re lazy). We prefer to put our test classes directly
into the packages containing the target classes, which eliminates the need for
those extra import statements.

But wait, you say. Now, how do you separate your test code from your
target code, especially for deployment or distribution purposes? Easy. We sim-
ply put all test code into a completely separate directory structure under the
top-level project directory in the source code control system (refer to Table 7.1).
Then our Ant build files can control which directory structures are copied from
place to place, put in archive files, and so on. This approach gives us the best
of both worlds.

It has never been necessary in our experience to “deploy” our unit test suites
into any container or server; rather, the test code always acts as client code to
the actual application code that gets deployed. Therefore the test code doesn’t
need to be packaged into archive files for deployment along with the applica-
tion code. When it comes to distribution, if you need to distribute your test
code to your consumers, you are certainly free to do so however you wish.

Naming TestCase Subclasses and
Test Methods

As a final detail around test suite organization, we encourage you to think
carefully about how you name your TestCase subclasses and the test methods

EJB Development Process 173

they contain. Your primary heuristic should be to clearly communicate your
intentions to whoever comes along later to read your code. The convention
among JUnit users, which we follow, is to create one TestCase subclass per tar-
get class you are testing—and name the TestCase subclass by appending “Test”
or “TestCase” to the target class’s name. Of the two, we prefer “TestCase,”
since that is the superclass’s name.

When it comes to naming test methods, the JUnit framework requires test
method names to begin with the prefix “test.” You are then free to append
whatever you want to form the test method’s name; the convention is to
append the name of the target method tested by the test method. But you’ll
frequently need multiple test methods per target method, to cover the range of
possible inputs, conditional paths, normal and exceptional circumstances, and
so on. We suggest an intention-revealing suffix. For example, if you’re testing
a method named “createCustomers,” you might have test methods named
“testCreateCustomersWithEmptyCollection,” and so on. Whatever you do,
don’t simply append a number to the end of your test method name—that
doesn’t do a very good job of communicating your intentions.

Test Case Setup and Tear Down

One of the challenges in using JUnit to test enterprise applications is in setting
up the initial conditions required to test certain functionality. It is frequently
the case that enterprise applications implement complex business logic manip-
ulating complex domain models. The business logic likely implements respon-
sibilities inherent in the workflows, or overall business processes, supported
by the application. As a result, certain portions of business logic may not even
be relevant unless certain workflows have advanced to certain stages, certain
aggregation hierarchies of business objects exist in persistent storage, certain
business objects have entered certain states, and so on. To test these portions of
business logic, you must ensure that persistent storage is set up with the
appropriate initial conditions.

How much should your test cases assume about persistent storage? One of
the philosophical principles underlying JUnit is that tests are independent
from one another—one test case should not rely on results left by some other
test case that is assumed to have ran earlier in some sequence. But on the other
hand, it would be prohibitive, in terms of time consumption at run time, for
every TestCase to set up complex database states from scratch in its setUp() or
test methods. When in the testing sequence, then, are tables created and data
representing initial conditions loaded?

Our experience suggests that a reasonable compromise is to write test cases
to assume that a standard test data set has been loaded (and perhaps also a
standard reference data set). The test data set needs to be designed carefully
enough to contain objects in all the right states, and all of the necessary aggre-
gation hierarchies, associations, and so on, to support all of the functionality of

174 Chapter Seven

the application (and therefore its testing). Of course the test data set, and the
schema it populates, will evolve over time on your project—so they need to be
maintained and enhanced as your application grows and changes.

There are two general approaches to creating and maintaining a test data
set: you can write a program to generate it, or you can enter the data through
your application’s user interface into a database that you would maintain and
migrate just as you would any other database (for example, a production,
training, or demo database). Both approaches have advantages and disadvan-
tages; but with the latter approach you may have the opportunity to get some
repetitions in database migration before assuming the (serious) responsibility
of maintaining and migrating a production database.

As test methods execute, they will likely cause transactional changes to the
database containing the test data set. In keeping with JUnit’s philosophy, your
test methods should clean up after themselves and leave the test data set in the
same state in which they found it. Given the approach of creating a TestCase
class per target class being tested, this often means the cleanup logic has to be
invoked from the test method itself—a TestCase class’s tearDown() method
won’t necessarily know which test method was run and thus which of the tar-
get class’s methods was tested and, therefore, what needs to be cleaned up.

Who Should Write the Tests?

The developer who wrote the code being tested is the person who should write
the tests for that code. No one else has a better idea of what that developer’s
intentions were as the code was being written, and therefore what tests are
indicated. No one else has a better understanding of the internal workings of
that code, and therefore its input ranges, conditional paths, and normal and
exceptional circumstances.

Some organizations suggest that junior programmers with time on their
hands be assigned to write unit tests for other people’s code. We feel this is an
anti-pattern. It is likely that the resulting unit tests will not be complete or even
correct; therefore, it is likely that the target code will not be adequately tested.
Finally it is likely that productivity will decrease as a result of the unit test
developer having to ask the target code developer about the latter’s intentions.

Developers should be responsible for writing their own unit tests—period.
It is just a regular part of being a professional software developer.

When to Run Tests?

Perhaps a better question to ask would be how often should we run tests of a
particular granularity? We’ve seen that a J2EE application’s unit test suite can
test at different levels of granularity—from the entire application, to a certain
layer of architecture, to a certain class within a layer, to even a certain method
within that class.

EJB Development Process 175

Depending on how your team has chosen to organize and partition work,
chances are that you are responsible for a given layer of architecture, or a given
vertical subsystem that slices through all layers. As development proceeds,
you’ll likely run unit tests at the method or class level of granularity with very
high frequency—because you’ll be adding methods or classes to your layer, or
functionality to your subsystem, and you’ll want to test it as soon as you’ve
coded and compiled it. Every time you complete the implementation of a
method, or class, or development task, you will have also completed and run
the concomitant additions to your unit test suite that test the code you com-
pleted. Occasionally you’ll want to run an entire layer’s test suite, or perhaps
selected TestCase subclasses from the application layer or service layer test
suites that exercise a specific subsystem.

When you’re ready to check your code in to the source code control system,
you should run the entire application’s test suite. If you can’t check in because
your project directory isn’t up to date with the repository, you should run the
entire application’s test suite after updating your project directory (and decon-
flicting any merges that occurred in the process).

Finally, after successfully checking in, you may want to take the opportunity
to completely readminister your development environment, starting by delet-
ing your local project directory and getting a “fresh checkout” from the source
code control system. And, of course, the final step in readministering your
environment is to run the entire application’s unit test suite.

This goes for nondevelopment environments, as well. Any time any environ-
ment is readministered, the entire application’s test suite should be run in that
environment. Thus, when code is promoted from development to the QA,
demo, or production environment, the unit test suite is run in that environment.

Basically the idea is to run tests, at the appropriate level of granularity, fre-
quently enough to ensure that the codebase deployed in the environment (and
certainly at the heads of the source code control system branches) is always in
a state where it passes the entire unit test suite.

What to Do When Tests Fail

Fix something! There are only two possible reasons why a test might fail:
either something is wrong with the test itself, or something is wrong with the
code being tested. Both situations warrant your attention. If something is
wrong with the code being tested, then your unit test suite has just done part
of its job and given you partial return on investment (the other part is when it
tells you everything is OK).

If something is wrong with the test itself, fix the test! It is very easy for test
cases to fall out of maintenance as your application evolves. Don’t just blow it
off—keeping the test cases up to date is part of every development task. As
soon as you establish the precedent for ignoring broken tests, the value of your
test suite begins to diminish.

176 Chapter Seven

What to Do When Bugs Are Found

Inevitably, bugs will be found in your application that were not previously
detected by anything that anyone did (including running a unit test suite).
Maybe the bug is not in your application, but in a third-party product that
you’re using from some vendor.

In either case, the very first thing you should do is create a unit test that
demonstrates the bug. Else how will you be able to state conclusively that
you’ve fixed it? You’ve only fixed it when the unit tests that you just created
now succeed, whereas they failed before. If the bug you found was in a third-
party product, send the vendor your unit tests that demonstrate the bug. If
they have some semblance of business sense and professionalism, they should
be profoundly grateful to you for helping them QA their product.

Summary

We’ve covered a lot of ground. Hopefully by now you have a feel for what’s
involved in translating your conceptual design into a running, working J2EE
application. You know the order in which to develop your code, you know
how to administer an environment of your application using Ant, and you
know how to unit test your codebase with JUnit. We’d like to close this chapter
with an analogy for what happens in a software development process: that of
nested loops in a program.

We see three levels of nesting. Within the innermost loop, every developer is
repeatedly editing and testing code, perhaps doing domain-out development
of new features, within some development environment—which may require
repeated execution of some of the environment administration steps. Every so
often, a developer will finish a task and pop out to the next level of nesting, in
which she will do a transaction with the source code control system and then
reenter the innermost loop. Around the transaction with the source code con-
trol system, the developer will (should) run unit test suites and readminister
the development environment. Finally, at the outermost level, the project as a
whole is repeatedly looping through a series of iterations. At the conclusion of
each iteration, other (nondevelopment) environments will be administered,
and test suites will be run.

EJB Development Process 177

179

Objects of love or hate, entity beans have been mired in controversy since their
inception. Many claim that entity beans are simply a performance killer, not
ready for prime time enterprise usage. Others claim that using entity beans is
a good decision, when used in the correct circumstances. This chapter will dis-
cuss the pros and cons of entity beans and discuss common alternatives to
entity beans that can be used behind a session façade just as well as entity
beans can.

Entity Beans Features

Entity beans provide a standard way to create transparently persistent,
container-managed, distributed, secure, transactional components. Note the
choice of words:

A standard. Entity beans provide a standard way to create persistent
domain objects. Before entity beans, people had to write their own per-
sistence frameworks or rely on proprietary relational mappers.

Transparent Persistence. This means that business logic can be written
that uses entity beans and business methods on entity beans without
any knowledge of the underlying persistence mechanism (BMP or CMP;

Alternatives to Entity Beans

C H A P T E R

8

RDBMS or OODBMS). This allows business logic to be business logic
and not be mired with persistence code. Entity beans hide all the persis-
tence logic from the entity bean client code.

Container Managed. When using Container-Managed Persistence (CMP)
entity beans, it is a major plus that the container can handle all the per-
sistence logic and O/R mapping, as well as data caching, on a developer’s
behalf. Persistence logic is notoriously long, tedious, and bug-ridden.
Using CMP is a major plus for EJB developers.

Distributed. Entity beans are distributed objects, callable via RMI-IIOP
from any Java or CORBA client on the network.

Secure. Like session beans, entity beans business methods can be config-
ured with role-based security checks, configurable in the deployment
descriptors.

Transactional. Entity beans provide developers with fine-grained transac-
tion control. Deployment descriptors can be configured to assign differ-
ent transaction semantics and isolation levels to different business
methods on an entity bean, providing automatic, declarative transaction
control.

Components. Entity beans are designed to be components. Deployment
descriptors and all the declarative tagging that needs to occur to make
an entity bean deployable is intended to make an entity bean into a self-
contained component that is deployable in any J2EE application server
without requiring any code changes.

These features represent a significant value add that was previously never
available on this scale in other distributed frameworks. So with this rich fea-
ture set, why would people not want to use entity beans?

Entity Beans and Cognitive Dissonance

“Cognitive Dissonance is the inner conflict we experience when we do something
that is counter to our prior values, beliefs, and feelings. To reduce our tension, we
either change our beliefs or explain away our actions.” The Complete Idiot’s
Guide to Psychology (Johnston, 2000)

Cognitive dissonance comes into play because entity beans are designed to be
distributed components (with all the features outlined above), but developers
really only want to use entity beans as lightweight domain objects. The limita-
tions of early versions of the EJB specification, as well as the performance and
development overhead required to support entity beans as components, are
the main reason why opinions about entity beans have been so mixed.

180 Chapter Eight

So what are the features of entity beans that aren’t practically used in most
real-world projects?

1. Distributed. Communicating from a client directly with an entity bean
is a performance and maintainability killer. See the Session Façade pat-
tern (Chapter 1) for an in-depth explanation. Luckily, local interfaces
alleviate the performance problems with entity beans, but in the pre-
local-interface days, the fact that entity beans were remote was the de
facto reason that many projects decided not to use them.

Partially as a result of the remote nature of EJB 1.X entity beans, the
Session Façade pattern became the de facto way to design EJB systems,
both as a performance enhancer and also as way to design better
systems. When using the Session Façade pattern, many of the other
features provided by entity beans become redundant.

2. Secure. Since the session façade is the single point of access for the
client tier, caller security checks are typically performed within the
session bean method being called by the client. Thus container or pro-
grammatic security checks done when invoking entity beans, as well as
any entity deployment descriptor tags used for security are not needed.

3. Transactional. Once again, behind a session façade, transactions are
usually container managed, declared in the deployment descriptor of
the session beans. Transactions begin when a client invokes a session
bean method and ends when the method call has completed. Thus,
since the session façade is where transactions are demarcated, there is
no need for a developer to declare transactions for any business meth-
ods on an entity bean (in the deployment descriptor), there is also no
need for the container to perform any transaction checks when an entity
bean method is called.

4. Components. Much of the complexity and legwork required to write
entity beans is plumbing infrastructure designed to make the entity
beans’ components, deployable independently in any application
server. Much of the tags required in writing deployment descriptors are
for this purpose. Cognitive dissonance comes into play here because
developers are not using entity beans for components, they are using
them as lightweight domain objects. The components are demarcated
along session bean lines, and entity beans are simply the object model
used by the session façade. Things such as entity bean relationships are
more simply expressed in code, not in deployment descriptors.

Another major problem with entity beans is the N+1 database calls problem
(see the JDBC for Reading pattern for an explanation). The N + 1 calls problem
makes it very difficult to use entity beans in projects where the object model is

Alternatives to Entity Beans 181

complicated and where clients do not frequently read in the same data from
the server (thus, caching of entity bean data would not really help). There are
workarounds for this, which we will look at later in this chapter.

In Defense of Entity Beans

With the release of EJB 2.0, the following major problems with entity beans
have been solved:

Remoteness. This has been solved with the introduction of local interfaces,
allowing entity beans to be written in a fine-grained manner, callable
only by the session façade.

Support for relationships and object modeling. Enhancements to CMP
allow for a richer set of relationships between entity beans, making it
possible to map a domain model directly to a hierarchy of entity beans.
For example, entity beans can now be written with 1:N and N:M direc-
tionality, cascading deletes, and more features, which can be a great time
saver.

The other two major problems with EJB are also being solved, as the EJB
development platform matures:

N + 1 calls problem. The solution to this problem is to be able to load a set
of entity beans in one bulk JDBC call, a feature that many modern appli-
cation servers support for CMP. For BMP, Gene Chuang’s Fatkey pattern
(see TheServerSide.com patterns section) also solves the N + 1 calls
problem.

Complex and slow development time. The complexity and development
time overhead of programming with entity beans (explained in the pre-
vious section) has been alleviated by the maturity of EJB tools. New JSRs
coming out of Sun will soon enable a tools market in which entity beans
can be modeled, generated, and deployed into an application server
without having to touch any XML or encode any of the home/component
interfaces.

Despite the redundancy of many of the benefits of entity beans (when used
behind the session façade) the practical benefits entity beans do provide (a
standard, transparent persistence, container-managed persistence) are signifi-
cant. Let’s take a look at what these benefits will mean to your project:

Reduced ramp-up time. Because it’s a well understood standard, people
trained in EJB or people with an existing EJB skill sets are increasingly
becoming more prevalent, reducing the amount of ramp-up time and the
cost of new EJB projects.

182 Chapter Eight

Advanced O/R mapping out of the box. EJB CMP is essentially a standard
persistence framework out of the box. Thus, when using CMP entity
beans, there is no need to spend money and ramp-up time on buying a
third-party O/R mapping product. Reducing the number of moving parts in
a software application can significantly ease the maintenance burden.

Portability. Entity beans are guaranteed to be deployable in any J2EE-
certified server, whereas plain ordinary Java objects (POJOs) developed
with third-party persistence engines (such as O/R mappers/JDO engines)
can only run in the application servers that your particular O/R mapper
is certified on.

While EJB 2.0 has made entity beans a viable technology for building
portable, scalable domain models to back a well-designed session façade,
developing entity beans still remains fairly complicated compared to develop-
ing POJOs due to the fact that entity beans are components.

Despite the fact that this is a book on EJB design patterns, many of the pat-
terns in this book that apply to entity beans also apply to any other domain
model technology. Since many developers are still not using entity beans
today, the rest of this chapter will discuss best practice alternatives to entity
beans that support the use of POJOs for server-side domain models.

Alternatives to Entity Beans

Without entity beans, some other source of persistence is required to support
any kind of business logic behind your Session Façade. The motivations for
most of these options are the desire to achieve simplicity and performance by
moving away from building your domain model with components (entity
beans) and instead building them with plain ordinary Java objects (POJOs).
POJOs are simply quicker, easier, and more object-oriented to implement than
components. The options are outlined in the sections below.

Use Straight JDBC/Stored Procedures
This is a non-POJO approach, where session beans can be encoded to directly
interact with the database to get things done. The Data Access Command Bean
pattern (Chapter 3) provides a best practice for decoupling session bean busi-
ness logic from persistence logic. However, even with the DACB pattern, split-
ting business logic across the session bean layer and a layer of stored
procedures is simply bad separation of concerns and poor encapsulation. The
argument against using straight JDBC/stored procedures boils down to a rela-
tional versus object-oriented design debate, which has been covered in depth
in other publications.

Alternatives to Entity Beans 183

Use a Third Party O/R
Mapping Product
Using a third party O/R mapping tool that can plug into your J2EE application
server, is the most common alternative to entity beans. These tools typically
allow you to write your domain model as plain Java objects, using their tools
to transparently persist the objects without any extra work on the part of the
developer. O/R mapping tools are a very popular, widely used alternative to
entity beans. The only drawbacks to this approach are the proprietary nature
of the products and a potential lack of portability. That is, rather than use a
well-understood standard such as entity beans; a proprietary product (which
requires training) is used. Also, if you care about making your J2EE applica-
tions portable across application servers, then you will be limited to the specific
application servers that your O/R tool supports.

Build a Custom Persistence
Framework
Here the developer builds a custom persistence framework that can take
POJOs and persist them behind the scenes. The benefits of this are that you can
use POJOs without having to fork out money for an expensive third party O/R
mapper. The disadvantage is that you need to implement the persistence layer
yourself, which is a complicated and involved process.

Use Java Data Objects
Java Data Objects (JDO) is a new API from Sun whose purpose is to provide
transparent persistence for POJO domain models. JDO provides all the practi-
cal benefits of entity beans (a standard, transparent persistence, container-
managed) all packaged in a very lightweight framework that allows
developers to quickly write complex domain models with simple POJOs.

Like entity beans, Java data objects are meant to represent persistent objects.
Unlike entity beans, Java data objects can be developed as plain Java objects,
completely independent of any container or API (JDOs don’t even need to
know about the JDO APIs). As a standard, JDO seems to be the most promis-
ing alternative to entity beans, so we will now spend the rest of the chapter
reviewing it.

184 Chapter Eight

An EJB Developer’s Introduction to
Java Data Objects

JDO is a specification for the transparent object persistence. It allows you to
create complex hierarchies of plain ordinary Java objects (POJOs) and have all
of their persistence details handled with transparently. JDO defines a truly
object-oriented persistence mechanism that can be used to persist JDOs to any
type of data store (relational, object database, and so on).

With JDO, the developer doesn’t need to write any persistence code, and
business logic that uses Java data objects (and the data objects themselves) is
completely hidden from the underlying persistence mechanism. Java data
objects provide an attractive alternative to entity beans for making Java objects
persistent behind a session façade, one that is lighter weight and leaves behind
all the distributed component baggage typical of entity beans, while maintain-
ing all the benefits of being a standard. At the time of this writing, it is being
developed under the Java Community Process as JSR 12, and is in the 1.0 pro-
posed final draft stage. Unfortunately, there are currently no plans to include
JDO within the J2EE specification, likely due to the fact that JDO competes
with entity beans. As a result, JDOs will not likely be part of the J2EE specifi-
cation. The consequences of this is that J2EE application servers will not come
with built-in JDO support, rather, third-party JDO engines will need to run
alongside a J2EE server to enable JDO.

The remainder of this section will discuss JDO from the perspective of an
EJB developer, showing how an EJB developer would use JDO and discussing
issues that an EJB developer should be aware of. Detailed information about
the various JDO APIs are beyond the scope for this section, instead we will
focus on showing how JDO can be used in an EJB context to get the job done.

Class Requirements and
Dependencies
Figure 8.1 illustrates a simple implementation of a bank account example, as a
CMP entity bean and a JDO.

Alternatives to Entity Beans 185

Figure 8.1 Simple account entity bean versus JDO class and dependencies diagram.

Figure 8.1 illustrates the classes that a developer would have to implement
and the other dependencies (required implementation interfaces such as
java.ejb.EntityBean) that need to be considered when developing a simple
bank account. In the EJB case, three classes need to be written (home, local, and
the bean class), all of which have dependencies on java.ejb interfaces and, in
the case of the bean class, require the encoding of 10 EJB callback methods
(ejbLoad, and so on). Compare this to the Java Data Object approach, which
requires the simple coding of an Account java class, with no external depen-
dencies on system APIs or callback methods. The only requirement for JDO is
the writing of a primary key class (AccountID), which is required when
attempting to find the JDO (explained later in this chapter).

<<interface>>
javax.ejb.EJBLocalObject

getBalance()
deposit(int amt)
widthdraw(amountt)
getID()

Account()
ejbLoad()
ejbStore()
ejbCreate(id)
ejbPostCreate(id)
ejbRemove()
ejbActivate()
ejbPassivate()
setEntityContext(ctx)
unSetEntityContext()

entityContext

AccountCMPBean

getBalance()
deposit(int amt)
widthdraw(amountt)
getID()

<<interface>>
AccountLocal

<<interface>>
javax.ejb.EntityBean

<<interface>>
javax.ejb.EnterpriseBean

<<interface>>
javax.ejb.EJBLocalHome

create(id)
findByPrimaryKey(id)

<<interface>>
AccountLocalHome

Account(id)
getBalance()
deposit(int amt)
widthdraw(amountt)
getID()

id
balance

Account

AccountID(String id)
AccountID(long id)
toString()

id

AccountID

Account CMP Entity Bean Account JDO

186 Chapter Eight

Build and Deployment Processes
The build and deployment process for entity beans and JDO are loosely similar.
The following section will compare and contrast the two approaches:

Write an XML descriptor for an object. This is done once, at the beginning
of development for the object. The XML file is typically modified when
major changes are made to the bean/object such as adding a new
attribute. Entity beans require the writing of an ejb-jar.xml deployment
descriptor (one per bean or set of beans). Ejb-jar.xml is where classes,
transactions, security, jndi, persistent mappings, relationships and more
are all localized via XML tags. Java Data Objects also require a
<classname>.jdo or <packagename>.jdo XML file to be written (one per
class or package of classes). The descriptor names which classes need to
be made persistent as well as provides information about the class fields
and any vendor extensions.

Compile the files with standard Java compiler. Entity Bean classes and
JDO are now compiled using any standard compiler. With JDO, develop-
ers have the option to run a source code post-processor on their JDO
java source files before compiling. The post processor modifies the
source of the persistent objects names persistence-capable in the .jdo xml
file, encoding them with the logic required to be persistent. If a devel-
oper does not want to run a source code post-processor, they can run a
byte code enhancer, described below.

Once the JDOs have been compiled, it is possible to develop testing
scripts which instantiate your JDOs and test all aspects of the code
(without actually persisting any data). Entity beans cannot be tested in
this manner because they depend on the EJB container.

Postcompile using vendor specific tool. At this step, a vendor-specific
postcompilation tool is used to postcompile the entity bean or JDOs
(unless the post-processor was already used) , using the XML descrip-
tors for extra information. Note that the first time this is done, both
entity beans and JDOs may need to be mapped to an underlying data
store using a vendor specific tool (that is, mapping fields to columns in a
RDBMS). Entity beans are compiled by an EJBC-like tool, which gener-
ates vendor-specific stubs, persistent subclasses of CMP entity. If the
developer opted not to use the source code post-processor, then Java
data objects need to be postcompiled by an enhancer, which modifies the
byte code of the JDOs, making similar changes as the source post-
processor. After postcompiling/post-processing, Java data objects can

Alternatives to Entity Beans 187

now be fully tested (persistence mappings, run-time behavior, and so on)
within the environment of the JDO provider, without the use of an appli-
cation server.

Package and deploy into the application server. Here we take our ready-
to-run code and deploy it into the application server. Entity beans are
usually packaged in the same ejb-jars as the session beans that call them
through their local interfaces.

Java Data Objects can also be packaged in the ejb-jar of the session beans
that make use of them, or they can be added to the J2EE ear as a library.

The build and deployment process for entity beans and JDO is pretty simi-
lar. The differences are in complexity of the deployment descriptors and also
the fact that Java data objects can be tested earlier in the build cycle, since they
don’t rely on the existence of an application server.

Inheritance
Inheritance was never truly possible with entity beans, because entity beans
were not meant to be domain objects, they were meant to be components. Basic
code sharing can be accomplished via inheritance between entity bean classes
or remote interfaces, but the overall components themselves cannot be inher-
ited. That is, the run-time benefits of inheritance (that is, a client cannot down-
or up-cast an entity beans EJBObject stub to a parent or subclass), are not
achievable.

Java data objects, being just Java objects can easily make use of complex
inheritance hierarchies. Classes can simply extend each other in the same way
that normal Java objects can. At run time, clients can down- or up-cast JDOs
without any problems. This makes JDO more suitable for building a proper
domain model than entity beans with local interfaces.

Client APIs
The entry point into entity beans is the home interface, through which you can
find, create, and delete, and modify (via home methods) entity beans. Home
objects are as numerous as entity beans; that is, for every entity bean, there will
be a different home object to access it, which needs to be looked up separately
via JNDI.

Java Data Objects define a single entry point into all the JDOs in an applica-
tion: the PersistenceManager (PM). The PM exposes interfaces to find JDOs,
make JDOs persistent (create), delete JDOs, as well as performs cache man-
agement, life-cycle management, and transaction management functions. The
PM has a significantly larger and more complex interface than an EJBHome.
JDO developers may wish to wrap the PM with their own classes, hiding
methods on it that are not commonly used.

188 Chapter Eight

Dynamic versus Static Discovery
Mechanisms
When using EJB finders for CMP beans, the actual queries executed by the
finders must be defined at development or deployment time in the deploy-
ment descriptors. This restricts CMP entity beans from making use of dynamic
searches of entity beans at run time.

Java data objects express queries via loosely typed strings that can be con-
structed and executed dynamically, similar to strings used to execute JDBC
queries. Thus, with JDO it is possible to create a dynamic query engine that can
query the JDO engine for Java data objects based on different criteria dynami-
cally at run time. This can open the door to solutions to difficult design prob-
lems not possible with the static “define at development time” finder
mechanisms that entity beans use.

An EJB Developer’s Guide to Using JDO

JDO and EJB are complementary technologies. Where JDO fits into the EJB pic-
ture is as a replacement for entity beans as the technology used to implement
the domain model in your application.

JDO can also be used to provide persistence with BMP entity beans or trans-
parently by your application server to make your CMP entity beans persistent,
but these approaches entirely defeat the point. JDO is a lightweight mecha-
nism for making plain ordinary Java objects (POJOs) persistent—to use them
as an implementation detail of entity beans does not provide any real benefit
from a design and development point of view.

The following sections discusses how to use JDO behind a session façade.

Preparing Your EJB Environment
The bootstrap interface to JDO is the PersistenceManagerFactory, which is
required to get instances of PersistenceManagers—the main entry point into
your JDO object model. EJBs making use of JDO need a way to get access to the
factory in order to begin working with JDO.

The recommended approach for enabling JDO in your application server is
by placing it in the JNDI tree, thus making it accessible from any session bean
in your application. A named instance of a PersistenceManagerFactory can
then be looked up via JNDI, similar to the lookup of a JDBC DataSource.
PersistenceManagerFactory instances represent the data store and are config-
ured by properties, such as data store name, user name, password, and
options. PersistenceManagerFactory instances are typically instantiated one
per data store in the VM.

Alternatives to Entity Beans 189

Developers can add the PMF to the JNDI tree via startup classes, or via tool-
specific mechanisms if available.

Configuring Session Beans
Session beans on the session façade (see the Session Façade pattern) need to
access the PersistenceManagerFactory, as mentioned above. Session bean
deployment descriptors need to be configured to use this resource, similar to
how they would be configured to use a JDBC DataSource. It is recommended
that the name space for JDO be java:comp/env/jdo. This is not a requirement,
but a recommendation. For example, this may be in the session bean’s deploy-
ment descriptor:

<resource-ref>

<description>The JDO PersistenceManagerFactory to access the Human

Resources database</description>

<res-ref-name>jdo/HumanResourcesPMF</res-ref-name>

<res-type>javax.jdo.PersistenceManagerFactory</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

Within the session bean itself, one member variable needs to be used with
JDO: a cached reference to the PersistenceManagerFactory. After the EJB con-
tainer instantiates a session bean, it will call the setSessionContext(...) method.
Here the session bean should look up and cache a reference to the Persistence-
ManageFactory just once for the lifetime of the session bean, just as it would
cache references to EJBHomes if you were using entity beans:

...

private PersistenceManagerFactory pmFactory = null;

public void setSessionContext (SessionContext ctx)

{

this.ctx = ctx;

InitialContext icx = new InitialContext();

pmFactory = (PersistenceManagerFactory)icx.lookup(“aPMFactory”);

}

...

The session bean will acquire the reference to the PersistenceManager-
Factory at session context time. The actual JNDI name of the Persistence-
ManagerFactory can be mapped from “aPMFactory” to the correct JNDI name
using the <ejb-ref> tags within the session bean’s ejb-jar.xml.

190 Chapter Eight

Executing Use Cases and Transaction
Management
The methods on the session façade usually map to individual use cases in
your application design. Just as with entity beans, these use cases usually need
to run within a transaction. When using JDO from a layer of session beans,
developers must choose between container-managed transactions and bean-
managed transactions just as they would for a session bean that queried the
entity bean layer. With BMT, the bean developer chooses when to begin and
end transactions, and may execute methods either inside or outside of trans-
actions. With CMT, the container demarcates the transactions via transaction
settings in the session bean deployment descriptor. The semantics and syntax
of using JDO change depending on the choice.

Container-Managed Transactions
The preferred transaction model, using CMT, the container automatically
begins a transaction, suspends an existing transaction, or uses an existing
transaction prior to dispatch of the business method, and automatically com-
mits, resumes, or rolls back the transaction at the end of the business method.

The impact on JDO is that when using CMT, each business method must
acquire a PersistenceManager from the PersistenceManagerFactory at the start
of the business method, and close it at the end of the business method. When
the PersistenceManagerFactory is asked for a PersistenceManager, it automat-
ically determines the transaction context of the calling thread, and attempts to
find the PersistenceManager that is already bound to that transaction context.
If there is none, the PersistenceManagerFactory will choose a PersistenceMan-
ager from the pool of available PersistenceManagers and bind it to the trans-
action context. Subsequent requests to the PersistenceManagerFactory for a
PersistenceManager with the same transaction context will return the same
PersistenceManager. At the transaction’s completion (commit or rollback) the
association between the PersistenceManager, and the transaction is broken,
and the PersistenceManager is returned to the available pool.

This automatic behavior makes it easy to combine business methods from
different beans into a single container-delimited transaction. Each business
method that supports transactions will execute in the proper JDO transaction
without any explicit logic written by the bean developer. For example, the create-
Account and deposit methods (which live on a session bean) both use container-
managed transactions:

Alternatives to Entity Beans 191

void createAccount (acctId)

{

PersistenceManager pm = pmFactory .getpersistenceManager();

// get a new account id from somewhere

Account acct = new Account (acctId);

pm.makePersistent (acct);

pm.close();

}

void deposit (long acctId, BigDecimal dep)

{

PersistenceManager pm = pmFactory .getpersistenceManager();

Account acct = pm.getObjectById (new AccountId(acctId));

acct.deposit (dep);

pm.close();

}

The bean developer can choose to be notified at completion of transactions
when using CMT, by declaring that it implements SessionSynchronization
interface. The method beforeCompletion will be called during the transaction
completion phase. Similarly, all other components that registered for synchro-
nization will be called, but there is no guarantee by the container as to the
order of calling these methods. Therefore, no JDO accesses or entity bean
accesses should be done during the beforeCompletion callback.

Bean-Managed Transactions
BMT gives greater flexibility to the bean developer, at the cost of more com-
plexity and more decisions to take during development. The developer can use
the container’s UserTransaction instance to begin and complete transactions.
This situation is similar to CMT in that the PersistenceManager needs to be
acquired in the proper transaction context. Business methods acquire the Persis-
tenceManager at the start of the method, and close the PersistenceManager at
the end of the method. This is not strictly required, but is best practice, because
then the methods can be freely mixed to construct larger-scale transactions.

For example, the following method combines the method calls defined in
the CMT section into one transaction:

void openAccount (BigDecimal initialDeposit, int acctId)

{

UserTransaction ut=icx.lookup(“java:comp/UserTransaction”);

ut.begin();

createAccount(acctId);

192 Chapter Eight

deposit (acctId, initialDeposit);

ut.commit();

}

Another technique is to use the PersistenceManager and the javax.jdo.Trans-
action instance directly. This allows the bean developer to acquire a single
PersistenceManager and use it for several transactions without returning it to
the PersistenceManagerFactory pool. In this case, the business methods do not
acquire and close the PersistenceManager. The PersistenceManager is acquired
by the transactional business method, as in the following example:

void openAccount (BigDecimal initialDeposit, int acctId)

{

persistenceManager = pmFactory .getPersistenceManager();

Transaction tx = persistenceManager.currentTransaction()

tx.begin();

createAccount(acctId);

deposit (acctId, initialDeposit);

tx.commit();

// other transactions may be executed here with the same

...

}

Caching/Lazy Loading and
Reference Navigation
With JDO, the PersistenceManager instance associated with a transaction man-
ages a cache containing all of the persistent objects obtained during execution
of the transaction. If persistent objects contain references to other persistent
objects, then they can be navigated transparently. For example, if you have an
instance of Account (with a reference to an Owner), you can navigate to the
Owner instance simply by referring to the owner field in Account.

class Account

{

long accountId;

BigDecimal balance;

Owner owner;

Owner getOwner()

{

return Owner;

}

}

Alternatives to Entity Beans 193

class Owner {

String name;

}

In the session bean, you can define a method that navigates to the Owner
instance and executes a method on it.

String getOwner (long accountId)

{

Account acct = persistenceManager.getObjectById (new

AccountId(id));

return acct.getOwner().getName();

}

Finding Java Data Objects
Finding JDOs can be done with one of two techniques: executing a query or
looking up an instance by its JDO identity. As mentioned in the Dynamic
Discovery versus Static Discovery Mechanisms section, JDO improves upon entity
bean finders by allowing JDO find code to be constructed dynamically at run
time.

Lookup by Identity

To look up an instance by identity, you must construct the equivalent of a pri-
mary key class (called identity class) corresponding to the Java data object you
want to find. Although it is not a requirement, identity classes usually contain
a constructor that takes a single string argument. Most identity classes will
also contain convenience methods that take arguments corresponding to the
key fields in the class. For example, the AccountId class might be defined as:

class AccountId

{

public long id;

public AccountId (String str)

{

id = Long.parseLong(str);

}

public AccountId (long id)

{

this.id = id;

}

public toString()

194 Chapter Eight

{

return Long.toString(id);

}

}

With this key class definition, getting an instance of Account is done by con-
structing an AccountId instance and asking the PersistenceManager to find the
instance. Like JNDI, the return type of getObjectyById is Object, and it must be
cast to the proper type.

AccountId acctId = new AccountId (id);

Account acct = (Account) persistenceManager.getObjectById(acctId);

Note that the toString method returns a String that can be used as the
parameter to the constructor that takes a single String argument. This is a JDO
recommendation for all key classes.

Lookup by Query

Another technique for finding instances to work with is by using the JDO
query facility. The PersistenceManager is a query factory, which specifies the
Extent in the data store and a filter to select the instance(s) of interest. A busi-
ness method that finds all Accounts having a balance larger than some param-
eter and an owner name specified by another parameter would have a
signature:

Collection getAccountByBalanceAndName (BigDecimal minBal,

String name);

The Extent is an instance that represents all of the instances in the data store
of the specified JDO class, possibly including subclasses. The Persistence-
Manager is also the Extent factory, where the second parameter tells whether
subclasses are to be included in the Extent:

Extent acctExtent = persistenceManager.getExtent

(Account.class, true);

The Extent instance is a special instance that might not actually contain a
collection of persistent instances. It might simply be used to hold the class
name and subclasses flag. When the query is executed, the information in the
Extent is used by the JDO implementation to pass the appropriate query to the
database.

The Filter specifies a Java Boolean expression to be evaluated against all of
the instances in the Extent. To find all Account instances that have a balance
greater than some number and an owner whose name is specified, the follow-
ing code would be executed:

Alternatives to Entity Beans 195

String filter = “balance > balanceParameter & owner.name ==

ownerParameter”;

Query query = persistenceManager.newQuery (acctExtent, filter);

To declare the parameter types, we follow the Java syntax for declaring for-
mal parameters to methods:

query.declareParameters (“BigDecimal balanceParameter, String

ownerParameter”);

Finally, to actually find the accounts we are looking for, we execute the
query to get a Collection of instances that satisfy the filter constraints:

Collection queryResult = query.execute (minBal, name);

The query result can be iterated; the iterator.next() values are persistent
instances of type Account. Note that the queries filter and parameters are
defined with strings. These strings can be dynamically created at run time, an
improvement over the static entity bean finder mechanism.

Inter-Tier Data Transfer
The Data Transfer Object pattern applies equally well to a system that uses
entity beans as well as Java data objects. With this pattern, DTOs are created to
copy data from JDOs and send it to the client tier. On the client tier, updates
can occur and DTOs can be sent back to the server, where the contents of the
DTOs will be used to update JDOs.

JDO provides a unique value in that the JDO instances can themselves be
used as DTOs, as long as they follow the rules for serializable objects. In fact,
an object graph of JDO instances may be returned, allowing a complex collec-
tion of instances to be transferred to the client.

If you choose to use JDO persistent instances directly as value instances,
then the process is slightly more complex, because persistent instances are
bound to the PersistenceManager. In order to detach them from their Persis-
tenceManager, the makeTransient method is used. The effect of this is method is
to remove the persistent instance from the association with the Persistence-
Manager. Subsequent to the makeTransient call, the instance can no longer be
used to refer to persistent data, so any association with persistent instances
must be retrieved before the call.

For example, to return an Account directly to the user, with an associated
Owner, define Account as a return value and make the Account and Owner
classes available to the client of the application. The Owner will be serialized
along with the Account when it is returned to the client.

196 Chapter Eight

Account getAccount (long id)

{

Account acct = persistenceManager.getObjectById (new

AccountId(id));

Owner owner = acct.getOwner();

Object [] objs = new Object[] {acct, owner};

persistenceManager.retrieveAll(objs);

persistenceManager.makeTransientAll (objs);

return acct;

}

Summary

Entity beans have received a lot of mixed press since their inception, but with
the maturity of the EJB tools market and the massive improvements brought
on since EJB 2.0, entity beans have become a viable platform. Still, many prefer
not to use entity beans, as they are still relatively heavyweight components,
instead of lightweight domain objects. Instead, many have elected to make use
of other technologies that allow you to create plain Java object models, includ-
ing custom-built persistence frameworks, O/R mappers, and, most notably,
Java Data Objects (JDO).

Alternatives to Entity Beans 197

199

This chapter contains a set of fine-grained strategies, idioms, and tips for effec-
tive EJB application design and implementation. While they may have been
too simple or fine-grained to warrant being written as a full pattern, they are
still important enough to include in the book.

Don’t Use the Composite Entity Bean
Pattern

The Composite Entity Bean pattern (also known as the Aggregate entity bean
or Coarse-Grained entity bean pattern) was a common pattern for EJB appli-
cations built to the 1.x specification. The pattern arose in order to combat the
performance problems associated with communicating with entity beans via
the remote interface. To combat these problems, the pattern suggests creating
a new entity type called a dependent object, a plain Java class whose life cycle is
managed by the entity bean. The problem with dependent objects is that they
are impossible to create using your application server’s CMP engine, and are
extremely difficult to implement using BMP. Managing the life cycle of a set of
dependent objects in BMP is equivalent to writing your own persistence
engine.

EJB Design Strategies,
Idioms, and Tips

C H A P T E R

9

Entity beans were meant to model the “entities” or domain objects in an
application. With the coming of EJB 2.0 CMP enhancements, including local
interfaces, entity beans can now be used to model the domain objects in your
designs as finely grained as you like. Thus, EJB 2.0 deprecates the notion of
dependent objects, as well as the Composite Entity bean pattern. If you are
concerned about the overhead of transaction and security checks that may take
place when calling an entity bean—don’t. Entity beans fronted with a session
façade need only use tx_supports and do not need to use security at all, since
security and transactions are declared and checked in the session façade. After
speaking to numerous J2EE server vendors, it seems clear that it is common for
an application server to not perform transaction and security checks if none
were declared in the deployment descriptor.

Perhaps the only case in which the Composite Entity Bean Pattern should be
used is for the 5 percent of the time when the data in the underlying database
cannot map to a graph of entity beans. This can occur when building a new
system on top of a legacy system that simply cannot be mapped to the new
system’s object model.

Use a Field-Naming Convention to Allow for
Validation in EJB 2.0 CMP Entity Beans

As of EJB 2.0 CMP, entity beans must be written as abstract classes, since the
CMP engine will implement all the persistence logic on behalf of the devel-
oper. One side effect this has had is that developers no longer have access to
the implementation of getXXX/setXXX methods, since these must be declared
abstract and implemented by the container. Since local interfaces make it
acceptable to allow other EJBs to perform fine-grained get/sets on an entity
bean, a developer will want to expose these get/sets on the local interface. The
problem then becomes: how can a developer perform syntactic or business
validation on data that is set, if they don’t have access to the implementation
of a set method?

The solution is to use a simple naming convention and delegation scheme
for set methods. Instead of exposing a CMP-generated setXXX method (for an
attribute called XXX) on the local interface, expose a method called
setXXXField on the local interface. Inside the setXXXField method, a developer
can implement proper validation checks and then delegate the call to the con-
tainer-generated setXXX method.

200 Chapter Nine

Don’t Get and Set Value/Data Transfer
Objects on Entity Beans

Another deprecated pattern from the EJB 1.X days is the use of value objects
(more properly known as data transfer objects) to get and set bulk sets of data
from an entity bean. This pattern originally helped performance by limiting
the number of get/set remote calls from clients to entity beans by instead get-
ting and setting DTOs that contained bulk sets of entity bean attributes. This
pattern resulted in some pretty serious maintenance problems for entity beans.
For an in-depth discussion of the problems with using DTOs as an interface to
entity beans, see the Data Transfer Object Pattern section (Chapter 2).

Luckily, local interfaces make it acceptable to perform fine-grained get/set
calls on entity beans. Thus using DTOs to transfer data in and out of entity
beans is a deprecated pattern. Developers should think of data transfer objects
as envelopes of data, used to communicate between tiers (the client and the
session façade).

Using Java Singletons Is OK
If They’re Used Correctly

There is a lot of fear, uncertainty, and doubt (FUD) about the role of singletons
in EJB. The original Singleton pattern (Gamma, et al., 1995), suggests creating
a Java class that contains a static instance of itself, so that only one instance of
the class will run in an application. The EJB spec states that EJBs should not
use static fields, nor should they use synchronization primitives (such as the
synchronized keyword). Many developers have incorrectly assumed that this
means that an EJB cannot call out to a singleton, since the singleton itself
makes use of a static field and the synchronized keyword.

This assumption is false. There is nothing wrong with using a Singleton
class, as long as developers DO NOT use it in read-write fashion, in which case
EJB threads calling in may need to be blocked. It is this type of behavior that
the spec is trying to protect against. Using a singleton for read-only behavior,
or any type of service that can allow EJBs to access it independently of one
another is fine.

One caveat with using Java singletons is that it is impossible to create a sin-
gleton in the classic sense—one instance of an object per application. At the
very least, any singletons used will have one copy per server JVM, and usually
will have one instance per class loader (each deployed ejb-jar will have its own
separate class loader and its own Singleton if it uses one).

EJB Design Strategies, Idioms, and Tips 201

Use a Java Singleton class when you would like to create a nonblocking
service in which you do not mind having a few copies of the singleton in-
memory in the same VM, but do not want the pooling and memory overhead
of implementing the service as a stateless session bean. For example, a primary
key generator (such as the UUID for EJB or Sequence Block patterns) would
provide a lighter-weight and more efficient implementation choice than a
stateless session bean.

Prefer Scheduled Updates to
Real-Time Computation

When building Web-based applications, it can often be extremely expensive to
go through the EJB layer upon every single request to compute a value that
needs to be displayed on the user interface (UI), if the computation is a time-
consuming and resource-intensive process.

For example, on TheServerSide.com, the membership count number on the
top right of the home page would require a delegation to the database to exe-
cute a select count(*) from users query, upon every single Web request.
With over 140,000 users, and multiple page views per minute, executing this
query in real time is significant performance bottleneck.

Instead, a sprinkling of realism can help. Instead of executing a computation
in real time, use a scheduling tool such as Unix Cron or the J2EE Scheduler
Flux to perform computations at regular intervals and cache output to disk. In
the JSPs, simply do a jsp:include on this cached file, instead of delegating the
query to the server. Significant performance boosts can be realized by taking
this approach.

In general, ask yourself if the part of the UI being displayed really needs to
be done in real time. For mostly read-only browsing types of UIs, it may not
make sense to go through the EJB layer for every Web request. Therefore, you
should prefer scheduled updates to real-time computation.

Use a Serialized Java Class to Add
Compiler Type Checking to Message-Driven
Bean Interactions

Message-driven beans consume JMS messages, all of which appear identical at
compile time. This is in contrast to session/entity beans, which leverage Java’s
built-in strong typing of the methods and parameters of the remote and local
interfaces to catch common errors at compile time.

202 Chapter Nine

One solution is to define JMS messages as serialized Java objects, mitigating
this drawback. Establish the contract between the application layer and the
business layer as a set of java objects simply containing the required member
variables, getters and setters. Then use these objects in the JMS messages
instead of free-form sets of fields. Doing so reenables compiler type checking.
The overhead of serializing object does not impede performance, besides, it’s
all asynchronous anyway. A best practice when using this approach would be
to give the classes verbs as names. For example, when creating a class to mar-
shal data to a message-driven beans that places an order, the class would be
called PlaceOrderAction, or something along those lines.

Always Call setRollbackOnly when
Application Exceptions Occur

An important but unemphasized fact is that application exceptions (developer
written exceptions) thrown from an EJB to the client don’t trigger automatic
rollbacks of the running transaction, in contrast to EJBExceptions, which auto-
matically trigger the current transaction to roll back. Serious data consistency
problems can arise if a use case fails without the transaction rolling back.

Therefore, always remember to first catch application exceptions and call
ctx.setRollbackOnly() (where ctx is of type javax.ejb.SessionContext
for session beans) before rethrowing or wrapping application exceptions to the
client.

Limit Parameters to ejbCreate

When building entity beans, developers often incorrectly assume that they
should add all the attributes of an entity bean to the ejbCreate method. While
this method gets the job done, it often turns out that doing so makes it more
difficult to make changes to an entity bean such as adding or removing an
attribute. If an attribute is removed, then the entity beans ejbCreate, ejbPost-
Create, and Home Interface need to be changed, and all the method signatures
of those three definitions must be kept in synch. When adding an attribute, if
all the other attributes are passed into ejbCreate, then out of consistency the
new attribute should also be added, requiring changing all the other related
method signatures as well.

One convention that can be adopted to reduce the amount of overhead
required to change an entity bean’s attributes is to limit the number of para-
meters for ejbCreate to just those that are mandatory or essential to its creation

EJB Design Strategies, Idioms, and Tips 203

(with the assumption that mandatory attributes don’t change that often).
Thus, in the session bean that creates the entity bean, instead of passing in all
the attributes to the home.create method, it would only pass in a subset, and
then call setters on the entity bean to populate it with any other attributes that
are required.

Don’t Use Data Transfer Objects
in ejbCreate

Another mistake that developers tend to make when programming an entity
bean’s ejbCreate method is passing in an entity bean’s corresponding domain
DTO as a constructor argument [Brown, 2000]. If you considered the five-layer
J2EE architecture described in Chapter 6, data transfer objects live in between
the application and services layers. Thus, passing in a DTO into an entity
bean’s ejbCreate method creates a dependency between the domain layer and
the upper layers.

This can create a variety of problems. For example, often a domain DTO
contains more attributes than are available to initially create an entity bean
with, or even attributes that are not in the entity bean (such as computed values).
Passing in a DTO that contains null values into an ejbCreate is using the wrong
class for the wrong job.

Instead, only pass in primitives to an entity beans ejbCreate method, keeping
in mind the Limit Parameters to EJB Create tip described above.

Don’t Use XML to Communicate
as a DTO Mechanism Unless
You Really, Really Have To

XML is a very important technology for integration. The keyword here is inte-
gration, meaning integration between Java and non-Java systems. When com-
municating between two Java systems, XML doesn’t really make sense; in fact
it can result in unnecessary performance overhead and bloated code. In par-
ticular, using XML as a mechanism for transferring data between a client and
server should only be done if you really, really have to. That is, unless you are
actually persisting XML data in your database, generating XML in the EJB
layer and passing it to the client layer is a poor substitute for simple and fast
serialization of data transfer objects.

204 Chapter Nine

If your presentation layer uses XML to generate dynamic UIs, then consider
transferring DTOs from the server to the client and performing your conver-
sions to XML at this layer, where client-specific XML documents can be gener-
ated. Also, consider using the JAXB APIs, which can provide a standard way
to achieve automatic DTO to XML conversions.

EJB Design Strategies, Idioms, and Tips 205

207

The purpose of the appendix is to provide complete sample code for patterns
in the book that require the use of code for more explanation. Code is placed at
the back of the book, in order to keep the pattern text itself clear and uncluttered.

Patterns that have sample code are included here. Refer to the table of con-
tents for page numbers of all included code samples.

The book’s Web site www.theserverside.com/patterns/ejbpatterns contains
the running/compiling versions of all source code examples listed here, as
well as a discussion forum for readers of the book.

EJB Command Pattern

Included here is a very simple implementation of the command pattern,
including routing logic components (CommandExecutor and EJBCommand-
Target) and a command server (CommandServerBean), including a bank
account transfer command.

This source is a super simplified version inspired by IBM’s Command
framework, and is provided to illustrate the concepts of the command pattern
only. Use it at your own risk.

Pattern Code Listing

A P P E N D I X

Transfer Funds Command
package examples.command;

import examples.account.AccountHome;

import examples.account.Account;

import examples.account.ProcessingErrorException;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.rmi.PortableRemoteObject;

import javax.ejb.FinderException;

import java.rmi.RemoteException;

public class TransferFundsCommand extends Command implements

Serializable

{

String withdrawAccountID;

String depositAccountID;

double transferAmount;

double withdrawAccountBalance;

double depositAccountBalance;

public void execute() throws CommandException

{

//at this point we are inside the EJB Server

try {

InitialContext ctx = new InitialContext();

AccountHome home = (AccountHome) PortableRemoteObject.narrow

(ctx.lookup(“Account”), AccountHome.class);

//locate accounts and perform transfer

Account account1 = home.findByPrimaryKey(withdrawAccountID);

Account account2 = home.findByPrimaryKey(depositAccountID);

account1.withdraw(this.transferAmount);

account2.deposit(this.transferAmount);

//populate command with final balances

this.depositAccountBalance = account2.balance();

this.withdrawAccountBalance = account1.balance();

}

catch (Exception e)

{

//wrap the exception as a command exception and throw

//to client for interception

throw new CommandException(e);

}

208 Appendix

}

public void setWithdrawAccountID(String withdrawAccountID) {

this.withdrawAccountID = withdrawAccountID;

}

public void setDepositAccountID(String depositAccountID) {

this.depositAccountID = depositAccountID;

}

public void setTransferAmount(double transferAmount) {

this.transferAmount = transferAmount;

}

public double getDepositAccountBalance() {

return depositAccountBalance;

}

public double getWithdrawAccountBalance() {

return withdrawAccountBalance;

}

public TransferFundsCommand()

{}

}

Command Superclass
package examples.command;

import java.io.Serializable;

public abstract class Command implements Serializable {

public abstract void execute() throws CommandException;

}

CommandServer Session Bean
package examples.command;

import javax.ejb.*;

import java.rmi.RemoteException;

import javax.naming.*;

public class CommandServerBean implements SessionBean {

SessionContext ctx;

Pattern Code Listing 209

public void CommandServer() {}

public Command executeCommand(Command aCommand) throws

CommandException

{

try

{

aCommand.execute();

}

catch (CommandException e)

{

ctx.setRollbackOnly();

throw e;

}

return aCommand;

}

public void ejbActivate() throws EJBException,

java.rmi.RemoteException {}

public void ejbCreate() throws CreateException {}

public void ejbPassivate() throws EJBException,

java.rmi.RemoteException {}

public void ejbRemove() throws EJBException,

java.rmi.RemoteException {}

public void setSessionContext(final SessionContext p1)

throws EJBException, java.rmi.RemoteException

{

this.ctx = p1;

}

}

CommandException
package examples.command;

public class CommandException extends Exception {

Exception wrappedException;

public CommandException(){}

public CommandException(Exception e)

{

this.wrappedException = e;

}

210 Appendix

Exception getWrappedException()

{

return wrappedException;

}

public CommandException(String s) {

super(s);

}

}

CommandTarget Interface
package examples.command;

interface CommandTarget {

Command executeCommand(Command aCommand) throws

CommandException;

}

EJBCommandTarget
package examples.command;

import javax.rmi.PortableRemoteObject;

import javax.ejb.CreateException;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import java.rmi.RemoteException;

public class EJBCommandTarget implements CommandTarget {

private CommandServerHome serverHome;

public EJBCommandTarget()

{

try

{

Context ctx = new InitialContext(System.getProperties());

Object obj = ctx.lookup(“CommandServer”);

System.out.println(obj);

this.serverHome = (CommandServerHome)

PortableRemoteObject.narrow(obj, CommandServerHome.class);

}

catch (NamingException e)

{

e.printStackTrace();

}

Pattern Code Listing 211

catch (ClassCastException e)

{

e.printStackTrace();

}

}

public Command executeCommand(Command aCommand)

throws CommandException

{

try

{

CommandServer aCommandServer = serverHome.create();

aCommand = aCommandServer.executeCommand(aCommand);

return aCommand;

}

catch (Exception e)

{

throw new CommandException(e);

}

}

}

CommandExecutor
package examples.command;

public class CommandExecutor

{

private static EJBCommandTarget ejbTarget = new EJBCommandTarget();

//execute command, overwriting memory reference of the passed

//in command to that of the new one

public static Command execute(Command aCommand)

throws CommandException

{

//at this point, a real implementation would use a properties

file

//to determine which command target (EJB, Local, Corba, etc) to

//use for this particular command, as well as which deployed

//CommandServer to use (in order to run commands

//under different transaction configurations)

return ejbTarget.executeCommand(aCommand);

}

}

212 Appendix

Data Access Command Bean

The implementations of the abstract super classes BaseReadCommand and
BaseUpdateCommand, as well as the InsertEmployeeCommand and
QueryEmployeeByNameCommand classes are provided. Note that the
BaseReadCommand uses a RowSet to simplify its implementation. RowSets
are part of the JDBC 2.0 optional package, and joined core JDBC as of JDBC 3.0.
The example here uses Sun’s free CachedRowSet implementation of the
RowSet interface.

BaseReadCommand.java
package examples.datacommands;

import javax.sql.*;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import java.sql.*;

import sun.jdbc.rowset.CachedRowSet;

/**

* The Super class for any data command beans Read from the

* database.

*/

abstract class BaseReadCommand {

protected PreparedStatement pstmt;

protected CachedRowSet rowSet = null;

private Connection con;

protected BaseReadCommand (String jndiName, String statement)

throws DataCommandException

{

InitialContext ctx = null;

try

{

ctx = new InitialContext();

DataSource ds = (javax.sql.DataSource) ctx.lookup(jndiName);

con = ds.getConnection();

pstmt = con.prepareStatement(statement);

}

catch (NamingException e)

{

throw new DataCommandException(e.getMessage());

}

catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

Pattern Code Listing 213

}

}

public void execute() throws DataCommandException

{

try

{

rowSet = new CachedRowSet();

rowSet.populate(pstmt.executeQuery());

rowSet.beforeFirst();

this.release();

} catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

}

}

public boolean next() throws DataCommandException

{

try

{

return rowSet.next();

} catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

}

}

private void release() throws SQLException

{

if (pstmt != null) pstmt.close();

if (con != null) con.close();

}

}

BaseUpdateCommand.java
package examples.datacommands;

import javax.sql.*;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.ejb.EJBException;

import java.sql.*;

/**

* The Super class for any data command beans that Create, Update or

* Delete. This class is reusable across projects, all proj. specific

data

* (Datasource JDNI and SQl String) are left to the subclasses

*/

abstract class BaseUpdateCommand {

214 Appendix

protected PreparedStatement pstmt;

private Connection con;

protected BaseUpdateCommand (String jndiName, String statement)

throws DataCommandException

{

InitialContext ctx = null;

try

{

ctx = new InitialContext();
DataSource ds = (javax.sql.DataSource) ctx.lookup(jndiName);
con = ds.getConnection();
pstmt = con.prepareStatement(statement);

}
catch (NamingException e)
{

throw new DataCommandException(e.getMessage());
}
catch (SQLException e)
{

throw new DataCommandException(e.getMessage());
}

}
public int execute() throws DataCommandException
{

try
{

//execute update, return the rowcount
int updateCount = pstmt.executeUpdate();
this.release();
return updateCount;

} catch (SQLException e)
{

throw new DataCommandException(e.getMessage());
}

}
private void release() throws SQLException
{

if (pstmt != null) pstmt.close();
if (con != null) con.close();

}
}

InsertEmployeeCommand.java
package examples.datacommands;

import java.sql.*;

import javax.sql.*;

/**

* InsertEmployeeCommand, this class

Pattern Code Listing 215

* is the usecase specific Command bean that

* an application developer would write.

*/

public class InsertEmployeeCommand extends BaseUpdateCommand

{

static String statement = “insert into Employees (EMPLOYEEID, NAME,

EMAIL) values (?,?,?)”;

static final String dataSourceJNDI = “bookPool”;

/**

* Passes parent class the usecase specific sql statement to use

*/

protected InsertEmployeeCommand() throws DataCommandException

{

super(dataSourceJNDI, statement);

}

public void setEmail(String anEmail) throws DataCommandException

{

try

{

pstmt.setString(3, anEmail);

} catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

}

}

public void setId(int id) throws DataCommandException

{

try

{

pstmt.setInt(1, id);

} catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

}

}

public void setName(String aName) throws DataCommandException

{

try

{

pstmt.setString(2, aName);

} catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

}

}

}

216 Appendix

QueryEmployeeByName.java
package examples.datacommands;

import java.sql.*;

import javax.sql.*;

/**

* A usecase specific querying object

**/

public class QueryEmployeeByNameCommand extends BaseReadCommand

{

static final String statement =

“select EMPLOYEEID, NAME, EMAIL from Employees where NAME = ?”;

static final String dataSourceJNDI = “bookPool”;

protected QueryEmployeeByNameCommand() throws DataCommandException

{

super(dataSourceJNDI, statement);

}

public String getEmail() throws DataCommandException

{

try

{

return rowSet.getString(3);

} catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

}

}

public int getId() throws DataCommandException

{

try

{

return rowSet.getInt(1);

} catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

}

}

public String getName() throws DataCommandException

{

try

{

return rowSet.getString(2);

} catch (SQLException e)

{

Pattern Code Listing 217

throw new DataCommandException(e.getMessage());

}

}

public void setName(String aName) throws DataCommandException

{

try

{

pstmt.setString(1, aName);

} catch (SQLException e)

{

throw new DataCommandException(e.getMessage());

}

}

}

Dual Persistent Entity Bean

Included is the code example of the bank account entity bean inheritance rela-
tionship and deployment descriptors. These classes can be compiled and then
deployed in CMP or BMP by swapping the provided deployment descriptors.

Account Deployment Descriptor for
CMP

<ejb-jar>

<enterprise-beans>

<entity>

<ejb-name>dualPersistent</ejb-name>

<home>examples.dualpersistent.AccountHome</home>

<remote>examples.dualpersistent.Account</remote>

<ejb-class>examples.dualpersistent.AccountCMPBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>AccountBean</abstract-schema-name>

<cmp-field>

<field-name>accountId</field-name>

</cmp-field>

<cmp-field>

<field-name>balance</field-name>

</cmp-field>

<primkey-field>accountId</primkey-field>

<query>

218 Appendix

<query-method>

<method-name>findBigAccounts</method-name>

<method-params>

<method-param>double</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[FROM AccountBean AS a WHERE a.balance > ?1]]>

</ejb-ql>

</query>

</entity>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>dualPersistent</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Account Deployment Descriptor for
BMP

<ejb-jar>

<enterprise-beans>

<entity>

<ejb-name>dualPersistent</ejb-name>

<home>examples.dualpersistent.AccountHome</home>

<remote>examples.dualpersistent.Account</remote>

<ejb-class>examples.dualpersistent.AccountBMPBean</ejb-class>

<persistence-type>Bean</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<resource-ref>

<res-ref-name>jdbc/ejbPool</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</entity>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

Pattern Code Listing 219

<method>

<ejb-name>dualPersistent</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Account Remote Interface
package examples.dualpersistent;

import java.rmi.RemoteException;

import javax.ejb.EJBObject;

public interface Account extends EJBObject {

public double balance() throws RemoteException;

public double deposit(double amount) throws RemoteException;

public double withdraw(double amount) throws

ProcessingErrorException, RemoteException;

}

Account Home Interface
package examples.dualpersistent;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.Collection;

public interface AccountHome extends EJBHome {

public Account create(String accountId, double initialBalance)

throws CreateException, RemoteException;

public Account findByPrimaryKey(String primaryKey)

throws FinderException, RemoteException;

public Collection findBigAccounts(double balanceGreaterThan)

throws FinderException, RemoteException;

}

220 Appendix

Account CMP Bean Superclass
package examples.dualpersistent;

import java.io.Serializable;

import java.util.Enumeration;

import java.util.Vector;

import javax.ejb.*;

import javax.naming.*;

import javax.sql.DataSource;

abstract public class AccountCMPBean implements EntityBean {

protected EntityContext ctx;

/**

* container managed fields

*/

abstract public String getAccountId();

abstract public double getBalance();

abstract public void setAccountId(String val);

abstract public void setBalance(double val);

/**

* Developer implemented Business Methods

*/

public double balance()

{

return getBalance();

}

public double deposit(double amount)

{

setBalance(getBalance() + amount);

return getBalance();

}

public double withdraw(double amount)

throws ProcessingErrorException

{

if (amount > getBalance())

{

throw new ProcessingErrorException(“Attempt to withdraw too

much”);

}

setBalance(getBalance() - amount);

return getBalance();

}

Pattern Code Listing 221

public String ejbCreate(String accountId, double initialBalance)

throws CreateException

{

setAccountId(accountId);

setBalance(initialBalance);

return null;

}

/**

* Container required methods - implemented by the CMP engine

*/

public AccountCMPBean() {}

public void ejbActivate() {}

public void ejbLoad() {}

public void ejbPassivate() {}

public void ejbPostCreate(String accountId,double initialBalance){}

public void ejbRemove() throws RemoveException {}

public void ejbStore() {}

/**

* The usual Plumbing

*/

public void setEntityContext(EntityContext ctx)

{

this.ctx = ctx;

}

public void unsetEntityContext()

{

this.ctx = null;

}

}

Account BMP Bean Subclass
package examples.dualpersistent;

import java.io.Serializable;

import java.util.*;

import javax.ejb.*;

import javax.naming.*;

import java.sql.*;

import javax.sql.*;

public class AccountBMPBean extends AccountCMPBean implements EntityBean

{

222 Appendix

private String accountId;

private double balance;

public String getAccountId()

{

return accountId;

}

public double getBalance()

{

return balance;

}

public void setAccountId(String val)

{

this.accountId = val;

}

public void setBalance(double val)

{

this.balance = val;

}

public String ejbCreate(String accountId, double initialBalance)

throws CreateException

{

//delegate to super class for validation checks, etc.

super.ejbCreate(accountId, initialBalance);

Connection con = null;

PreparedStatement ps = null;

try

{

con = getConnection();

ps = con.prepareStatement(“insert into Accounts (id,

balance)

values (?, ?)”);

ps.setString(1, accountId);

ps.setDouble(2, balance);

if (ps.executeUpdate() != 1)

{

throw new CreateException();

}

return accountId;

} catch (SQLException sqe)

{

throw new CreateException();

} finally

{

Pattern Code Listing 223

try

{

if (ps != null) ps.close();

if (con != null) con.close();

} catch (Exception e)

{

throw new EJBException(e);

}

}

}

public Collection ejbFindBigAccounts(double balanceGreaterThan)

{

Connection con = null;

PreparedStatement ps = null;

try

{

con = getConnection();

ps = con.prepareStatement(“select id from Accounts where

balance > ?”);

ps.setDouble(1, balanceGreaterThan);

ps.executeQuery();

ResultSet rs = ps.getResultSet();

Vector v = new Vector();

String pk;

while (rs.next())

{

pk = rs.getString(1);

v.addElement(pk);

}

return v;

} catch (SQLException e)

{

throw new EJBException(e);

} finally

{

try

{

if (ps != null) ps.close();

if (con != null) con.close();

} catch (Exception e)

{

throw new EJBException(e);

}

}

}

public String ejbFindByPrimaryKey(String pk)

224 Appendix

throws ObjectNotFoundException

{

Connection con = null;

PreparedStatement ps = null;

try

{

con = getConnection();

ps = con.prepareStatement(“select balance from Accounts

where

id = ?”);

ps.setString(1, pk);

ps.executeQuery();

ResultSet rs = ps.getResultSet();

if (rs.next())

balance = rs.getDouble(1);

else

throw new ObjectNotFoundException();

} catch (SQLException sqe)

{

throw new EJBException(sqe);

} finally

{

try

{

if (ps != null) ps.close();

if (con != null) con.close();

} catch (Exception e)

{

System.out.println(“Error closing JDBC resourcest: “ +

e);

throw new EJBException(e);

}

}

return pk;

}

public void ejbLoad()

{

Connection con = null;

PreparedStatement ps = null;

accountId = (String) ctx.getPrimaryKey();

try

{

con = getConnection();

ps = con.prepareStatement(“select balance from Accounts

where

Pattern Code Listing 225

id = ?”);

ps.setString(1, accountId);

ps.executeQuery();

ResultSet rs = ps.getResultSet();

if (rs.next())

balance = rs.getDouble(1);

else

throw new NoSuchEntityException();

} catch (SQLException sqe)

{

throw new EJBException(sqe);

} finally

{

try

{

if (ps != null) ps.close();

if (con != null) con.close();

} catch (Exception e)

{

System.out.println(“Error closing JDBC resourcest: “ +

e);

throw new EJBException(e);

}

}

}

public void ejbPostCreate(String accountId, double initialBalance)

{

}

public void ejbRemove()

{

Connection con = null;

PreparedStatement ps = null;

try

{

con = getConnection();

accountId = (String) ctx.getPrimaryKey();

ps = con.prepareStatement(“delete from Accounts where id =

?”);

ps.setString(1, accountId);

if (!(ps.executeUpdate() > 0))

226 Appendix

{

throw new NoSuchEntityException();

}

} catch (SQLException e)

{

throw new EJBException(e);

}

}

public void ejbStore()

{

Connection con = null;

PreparedStatement ps = null;

try

{

con = getConnection();

ps = con.prepareStatement(“update Accounts set balance = ?

where id = ?”);

ps.setDouble(1, balance);

ps.setString(2, accountId);

if (!(ps.executeUpdate() > 0))

throw new NoSuchEntityException();

} catch (SQLException sqe)

{

throw new EJBException(sqe);

} finally

{

try

{

if (ps != null) ps.close();

if (con != null) con.close();

} catch (Exception e)

{

System.out.println(“Error closing JDBC resourcest: “ +

e);

throw new EJBException(e);

}

}

}

private Connection getConnection() throws SQLException

{

InitialContext ctx = null;

try

{

ctx = new InitialContext();

DataSource ds = (javax.sql.DataSource)

Pattern Code Listing 227

ctx.lookup(“ejbPool”);

return ds.getConnection();

} catch (NamingException e)

{

throw new EJBException(e);

}

}

}

Processing Error Exception
package examples.dualpersistent;

public class ProcessingErrorException extends Exception {

public ProcessingErrorException() {}

public ProcessingErrorException(String message) {super(message);

}

EJB Home Factory

Here we present an example of an EJB Home Factory.

Simple EJB Home Factory
package com.portal.util;

import javax.ejb.*;

import java.rmi.*;

import javax.rmi.*;

import java.util.*;

import javax.naming.*;

/**

* EJB Home Factory, maintains a simple hashmap cache of EJBHomes

* For a production implementations, exceptions such as NamingException

* can be wrapped with a factory exception to futher simplify

* the client.

*/

public class EJBHomeFactory

{

private Map ejbHomes;

private static EJBHomeFactory aFactorySingleton;

Context ctx;

228 Appendix

/**

* EJBHomeFactory private constructor.

*/

private EJBHomeFactory() throws NamingException

{

ctx = new InitialContext();

this.ejbHomes = Collections.synchronizedMap(new HashMap());

}

/*

* Returns the singleton instance of the EJBHomeFactory

* The sychronized keyword is intentionally left out the

* as I don’t think the potential to intialize the singleton

* twice at startup time (which is not a destructive event)

* is worth creating a sychronization bottleneck on this

* VERY frequently used class, for the lifetime of the

* client application.

*

* Alternatively, you can sychronize this method, OR you can

* simply Intialize the hashMap and factory using static

Intializers.

*/

public static EJBHomeFactory getFactory() throws

HomeFactoryException

{

try

{

if (EJBHomeFactory.aFactorySingleton == null)

{

EJBHomeFactory.aFactorySingleton = new EJBHomeFactory();

}

} catch (NamingException e)

{

throw new HomeFactoryException(e);

}

return EJBHomeFactory.aFactorySingleton;

}

/**

* Lookup and cache an EJBHome object using a home class.

* Assumes that the JNDI name of the EJB Home being looked for

* is the same as the fully qualified class name of the

* same EJB Home.

* If EJB-REF tags are being used externally, then the classname

* of the EJB Home can be mapped to the actual JNDI name of the

* deployed bean transaprently at deployment time.

* If EJB-REF tags are not used, then the EJB’s must be deployed

* with JNDI names equal to their fully qualified home interfaces.

Pattern Code Listing 229

*/

public EJBHome lookUpHome(Class homeClass)

throws HomeFactoryException

{

EJBHome anEJBHome;

anEJBHome = (EJBHome) this.ejbHomes.get(homeClass);

try

{

if(anEJBHome == null)

{

anEJBHome = (EJBHome) PortableRemoteObject.narrow

(ctx.lookup (homeClass.getName()),

homeClass);

this.ejbHomes.put(homeClass, anEJBHome);

}

}

catch (ClassCastException e)

{

throw new HomeFactoryException(e);

}

catch (NamingException e)

{

throw new HomeFactoryException(e);

}

return anEJBHome;

}

/**

* Lookup and cache an EJBHome object.

* This ‘alternate’ implementation delegates JNDI name knowledge

* to the client. It is included here for example only.

*/

public EJBHome lookUpHome(Class homeClass, String jndiName)

throws HomeFactoryException

{

EJBHome anEJBHome;

anEJBHome = (EJBHome) this.ejbHomes.get(homeClass);

try

{

if(anEJBHome == null)

{

System.out.println(“finding HOME for first time”);

anEJBHome = (EJBHome) PortableRemoteObject.narrow

(ctx.lookup (jndiName), homeClass);

230 Appendix

this.ejbHomes.put(homeClass, anEJBHome);

}

}

catch (ClassCastException e)

{

throw new HomeFactoryException(e);

}

catch (NamingException e)

{

throw new HomeFactoryException(e);

}

return anEJBHome;

}

}

Business Delegate

Included here is an implementation of a business delegate made to wrap a
stateful session bean. These business delegates are slightly more complex than
the ones that wrap stateless session beans, as these guys need to use a handle
for an EJBObject in order to survive serialization by a servlet engine that may
passivate its HTTPSession cache, or perhaps attempt to serialize copies of its
HTTPSession to support session replication across a cluster.

The changed/extra code (over the stateless delegate example in Chapter 8)
is highlighted in bold. The only major change in the SFSB version of the Busi-
ness Delegate is the use of a getEJB() method before every invocation of a busi-
ness method on an EJB. This is done to ensure that the EJBObject still exists
(was not lost in serialization), in order to recreate it from the handle in case of
serialization. Also, clients must remember to call remove on the delegate when
they are done with it, so that the SFSB can be removed.

public class ForumServicesDelegate implements Serializable

{

private transient TestSession sb;

private Handle remoteHandle;

public ForumServicesDelegate() throws DelegateException

{

try

{

ForumServicesHome home = (ForumServicesHome)

EJBHomeFactory.getFactory().lookUpHome

(ForumServicesHome.class);

Pattern Code Listing 231

this.sb = home.create();

//store a handle incase we get serialized

this.remoteHandle = sb.getHandle();

}

catch(Exception e)

{

throw new DelegateException();

}

}

//business method

public long addForum(long categoryPK, String forumTitle,

String summary)

throws NoSuchCategoryException,DelegateException

{

try

{

return getEJB().sb.addForum

(categoryPK, forumTitle, summary);

}

catch(CreateException e)

{

throw new DelegateException();

//log errors, etc

} catch(RemoteException e)

{

throw new DelegateException();

//log errors, etc

}

}

private ForumServices getEJB() throws DelegateException

{

//test if the delegate was serialized

try

{

if (sb == null)

{

//if so, recreate session bean reference

sb = (ForumServices) PortableRemoteObject.narrow

(remoteHandle.getEJBObject(),ForumServices.class);

}

}

catch (ClassCastException e)

{

throw new DelegateException();

}

232 Appendix

catch (RemoteException e)

{

throw new DelegateException();

}

return sb;

}

public void remove() throws DelegateException

{

//once the client is done with the

//stateful delegate, allow client to call

//remove, so we can tell the EJB server to

//remove the SFSB

try

{

getEJB().remove();

}

catch (RemoteException e)

{

throw new DelegateException();

}

catch (RemoveException e)

{

throw new DelegateException();

}

}

}

Sequence Blocks

Included is a complete implementation of the Sequence Block pattern, based
on a submission by Jonathan Weedon from Borland Corporation. The
Sequence entity bean exposes only local interfaces (it is only called by the
Sequence Session Bean). The Sequence Session Bean exposes both local and
remote interfaces (should be called by local interfaces in production; remote is
provided for testing purposes). Ejb-jar.xml descriptors are also included.

Sequence Entity Bean Local Interface
package examples.sequencegenerator;

public interface Sequence extends javax.ejb.EJBLocalObject

{

public int getNextKeyAfterIncrementingBy(int blockSize);

}

Pattern Code Listing 233

Sequence Entity Bean Local Home
Interface

package examples.sequencegenerator;

public interface SequenceLocalHome extends javax.ejb.EJBLocalHome

{

Sequence create(String name) throws javax.ejb.CreateException;

Sequence findByPrimaryKey(String name) throws

javax.ejb.FinderException;

}

Sequence Entity Bean Code
package examples.sequencegenerator;

import javax.ejb.*;

abstract public class SequenceBean implements EntityBean

{

public int getNextKeyAfterIncrementingBy(int blockSize)

{

this.setIndex(this.getIndex()+ blockSize);

return this.getIndex();

}

public String ejbCreate(String name)

{

this.setName(name);

this.setIndex(0);

return name;

}

abstract public int getIndex();

abstract public String getName();

abstract public void setIndex(int newIndex);

abstract public void setName(java.lang.String newName);

public void ejbActivate() {}

public void ejbLoad() {}

public void ejbPassivate() {}

public void ejbPostCreate(String name) {}

public void ejbRemove() {}

public void ejbStore() {}

public void setEntityContext(EntityContext unused) {}

public void unsetEntityContext() {}

}

234 Appendix

Sequence Session Remote Interface
package examples.sequencegenerator;

import java.rmi.*;

public interface SequenceSession extends javax.ejb.EJBObject {

public int getNextNumberInSequence(String name) throws

RemoteException;

}

Sequence Session Home Interface
package examples.sequencegenerator;

import javax.ejb.*;

import java.rmi.*;

public interface SequenceSessionHome extends javax.ejb.EJBHome {

SequenceSession create() throws CreateException, RemoteException;

}

Sequence Session Local Interface

package examples.sequencegenerator;

public interface SequenceSessionLocal extends javax.ejb.EJBLocalObject {

public int getNextNumberInSequence(String name);

}

Sequence Session Local Home
Interface

package examples.sequencegenerator;

import javax.ejb.*;

import javax.naming.*;

public interface SequenceSessionLocalHome extends javax.ejb.EJBLocalHome

{

SequenceSessionLocal create() throws CreateException;

}

Sequence Session Bean
Implementation

package examples.sequencegenerator;

import javax.ejb.*;

import javax.naming.*;

public class SequenceSessionBean implements javax.ejb.SessionBean {

Pattern Code Listing 235

private class Entry {

Sequence sequence;

int last;

};

private java.util.Hashtable _entries = new java.util.Hashtable();

private int _blockSize;

private int _retryCount;

private SequenceLocalHome _sequenceHome;

public int getNextNumberInSequence(String name)

{

try

{

Entry entry = (Entry) _entries.get(name);

if (entry == null)

{

// add an entry to the sequence table

entry = new Entry();

try

{

entry.sequence = _sequenceHome.findByPrimaryKey(name);

}

catch (javax.ejb.FinderException e)

{

// if we couldn’t find it, then create it...

entry.sequence = _sequenceHome.create(name);

}

_entries.put(name, entry);

}

if (entry.last % _blockSize == 0)

{

for (int retry = 0; true; retry++)

{

try

{

entry.last =

entry.sequence.getNextKeyAfterIncrementingBy(_blockSize);

break;

}

catch (javax.ejb.TransactionRolledbackLocalException e)

{

if (retry < _retryCount)

{

// we hit a concurrency exception, so

//try again...

continue;

}

236 Appendix

else

{

// we tried too many times, so fail...

throw new javax.ejb.EJBException(e);

}

}

}

}

return entry.last++;

}

catch (javax.ejb.CreateException e)

{

throw new javax.ejb.EJBException(e);

}

}

public void setSessionContext(javax.ejb.SessionContext sessionContext)

{

try {

Context namingContext = new InitialContext();

_blockSize = ((Integer)namingContext.lookup

(“java:comp/env/blockSize”)).intValue();

_retryCount = ((Integer) namingContext.lookup

(“java:comp/env/retryCount”)).intValue();

_sequenceHome = (SequenceLocalHome) namingContext.lookup

(“SequenceLocalHome”);

}

catch(NamingException e) {

throw new EJBException(e);

}

}

public void ejbActivate() {}

public void ejbCreate() {}

public void ejbPassivate() {}

public void ejbRemove() {}

}

Sequence Session and Entity EJB-
JAR.xml

<?xml version=”1.0”?>

<!DOCTYPE ejb-jar PUBLIC ‘-//Sun Microsystems,

Inc.//DTD Enterprise JavaBeans 2.0//EN’

‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>

Pattern Code Listing 237

<enterprise-beans>

<entity>

<ejb-name>Sequence</ejb-name>

<local-home>examples.sequencegenerator.SequenceLocalHome</local-

home>

<local>examples.sequencegenerator.Sequence</local>

<ejb-class>examples.sequencegenerator.SequenceBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>SequenceBean</abstract-schema-name>

<cmp-field>

<field-name>index</field-name>

</cmp-field>

<cmp-field>

<field-name>name</field-name>

</cmp-field>

<primkey-field>name</primkey-field>

<env-entry>

<env-entry-name>datasourceName</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>bookPool</env-entry-value>

</env-entry>

<resource-ref>

<res-ref-name>jdbc/bookPool</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</entity>

<session>

<ejb-name>SequenceSession</ejb-name>

<home>examples.sequencegenerator.SequenceSessionHome</home>

<remote>examples.sequencegenerator.SequenceSession</remote>

<local-

home>examples.sequencegenerator.SequenceSessionLocalHome</local-home>

<local>examples.sequencegenerator.SequenceSessionLocal</local>

<ejb-class>examples.sequencegenerator.SequenceSessionBean</ejb-

class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<env-entry>

<description />

<env-entry-name>retryCount</env-entry-name>

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>5</env-entry-value>

</env-entry>

<env-entry>

<description />

<env-entry-name>blockSize</env-entry-name>

238 Appendix

<env-entry-type>java.lang.Integer</env-entry-type>

<env-entry-value>10</env-entry-value>

</env-entry>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>Sequence</ejb-name>

<method-name>getNextKeyAfterIncrementingBy</method-name>

</method>

<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>

<container-transaction>

<method>

<ejb-name>SequenceSession</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Stored Procedures for Auto-Generated Keys

Here we have an example of a stored procedure that will insert a row into the
database and return the auto-generated primary key field within the same
database call. The primary key is needed to return from ejbCreate, as mandated
by the spec. The stored procedure uses an Oracle sequence named accountID to
generate primary keys.

InsertAccount Stored Procedure for
Oracle

create or replace procedure insertAccount

(owner IN varchar,

bal IN integer,

newid OUT integer)

AS

BEGIN

insert into accounts (id, ownername, balance)

values (accountID.nextval, owner, bal)

returning id into newid;

END;

Pattern Code Listing 239

241

Web Sites

MartinFowler.com. “Information Systems Architecture.” Available at: www.
martinfowler.com/j2ee/blueprints/index.html.

Sun Microsystems. “J2EEBlueprints.” Available at: http://java.sun.com/j2ee/
blueprints/index.html.

TheServerSide.com. “Patterns Repository.” Available at: www.theserverside.com/
patterns.

Books and Articles

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. 1977. A Pattern
Language: Towns, Buildings, Construction. Oxford University Press.

Alur, D., J. Crupi, and D. Malks. 2001. Core J2EE Patterns. Prentice-Hall.
Brown, K. January 26, 2000. “Limit Parameters for EJB Creates.” Portland Pattern

Repository. Available at: www.c2.com/cgi/wiki?LimitParametersForEjbCreates.
Brown, K. May 5, 2001. “What’s a Controller Anyway?” Portland Pattern Repository.

Available at: www.c2.com/cgi/wiki?WhatsaControllerAnyway.
Brown, K., and B. Whitenack. 1995. “Crossing Chasms: A Pattern Language for

Object-RDBMS Integration.” Pattern Languages of Program Design 2, Vlissedes,
Coplien, and Kerth, eds. Addison-Wesley.

References

Carey, J., B. Carlson, and T. Graser. 2000. San Francisco Design Patterns. Addison-Wesley.
Coad, P. 1990. Object-Oriented Analysis. Yourdon Press.
Cockburn, A. 1995. “Prioritizing Forces in Software Design.” Pattern Languages of

Program Design 2, Vlissedes, Coplien, and Kerth, eds. Addison-Wesley.
Cockburn, A. 2000. Writing Effective Use Cases. Addison-Wesley.
“Exception Patterns.” Portland Pattern Repository. August 19, 2001. (Multiple contrib-

utors). Available at: www.c2.com/cgi/wiki?ExceptionPatterns.
Fowler, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley.
Fowler, M., and R. Mee. 2001. 2001 J2EE Summit. Crested Butte, CO.
Fowler, M., with K. Scott. 1997. UML Distilled. Addison-Wesley.
Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.
Gamma, E., et al. 1994. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley.
Hunt, A., and D. Thomas. 1999. The Pragmatic Programmer. Addison-Wesley.
Jeffries, R., et al. 2000. Extreme Programming Installed. Addison-Wesley.
Johnston, J. 2000. The Complete Idiot’s Guide to Psychology. Alpha Books.
Kassem, N. 2000. Designing Enterprise Applications with the Java 2 Platform, Enterprise

Edition. Addison-Wesley.
Maister, D. 1997. True Professionalism. Touchstone.
Matena, V., and B. Stearns. 2001. Applying Enterprise Java Beans. Addison-Wesley.
Roman, E. 2002. Mastering EJB. John Wiley & Sons.
Smith, D. August 8, 2001. “Technical Debt.” Portland Pattern Repository. Available at:

www.c2.com/cgi/wiki?TechnicalDebt.
Stafford, Randy. September 2, 2001. “Object Relational Impedance Mismatch.”

Portland Pattern Repository. Available at: www.c2.com/cgi/
wiki?ObjectRelationalImpedanceMismatch.

242 References

A
account BMP bean

subclass, code listing, 222–28
account CMP bean

superclass, code listing, 221–22
account deployment descriptor, code

listing, 218–20
account home interface, code listing, 220
account remote interface, code listing,

220
aggregate data transfer objects, 53
Aggregate entity bean

pattern, 199–200
airline registration scenario, 12–17
Ant

build files, 152, 156
definition, 149
project directory structure, 154–55
setup, 153, 155–56
targets, 156–68

application layer
Business Delegate pattern, 141–42
definition, 128
EJBHomeFactory pattern, 141
unit testing, 170

architectural patterns. See Business Inter-
face pattern; EJB Command pattern;
Generic Attribute Access pattern;
Message Façade pattern; Session
Façade pattern

architecture
layered, 144–45 (see also J2EE layers)
pattern-driven (see J2EE layers)

asynchronous communication, 15
asynchronous use cases

services layer, 134
See also Message Façade pattern

Attribute Access pattern. See Generic
Attribute Access pattern

attribute key values, maintaining, 61
attribute validation, client-side, 54
auto-generated keys

stored procedures, code listing, 239
See also Stored Procedures for

Autogenerated Keys pattern

B
banking scenario, 5–9
BaseReadCommand.java, code listing,

213–14

Index

BaseUpdateCommand.java, code listing,
214–15

Bean-Managed Persistence (BMP). See
BMP

Bean-Managed Transactions (BMT),
192–93

beans
business logic in (see EJB Command

pattern)
command, 19–21, 23 (see also EJB

Command pattern)
entity (see entity beans)
message-driven, 13–16
multiple use cases in (see Session

Façade pattern)
self referencing, 41
session, configuring for JDOs, 190

Beck, Kent, 169
blocking, 13
BMP (Bean-Managed Persistence)

account BMP bean subclass, code
listing, 222–28

account deployment descriptor, code
listing, 219–20

vs. CMP, 131
CMP dual support (see Dual

Persistent Entity Bean pattern)
performance, 78–79

BMT (Bean-Managed Transactions),
192–93

build files (Ant), 152, 156
built-in caching, 78–79
bulk data transfer

development strategy, 201
See also Data Transfer HashMap

pattern; Data Transfer Object
pattern; Domain Data Transfer
Object pattern

bulk execution of use cases. See EJB
Command pattern; Session Façade
pattern

bulk updates. See Data Transfer Object
pattern; Domain Data Transfer Object
pattern

business delegate, 99

Business Delegate pattern
application layer, 141–42
caching data locally, 100
code listing, 231–33
combining with Session Façade

pattern, 18–19
creating dummy data, 101
decoupling client from EJB, 98–103
definition, 91
delegating method calls, 100
development process, effects on,

18–19
executing business logic locally, 101
hiding EJB-specific exceptions, 100
implementing, 101–3
retrying failed

transactions, 100
serialization, 102–3
server resources, effects on, 19

business interface, 42
Business Interface pattern

definition, 4
domain layer, 133
remote/local interface, 40–43

business logic
definition, 129
executing locally, 101
including in beans (see EJB

Command pattern)
partitioning (see Session Façade

pattern)
placing, 18–21, 23
separation, 10, 15

C

caching
built-in, 78–79
EJBHome objects, 93–97
JDOs, 193–94
locally, 100

car dealership scenario, 52
case studies. See scenarios
casting requirements, 62

244 Index

checkout targets, 156–57
clashing UUIDs, 115
client layers, order of development,

148–49
clients

bulk data transfer (see bulk data
transfer)

coupling/decoupling (see coupling;
decoupling client from EJB)

interacting with entity beans, 53
client-side attribute validation, 54
client-side interaction patterns.

See Business Delegate pattern;
EJBHomeFactory pattern

client-side routing, 21–22
clock setbacks, 115
clustering, EJBHome objects, 94
CMP (Container-Managed Persistence)

account CMP bean superclass, code
listing, 221–22

account deployment descriptor, code
listing, 218–19

vs. BMP, 131
BMP dual support (see Dual Persis-

tent Entity Bean pattern)
entity bean validation, 200
pros, 180

CMT (Container-Managed Transactions),
191–92

Coarse-Grained entity bean pattern,
199–200

codebase, checking out, 156–57
code listings

account BMP bean subclass, 222–28
account CMP bean superclass, 221–22
account deployment descriptor for

BMP, 219–20
account deployment descriptor for

CMP, 218–19
account home

interface, 220
account remote

interface, 220
BaseReadCommand.java, 213–14

BaseUpdateCommand.java, 214–15
Business Delegate, 231–33
CommandException, 210–11
CommandExecutor, 212
CommandServer

session bean, 209–10
command superclass, 209
CommandTarget interface, 211
Data Access

Command Bean, 213–18
Dual Persistent Entity Bean, 218–28
EJB Command

pattern, 208–12
EJBCommandTarget, 211–12
EJBHomeFactory, 228–31
InsertAccount stored procedure, 239
InsertEmployee

Command.java, 215–16
processing error exception, 228
QueryEmployeeByName.java,

217–18
Sequence Blocks, 233–39
sequence entity bean code, 234
sequence entity bean local home

interface, 234
sequence entity bean local interface,

233
sequence session and entity

EJB-JAR.xml, 237–39
sequence session bean implementa-

tion, 235–37
sequence session home interface, 235
sequence session local home

interface, 235
sequence session local interface, 235
sequence session remote interface,

235
stored procedures for auto-generated

keys, 239
Transfer Funds command, 208–9

cognitive dissonance, 180–82
CommandException, code listing, 210–11
CommandExecutor, code listing, 212
Command framework, 21–22
command inheritance, 84–85

Index 245

Command pattern. See EJB Command
pattern

Command Server ejb-jar, 24
CommandServer session bean, code

listing, 209–10
command superclass, code listing, 209
CommandTarget

interface, code listing, 211
compile targets, 157–58
compile-time checking

consistency, 40, 42–43
Data Transfer HashMap pattern, 61
Data Transfer RowSet query results,

67
Generic Attribute Access pattern,

38–39
method signatures (see Business

Interface pattern)
compiling source code, 157–58
Composite Entity Bean pattern, 199–200
concurrency

domain layer, 132
optimistic (see optimistic

concurrency)
Session Façade pattern, 6

configuring
session beans for JDOs, 190
See also customizing

Container-Managed Persistence (CMP).
See CMP

Container-Managed Transactions (CMT),
191–92

cost of operations
Data Transfer HashMap pattern,

59, 61
Generic Attribute Access pattern, 38
maintenance costs, 38
network overhead, 6
Session Façade pattern, 6

coupling
client to EJB, 98–99
client to object model, 54
client to server, 59–60
Session Façade pattern, 6, 11
See also decoupling client from EJB

creating
Data Transfer Object pattern, 28, 49
data transfer objects, 49
DTOs, 28
dummy data, 101
entity beans, 53
UUIDs, 113–15

Custom Data Transfer Object pattern
definition, 45
description, 56–58

customizing
Data Transfer Object pattern, 56–58
See also configuring

D
data

presenting in tables (see JDBC for
Reading pattern)

redundant translation, 66
relational, transferring (see Data

Transfer RowSet pattern)
stale, identifying (see Version

Number pattern)
transferring between layers (see

inter-tier data transfer)
transferring in bulk (see bulk data

transfer)
transferring relational data (see Data

Transfer RowSet pattern)
See also transactions

Data Access Command Bean pattern
accessing persistent stores, 81–82
advanced JDBC features, 86
BaseReadCommand.java, code

listing, 213–14
BaseUpdateCommand.java, code

listing, 214–15
code listings, 213–18
command inheritance, 84–85
cons, 86
data source independence, 85–86
decoupling client from EJB, 81–86,

183

246 Index

definition, 69
InsertEmployeeCommand.java, code

listing, 215–16
interface consistency, 86
and JDBC for Reading pattern, 86
persistence layers, 85, 131
pros, 85–86
QueryEmployeeByName.java, code

listing, 217–18
See also EJB Command pattern

Data Access Object pattern, 79, 131
database operations

consistency checking (see Version
Number pattern)

generating primary keys (see
Sequence Blocks pattern; Stored
Procedures for Autogenerated
Keys pattern; UUID for EJB
pattern)

initializing during development,
165–67

inserting data with stored
procedures, 118–20

passing ResultSet data (see Data
Transfer RowSet pattern)

database operations, direct access
cons, 81
pros, 130
stored procedures, 183
See also JDBC for Reading pattern

database operations, relational databases
autogenerated keys (see Stored

Procedures for Autogenerated
Keys pattern)

direct access (see JDBC for Reading
pattern)

database transactions. See data;
transactions

data objects, mapping to clients, 61
Data Transfer HashMap pattern

attribute key values, maintaining, 61
casting requirements, 62
client coupling to server, 59–60
compile-time checking, 61
cons, 59–62

costs, 59, 61
data transfer object layers, 59
definition, 46
description, 59–62
and the development process, 140
and DTOs, 59
maintainability, 61
mapping data objects to clients, 61
primitives, wrapping, 62
pros, 61
strong typing, 61
See also EJB Command pattern;

Generic Attribute Access pattern
Data Transfer Object Factory. See

DTOFactory
data transfer object layers, 59
Data Transfer Object pattern

bulk data transfer and update, 52
creating, 28, 49
customizing, 56–58
and Data Transfer HashMap pattern,

59
decoupling data from objects (see

Data Transfer HashMap pattern)
definition, 45
description, 47–50
and the development process, 138–39
development strategy, 201
domain layer, 133
and ejbCreate method, 204
granularity, 49
graphing, 30
vs. RowSets, 65
and XML, 204
See also DTOFactory; Session Façade

pattern
data transfer objects

aggregate, 53
changing, 26
creating, 49

data transfer patterns. See Custom Data
Transfer Object pattern; Data Transfer
HashMap pattern; Data Transfer Object
pattern; Data Transfer RowSet pattern;
Domain Data Transfer Object pattern

Index 247

Data Transfer RowSet pattern
automation, 66
column names, 66
common query interface, 66
cons, 64, 66–67
definition, 46
and the development process, 140
disconnected RowSets, 64
domain model, 66
vs. DTOs, 65
and JDBC for Reading pattern, 63–67
object orientation, 66
performance, 64
pros, 66
query results, compile-time

checking, 67
redundant data translation, 66
transferring relational data, 63–67
updates from applications, 67

data typing
strong, 38–39, 61
weakly-typed input parameters, 16

decoupling client from EJB
DTO-related logic, 26–29
errors caused by, 40
interface definition, 40
See also Business Delegate pattern;

coupling; Data Access Command
Bean pattern; Data Transfer
HashMap pattern; EJB Command
pattern

delegating method calls, 100
delegation schemes, 200
dependent objects, 199
deployment

applications, 160–62
JDOs, 187–88
packaging for, 158–60
test suites, 173

deploy targets, 160–62
deprecated patterns, 199–200, 201
development process

accelerating, 54
development roles, 7, 98
Domain Data Transfer Object pattern,

effects of, 54

entity beans, overhead, 182
server resources, 19
Session Façade pattern, effects of,

18–19
development process, strategies

Aggregate entity bean pattern,
199–200

Coarse-Grained entity bean pattern,
199–200

Composite Entity Bean pattern,
199–200

Data Transfer Object pattern, 201
delegation schemes, 200
dependent objects, 199
deprecated patterns, 199–200, 201
ejbCreate method, DTOs, 204
ejbCreate method, parameters, 203–4
getting/setting bulk data, 201
getXXX/setXXX methods, 200
Java singletons, 201–2
local interfaces, 200
message-driven beans, type

checking, 202–3
naming conventions, 200
rolling back transactions, 203
setRollBack(), 203
updates, scheduled vs. real-time,

201–2
value objects, 201
XML as a DTO mechanism, 204

development process, walkthrough
administering the development

environment (see Ant)
business logic, 129
checking out the codebase, 156–57
compiling source code, 157–58
deploying applications, 160–62
deployment, 160–62
design issues, 126–29
direct database calls, 130
domain experts, 126–27
domain logic, 129
domain models, 126–27, 131
forum messaging use cases, 124–26
initializing databases, 165–67
inter-tier data transfer, 138–40

248 Index

nouns, 126–27
order of development, 144–49
packaging for deployment, 158–60
pattern-driven architecture (see J2EE

layers)
servers, starting/stopping, 162–65
terminology, 126–29
testing (see unit testing)
use case diagrams, 125–26
See also J2EE application environ-

ment; J2EE layers
disconnected RowSets, 64
distributed objects, 180, 181
Domain Data Transfer Object pattern

car dealership scenario, 52
client coupling to object model, 54
client-side attribute validation, 54
cons, 54–55
definition, 45
development process,

accelerating, 54
entity beans, 51–54
immutable objects, 53
mapping to client needs, 54
mutable objects, 53
pros, 54
replicating model data structures, 54
unnecessary duplication, 55
updating domain objects, 55

domain experts, 126–27
domain-generic interface. See Generic

Attribute Access pattern
domain layer

Business Interface pattern, 133
concurrency, 132
Data Transfer Object pattern, 133
definition, 128–29
Dual Persistent Entity Bean pattern,

133
Generic Attribute Access pattern, 133
maintainability, 133
omitting, 131
order of development, 146
patterns, 132–33
portability, 133
primary key generation, 133

tools, 133
unit testing, 170
Version Number pattern, 132

domain logic, 129
domain models

Data Transfer RowSet pattern, 66
definition, 126–27
persistence, 131

domain objects, updating, 55
DTOFactory

automotive scenario, 27–30
behind a session bean façade, 28
creating DTOs, 28
data transfer object changes, 26
and the development process, 139–40
DTO Factories, 27, 29
DTO-related logic, decoupling, 26–29
graphing DTOs, 30
maintainability, 30
from a non-ejb client, 28
performance, 30–31
pros, 29–31
reading server data, 29
reusability, 29–30
updating server data, 29
See also Data Transfer Object pattern;

Session Façade pattern
Dual Persistent Entity Bean pattern

account BMP bean subclass, code
listing, 222–28

account CMP bean superclass, code
listing, 221–22

account deployment descriptor for
BMP, code listing, 219–20

account deployment descriptor for
CMP, code listing, 218–19

account home interface, code
listing, 220

account remote interface, code
listing, 220

code listings, 218–28
definition, 69
domain layer, 133
dual persistence support, 87–89
processing error exception, code

listing, 228

Index 249

dummy data, creating, 101
duplicate keys, 115
dynamic discovery, 189
dynamic vs. static, discovery, 189

E
EJB Command pattern

business logic, placing, 18–21, 23
client-side routing, 21–22
code listings, 208–12
command beans, 19–21, 23
CommandException, code listing,

210–11
CommandExecutor, code listing, 212
Command Server ejb-jar, 24
CommandServer session bean, code

listing, 209–10
command superclass, code listing,

209
CommandTarget interface, code

listing, 211
cons, 23–25
decoupling the client, 18–21, 23
definition, 3
development projects, effects on, 24
EJBCommandTarget, code listing,

211–12
error handling, 24
pros, 23
RAD, 23
Remote Command Server, 22
services layer, 136–37
stateless commands, 24
transaction control, 23–24
Transfer Funds command, 20–21
Transfer Funds command, code

listing, 208–9
use cases, bulk execution, 18–21, 23
See also Data Access Command Bean

pattern; Data Transfer HashMap
pattern

EJBCommandTarget, code listing, 211–12
ejbCreate method, development strategy,

203–4

EJBHomeFactory pattern
application layer, 141
code listings, 228–31
definition, 91
EJBHome objects, 91–97
servlet-centric alternative, 97

EJBHome objects
caching, 93–97
clustering, 94
looking up, 91–93
staleness, 94

EJB layer architectural patterns. See
Business Interface pattern; EJB
Command pattern; Generic Attribute
Access pattern; Message Façade
pattern; Session Façade pattern

EJBLocalObject interface, 40–43
EjbObject interface, 40–43
EJB-specific exceptions, hiding, 100
entity beans

alternatives to, 183–84
CMP/BMP dual support (see Dual

Persistent Entity Bean pattern)
as components, 180, 181
cons, 182
consistency, 38
creating, 53
development overhead, 182
displaying data from, 53
distributed objects, 180, 181
domain-generic interface (see

Generic Attribute Access pattern)
features, 179–80
interacting with clients, 53
modifying, 53
multiple in single transaction (see

Message Façade pattern)
N + 1 calls problem, 77, 181–82
object modeling support, 182
O/R mapping, 183, 184
persistence, 179–80
POJOs (plain ordinary Java objects),

183
portability, 183
pros, 182–83

250 Index

ramp-up time, 183
relationship support, 182
remote access, 51–52
remoteness, 182
security, 180, 181
staleness checks in, 71–74
standardization, 179
syntactic validation, 54
transaction control, 180, 181
transparent persistence, 179–80
validating, 200

entity beans, attribute access
attribute access interface, 33–36
Data Transfer HashMap pattern,

34, 37
with DTOs, 32
dynamic run time addition, 38
with get/set methods, 32–33
identifying attributes, 36
keys, 36, 38
static final variables, 36–37
See also Generic Attribute Access

pattern
error handling

and coupling, 99
EJB Command pattern, 24
EJB-specific exceptions, hiding, 100
exception propagation, 16
failure notification, 15
fault-tolerance, 13–15, 17
Message Façade pattern, 15–16
single points of failure, 15–16
unit testing, 176–77

examples. See scenarios
exceptions, 16, 100

F
failure notification, 15
fault-tolerance, 13–15, 17

See also error handling
forum messaging use cases, 124–26

See also development process, walk-
through

framework code, unit testing, 170

G
Gamma, Eric, 169
Generic Attribute Access pattern

compile time checking, 38–39
cons, 38–39
definition, 3
domain layer, 133
entity bean consistency, 38
maintenance costs, 38
overhead, 38
pros, 38
scaling, 38
strong typing, 38–39
See also Data Transfer HashMap pat-

tern; entity beans, attribute access
getXXX/setXXX methods, development

strategy, 200

H
HashMap pattern. See Data Transfer

HashMap pattern
hiding EJB-specific exceptions, 100
HomeFactory pattern. See EJBHome-

Factory pattern
home objects. See EJBHome objects

I
IBM’s Command framework, 21–22
immutable objects, 53
inheritance, JDOs, 188
initialize database targets, 165–67
InsertAccount stored procedure, code

listing, 239
InsertEmployeeCommand.java, code

listing, 215–16
inter-tier data transfer

JDOs, 196–97
See also Custom Data Transfer Object

pattern; Data Transfer HashMap
pattern; Data Transfer Object
pattern; Data Transfer RowSet
pattern; Domain Data Transfer
Object pattern; DTOFactory

Index 251

J
Java Data Objects (JDOs). See JDOs
Java Naming and Directory Interface

(JNDI), 38
Java package structure, selecting, 147
Java singletons

alternatives to, 112
development strategy, 201–2
UUID pattern, 114

Java type dependencies, 145
JDBC for Reading pattern

alternative to entity beans, 183
BMP performance, 78–79
built-in caching, 78–79
bulk queries, 79
cons, 79
coupling business and persistence

logic, 79
and Data Access Command Bean

pattern, 86
data selection precision, 79
and Data Transfer RowSet pattern,

63–67
definition, 69
join operations, 77–78
maintainability, 79
N + 1 calls problem, 77
pros, 78–79
read-only data, 76
relational database access, 76–80
remote call overhead, 77
tables, populating, 76–80
transactional overhead, 78

JDOs (Java Data Objects)
alternative to entity beans, 184
BMT, 192–93
build process, 187–88
caching, 193–94
class requirements and dependen-

cies, 185–86
client APIs, 188
CMT, 191–92
deployment, 187–88
dynamic vs. static discovery, 189
EJB environment, preparing, 189–90

finding by identity, 194–95
finding by query, 195–96
guide to using, 189–97
inheritance, 188
inter-tier data transfer, 196–97
lazy loading, 193–94
overview, 185–89
PM, 188
reference navigation, 193–94
session beans, configuring, 190
use cases, executing, 191

J2EE application environment
administering, 151–52 (see also Ant)
definition, 149–50
environment, definition, 150
See also development process, walk-

through
J2EE layers

diagram, 144
maintainability issues, 137
performance issues, 137
presentation, definition, 128
See also application layer; develop-

ment process, walkthrough;
domain layer; persistence layer;
services layer

JNDI (Java Naming and Directory
Interface), 38

JUnit, 168–69

K
keys

duplicate, 115
entity beans, attribute access, 36, 38
losing, 111
primary (see Sequence Blocks

pattern; Stored Procedures for
Autogenerated Keys pattern;
UUID for EJB pattern)

36-digit key strings, 116
keys, auto-generated

stored procedures, code listing, 239
See also Stored Procedures for Auto-

generated Keys pattern

252 Index

L
layer boundaries, unit testing, 170
layered architecture, 144–45

See also J2EE layers
layer-independent code, 145–46
lazy loading, 193–94
local interfaces, development strategy,

200
looking up EJBHome objects, 91–93

M
maintainability

Data Transfer HashMap pattern, 61
domain layer, 133
DTOFactory, 30
JDBC for Reading pattern, 79
services layer, 137
Session Façade pattern, 7, 11
See also Business Delegate pattern;

EJBHomeFactory pattern
main targets, 156
message-driven beans

asynchronous façade, 13–15
fault-tolerance, 13–15
return values, 16
type checking, 202–3

Message Façade pattern
airline registration scenario, 12–17
asynchronous communication, 15
blocking, 13
cons, 15, 16
definition, 3
error handling, 15–16
failure notification, 15
fault-tolerance, 13–15, 17
message-driven beans, 13–15
performance, 17
pros, 15–16
response time, 15
results notification, 15–16
return values, 16
scalability, 17
update operations, 16

weakly-typed input parameters, 16
See also Session Façade pattern

method calls, delegating, 100
method signatures

compile-time checking (see Business
Interface pattern)

defining, 42
model data structures, replicating, 54
mutable objects, 53

N
naming conventions, development

strategy, 200
N + 1 calls problem, 77, 181–82
network overhead, Session Façade

pattern, 6, 10
nouns, 126–27

O
Object Factory. See DTOFactory
object modeling, entity beans support,

182
online banking scenario, 5–9
optimistic concurrency

checking (see Version Number
pattern)

recovery, and coupling, 98
Stored Procedures for Autogenerated

Keys pattern, 107
version numbering as, 73–75

O/R mapping, 183, 184

P
package targets, 158–60
packaging

for deployment, 158–60
unit testing, 173

partitioning business logic. See Session
Façade pattern

Index 253

patterns
code listings (see code listings)
data transfer (see Custom Data

Transfer Object pattern; Data
Transfer HashMap pattern; Data
Transfer Object pattern; Data
Transfer RowSet pattern; Domain
Data Transfer Object pattern)

deprecated, 199–200, 201
EJB layer architectural (see Business

Interface pattern; EJB Command
pattern; Generic Attribute Access
pattern; Message Façade pattern;
Session Façade pattern)

inter-tier data transfer (see Custom
Data Transfer Object pattern; Data
Transfer HashMap pattern; Data
Transfer Object pattern; Data
Transfer RowSet pattern; Domain
Data Transfer Object pattern;
DTOFactory)

performance (see Business Delegate
pattern; Data Access Command
Bean pattern; Dual Persistent
Entity Bean pattern; EJBHome-
Factory pattern; Version Number
pattern)

persistence (see Dual Persistent
Entity Bean pattern)

transaction control (see Data Access
Command Bean pattern; Dual
Persistent Entity Bean pattern;
JDBC for Reading pattern; Version
Number pattern)

patterns, primary key generation
Sequence Blocks pattern, 106–11
Stored Procedures for Autogenerated

Keys pattern, 117–20, 239
UUID for EJB pattern, 112–16

performance
Data Transfer RowSet pattern, 64
direct database access (see JDBC for

Reading pattern)
DTOFactory, 30–31
Message Façade pattern, 17
response time, 15

services layer, 137
Session Façade pattern, 8
Stored Procedures for Autogenerated

Keys pattern, 107, 110
UUID for EJB pattern, 116
See also Business Delegate pattern;

Data Access Command Bean pat-
tern; Dual Persistent Entity Bean
pattern; EJBHomeFactory pattern;
Version Number pattern

persistence
CMP, 180
custom frameworks, 184
entity beans, 179–80
PM, 188
See also BMP; CMP

persistence layer
CMP vs. BMP, 131
Data Access Command Bean pattern,

131
definition, 129
order of development, 146–47
patterns, 130–31
unit testing, 170

persistence logic, CMP/BMP dual
support. See Dual Persistent Entity
Bean pattern

PersistenceManager (PM), 188
persistence patterns. See Dual Persistent

Entity Bean pattern
persistent data stores, accessing, 81–82

See also Data Access Command Bean
pattern

PM (PersistenceManager), 188
POJOs (plain ordinary Java objects), 183
portability

domain layer, 133
entity beans, 183
Stored Procedures for Autogenerated

Keys pattern, 120
See also Dual Persistent Entity Bean

pattern
postcompilation tools, 40
presentation layer, 128

254 Index

primary key generation
domain layer, 133
See also Sequence Blocks pattern;

Stored Procedures for Autogener-
ated Keys pattern; UUID for EJB
pattern

primitives, wrapping, 62
processing error exception, code listing,

228
project development. See development

process
project directory structure, 154–55

Q
QueryEmployeeByName.java, code

listing, 217–18

R
RAD (Rapid Application Development),

23
Rapid Application Development

(RAD), 23
READ_COMMITTED, isolating

Sequence Blocks pattern, 109–10
Version Number pattern, 74

reading operations
casting requirements, 62
server data, 29
See also Data Transfer Object pattern;

DTOFactory; Session Façade
pattern

reference navigation, 193–94
relational databases

autogenerated keys (see Stored
Procedures for Autogenerated
Keys pattern)

direct access (see JDBC for Reading
pattern)

remote access, entity beans, 51–52
Remote Command Server, 22
remote/local interfaces

consistency (see Business Interface
pattern)

method signatures, compile-time
checking (see Business Interface
pattern)

replicating model data structures, 54
response time

Message Façade pattern, 15
Session Façade pattern, 13

results notification, 15–16
retrying failed transactions, 100
return values, Message Façade pattern,

16
reusability

DTOFactory, 29–30
Session Façade pattern, 7, 11
Stored Procedures for Autogenerated

Keys pattern, 111
rolling back transactions, 203
RowSets. See Data Transfer RowSet

pattern

S
scalability

Generic Attribute Access pattern, 38
Message Façade pattern, 17
Stored Procedures for Autogenerated

Keys pattern, 107, 111
scenarios

airline registration, 12–17
automotive, 27–30
car dealership, 52
forum messaging system (see devel-

opment process, walkthrough)
online banking, 5–9

security, entity beans, 180, 181
Sequence Blocks pattern

code listings, 233–39
cons, 107, 111
definition, 105
generating primary keys, 106–11
key order, 111
keys, losing, 111
optimistic concurrency, 107
performance, 107, 110
pros, 110–11
reusability, 111

Index 255

scalability, 107, 111
sequence entity bean code, code

listing, 234
sequence entity bean local home

interface, code listing, 234
sequence entity bean local interface,

code listing, 233
sequence session and entity EJB-

JAR.xml, code listing, 237–39
sequence session bean implementa-

tion, code listing, 235–37
sequence session home interface,

code listing, 235
sequence session local home

interface, code listing, 235
sequence session local interface, code

listing, 235
sequence session remote interface,

code listing, 235
serialization, 110
simplicity, 111

sequence entity bean, code listing, 234
sequence entity bean local home

interface, code listing, 234
sequence entity bean local interface, code

listing, 233
sequence session and entity EJB-

JAR.xml, code listing, 237–39
sequence session bean implementation,

code listing, 235–37
sequence session home interface, code

listing, 235
sequence session local home interface,

code listing, 235
sequence session local interface, code

listing, 235
sequence session remote interface, code

listing, 235
SERIALIZABLE, isolating, 74–75
serialization

Business Delegate pattern, 102–3
Sequence Blocks pattern, 110
Stored Procedures for Autogenerated

Keys pattern, 110

servers
bulk data transfer (see bulk data

transfer)
Business Delegate effects on, 19
coupling to client, 59–60
data, reading/updating, 29
starting/stopping, 162–65

services layer
asynchronous use cases, 134
definition, 128
EJB Command pattern, 136–37
order of development, 148
Session Façade pattern, 135–36
synchronous use cases, 134–37
unit testing, 169

session beans, configuring for JDOs, 190
Session Façade pattern

architectural benefits, 8
business logic separation, 10
calling from the client, 18–19
combining with Business Delegate

pattern, 18–19
concurrency, 6
cons, 10, 13, 18–19
coupling, 6, 11
definition, 3
development process, effects on,

18–19
direct database access, 76–78
entity beans, multiple in single

transaction, 13
fault-tolerance, 13
maintainability, 7, 11
network overhead, 6, 10
online banking scenario, 5–9
performance benefits, 8
pros, 10–11
read operations, 16
response time, 13
reusability, 7, 11
separation of development roles, 7
server resources, effects on, 19
services layer, 135–36
transactional integrity, 11

256 Index

use cases, grouping into one bean, 9
verb-noun separation, 11
See also Data Transfer Object pattern;

DTOFactory; Message Façade
pattern

setRollBack(), 203
single points of failure, 15–16
singletons. See Java singletons
source code

compiling, 157–58
listings (see code listings)

staleness
EJBHome objects, 94
preventing, 70–75
recovery procedure, 72

start targets, 162–65
stateless commands, 24
stateless session beans, 114–15
static discovery, 189
stored procedures

alternative to entity beans, 183
for auto-generated keys, code listing,

239
direct access to databases, 183
inserting data in databases, 118–20

Stored Procedures for Autogenerated
Keys pattern
autogenerated keys, 118–20
code listing, 239
cons, 120
definition, 105
generating primary keys, 117–20
inserting data with stored

procedures, 118–20
maintainability, 120
portability, 120
pros, 120
simplicity, 120

strategies, development process. See
development process, strategies

strong typing
Data Transfer HashMap pattern, 61
Generic Attribute Access pattern,

38–39

subtargets, 156
synchronous use cases, 134–37

T
tables, populating. See JDBC for Reading

pattern
targets

checkout, 156–57
compile, 157–58
definition, 156
deploy, 160–62
initialize database, 165–67
main, 156
package, 158–60
start, 162–65
subtargets, 156
test, 167–68

TestCase subclasses, naming, 173–74
testing. See unit testing
test targets, 167–68
36-digit key strings, 116
timestamps vs. version numbers, 73
tools, domain layer, 133
transaction control, entity beans, 180, 181
transactions

control, 23–24 (see also Data Access
Command Bean pattern; Dual
Persistent Entity Bean pattern;
JDBC for Reading pattern; Version
Number pattern;)

failed, retrying, 100
integrity, 11
rolling back, 203
See also data

Transfer Funds command, 20–21, 208–9
type checking, message-driven beans,

202–3
type dependencies, Java, 145
typing

strong, 38–39, 61
weakly-typed input parameters, 16

Index 257

U
unit testing

error handling, 176–77
framework code, 170
importance of, 168–69
JUnit, 168–69
layer boundaries, 170
location, 173
packaging, 173
running test suites, 167–68
scope, determining, 169–71
test cases, selecting an author, 175
test cases, setup and tear down,

174–75
TestCase subclasses, naming, 173–74
test code, separating from target

code, 173
test methods, naming, 173–74
test suites, composition, 171–73
test suites, deploying, 173
test suites, organization, 171
timing, 175–76

universally unique identifiers (UUIDs),
113–15

update operations
bulk (see Data Transfer Object

pattern; Domain Data Transfer
Object pattern)

databases (see Data Transfer RowSet
pattern)

domain objects, 55
Message Façade pattern, 16
scheduled vs. real-time, 201–2
server data, 29
stale (see Version Number pattern)
See also Data Transfer Object pattern;

DTOFactory; Message Façade
pattern

use case diagrams, 125–26
use cases

airline registration, 12–17
asynchronous (see Message Façade

pattern)
asynchronous fault-tolerant

execution, 14

automotive, 27–30
bulk execution (see EJB Command

pattern; Message Façade pattern)
car dealership, 52
examples of (see scenarios)
executing from JDOs, 191
forum messaging, 124–26 (see also

development process, walk-
through)

grouping into one bean (see Session
Façade pattern)

online banking, 5–9
user think time, 70
UUID for EJB pattern

clock setbacks, 115
cons, 116
definition, 105
duplicate keys, 115
generating primary keys, 112–16
Java singletons, 112, 114
performance, 116
pros, 116
reliance on IP addresses, 116
simplicity, 116
stateless session beans, 114–15
36-digit strings, 116
UUIDs, 113–15

UUIDs (universally unique identifiers),
113–15

V
value objects, development strategy, 201
verb-noun separation, 11
Version Number pattern

definition, 69
domain layer, 132
legacy applications, 75
non-Java applications, 75
optimistic concurrency, 73–75
READ_COMMITTED, isolating, 74
SERIALIZABLE, isolating, 74–75
stale data, 70–75
version numbers, 71, 73–75

258 Index

version numbers
definition, 71
duplicate, 74–75
vs. timestamps, 73

W–X
weakly-typed input parameters, 16
Websphere, 21–22
XML as a DTO mechanism, 204

Index 259

JUST LEARNING HOW TO NAVIGATE EJB/J2EE?

EXPECT THE
UNEXPECTED
Any experienced Java architect will tell you, there is a lot to love about the enterprise Java platform. But the

sailing is not smooth until you master its depths. You can learn from your experience (read much trial and many

errors). Or learn from architects with many successful real-world adventures to help you chart safe passage.

Call 1 (877) 866-JAVA (5282) for more information. www.middleware-company.com

E N T E R P R I S E J A V A T R A I N I N G A N D C O N S U L T I N G

Visit TheServerSide.com, your J2EE community, brought to you by The Middleware Company.

	EJB Design Patterns
	Table of Contents
	Foreword
	Introduction
	Acknowledgments
	About the Contributors

	Part 1: EJB Pattern Language
	Chapter 1: EJB Layer Architecture Patterns
	Chapter 2: Inter-Tier Data Transfer Patterns
	Chapter 3: Transaction and Persistance Patterns
	Chapter 4: Client-Side EJB Interaction Patterns
	Chapter 5: Primary Key Generation Strategies

	Part 2: Best Practices for EJB Design and Implementation
	Chapter 6: From Requirements to Pattern-Driven Design
	Chapter 7: EJB Development Process
	Chapter 8: Alternatives to Entity Beans
	Chapter 9: EJB Design Strategies, Idioms, and Tips

	Appendix: Pattern Code Listing
	References
	Index

