
TOPLink for Java, version 2.5
Whitepaper; March 2000

1

Whitepaper

TOPLink for Java, Version 2.5

The Challenge: Object technology has become the solution of choice for building
enterprise applications. However, many organizations have a great
deal invested in relational databases and have much of their vital
corporate data stored there. Relational databases are mature and their
capacity and performance are predictable and reliable.

Objects need to access data stored in relational databases. However,
the object world and the relational world do not completely match
up. One world consists of tables, rows, columns, and foreign keys;
the other world contains object references, business rules, complex
relationships, and inheritance.

This is often referred to as the object/relational “impedance
mismatch” and is a major challenge for organizations adopting object
technology.

The Solution: TOPLink answers the challenge by providing a bridge between the
two worlds, allowing applications to transparently store and retrieve
Java objects using a relational database.

The TOPLink framework: Java applications, TOPLink, JDBC, and the
relational database.

2 TOPLink for Java, version 2.5
Whitepaper; March 2000

Features

TOPLink’s feature set has evolved from feedback received by
thousands of developers in more than thirty different countries. The
TOPLink client base reflects a wide cross-section of industries and
diverse requirements. As a result, TOPLink has a solid design that
provides a great deal of flexibility and performance.

TOPLink’s features include:

ü minimal changes to the domain model

• NO methods to explicitly save and restore

• NO SQL in domain classes

• no need to sub-class from a persistent super-
class

ü support of complex relationships: 1-1, 1-many, many-
many

ü Enterprise JavaBean support

ü mapping flexibility with 15 different mapping types,
including object/relational mappings with Oracle 8i

ü TOPLink Builder -- map objects visually

ü sophisticated object-level querying

ü full inheritance support

ü mapping objects to multiple tables

ü store multiple objects in a row (aggregate)

ü “just-in-time” database reads

ü stored procedures, custom SQL

ü optimistic and pessimistic locking

ü object-level transactions; no need to explicitly write
objects

ü application server integration and support

The TOPLink technology has been in use since 1992 and was first
released as a product in 1994. It provides a robust, feature-rich
framework that can be re-used on multiple projects. TOPLink is in
production world-wide in industries such as insurance, banking,
transportation logistics, manufacturing, aerospace, automotive,
system integration, pharmaceutical and health care.

TOPLink for Java, version 2.5
Whitepaper; March 2000

3

The solution: TOPLink for Java, Version 2.5

TOPLink for Java is a member of the TOPLink family of advanced
object-to-relational persistence products. TOPLink allows Java
applications to access data stored in relational databases as objects.
Application developers are able to work with relational databases
much as they would an object database.

With TOPLink, developers focus on the application and object
model rather than the infrastructure of the database. TOPLink can
map Java objects to an existing (legacy) database or can generate a
new database schema from an object model. It provides a rich set of
features to read, write, delete, and manage objects efficiently.

The mature, robust persistence framework provided by TOPLink
significantly reduces the risk of using a relational database in a Java
application. With TOPLink, your organization can:

ü adopt object technology without sacrificing the
investment in relational technology

ü create business solutions using Java objects and business
rules, without having to focus on the infrastructure of the
database; no SQL programming is required

ü generate a new database schema from an object model

ü save 30-40% of development costs -- by buying rather
than building a persistence framework

ü save future development costs by re-using the
persistence framework and business objects across
applications

ü reduce time-to-market by leveraging mature technology

TOPLink has a solid design that provides a great deal of flexibility
and performance. The experience gained from use on real projects is
reflected in its rich set of features.

But I’m using JDBC already . . .

JDBC defines a low-level API for accessing databases. It does not
work at the level of Java objects. Developers using JDBC must write
methods that contain SQL statements and convert between database
rows and business objects. TOPLink does not replace JDBC, but
provides a layer on top of it. Application developers work with
objects using TOPLink, rather than rows and SQL using JDBC calls.

4 TOPLink for Java, version 2.5
Whitepaper; March 2000

Persistence framework: buy or build?

Building a custom persistence framework can easily consume
30-40% of a project’s resources. This problem is much more
challenging than it first appears and often requires the efforts of the
most experienced members of a project team. The resulting home-
grown framework requires support and maintenance and may not be
re-usable on other projects. Persistence is often on the critical path of
a project and a mature, commercial product such as TOPLink
provides substantial benefits. With TOPLink, a project’s resources
can focus on building the application, not on infrastructure.

TOPLink and persistence

To achieve persistence, TOPLink does NOT force the class to sub-
class off a persistent super-class. TOPLink also does not force a
developer to implement a particular persistence interface or have
database logic within the domain classes.

It is important for both scalability and maintainability that the
persistence layer isolate business programmers from the database.
Application developers should not write and maintain SQL
statements, but instead focus on the business rules. TOPLink
provides such isolation, allowing an architecture where the user
interface and business objects no longer depend on where and how
the data is stored.

TOPLink, object technology, and relational databases

TOPLink’s design goal is to be non-intrusive on the Java classes.
Application developers work at the level of Java. When objects are
read in, not only are the instance variables filled in with data but
references to other objects are automatically maintained. The
referenced objects are traversed by navigating the object model using
normal Java methods, rather than making additional explicit database
calls or managing foreign keys.

TOPLink supports arbitrarily complex models and automatically
maintains references between objects. Changing the database schema
does not normally require changes to the business objects, only to the
TOPLink mappings. Java business classes can be re-used with a
completely different database schema.

TOPLink for Java, version 2.5
Whitepaper; March 2000

5

How does TOPLink do this?

TOPLink creates a set of meta-data “descriptors”, or mappings, that
define how objects are to be stored in a particular database schema.
TOPLink uses these mappings at run-time to dynamically generate
the required SQL statements. The descriptors can be changed
without having to re-compile the classes they represent.

No SQL programming is required. The meta-data descriptors
(mappings) are independent of both language and database.

The TOPLink project architecture.

Two-tier, three-tier, and n-tier architecture

TOPLink can be deployed in a two-tier, “fat client” architecture or
on an application server in a three-tier or n-tier architecture.
TOPLink has no restrictions on the location of the objects and can be
used with CORBA, RMI, HTTP, or other architectures.

6 TOPLink for Java, version 2.5
Whitepaper; March 2000

TOPLink’s features

TOPLink offers a comprehensive feature set that has evolved based
on feedback from thousands of developers in more than 30 countries.
Our client base reflects a wide cross-section of industries and diverse
requirements.

Mappings

TOPLink for Java provides a rich mapping hierarchy to handle the
wide variety of data types and references that an object model may
contain. The mappings include:

ü direct-to-field (strings, numbers, dates and so on)

ü 1-1: object relationships

ü variable 1-1 mappings: heterogeneous references

ü 1-many: object relationships

ü many-to-many: object relationships

ü aggregate: a relationship to an object stored in the same
row

ü transformation: runs arbitrary code to transform values

ü object type: simple translations such as “male” -> ‘M’

ü type conversion: converting from database types to Java
types, such as String -> Date

ü serialized object: stores a serialized object in a BLOB

ü direct collection: stores a collection of "basic" Java types

Object/relational mappings – Oracle 8i

TOPLink includes mappings to handle object/relational types defined
in JDBC 2.0 and implemented in databases such as Oracle 8i:

ü Array: handles Varrays

ü Structure Mapping: object types

ü Reference Mapping: refs

Visual TOPLink Builder

The TOPLink Builder is a development-time tool that assists
developers in defining how objects map to the database. Java
business classes are imported into the Builder and the relational

TOPLink for Java, version 2.5
Whitepaper; March 2000

7

database meta-data can also be read in through a JDBC connection.
The object's attributes can be mapped to the corresponding database
fields and the object's references are mapped through foreign keys.

The Builder's "neediness" capability can identify problems such as
inconsistent mappings or missing information.

For an existing database schema, the Builder can generate mappings
based on the Java object model. It uses type information, naming
conventions and user-supplied information to determine the
mappings. Ambiguous mappings can be resolved visually by the
developer.

For a new database, a schema can be generated from the object
model. The Builder can create the tables on the database or output a
DDL script that can be edited by a database administrator.

Inheritance

TOPLink fully supports inheritance. A subclass can reside in the
same table as its superclass or be extended in a different table.
TOPLink can support queries and relationships based on abstract
classes. When reading and writing, TOPLink maintains the subclass
information and retrieves and stores instances of the appropriate
subclass.

Interfaces

TOPLink descriptors can be defined for an Interface. This permits
queries and mappings to use Interfaces rather than concrete classes.
Multiple implementers and implementees are supported. Variable
one-to-one mappings allow a reference to be specified as an Interface
to support heterogeneous types to be mapped.

8 TOPLink for Java, version 2.5
Whitepaper; March 2000

Multiple tables

There are several cases where an object’s data may be stored in more
than one table. A subclass may add data in its own table. An object
built from a legacy database may have data spread across multiple
tables. TOPLink handles these situations by allowing an object to
map to an arbitrary collection of tables.

Aggregation

A table may contain data for more than one object. TOPLink uses an
aggregation relationship to optimize the reading of objects stored in
the same row.

TOPLink for Java, version 2.5
Whitepaper; March 2000

9

Reading objects – query and expression objects

In non-object applications, accessing a relational database includes
writing SQL. When building Java applications accessing a relational
database, queries are best expressed using Java-like syntax.

TOPLink allows developers to build sophisticated queries at the
object-level, rather than using SQL or JDBC. Developers have the
ability to substitute custom SQL for any operation, but entire
complex applications can be easily written without a single line of
SQL in them.

Basic query

For simple queries, TOPLink provides an API to easily retrieve
objects. The following line of code returns all the employee objects
in the database.

employees = toplinkSession.readAllObjects(Employee.class);

To issue a more specific query, TOPLink has a hierarchy of
expression classes. These objects may be built automatically by
TOPLink or manipulated manually for maximum flexibility.

An expression builder is used to build queries. Expressions
themselves are first-class objects. They use a Java-like syntax and
can be manipulated and composed more easily than strings. The
following basic expression is used to retrieve the employees who
make more than $250,000 per year.

ExpressionBuilder emp = new ExpressionBuilder();
Expression richEmployeesExpr = emp.get(“salary”).greaterThan(250000);
richEmployees = session.readAllObjects(Employee.class,richEmployeesExpr);

Complex queries - joins

More complex queries that traverse an object's references can be
used. Querying across 1-1 relationships between objects corresponds
to doing joins on the database.

The following expression finds all the employees whose last name is
'Smith' and who live in New York. This query joins data across two
tables, although on the TOPLink expression this is transparent as it
only appears as an object reference.

Expression allSmiths = emp.get("lastName").equal("Smith");
Expression inNewYork = emp.get("address").get("city").equal("New York");
employees = session.readAllObjects(Employee.class,allSmiths.and(inNewYork));

10 TOPLink for Java, version 2.5
Whitepaper; March 2000

Complex queries across object relations - anyOf operator

TOPLink supports object level queries across 1-to-many and many-
to-many relationships.

The following query returns all of the employees who work on one
or more projects that have a budget greater than $10,000,000 and live
in the Cayman Islands.

Expression bigProjects = emp.anyOf(“projects).get(“budget”).greaterThan(10000000);
Expression offshore = emp.get(“address”).get("country").equal("Cayman Islands");
session.readAllObjects(Employee.class, bigProjects.and(offshore));

Query options

With any query, advanced customization features are available to set
options such as outer joins, ordering, custom SQL, batch reading,
cursored streams, parameter binding, statement caching, and many
others.

Read performance – “just in time” reading

When a system handles arbitrarily complex relationships there must
be a way to limit the depth to which relationships are followed when
reading. Otherwise, when TOPLink reads an object, all of the related
objects would also be read, then all of their related objects and so on.
This would have a drastic effect on read performance.

TOPLink can delay reading the related objects until they are used.
This “Just-in-Time” reading greatly improves read performance
without affecting the object model or the application development.

If an object is never referenced, the resources required to read in the
object are never used. This is completely transparent to the
application using the object. The object and all of its references
appear to be in memory at all times, when in fact TOPLink “faults”
in the required data only when necessary.

In the following example an employee is read in. The address object
is not actually read in until the getAddress() method is sent to the
employee.

Employee employee = session.readObject(Employee.class);
/* Address object is not physically read in until this next line is executed */
Address address = employee.getAddress();

TOPLink for Java, version 2.5
Whitepaper; March 2000

11

Read performance – object caching

The most expensive operation that occurs in a Java application using
a relational database is a call to the database server. Object caching
can dramatically improve performance on database intensive
applications. Once an object has been read into memory it can be
saved in the cache. This eliminates the need for a database call if the
object is requested again. There are several different types of caches
and they can be set on a class-by-class basis.

ü weak reference caching (available in Java 2 / JDK 1.2)

ü soft reference caching (available in Java 2 / JDK 1.2)

ü full caching

ü LRU caching

ü no caching

Identity

In Java, every object has a unique identity (note that equality is
different than identity). Relational databases support external identity
by using and enforcing unique primary keys. To handle complex
relationships and circular references correctly, TOPLink ensures that
each unique ID (primary key) on the database corresponds to exactly
one object in memory.

With a unit of work, an object's identity is maintained within the
context at a particular unit of work.

Stored procedures and custom SQL

By default, TOPLink generates dynamic SQL. Instead of using the
TOPLink generated SQL, custom SQL or stored procedures may be
specified. (Note that no SQL programming is required.)

Projects may make extensive use of stored procedures for
performance and security reasons. TOPLink allows stored
procedures to be defined at the class level for querying, inserting,
updating and deleting. This can be set at a per-class level or used on
a per-query basis.

12 TOPLink for Java, version 2.5
Whitepaper; March 2000

Read optimization - cursored streams

A query may return hundreds or even thousands of objects. Reading
so many rows and building objects from them can severely affect
performance.

TOPLink addresses this problem with cursored streams, which act
like objects. Messages such as read() and next(int) return the
appropriate objects. The CursoredStream reads and builds the
objects in increments, so even though TOPLink behaves as if it
already has all of the resulting objects, it does not read in the objects
until instructed to do so. The resources used for instantiating the
objects are amortized over the lifetime of working with the result set.

The faster initial response, with occasional brief delays later, leads to
better perceived performance than a long initial pause. In some
situations the user may only be interested in the first few objects and
not need the entire collection.

With JDBC 2.0, scrollable cursors add the ability to move a database
cursor forwards, backwards and to a precise position.

Read optimization - batch reading and joining

Batch reading allows a group of objects to be read in with a single
database call. This allows more efficient reading and minimizes the
calls required to the database. Batch read options can be set on a
per-query basis or on a mapping.

Read optimization - partial object reading

If an object has many attributes that do not all need to be read in,
partial object reading can be used. This allows individual attributes
to be specified on a per-query basis and results in only the specified
attributes being read in. If the entire object is needed later on, the
object is refreshed and the remaining attributes are read.

Write optimization - batch writing

With batch writing, a group of update or insert statements can be
batched together and sent with a single call to the database.
Significant performance improvements can result from using this
feature. Batch writing is supported through the JDBC 2.0 API in
Java 2 and in JDK 1.1.x on most databases.

TOPLink for Java, version 2.5
Whitepaper; March 2000

13

Write optimization - parameterized SQL

TOPLink supports full parameterized SQL statements, which allows
statements to be prepared and cached. This can also be used for
reading, but has the biggest impact when used on writes.

Object locking

Both pessimistic and optimistic locking strategies are available to
address concurrency issues.

Pessimistic locking physically prevents another user from changing
the data.

Optimistic locking raises an exception if another user has changed
the data on the database since it was read in. A flexible optimistic
locking policy can be customized to address a variety of
implementations.

Unit of work - object level transactions

TOPLink supports object-level transactions called “unit of work”. A
unit of work tracks and manages changes to a group of changes at the
object level. It handles all of the updates automatically and writes the
objects that have changed when the unit of work is committed. Only
the attributes of the objects that have changed are written to the
database, resulting in minimal update statements being generated.
The user also does not have to keep track of the specific changes to
the objects as it is automatically tracked for them. If the unit of work
is released, the objects are left at their previous state.

Units of work can be nested to several levels. Only when the
outermost unit of work is committed does TOPLink attempt to write
the changes to the database. Parallel units of work are also supported.
Object identity is maintained within each unit of work.

Each unit of work has its own copy of the objects being edited.
Changes are not seen by other clients or units of work until they are
successfully committed to the database. Upon commit, the changes
to the objects are merged back into the shared object cache.

An actual database transaction is not started until the unit of work is
committed. The duration of database transactions is kept to a
minimum. This permits shared database connections to be used more
efficiently and minimizes the potential for database deadlock
situations.

14 TOPLink for Java, version 2.5
Whitepaper; March 2000

Database transactions

TOPLink automatically manages database transactions when using
units of work. Database transactions can also be specified and
controlled explicitly by calling the simple transaction protocol
supplied.

beginTransaction();
rollbackTransction();
commitTransaction();

The default behavior is to not start a database transaction until a
TOPLink unit of work is committed. This can be over-ridden by
explicitly starting a database transaction.

Database portability

TOPLink is built on JDBC and is portable across any JDBC-
compliant database, including Oracle, DB2, Sybase, SQL Server,
Informix and Access. Any differences between database vendors are
handled by components within TOPLink.

Mainframe and other data sources

TOPLink’s flexible framework allows access to other data sources
such as legacy data on a mainframe. A customizable extension
framework is available to address these types of specific needs.
Please contact The Object People (info@objectpeople.com) for more
details.

TOPLink for Java, version 2.5
Whitepaper; March 2000

15

Application server features

Deploying in a three-tier architecture requires some additional
features:

• An object cache that can be shared by all clients.

This can greatly improve performance for objects that are
frequently read but seldom modified.

• An exclusive transaction space.

When a client begins a transaction or unit of work, an exclusive
transaction space is managed for that client. Changes to the
objects are not seen by other clients until the transaction is
committed.

• A configurable pool of database connections.

Not every client requires a dedicated database connection
allocated for it on the server. The TOPLink server manages a
configurable pool of database connections. With this pool,
TOPLink makes much more efficient use of computing
resources.

16 TOPLink for Java, version 2.5
Whitepaper; March 2000

Client-side TOPLink functionality

For three-tier or n-tier architectures where the client and server are
written in Java, remote TOPLink sessions are available to use on the
client. The remote session is a fully functional client-side TOPLink
session that communicates with the server-side session through RMI
or CORBA. It handles full object replication and synchronization
from the server to the client.

The remote TOPLink session supports the full functionality of a
normal TOPLink session including:

• client-side caching and object identity

• client-side units of work with nested and parallel support

• remote proxies for on-demand loading of object relationships
from the server

• complex querying support on the client

The client-side functionality allows for three-tier applications to be
easily ported to a three-tier architecture using RMI or CORBA. For
applications that are running Java on the client and server and want
to transparently replicate business objects on the client, the TOPLink
remote sessions make this trivial to build.

TOPLink for Java, version 2.5
Whitepaper; March 2000

17

Java 2 (JDK 1.2) and JDK 1.1 compatible

Either Java 2 or JDK 1.1.x can be used with TOPLink for Java,
Version 2.5. The Java 2 version supports new features such as:

ü weak and soft reference caches

ü access to private and protected variables through
reflection

ü JDBC 2.0 support

ü collection classes

Java Transaction Service (JTS)

Distributed database transactions are supported with TOPLink's
integration with JTS. TOPLink participates in a distributed
transaction as a synchronized object. The transaction controller
provides a distributed transaction aware database connection for
TOPLink to use for a particular transaction context.

Enterprise JavaBeans (EJB)

TOPLink for Java can be used with Enterprise JavaBeans (both
session beans and entity beans).

With JTS integration supported, the full functionality of TOPLink
can be used with session beans on any compliant EJB server.

TOPLink can also be used with entity beans using bean-managed
persistence, although not all of the functionality of TOPLink is
applicable in a bean-managed environment.

For TOPLink's full object/relational mapping functionality to be used
in an entity bean container-managed persistence environment, the
TOPLink EJB server-specific product line must be used. Server-
specific products are necessary as the integration is dependent on the
server/container API, which is not part of the EJB specification and
is vendor-specific.

TOPLink for WebLogic is the first integrated TOPLink EJB product
and provides value-added features that go beyond what is outlined in
the EJB specification. Other EJB servers will be supported in the
future. For details on the TOPLink for WebLogic product, please
refer to the TOPLink for WebLogic white paper.

18 TOPLink for Java, version 2.5
Whitepaper; March 2000

TOPLink support and documentation

TOPLink for Java is accompanied by extensive documentation. The
documentation set includes a user/reference manual, installation
guide, tutorial guide and a troubleshooting manual.

TOPLink technical support provides responsive, thorough service.
The support team is staffed by TOPLink developers and consultants
who are intimately familiar with the product.

TOPLink services

TOPLink provides a powerful framework for developing
applications, but persistence is still a challenging problem. Mission-
critical Java applications have rigorous requirements and demands.

The Object People can provide experienced TOPLink consultants
world-wide for on-site assistance. The TOPLink staff has significant
experience working on a wide variety of enterprise-level projects.

Proof-of-concept consulting programs are available globally. A
TOPLink expert works directly with the development team for a
3 - 5 day period to rapidly introduce TOPLink and build an initial
prototype. This is an excellent way to expedite the learning of
TOPLink's advanced feature set and capabilities.

The Object People also provides a 3-day course, “TOPLink
Fundamentals”, which provides a rapid training curriculum for
developers using TOPLink. Advanced TOPLink workshops are
available that can be customized to address a particular area
(CORBA, EJB, performance tuning, and so on). This course is
available at The Object People offices or on-site at the customer
location.

TOPLink for Java, version 2.5
Whitepaper; March 2000

19

Summary

The object-to-relational impedance mismatch is a significant
challenge for organizations adopting object technology. TOPLink for
Java assists developers in delivering enterprise-level Java
applications with relational database access.

The mature, robust persistence framework provided by TOPLink
significantly reduces the time-to-market and development effort
required for building enterprise Java applications.

Additional information

The Object People has been providing object-oriented services and
products to Fortune 500 companies worldwide since 1989. Our
TOPLink family of products includes TOPLink for Java, TOPLink
for Smalltalk and TOPLink for WebLogic. We are very successful in
assisting our clients deliver their mission-critical applications. The
world headquarters are in Ottawa, Canada with regional offices in
Raleigh, North Carolina, Germany, and England.

For more information on the TOPLink family of products or The
Object People’s Education and Consulting services please go to our
website: http://www.objectpeople.com, or e-mail
info@objectpeople.com. You may also contact our sales office
nearest to you.

20 TOPLink for Java, version 2.5
Whitepaper; March 2000

Notes

