
TOPLink for WebLogic
Whitepaper; March 2000

1

Whitepaper

TOPLink for WebLogic

The Challenge: Enterprise JavaBeans (EJB) represents a new standard in enterprise
computing: a component-based architecture for developing and
deploying distributed object-oriented applications in Java.

Object technology has become the solution of choice for building
enterprise applications. However, many organizations have a great
deal invested in relational databases.

Relational databases are mature and their capacity and performance
are predictable and reliable. Consequently, Java developers often
need to access data stored in relational databases. However, the
object world and the relational world do not completely match up;
one world consists of tables, rows, columns, and foreign keys, while
the other contains object references, business rules, complex
relationships, and inheritance. This is often referred to as the
object/relational “impedance mismatch” and is a major challenge for
organizations adopting object technology.

The Solution: TOPLink for Java answers the challenge by providing a bridge
between the Java object and relational database worlds, and by
providing comprehensive support for Enterprise JavaBeans (EJBs).
TOPLink for WebLogic extends this support to provide container-
managed persistence for Entity beans deployed within BEA’s
WebLogic® Server.

TOPLink for WebLogic handles:

ü Enterprise JavaBeans

ü session beans

ü entity beans

ü Persistence

ü bean-managed

ü container-managed

ü Java Transaction Service (JTS) integration

2 TOPLink for WebLogic
Whitepaper; March 2000

Overview

TOPLink for WebLogic is seamlessly integrated with the WebLogic
application server from BEA WebXpress, one of the leading Java
application servers.

BEA WebLogic provides a comprehensive implementation of the
Java Enterprise Standards, including a full Enterprise JavaBeans
implementation. With TOPLink for WebLogic, you can build
effective, efficient components for server-side Java applications,
while significantly cutting development time and expense.

TOPLink offers a comprehensive feature set that has evolved based
on feedback from thousands of developers in more than thirty
different countries. The TOPLink client base reflects a wide cross-
section of industries and diverse requirements. As a result, TOPLink
has a solid design that combines flexibility and performance. We
bring this knowledge and experience to TOPLink for WebLogic.

TOPLink for WebLogic’s features include:

ü Enterprise JavaBeans support -- session beans; entity
beans using bean-managed and container-managed
persistence

ü Java Transaction Service (JTS) integration

ü mapping flexibility with 15 different types of mappings

ü TOPLink Builder, to map objects visually

ü proxies for “just in time” reading

ü object caching and identity

ü object level transactions with units of work

ü batched reading / writing

ü object level queries

ü stored procedures and custom SQL

ü object locking -- optimistic and pessimistic

The TOPLink technology has been in use since 1992 and was first
released as a product in 1994. Based on this technology, TOPLink
for Java was first made available in 1997 and has quickly become an
industry-leading persistence solution. It provides a robust, feature-
rich framework that can be reused on multiple projects. TOPLink is
used worldwide in industries such as insurance, banking,
transportation logistics, manufacturing, aerospace, automotive,
system integration, pharmaceutical and health care.

TOPLink for WebLogic
Whitepaper; March 2000

3

Enterprise JavaBeans (EJB)

Enterprise JavaBeans (EJB) represents a new standard in enterprise
computing. Developed by Sun Microsystems and its partners, EJB
provides a component-based architecture for developing and
deploying distributed object-oriented applications in Java.

It is important to note that EJB is, itself, not a product. Enterprise
JavaBeans is a specification (currently at version 1.1) that describes a
framework for developers to use to create distributed business
applications and for vendors to use to design application servers. Sun
Microsystems has partnered with industry leaders such as BEA
WebXpress to specify the EJB framework.

What is an Enterprise JavaBean?

To quote the EJB specification, “an enterprise Bean implements a
business task, or a business entity”. EJBs are server-side domain
objects that fit into a standard component-based architecture for
building enterprise applications using the Java language.

The fundamental goal of EJB technology is gains in productivity.
Application developers using EJB components benefit because they
now have a standard, well-specified way of taking advantage of
robust pre-built server components. Developers of server
components also gain, because distribution, security, threading and
process control, state and resource management, and transactional
control are all taken care of by the EJB server.

EJB architecture

An enterprise bean resides on an EJB server within an EJB container.
The server provides services such as naming, security, thread
management, and transaction control that the container in turn
provides to the bean. The container is not an actual component, but
represents a logical separation of responsibility between the
container and the server. The container wraps the bean such that
clients cannot manipulate the bean directly. This allows the container
to implement transaction, security, and persistence logic that are
distinct from the domain logic of the bean itself.

4 TOPLink for WebLogic
Whitepaper; March 2000

EJBs and relational databases

EJB, like Java itself, is based on object technology, but EJB
applications often need to access relational databases. The
difficulties in mapping objects to a relational database are well
known and often referred to as the "impedance mismatch". This can
be a major issue when adopting Java and EJB technology.

The EJB specification provides an outline of how to handle
persistence, but it only covers mapping to very simple data. More
complex applications will need to manage bean relationships, beans
which map to multiple tables, inheritance, object faulting (just-in-
time reading), and advanced querying.

These issues are addressed by using a sophisticated persistence
product such as TOPLink.

(For more information on impedance mismatch and mapping, see the
“TOPLink for Java” white paper.)

But I’m using JDBC already . . .

JDBC defines a low-level API for accessing databases. It does not
work at the level of Java objects. Developers using JDBC must write
methods that contain SQL statements and convert between database
rows and objects. Application developers work with objects using
TOPLink, rather than with rows and SQL using JDBC calls.
TOPLink does not replace JDBC, but provides a layer on top of it.

Persistence framework: buy or build?

Building a custom persistence framework can easily consume
30-40% of a project’s resources. This problem is much more
challenging than it first appears and often requires the efforts of the
most experienced members of a project team. The resulting home-
grown framework requires support and maintenance and may not be
reusable on other projects. Persistence is often on the critical path of
a project, so that a mature, commercial product such as TOPLink
provides substantial benefits. With TOPLink, a project’s resources
can be focussed on building the application, not on infrastructure.

TOPLink for WebLogic
Whitepaper; March 2000

5

TOPLink: Advanced object-to-relational technology

TOPLink for Java is an advanced object-to-relational persistence
framework. It allows application developers to access data stored in
relational databases as Java business objects or Enterprise
JavaBeans. With TOPLink, developers focus on the application and
object model rather than on the database. TOPLink can map Java
objects to an existing legacy database or can generate a new database
schema from an object model. It provides a rich set of features to
read, write, delete, and manage objects in an efficient manner.

TOPLink uses meta-data “descriptors” to define the correspondence
between Java objects and the relational tables used to store them.
TOPLink uses these descriptors to dynamically generate the required
SQL statements at run-time. The mappings can be changed without
having to re-compile the classes they represent. No SQL
programming is required.

Scalability and maintainability

It is important for both scalability and maintainability that the
persistence layer isolate business programmers from the database.
Application developers should not write and maintain SQL
statements, but instead focus on the business rules and application
logic. TOPLink provides such encapsulation, allowing an
architecture where the user interface and business objects no longer
depend on where and how the data is stored.

TOPLink supports arbitrarily complex models and automatically
maintains references between objects. Changing the database schema
does not normally require changes to the business objects, only to the
TOPLink mappings. Java business classes can be reused with
completely different database schemas. This fully realizes the
promise of container-managed persistence by supporting rich,
complex models with fully automatic persistence.

Object-level interface

TOPLink provides a level of abstraction that allows the application
developer to work with objects. No SQL or JDBC programming is
required.

6 TOPLink for WebLogic
Whitepaper; March 2000

Non-intrusive

TOPLink uses a meta-data model and attempts to leave the Java
business classes as “pure” as possible. TOPLink does not force the
application developer to pollute their classes with special persistence
methods, nor does TOPLink force a designer to extend a
PersistentObject class. No database-specific methods are
generated or hard-coded on the business classes.

A descriptor is defined for each Java business class and TOPLink
uses these descriptors at run-time to read, write, and manage the
business objects.

The de-coupled mechanism allows a single business class to have
multiple descriptors defined for it. The same object can be stored on
different databases by changing the descriptor used, without
requiring changes to application-level code. With EJBs, this is
essential to support third-party beans for which no source code is
available.

Iterative development process

Object-oriented development is very iterative in nature. TOPLink’s
architecture allows an object and data model to change and evolve
without having to regenerate the object/relational mapping
information every time an unrelated change occurs.

An architecture that forces the developer to implement methods on
the domain classes or that generates a static set of mapping code is
more restrictive. The continuing evolution of a complex business
object model can neither accommodate the inflexibility of forcing the
use of a persistent super-class, nor the burden of maintaining
additional special persistence methods.

Performance

TOPLink is designed to minimize the most expensive operations in a
multi-tier enterprise application, namely database calls over the
network. Several features such as caching, batch reading, cursored
streams, batch writing, and pre-allocated sequence numbers are
available to optimize performance.

TOPLink’s “unit of work” feature ensures that minimal updates are
done. The unit of work can determine what attributes of an object
have changed, and write out only those fields.

TOPLink for WebLogic
Whitepaper; March 2000

7

Platform and database independence

Wherever Java runs, so does TOPLink – its class library is certified
100% Pure Java. No platform-specific libraries or DLLs are
required. TOPLink is supported for both JDK 1.1.x and Java 2. All
relational databases accessible with a JDBC driver can be used with
TOPLink, including Oracle, Sybase, DB2, SQL Server, Informix,
and Access.

Flexibility

TOPLink allows the application developer to control almost every
aspect of the system. For example, TOPLink normally generates
dynamic SQL, but it may be desirable to use database stored
procedures. TOPLink allows the developer to override any generated
SQL call with a stored procedure or custom SQL.

TOPLink expands on the EJB-supported callbacks, adding a wide
variety of persistence-related events for which an application can be
notified. These include pre- and post-read, write, transaction
commit/rollback, lookup and delete events.

TOPLink provides many additional features than can be tuned to a
variety of architectures. Other features that have variable settings
include cache types and size, connection pooling, sequence number
allocation, page sizes, database transactions, batch reading, object
faulting, and writing depth.

TOPLink for Java, version 2.5

TOPLink for Java, version 2.5, was released in December 1999. For
more details, please refer to the TOPLink for Java white paper.

TOPLink for WebLogic

TOPLink for WebLogic provides developers with the advanced
object/relational mapping features of TOPLink for Java, integrated
with the powerful application server environment of BEA
WebLogic.

TOPLink for WebLogic goes further than what is outlined by the
EJB specification, providing additional value. Developers of
sophisticated enterprise applications can leverage the benefits of both
EJB and relational database technology. Using TOPLink for

8 TOPLink for WebLogic
Whitepaper; March 2000

WebLogic, developers can take advantage of the features available in
TOPLink for Java, version 2.5, as well as the advantages of EJB.

TOPLink for WebLogic provides a seamless transparent persistence
layer. Features such as WebLogic’s distributed Java Transaction
Service (JTS) and connection pooling are integrated with TOPLink.
The two products are complementary and together offer developers a
powerful environment to build and deploy EJB applications.

The flexibility provided by TOPLink carries over to the EJB
environment. A bean can be mapped to different database schemas
without changing any bean-level methods simply by changing
TOPLink descriptors.

There are several ways in which a developer can use TOPLink for
WebLogic in an EJB environment. A number of these are described
in the following sections.

Session beans

Session beans represent a business operation, task, or process.
Although the use of a session bean may involve database access,
session beans are not in themselves persistent; they do not directly
represent a database entry. Examples of session beans include a
“shopping cart” bean or a “bank-teller" bean.

There are two types of session beans:

• stateful – the bean contains non-persistent “conversational”
information about a client, known as the conversational state of
the bean

• stateless – the bean does not contain any client-specific data

Session beans and relational databases

Although session beans do not represent persistent objects, they
often need to access persistent data. Developers using session beans
may work with Java business objects that are stored in relational
databases. The EJB specification does not address the issue of how
to manage the underlying Java objects that represent the persistent
state of a session EJB application. TOPLink addresses this problem
by allowing developers to map the Java business objects used by the
session beans to a relational database.

TOPLink for WebLogic
Whitepaper; March 2000

9

Session beans and TOPLink for WebLogic

Developers building session beans can access and store Java business
objects that have been mapped using TOPLink. Both stateful and
stateless session beans are supported. Any session bean deployed
with the BEA WebLogic server can seamlessly access all of
TOPLink’s functionality. As a result, any existing object model that
uses TOPLink can be used “as is” to create session EJBs without
changing the TOPLink descriptors.

Session beans can be “TOPLink enabled” by providing bean
instances with access to a TOPLink Session, which maintains all
mapping information for a given TOPLink project and provides an
interface for carrying out complex queries. Object-level transactions
can be used with session beans through TOPLink’s unit of work,
which is integrated with the WebLogic Java Transaction
Service (JTS).

In an architecture using session beans, TOPLink’s full functionality
and API can be used directly. The Java business objects used within
the session bean can be read and stored in a relational database,
through a TOPLink session or unit of work. The key coordinated
aspect with the BEA WebLogic application server in this architecture
is the integration of TOPLink with the server’s JTS.

Entity beans

Entity beans represent a “business entity”; that is, a persistent data
object. Entity beans may be shared by many users, are long-lived,
and the data within the bean is expected to survive server crashes.
Examples of entity beans include “sale item” beans, “bank account”
beans, and “employee” beans.

The fundamental difference between entity beans and session beans
is that entity beans are shared and persistent. The EJB specification
provides an API and framework for EJB persistence, and presents the
bean developer with two options: bean-managed and container-
managed persistence.

10 TOPLink for WebLogic
Whitepaper; March 2000

Entity beans and relational databases

EJB persistence is more "generic" than the persistence available in
relational databases. Persistence in EJB is defined more simply to
allow for different kinds of persistence. As a result, many of the
standard features of relational databases, such as relationships
between data entities and dynamic querying, are not automatically
available with EJB. These features of relational databases, and more,
become available to EJBs only with the addition of an advanced
object/relational mapping tool such as TOPLink.

Entity beans and TOPLink for WebLogic

The EJB specification offers bean developers two options for making
their entity beans persistent: bean-managed persistence and
container-managed persistence. These options are described in detail
below.

Bean-managed persistence

In bean-managed persistence, the developer is fully responsible for
making the beans persistent. This requires the bean developer to
write persistence code within the bean itself, using direct file writes,
JDBC calls, or a persistence framework such as TOPLink. The bean-
managed persistence framework is particularly well suited for
applications with simple entity bean models.

Bean-managed persistence and relational databases

Bean-managed persistence gives the bean developer control over
how persistence is implemented within the beans that they build, and
allows them to take advantage of any special features within the
database on which their beans are deployed. This approach may
improve efficiency in some cases. However, if the bean-managed
persistence code does make use of database-specific information, the
bean cannot be readily used with different schema or database types.

To preserve schema independence, developers can make calls from
their beans to a persistence framework such as TOPLink.

TOPLink for WebLogic
Whitepaper; March 2000

11

Bean-managed persistence and TOPLink for WebLogic

The bean-managed persistence model requires the bean developer to
write code for the EJB-defined callback methods such as
ejbFindByPrimaryKey, ejbLoad, ejbStore, and ejbRemove.
The developer can use TOPLink’s API in these methods to work at
the object/bean level instead of writing SQL or JDBC calls.

In most cases, if developers choose to use bean-managed persistence,
they must write bean-specific persistence code within their domain
classes. However, because TOPLink’s architecture uses meta-data
that generates database calls at run-time, many of these methods can
be written in a generic way.

TOPLink provides classes and interfaces that make building bean-
managed entity beans easier. Developers are given a high degree of
flexibility, as they are not forced to use all of these classes and
interfaces.

To optimize deployment, a shared TOPLink session should be
accessible by many beans. This can be accomplished using the JNDI
functionality provided by WebLogic.

Using TOPLink for WebLogic means that you can:

• define complex mappings between entity beans

• one-to-one (1-1) and one-to-many (1-m) mappings
between entity beans and regular Java objects

• many-many (m-m) mappings between entity beans

• define complex mappings from entity beans to their attributes

• direct collection mappings (map a collection of attributes
to separate tables)

• object type mappings (transform primitive Java types to
other representations in the database)

• serialized mappings (includes support for BLOBs and
CLOBs)

• aggregate mappings (multiple objects to the same table)

• easily map entity beans to multiple database tables (one class
may be stored on several tables)

• define queries at the object level that can be used to write finder
methods using TOPLink’s advanced querying mechanism

12 TOPLink for WebLogic
Whitepaper; March 2000

It must be noted that the nature of the EJB bean-managed persistence
architecture places some limitations on the persistence mechanisms.
Some TOPLink performance optimizations and the unit of work
feature are unavailable and under some circumstances bean identity
can be lost. To leverage the benefits of these features with entity
beans, container managed persistence is required.

Container-managed persistence

Container-managed persistence provides “automatic persistence” to
the bean developer as well as the application assembler. The
developer does not need to write any persistence code. Instead,
persistence is handled based on information supplied in the bean’s
“deployment descriptor”. In this case, the tools provided by the EJB
container should allow the bean developer to specify complex
mapping types for individual beans, and allow the developer to
specify relationships between the beans that they have developed.

Container-managed persistence and TOPLink for WebLogic

With container-managed persistence, all persistence code is
generated at deployment time by the WebLogic server and TOPLink.

TOPLink for WebLogic integrates directly with the WebLogic server
to provide a container that automatically handles persistence to
relational databases. Using TOPLink for WebLogic’s container-
managed persistence capabilities, the bean developer can use
TOPLink to specify the mappings between beans and relational
tables, while the WebLogic EJB compiler generates all persistence
code.

A developer uses the TOPLink Builder tool to define a TOPLink
descriptor for the entity bean, which is then included with the bean’s
own EJB deployment descriptor. This descriptor is used by the
TOPLink container at run-time to handle all of the persistence
requirements of the bean.

TOPLink for WebLogic
Whitepaper; March 2000

13

TOPLink for WebLogic allows bean developers to define
relationships between beans, without forcing them to encode
database information within their domain classes. The referenced
objects are accessed simply through methods and the developer does
not deal with database-specific details such as foreign and primary
keys.

Clients can use TOPLink’s rich querying and expression framework.
TOPLink allows queries to be either stored or generated
dynamically. The expression framework is object-oriented, allowing
queries to be built using object attribute names rather than database
field names, and provides a querying mechanism that reflects the
object model rather than the underlying database implementation.
This allows queries to be independent of the database. These queries
can be used as the basis of finder methods or even invoked
dynamically.

Developers are able to use high-level tools to define their persistence
requirements and are not required to write any persistence code. All
of TOPLink’s mapping facilities are available to bean developers
who use this option. As with bean-managed persistence, this includes
the ability to:

• define complex mappings between entity beans

• one-to-one (1-1) and one-to-many (1-m) mappings
between entity beans and regular Java objects

• many-many (m-m) mappings between entity beans

• define complex mappings from entity beans to their attributes

• direct collection mappings (map a collection of attributes
to separate tables)

• object type mappings (transform primitive Java types to
other representations in the database)

• serialized mappings (includes support for BLOBs and
CLOBs)

• aggregate mappings (multiple objects to the same table)

• easily map entity beans to multiple database tables (one class
may be stored on several tables)

• define queries at the object level that can be used to write finder
methods using TOPLink’s advanced querying mechanism

14 TOPLink for WebLogic
Whitepaper; March 2000

In addition to these mapping features, TOPLink for WebLogic's
container-managed persistence solution also allows advanced
features to be used, such as:

• transparent units of work (object level transactions)

• advanced object level querying

• object / bean identity

• caching

• batch reading

• batch writing

TOPLink for WebLogic
Whitepaper; March 2000

15

Summary

Enterprise JavaBeans (EJB) provide a framework that allows
developers to build reusable server-side components for enterprise
applications in Java. WebLogic is an industry-leading EJB
application server. TOPLink for WebLogic integrates directly with
BEA’s WebLogic Server to allow developers to build EJBs using
TOPLink’s advanced object/relational mapping capabilities.

TOPLink provides EJB developers additional value above and
beyond the EJB specification. These features include complex
mapping, relationships between beans, advanced querying
capabilities, and performance optimization features such as batch
writing, batch reading, and object faulting ("just in time" reading).

TOPLink for WebLogic provides advanced functionality for
developers who are building sophisticated applications using EJB
and relational database technology. TOPLink allows developers to
go further than the EJB specification for complex applications
requiring mature object-relational technology.

The Object People and BEA have integrated TOPLink's
object/relational technology and BEA’s WebLogic Server to provide
an industry-leading best-of-breed solution.

Additional information

The Enterprise JavaBeans specification is the main source of
information about EJB. This specification is available on Sun
Microsystem’s website, http://java.sun.com/products/ejb.

Information about the BEA WebLogic application server can be
found on BEA’s website, http://weblogic.beasys.com.

The TOPLink family of products, including TOPLink for WebLogic,
and information about The Object People’s education and consulting
services can be found at our website: http://www.objectpeople.com,
by e-mailing info@objectpeople.com, or by contacting our sales
office nearest to you.

16 TOPLink for WebLogic
Whitepaper; March 2000

Notes

