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Abstract 

A methodology for designing data center infrastructure for 
E-commerce sites is developed. It differs from existing 
methodologies in that it evaluates and compares 
alternative designs from a business perspective, that is, by 
evaluating the business impact (financial loss) imposed by 
imperfect infrastructure. The methodology provides the 
optimal infrastructure that minimizes the sum of 
provisioning costs and business losses incurred during 
failures and performance degradations. A full numerical 
example design is provided and results are analyzed. The 
use of the method for dynamically provisioning an 
adaptive infrastructure is briefly discussed. 

. 

1. Introduction 
The problem addressed in this paper is that of 

infrastructure design for Information Technology (IT) 
services that cater to business processes that are heavily 
dependent on IT. An example of such a business process is 
that supported by an e-commerce site: IT services are the 
main technology support in such a context and any failure 
or performance degradation in the IT infrastructure can 
profoundly affect business operations. 

When designing infrastructure to provision IT services, 
the work reported here concentrates on the data center, that 
part of the infrastructure most easily controllable by the 
service provider. Current approaches in data center design 
usually either consider the problem from a reliability point 
of view, e.g. [2], from a response time point of view, e.g. 
[4] or, more recently, from a business perspective, e.g. [5]. 
The last approach is more novel and merits some 
discussion. 

A new area of academic research – and also of the 
practitioner’s art – is termed Business Impact Management 
(BIM) [6,7,8]. BIM takes Service Level Management 
(SLM) to a new maturity level since metrics meaningful to 
the customer are used to gauge IT effectiveness rather than 
technical metrics such as availability and response time. 
This is the crucial departure that the present work takes on 
most past efforts.  

In the present study, infrastructure design aims to 
decide how many and what kind of resource components 
should be used to provision IT services. Clearly, adding 
more fail-over servers will improve service availability and 
adding more load-balanced servers will lower response 
time. But what values of availability or of response time 
should the designer aim for? How does one combine 
requirements on availability and requirements on response 
time into coherent design decisions? BIM answers this 

question as follows: the impact of any IT infrastructure 
imperfection should be gauged in terms of its impact on 
business as captured by business metrics. The design 
decisions should then be evaluated in terms of the business 
impact caused by the resulting design. 

This paper provides a concrete business impact model 
that includes the impact of IT component failures on 
service availability and hence on the business and the 
impact of load on performance (response time) and hence 
on the business. Using this impact model, the problem of 
designing optimized IT infrastructure is formally defined 
and solved analytically. 

The rest of the paper is structured as follows: section 2 
informally discusses the approach while section 3 
formalizes it; section 4 considers an application of the 
method through a full numerical example; section 5 
discusses related work; conclusions are provided in section 
6. 

2. Informal Problem Description 
Infrastructure must be designed for an e-commerce site. 

The main approach is to minimize monthly financial 
outlays as calculated by the infrastructure cost plus the 
business loss incurred due to the imperfect infrastructure. 
Thus, our approach uses a business perspective in the 
design process through a business impact model. Two 
kinds of imperfections present in the IT infrastructure are 
considered, both generating business loss. The first is that 
components may fail, rendering the service unavailable 
part of the time. The second is that the load imposed on the 
infrastructure components results in delays, with the 
possibility of customers defecting due to overlarge delays. 

Sessions visiting the site are divided into two types: 
revenue-generating sessions where, at some point during 
the visit, some revenue will accrue to the site’s owner; in 
the second type of session, customers may visit pages on 
the site, maybe even adding items to a shopping cart, but 
end up desisting before generating revenue. 

The infrastructure itself consists of several tiers, say a 
web tier, an application server tier and a database tier. 
Each tier is served by a load-balanced cluster with a 
certain number of machines, sufficient to handle the 
applied load. Varying this number of machines affects 
response time and thus the business loss due to customer 
defections. Furthermore, additional machines are available 
in standby mode to improve site availability and hence 
reduce business losses due to service unavailability. 

The problem studied here is to choose the best 
infrastructure configuration (number and type of machine 
in each tier’s load-balanced cluster and the number of 



standby machines), that is, the configuration that 
minimizes monthly cost plus business losses. 

3. Problem Formalization 
This section formalizes the infrastructure design 

problem. The analysis uses results from reliability theory, 
queuing theory and develops a novel business impact 
model extending the presented in [8]. 

3.1. The Design Optimization Problem 
Let us first define the design problem to be solved. 

Please refer to Table 1 for a notational summary and to 
Figure 1 for a summary of the entities involved. 

 
Symbo
l 

Meaning 

RC Set of resource classes in IT infrastructure 
(e.g. tiers) 

RCj jth resource class 
nj Total number of resources (machines) in RCj 
mj Total number of load-balanced machines in 

RCj 
E Any time period over which cost and loss are 

evaluated. Typically a month. 
C(E) The infrastructure cost over the time period E 
L(E) The financial loss over the time period E due 

to imperfections in the infrastructure 
Table 1: Notational summary for problem definition 
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Figure 1: Model entities 

 
The infrastructure provisioning the e-commerce site is 

made up of a set RC of resource classes. For example, the 
resource classes could correspond to tiers (web tier, 

application tier, database tier). Resource class RCj is 
provisioned with a total of nj machines, of which mj make 
up a load-balanced cluster while the rest are standby 
machines. The load-balanced machines enable the tier to 
handle the input load while the standby machines provide 
the required availability. The design problem can be posed 
as an optimization problem as follows: 

 
Find: For each resource class RCj, the total 

number of machines nj and the 
number of load-balanced machines mj 

By minimizing: C(E)+L(E), the total financial impact 
on the business over the time period E 

Subject to: jj mn ≥ and 1≥jm  

 
One must now derive expressions for L(E) and C(E), 

which we now proceed to do. 

3.2. Characterizing the Infrastructure 
In this section, expressions for the infrastructure cost 

C(E) and for site availability, A, are developed. Let us first 
define the design problem to be solved. Site availability 
will be used in a later section to derive an expression for 
loss, L(E). Please refer to Table 2 for a notational 
summary. 

 
Symbo
l 

Meaning 

Rj An individual resource in RCj 
Pj The set of components that make up resource 

Rj 
Pj,k The kth component in Pj 

Active
kjc ,

 The cost rate of component Pj,k if active 
dbyS

kjc tan
,

 The cost rate of component Pj,k if on standby 

A Site availability 
Aj Availability of resource class RCj 

R
jA  Availability of an individual resource Rj from 

class RCj 
mtbfj,k Mean Time Between Failures of component 

Pj,k 
mttrj,k Mean Time To Repair of component Pj,k 

Table 2: Notational summary for infrastructure 
 
As mentioned previously, the infrastructure used to 

provision the e-commerce site consists of a set of resource 
classes, {RC1, …, RC|RC|}. Class RCj consists of a cluster of  
IT resources. This cluster has a total of nj identical 
individual resources, up to mj of which are load-balanced 
and are used to provide adequate processing power to 
handle incoming load. The resources that are not used in a 
load-balanced cluster are available in standby (fail-over) 
mode to improve availability. 



An individual resource 
jj RCR ∈  consists of a set 

,...}...,{ ,1, kjjj PPP =  of components, all of which must be 

operational for the resource to also be operational. As an 
example, a single Web server could be made up of the 
following components: server hardware, operating system 
software and Web software. Individual components are 
subject to faults as will be described later.  

Determining infrastructure cost. Each infrastructure 
component kjP ,  has a cost rate Active

kjc ,
 when active (that is, 

used in a load-balanced server) and has a cost rate dbyS
kjc tan

,
 

when on standby. These values are cost per unit time for 
the component and may be calculated as its total cost of 
ownership (TCO) divided by the amortization period for 
the component. The cost of the infrastructure over a time 
period of duration E can be calculated as the sum of 
individual cost for all components. 
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Determining service availability. Recall that IT 

components making up the infrastructure can fail, 
producing unavailability and hence business loss. In order 
to calculate business loss, one needs to evaluate the 
availability A of the site. This is done using standard 
reliability theory [1]. For service to be available, all 
resource classes it uses must be available. Thus: 

∏
∈

=
RCj

jAA  

where 
jA is the availability of resource class RCj. Since 

this resource class consists of a cluster of nj individual 
resources, and since service will be available and able to 
handle the projected load when at least mj resources are 
available for load-balancing, one has, from reliability 
theory: 
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where R
jA is the availability of an individual resource Rj 

from class RCj. This individual resource is made up of a 
set Pj of components. Thus: 
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where mtbfj,k and mttrj,k are, respectively, the Mean-
Time-Between-Failures (MTBF) and Mean-Time-To-
Repair (MTTR) of component

kjP ,
. Observe that values 

from MTBF can be obtained from component 
specifications or historical logs whereas values for MTTR 
will typically depend on the type of service contract 
available (gold, silver, etc.). 

3.3. The Response Time Performance Model 
Since business loss occurs for high values of response 

time – defection typically occurs when response time 
reaches 8 seconds [9] – this section uses queuing theory to 
obtain an expression for B(TDEF), the probability  that 
response time has exceeded TDEF, the defection threshold, 
and that revenue-generating customers will therefore 
defect. Please refer to Table 3 for a notational summary. 

 
Symbo
l 

Meaning 

TDEF Response time threshold after which customer 
defection occurs 

B(y) Probability that response time is greater than 
y  

S The set of states in the Customer Behavior 
Model Graph. Each state represents a 
particular interaction with the e-commerce 
site (browse, search, etc.) 

γ The rate at which sessions are initiated at the 
site 

f The fraction of sessions that generate revenue 
(type RG sessions) 

RG
rip ,

 Probability of going from state i to state r in 
the RG CBMG 

NRG
rip ,

 Probability of going from state i to state r in 
the NRG CBMG 

RG
rV  Average number of visits to state r in RG 

CBMG 
NRG

rV  Average number of visits to state r in NRG 
CBMG 

λr Arrival rate of requests to IT infrastructure in 
state r 

Dr,j Demand in seconds applied by each 
transaction from state r on resources from 
resource class RCj 

αj Speedup factor for resources in resource class 
RCj 

µr,j Service rate at a class RCj resource for 
transactions from state r 

λr,j Arrival rate of requests to a class RCj resource 
in state r 

ρr,j Utilization of class RCj resources in 
processing transactions from state r 

ρj Total utilization of class RCj resources 
Tr(y) Cumulative distribution of response time for 

requests in state r 
rT  Average response time for requests in state r 

NZRG Set of states from the RG CBMG that have 
non-zero average number of visits 

Table 3: Notation for response time analysis 
 



In order to assess response time performance, one must 
model the load applied to the IT resources. Access to the e-
commerce site consists of sessions, each generating several 
visits to the site’s pages. The mathematical development 
that follows is (initially) based on the Customer Behavior 
Model Graph (CBMG) [9], that allows one to accurately 
model how customer-initiated sessions accessing a web 
site impose load on the IT infrastructure. A CBMG 
consists of a set S of states and probabilities of moving 
between states. Each state typically represents a web site 
page that can be visited and where a customer interacts 
with the e-commerce site. As an example, consider Figure 
2 that shows the states and the transition probabilities for a 
simple but typical e-commerce site. The customer always 
enters through the Home state and will then Browse (with 
probability 0.4) or Search (with probability 0.6). The 
Select state represents viewing the details of a product and 
the other states are self-explanatory. 

Entry (y)

Add to 
Cart (a)

Register 
(r)Login (g)

Search (s)

Select (d)

Browse (b)

Home (h)

Pay (p)

1.0

0.4 0.6

0.2

0.25
0.25

0.3

0.1

0.15
0.35

0.4
0.6

0.4 0.6

0.4

0.1 0.1

0.05
0.6

1.0

0.05 0.1

0.45 0.45

0.1

Exit (x)

 
Figure 2: CBMG for the e-commerce site 

 
Some of these states are revenue-generating (for 

example, a state “Pay” where the customer pays for items 
in a cart). Sessions are initiated at a rate of γ sessions per 
second. For our purposes, we divide the sessions into two 
types: type RG sessions generate revenue while type NRG 
sessions do not. Customer behavior for each session type 
is modeled by means of its own CBMG [9]. The particular 
CBMG shown in Figure 2 is an example applicable to type 

RG sessions since the Pay state is visited with non-zero 
probability. For type NRG sessions, the CBMG will 
include the same states but with different probabilities. For 
example, there will be no path leading to the state Pay, the 
only revenue-generating state in this particular graph. The 
fraction of sessions that are revenue-generating is denoted 
by f. The transition probability matrices have elements 

RG
rip ,

, the probability of going from state i to state r in the 

RG CBMG, and NRG
rip ,

 for the NRG CBMG. As shown in 

[9], flow equilibrium in the graph can be represented by a 
set of linear equations that can be solved to find the 
average number of visits per session to state r. The set of 
equations to be solved for the RG CBMG is: 
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In this set of equations, the average number of visits in 
the RG CBMG is RG

rV . The situation for the NRG CBMG 

is similar and the average number of visits is NRG
rV .  

We now need to find B(TDEF). In order to find this 
probability, the IT services are modeled using a multi-class 
open queuing model. Open queuing models are adequate 
when there is a large number of potential customers, a 
common situation for e-business. Since, in each state, the 
demands made on the IT infrastructure are different, each 
state in the CBMG represents a traffic class in the queuing 
model. Let us examine state r. The arrival rate of requests 
corresponding to this state  
is ( )NRG

r
RG

rr VfVf ⋅−+⋅= )1(γλ  transactions per second. 
Transactions demand service from all resource classes. 
Demand applied by each transaction from state r on 
resources from resource class RCj is assumed to be Dr,j 
seconds. In fact this is the service demand if a “standard” 
processing resource is used in the class RCj resources. In 
order to handle the case of more powerful hardware, 
assume that a resource in class RCj has a processing 
speedup of αj compared to the standard resource. Thus, 
service time for a transaction is

jjrD α/,
and the service rate 

at a class RCj resource for transactions from state r is: 

jr

j
jr D ,

,

α
µ =  

Finally, since there are mj identical load-balanced 
parallel servers used for processing in resource class RCj , 
response time is calculated for an equivalent single server 
with input load [9]: 

j

r
jr m

λ
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Thus the utilization jr ,ρ of class RCj resources in 

processing transactions from state r is: 
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The total utilization 
jρ  of class RCj resources due to 

transactions from all states is: 
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Observe that, when load is so large that any 1≥jρ , then 

we have ( ) 1=DEFTB , since response time is very high for 
saturated resources. 

Now, in order to find ( )DEFTB  when 1<jρ , let us find 

the cumulative distribution of response time, 

[ ]yTyT rr ≤= ~Pr)( . Here, rT~  is the random variable 
corresponding to the response time seen by the customer in 
state r. Since the transactions must (potentially) use 
resources from all resources classes, the total response 
time for a transaction from state r is the sum of 
RC random variables, one for each resource class. In 

order to find the probability distribution of a sum of 
random variables, one may multiply the Laplace 
transforms of the distribution function [10]. In order to 
make mathematical treatment feasible, assume Poisson 
arrivals (this is a reasonable for stochastic processes with 
large population) and exponentially distributed service 
times. From queuing theory, the Laplace transform of 
response time (waiting time plus service time) for a single-
server queue is: 

as
asT
+

=)(*  

where )1( ρµ −=a , µ is the service rate and ρ is the 
utilization. Recall that input load from several states are 
going to the same resource class. Thus, for the 
combination of resource classes used by transactions in 
state r, we have: 

∏
∈ +

=
RCj jr

jr
r as

a
sT

,

,* )(  

where  
)1(,, jjrjra ρµ −=  

Inverting the transform yields the probability density 
function of response time, which is integrated to find the 
cumulative probability distribution function (PDF) of 
response time, )(yTr .  

We are now ready to find B(TDEF). Customer defection 
will occur and cause business loss only in the revenue-
generating sessions. Let NZRG represent the set of states 
from the RG CBMG that have non-zero average number of 
visits. The crucial fact to be understood is that if the 
response time in any of the states in NZRG exceeds the 
threshold TDEF, then defection will occur; in other words, a 
customer defects when any page access becomes too slow. 

Put differently, defection will not occur if all response 
times are within the threshold. We can thus say: 

( ) ∏
∈

−=
RGNZr

DEF
r

DEF TTTB )(1  

Finally, one may desire to evaluate the average response 
time for each state, possibly to be included in an SLA. 
Average response time may be found from the Laplace 
transform as follows: 

0

* )(

=

−=
s

r
r ds

sdTT  

Average response time to the site (over all states) is the 
weighted average of rT  using the average number of visits 
as weights. 

3.4. The Business Impact Model 
The key expressions to be used in determining business 

loss have been determined in the last sections. These are 
site availability, A, and the defection probability for 
revenue-generating sessions, B(TDEF). These are now 
combined to calculate business loss. 

Revenue-generating sessions are initiated at a rate of 
γ⋅f  sessions per second. If availability were perfect and 

response time were always low, this would also be the 
revenue-generating throughput (sessions ending without 
defection and producing revenue). However, due to IT 
imperfections (see Figure 3), the actual throughput is X 
transactions per second, with γ⋅< fX . Let the average 
revenue per completed revenue-generating session be φ. 
The lost throughput in transactions per second is ∆X. 
Thus, one may express the business loss over a time period 
E as: EXEL ⋅⋅∆= ϕ)( . 

 
E-Commerce Business Process

loss 
mechanism

S

IT service 
dependencies

lost throughput 
(∆X)

Completed 
revenue-
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started (γ)

 
Figure 3: E-commerce Business Loss 

Loss has two components: loss due to unavailability and 
loss due to high response time. Thus, we have: 

EXXEL TA ⋅⋅∆+∆= ϕ)()(  where AX∆  is the throughput 
lost due service unavailability and TX∆ is the throughput 
lost due to high response time (customer defections). 



When the site is unavailable, throughput loss is total and 
this occurs with probability 1- A: 

( )AfX A −⋅=∆ 1γ  
where AX∆  is the loss attributable to site unavailability, 
γ⋅f  is the rate of revenue-generating sessions incident on 

the site and A is the site availability. On the other hand, 
when the site is available, loss occurs when response time 
is slow and this occurs with probability A: 

ATBfX DEFT ⋅⋅⋅=∆ )(γ  
where TX∆  is loss attributable to high response time 

and B(TDEF) is the probability that the site response time is 
larger that some threshold TDEF in any state visited by a 
revenue-generating session. 

The above results are combined to yield: 
( )( ) EATBAfEL DEF ⋅⋅⋅+−⋅⋅= ϕγ 1)(  

4. An Example E-Commerce Site Design 
The purpose of this section is to use the above results 

and exercise the IT infrastructure design process for a 
representative e-commerce site. The values for all input 
parameters are meant to be typical for current technology 
[2,9,11].  

The site has a revenue-generating CBMG as shown in 
Figure 2. The non-revenue-generating CBMG has 
transition probabilities shown in Table 4. The transition 
probabilities for a given site can easily be gathered from 
web server log files. These CBMGs yield the average 
number of visits shown in Table 5. Observe that, for RG 
sessions, the Pay state is always visited whereas it is never 
visited in NRG sessions. The IT infrastructure consists of 
three resource classes: web tier, application tier and 
database tier. Furthermore, the parameters shown in Table 
6 and Table 7 are used, except where otherwise noted. In 
the Table 6, tuples such as (a,b,c) represent parameter 
values for the three resource classes (web, application, 
database); furthermore, each resource is made up of three 
components: (hardware (hw), operating system (os), 
application software (as)).  

 
 y h b s g p r a d x 
Entry (y) 1.00  
Home (h)  .55 .40  .05
Browse (b) .10 .50 .20  .10 .10
Search (s) .10 .15 .40  .25 .10
Login (g) .60 .30  .10
Pay (p)   1.0
Register (r) .50 .40  .10
Add to Cart (a)  .40 .30 .05  .05 .05 .10 .05
Select (d)  .45 .40  .05 .10

Table 4: Transition probabilities in NRG CBMG 

 
State RG Session NRG Session 
Entry 1.000 1.000 
Home 1.579 1.780 
Browse 2.325 4.248 
Search 3.300 3.510 
Login 0.167 0.005 
Pay 1.000 0.000 
Register 0.083 0.003 
Add to cart 1.667 0,069 
Select 2.250 1.309 
Exit 1.000 1.000 

Table 5: Average number of visits 
 
Parameters Values 

TDEF 8 seconds 
φ $1 per transaction 
γ 14 transactions per second 
f 25% 
E 1 month 
αj (1,1,3) 

Active
kjc ,  (($/month) hw =(1100, 1270, 4400) 

os=(165, 165, 165) 
as=(61, 35, 660) 

dbyS
kjc tan

,  ($/month) hw =(1000, 1150, 4000) 
os=(150, 150, 150) 
as=(55, 30, 600) 

( )R
db

R
as

R
web AAA ,,  (99.81%, 98.6%, 98.2%) 

(these values are calculated from 
appropriate MTBF and MTTR values) 

Table 6: Parameters for example site 
 

 h b s g p r a d 
Web tier 50 20 30 70 50 30 40 30
Application tier 0 30 40 35 150 70 40 25
Database tier 0 40 50 65 60 150 40 30

Table 7: Demand in milliseconds 
 
Let us try to design the site infrastructure in an ad hoc 

fashion. This is done by trying to minimize cost while 
maintaining reasonable service availability and response 
time. The cheapest infrastructure here is (nweb, nas, ndb, 
mweb, mas, mdb)=(1,1,1,1,1,1). However, this design cannot 
handle the applied load (average response time is very 
high) due to saturation of the servers in all tiers. In order to 
handle the load and make sure that no server is saturated, 
the design must use (nweb, nas, ndb, mweb, mas, 
mdb)=(5,5,2,5,5,2). There are 5 servers in the web and 
application tiers and 2 servers in the database tier. This 
design has a monthly cost of $24430, average response 
time of 1.76 s. and service availability of 84.32%. Since 
this value for availability is typically considered 
inadequate, the designer may add 1 standby server in each 
tier, yielding a design with infrastructure (6,6,3,5,5,2), 



monthly cost of $31715, average response time of 1.76 s. 
and service availability of 99.38%. If this value of 
unavailability is still considered inadequate – and one may 
well ask how the designer is supposed to know what value 
to aim for – then an additional standby server may be 
added to each tier, yielding a design with infrastructure 
(7,7,4,5,5,2), monthly cost of $39000, average response 
time of 1.76 s. and service availability of 99.98%. There 
the designer may rest. We will shortly show that this is not 
an optimal design. 

The problem is that none of the above design decisions 
take business loss into account. It is instructive to discover 
the values for loss for the above designs as well as for the 
optimal design which minimizes the sum of cost plus loss 
as shown in section 3.4 (see Table 8). 

 
Table 8: Comparing infrastructure designs 

Infra Cost Response 
Time 
Loss 

Unavail. 
Loss 

Cost + 
Loss 

Cost of 
choosing 
wrong 

(5,5,2,5,5,2) 24430 4964417 1422755 6411602 6361129
(6,6,3,5,5,2) 31715 5851498 55929 5939142 5888669
(7,7,4,5,5,2) 39000 5886685 1712 5927397 5876924
(8,9,5,6,6,3) 
(optimal) 

48351 754 1368 50473 0

 
For the optimal design (8,9,5,6,6,3), the average 

response time is 0.26 s., availability is 99.98%. It has 
lowest overall cost+loss, and the table clearly shows the 
high cost of designing in an ad hoc fashion: a wrong 
choice can cost millions of dollars per month. Observe that 
an over-design can also be suboptimal. In this case, 
business loss could be quite low, but as a result of an over-
expensive design. 

It is interesting to note that the importance of the site 
revenue should (and does) affect infrastructure design. For 
example, by reducing per transaction revenue from $1.00 
to $0.10, the optimal design is no longer (8,9,5,6,6,3) but 
(8,9,3,6,7,2), with monthly cost $38516, total monthly loss 
$2467, average response time 0,26 s. and availability 
99.87%; as expected, a site generating less revenue merits 
less availability (99.87% rather than 99.98%). In other 
scenarios, response time rather than availability could be 
the main metric affected. Additional scenarios concerning 
the importance of per transaction revenue are discussed in 
a previous report using a simplified version of the impact 
model presented here [8]. 

Finally, we can show how sensitive the optimal design, 
IT metrics and business metrics are to variations in input 
load. This is an important consideration since the design 
procedure assumes a fixed value for input load (γ) while, 
in practice, this load varies over time. Consider Figure 4 
which shows the total cost plus loss (i.e., C(E)+L(E)) as 
load varies. The load values (γ) are divided in three 
regions: the first design is (8,9,4,6,6,2) and is optimal for 

all values of load in the left region (γ=13.25 to 13.85); the 
middle region (γ=13.85 to 14.15) has an optimal design of 
(8,9,5,6,6,3) with an additional database server; the right 
region (γ=14.25 to 15.40) has an optimal design of 
(8,10,5,6,7,3) with an additional application server. Four 
curves are shown in the figure; the first (blue, cross 
marker) shows cost plus loss when using the design that is 
optimal for the left region; similarly, the second curve 
(green, circle marker) shows cost plus loss when using the 
design that is optimal for the middle region; the third curve 
(red, triangle marker) shows the situation for the design 
that is optimal for the right region. Finally, the heavy black 
curve simply follows the bottom-most curve in any region 
and represents the optimal situation in all regions, using 
three different infrastructure designs, one for each region.  

Three major conclusions can be reached from this 
figure. First, an optimal design remains optimal for a range 
of load. Although some of these ranges are wider than 
others, the width of the ranges lends some hope that a 
static infrastructure design may be optimal or close to 
optimal even in the presence of some variation in load. 
The second conclusion is that, in the presence of larger 
load variations, an infrastructure design can quickly 
become suboptimal; an example is the leftmost optimal 
design (8,9,4,6,6,2)  which quickly accumulates heavy 
losses at loads greater than γ=13.85). In this case, dynamic 
provisioning can be used to introduce a new infrastructure 
configuration at appropriate times to reduce business 
losses (scaling up) or to reduce infrastructure costs 
(scaling down), as appropriate. The third major conclusion 
is that it appears that the business impact model described 
in this paper can be used as one of the mechanisms for 
dynamic provisioning since it captures appropriate load 
transition points for reprovisioning using a business 
perspective. Further investigations will be conducted 
concerning this point in the future. 

Additional interesting details can be seen in Figure 5 
which shows individual components of cost and business 
loss for the three data center designs described above. 
Costs clearly go up (from left to right) as designs use more 
resources, although the increase in cost is more than offset 
by the reduction in loss offered by better designs. Finally, 
Figure 6 shows response time for the three designs as well 
as the optimal response time (heavy black line) when 
dynamic provisioning triggers in the optimal design at all 
load levels. 



 
Figure 4: Sensitivity of total cost plus loss due to 

load 

 
Figure 5: Sensitivity of cost and loss due to load 

 
Figure 6: Response time for various designs 

5. Related Work 
In the area of infrastructure design, [2] describes a tool 

– AVED – used for capacity planning to meet performance 

and availability requirements and [3] describes a 
methodology for finding minimum-cost designs given a set 
of requirements. Similarly, [4] optimizes using IT level 
metrics. However, none of these references consider the 
problem of capacity planning from a business perspective, 
using business metrics. Furthermore, response time 
considerations are not directly taken into account in [2,3].  

Finally, [5] considers the dynamic optimization of 
infrastructure parameters (such as traffic priorities) with 
the view of optimizing high-level business objectives such 
as revenue. It is similar in spirit to the work reported here, 
although the details are quite different and so are the 
problems being solved (the paper considers policies for 
resource allocation rather than infrastructure design). The 
model is solved by simulation whereas our work is 
analytical. 

The business impact model presented here is detailed in 
[8]. The current work adds a different customer behavior 
model (CBMG [9]) and a new analysis of customer 
defection, as well as new conclusions concerning the 
sensitivity of the optimal design to changes in applied 
load. 

6. Conclusions 
In summary, a method was discussed to design IT 

infrastructure (this is also called capacity planning) from a 
business perspective. The method is novel in that three 
types of metrics are considered – availability, response 
time and financial impact – whereas most studies consider 
only one of the first two in isolation. The three metrics are 
tied through a business impact model, one of the main 
contributions of the present work. The method itself finds 
optimal data center infrastructure configurations by 
minimizing the total cost of the infrastructure plus the 
financial losses suffered due to imperfections. It is 
important to note that a business impact model such as the 
one discussed here can be used in other contexts to solve 
other IT-management-related problems such as incident 
management, Service Level Agreement (SLA) design [8], 
etc. 

In the future, we plan to develop new impact models 
applicable to business processes other than e-commerce 
(say, manufacturing, CRM, etc.); additionally, more 
holistic models that include the network and other 
components outside the data center may be considered. 
Finally, a fuller study of the use of business impact models 
in adaptive environments can be undertaken; this would be 
an expansion of the initial comments given here 
concerning dynamic provisioning. 
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