
Autonomic Self-Optimization According to Business Objectives

Sarel Aiber

IBM Haifa
Research Lab

sarel@
il.ibm.com

Dagan Gilat

IBM Haifa
Research Lab

dagang@
il.ibm.com

Ariel Landau

IBM Haifa
Research Lab

ariel@
il.ibm.com

Natalia
Razinkov
IBM Haifa

Research Lab
natali@

il.ibm.com

Aviad Sela

IBM Haifa
Research Lab

sela@
il.ibm.com

Segev
Wasserkrug
IBM Haifa

Research Lab
segevw@
il.ibm.com

Abstract

A central challenge in the runtime management of
computing environments is the necessity to keep these
environments continuously optimized. In this paper we
introduce a new paradigm, which focuses on self-
optimization according to high-level business
objectives such as maximizing revenues. It replaces the
more traditional optimizations that are based upon IT
measures such as resource availability. A general,
autonomous process is defined to enable such
optimizations, and a set of technologies and
methodologies is introduced to support the
implementation of such a process. The paper
concludes with two types of validation tests carried out
on an eCommerce site, that demonstrate the value and
applicability of this approach.

1. Introduction

One of the major challenges in the runtime
management of computing environments in any
enterprise is both the initial optimization of these
environments, and keeping these environments
optimized when changes occur. Current goals for such
optimizations typically focus on IT measures (e.g.
increase the site’s availability by 1%, reduce overall
response times to an average of 3 seconds). Nowadays,
however, many enterprises are keen on satisfying
business objectives, such as maximizing the total
income generated by the infrastructure. Therefore, IT
optimization should focus on these business goals,
rather than the more conventional IT metrics.

Optimizing the IT infrastructure according to such
business objectives is not a trivial task, as it is unclear

how settings of parameters at the IT level will affect the
business objectives. Moreover, as stated above,
optimizing the IT infrastructure is not a one time effort.
This is due to the fact that there may be changes which
occur in the environment in which the infrastructure
operates, that may render any pre-defined setting
suboptimal. Two examples of such changes are failures
of hardware and software components, and significant
changes in the mix or load of users of this
infrastructure. Thus, the solution requires both (1) an
automatic mechanism for carrying out IT optimization
according to business metrics, and (2) an automatic
mechanism for recognizing significant changes and re-
optimizing the system as a result of such changes,
enabling what we term on demand self-optimization.

In this paper, we present a general architecture and
a set of technologies and methodologies enabling such
an on-demand optimization, as well as two case studies
demonstrating the applicability of this approach.

The remainder of this paper is organized as follows:
Section 2 reviews existing IT optimization techniques,
i.e. techniques that focus on optimizing IT level
metrics. Section 3 describes a general process for self-
optimization according to business objectives. Sections
4 and 5 describe the technologies and methodologies
used to implement this process. Section 6 describes
validation tests carried out regarding the methodologies
described in sections 4 and 5. Finally, the article
concludes with a summary in section 7.

2. Related works

Most current IT related runtime optimization efforts
focus on optimizing IT level metrics, such as overall
application response times (e.g. [9]), or component
specific (e.g. DBMS) response times. However, these
IT metrics are not directly related to business level

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

objectives, such as profit or return on investment
(ROI). Some works and products attempt to manage IT
so as to better align it with business level objectives.
Examples of this include: The Peakstone eAssurance
product ([11]), which attempts to manage a web site so
that a set of service level agreements is not violated and
[8], which attempts to maximize income of an
eCommerce site by prioritizing the customer’s requests
based on the customer history and current shopping
cart status. However, we are unaware of any works in
which a general approach, architecture or technologies
are introduced that allow IT optimization according to
high level business objectives.

3. Business objective driven optimization

We define a general automatic optimization process
by which such objective driven optimization can be
carried out. Figure 0 depicts this process.

To start the process, business objectives are
defined. Based on these definitions, both business rules
detailing how IT level metrics affect this business
objectives, and service level agreements (or other
contracts), are generated. Once the business rules and
SLA/contracts are defined, the following continuous
loop is executed: Business objective driven
optimization is carried out; the IT policy defined by the
optimization process is passed to the runtime
environment to control the IT infrastructure;
monitoring tools present in the environment monitor
the IT resources, the compliance with the contract

definitions, and the business objectives achieved by the
infrastructure; the IT business infrastructure is
constantly monitored by monitoring components in the
environment; the Significant Change Detection (SCD)
uses the results of the monitoring process to decide
whether a significant enough change exists between the
model and the business environment; if a significant
change is detected, the model used for the business
objective driven optimization is updated, (resulting in
on-demand optimization), and the loop begins again
starting with the optimization process.

The process defined above is a general one, and
many components and models can be used to
implement this process. In Section 4, technologies
implementing such a process are described in more
detail.

4. Implementation technologies and
methodologies

This section describes a set of technologies and
methodologies used to implement the process outlined
in Section 3. The components of this process detailed
in this section are: business rule definitions, business
objective driven optimization, IT policy definition and
management, monitoring, and significant change
detection.

4.1. Business rule definitions

The business rules may be expressed in a variety of
methods, e.g. general economic models and rule
engines. In our current implementation of this process,
these rules are expressed using AMIT (Active
Middleware Integration – described in [1]).

AMIT is both a rule language for specifying
situations – a complex temporal predicate on events,
and an efficient event correlation engine for detecting
the occurrence of these situations. The definition of
situations is recursive, in that situations can then be
used in turn as input events to other situations. This
allows for hierarchical specification and calculation of
even more complex event predicates. The AMIT rule
language can be used in many different applications
and various domains, as an event in the context of this
language can be anything from a basic IT event to a
complex business process event. Examples of such
events are: the failure of a disk, a measurement of the
load on a web server, data regarding a specific client
web request, and the status of a business process.

Examples of business rules, expressible in AMIT,
include “For each buying or selling of stock, a 4%
commission is earned”, and “For each service level

����������	
�������
������������

���������
������

�����������
����

�����������

Significant
change

detection
(SCD)

component

�
�����

���������
������������

�
����������

�
���������
� �!�� �
�����"�

� �#����"�
����������

�
���������
�	
������
������

������$������

Figure 1: Business objective driven optimization
Process

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

agreement violation, a $50 penalty is paid”. More
detailed examples of business rules, as well as a sample
rule defined in the AMIT language, appear in Section
6.1.

4.2 Business objective driven optimization

An implementation of business objective driven
optimization requires a model of the system. In our
implementation, this model is composed of three main
sub-models: A business level model, an IT model and
an IT to business level impact analysis model.

The business level model supports the calculation
of the business metrics. This may include factors such
as gains from commissions, explicit penalties paid to
customers whenever service level guarantees are
violated, customers deserting due to poor service,
gaining new customers due to good reputation, and
losing customers due to poor reputation. In order to
enable optimization, this economic model should also
enable the calculation of an “end result” – a single
quantity that can be used to quantify the alignment of
the IT with the business objectives. An example of
such a quantity is the total income generated by the IT
infrastructure. We term this quantity the overall
business metric (OBM).

The IT model is composed of the system model and
the system user behavior model. The system model
takes into account the hardware configuration of the IT
– e.g. number of servers, number of CPUs on each
server, network configuration, and the software, which
includes the applications supported, the behavior of
these applications and the resources required by each
application. The system user behavior model takes into
account the manner in which the users of the IT
infrastructure use the systems supported by this
infrastructure.

The IT to business level impact analysis model
defines how events at the IT level impact the business
objectives defined by the business level model.
Examples of this are how individual response times
measured for a customer impact the penalty paid to a
customer and the measurement of a customer’s
dissatisfaction with poor response times.

In our current implementation, the system user
behavior model and the system model are modeled
using hybrid simulation models (i.e. simulation models
combining both conventional detailed simulation
modeling techniques), and other techniques. Additional
details regarding these models appear in Section 5.

The mechanism for expressing both the impact of
the IT level rules on the business objectives and the
calculation of the overall business objectives is the

same AMIT technology used for specifying the
business rules. Moreover, the rules used for calculating
these quantities are a superset of the business rules
definitions and the SLA/contract definitions, as these
rules must be taken into account when calculating the
overall business objective (OBM). In addition, the IT
policy tools present in the environment are also
modeled, in order to enable the prediction of the effect
of changing these policies on both the infrastructure
and the business objectives.

In order to optimize the IT according to the
business objectives, an optimizer is coupled with the
model. The optimization process itself is a search over
the space of possible actions/policies, which attempts
to find the setting in this space that optimizes the
business objectives. A more precise description of the
optimization process appears in Figure 2. Figure 3
depicts the architecture of the optimization mechanism.

// Optimization loop
While (true)
{
�� Optimizer generates policy A
�� Simulate model to calculate OBM

for A
�� If new OBM significantly better

than OBM for existing policy,
set real system policy to A

�� Provide OBM result as input to
optimizer

}

Figure 2: Optimization algorithm

Figure 3: ARAD architecture

Currently, Tabu Search [4] is the optimization
algorithm used. However, any black box optimization
algorithm can be utilized.

4.3 IT policy definition and management

In order to affect the production environment, an
effector must be present that can manage the
environment’s IT resources according to a specified
policy. Moreover, different settings of this policy must

Situations
AMIT

Generate
Traffic

Events Situations

System
User

Behavior
Simulatio

Current
Actions
Policy

System
Simulation

Model

Overall
Business Metric

computation
(AMIT/ADI)

Optimizer

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

have a significant impact on the business objectives
and the OBM. In an e-Commerce web site, for
instance, if the purpose is to maximize profits by giving
better service times to customers that bring higher
value to the site, an effector must be in place, enabling
the differentiation of the resources given to each
customer.

An example of such an effector is the bandwidth
allocation component of IBM’s Edge Server’s TQoS
component ([13]). This component allows allocating
the network bandwidth of user’s HTTP requests,
thereby allowing to prioritize the requests of one
customer over another. This bandwidth allocation is
carried out using a token bucket flow algorithm ([5]).

An example of an edge server policy appears in
Figure 4. From this example, it can be seen that even
though this effector enables giving one group of
customers a higher priority than another, it is not clear
how to set the values for this policy so as to optimize
high level business objectives.
policyAction PlatinumHigh
{

PolicyScope DataTraffic
DiffServExcessTrafficTreatment drop
DiffServInProfileRate 500
DiffServInProfileTokenBucket 1000

}

policyAction GoldHigh
{

PolicyScope DataTraffic
DiffServExcessTrafficTreatment drop
DiffServInProfileRate 300
DiffServInProfileTokenBucket 1000

}

Figure 4: Bandwidth allocation policy example

4.4 Monitoring

The optimized policy generated may be rendered
sub-optimal by changes in the system environment.
Therefore, this environment must be constantly
monitored in order to detect such changes. In the
technology described in this article, the AMIT runtime
engine, described above, enables the monitoring of the
business results in the real environment.

4.5 Significant change detection

In our implementation, there are two cases in which
a significant change is detected. The first is the case in
which any event that is defined as an event that signals
when a significant change occurs. An example of such
an event is the failure of a server. The second case is as
follows: As the entire process is business objectives
driven, a significant change is defined as a significant
deviation of the monitored business objectives from the

business objectives predicted by the models of the
optimization component. Statistical methods are used
to detect such a significant deviation. In our current
implementation, this is carried out by the following
general procedure: Several key business metrics are
chosen to be tested for a significant change, and the
results for these metrics in the actual environment are
constantly compared with the results for these metrics
in the simulated environment, using the the �2 statistical
test (([2]). A more detailed description of our
implementation follows:

�� The key business metrics that are to be tested
for a significant change are chosen.

�� The time line is divided into periods, each
containing n intervals. A sliding window of
change detection is defined, consisting of k
periods.

�� As soon as a period is over in the real
environment, k*n samples are collected for each
metric. A sample for an accumulating metric
(such as the total income) is calculated as the
difference between its value at the end and the
beginning of an interval. A sample for an
averaging metric (such as the average response
time for a customer) is calculated as the average
of the metric over the interval.

�� An analogous set of sample points is then
collected from the predictive model (using
several simulation runs), for the same window
of time periods under inspection. The number of
simulation runs is determined so as to ensure
that an accurate enough estimator of these
metrics is generated.

�� The �2 statistical test is used to test whether the
observed distribution (the samples from the real
environment) is a good fit to the expected
distribution (the samples from the simulated
runs). Such a test is performed for each of the
key business metrics. A false result of the �2 test
for any of the metrics indicates the occurrence
of a significant change in the environment.

A concise description of the above algorithm
appears in Figure 5.

5. Modeling

In order for such on-demand optimization to be
widely applicable, two modeling related issues must be
resolved: The first is the ability to create the simulation
models in a simple, non-programmatic manner. The
second is the automation of the model updates,
required to enable the correct handling of changes in

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

the environment. The following sub-sections describe
the methodologies used to address these issues.

// Significance Change Detection
At the end of a period, for each
business metric to be tested:
{
�� Calculate the sample points for

the business metric from the
real environment (n samples for
each of the last k periods)

�� Do the same for the simulation
runs

�� Perform the �
2
test for the real

environments vs the simulated
runs

�� If the test returns false,
signal a significant change

}

Figure 5: Significant change detection algorithm

5.1 Model creation

To enable model creation in a simple, non-
programmatic manner (given an IT site), a two stage
approach is used:

1. The standard components of the IT (e.g.
middleware, operating systems and hardware)
are modeled using a set of pre-prepared building
blocks. In this approach, for each type of
component, a model is created in advance,
which can be re-used across different sites and
infrastructures.

2. The site specific models, (e.g. application, user
behavior) are created automatically using
machine learning and statistical techniques.

As the purpose of our technology is to optimize
business objectives, there may be cases in which a
detailed model of a specific middleware or hardware
may not be required. Therefore, there can be several
types of building blocks. One example of a building
block type is one which contains a detailed queuing
model. However, there may also be other types of
building blocks, such as a “black box” building block.
Such a building block is simply a function, f, that for
each incoming request to the building block, returns the
response time of that request. More detailed examples
of specific building blocks appear in Section 6.1.

With regards to the site specific models, the
following models and learning algorithms have been
defined by us for the domain of e-Commerce web
applications:

�� User behavior model: This is a model of the
traffic pattern of the requests that enter a web
site. This traffic pattern is modeled using a
combination of the following: A set of

Markovian state-transition graphs (the CBMG
model [10]), and a set of clusters. Each
Markovian state transition graph represents a
possible web session type, with each node in the
graph representing a possible request. The set of
clusters models the frequency with which each
type of user session is initiated by a user. Each
simulated user is then assigned to a cluster, to
determine the frequency with which this user
initiates each type of session.

These models are automatically derived using
the following techniques: The Markovian graphs
are derived from web logs using the CBMG
derivation algorithm ([10]), and the clusters are
derived from the web logs using the k-means
clustering algorithm ([3]).

�� User Attribute Model: This models the values
of the attributes important to the business rules
(such as the purchase amount in a purchase
request), that are a part of the above HTTP
requests. These attribute values are modeled
using a set of probability distributions. These
distributions are automatically generated from
logs and database values on the customer’s site,
using statistical methods.

�� Tier level message breakdown: This models
the breakdown of incoming user HTTP requests
(modeled by the user behavior model), into
invocations of different components of a multi-
tier web application, e.g. Servlets, JSPs, EJBs
and database requests. For each such HTTP
request, the tier-level message breakdown is
modeled by a probabilistic graph, whose nodes
are services and methods that are invoked.

The above Tier-level message breakdown
graphs are built by applying business-process
analysis ([7]) and distribution fitting ([2])
algorithms to a log of broken-down client
requests produced by tracing and monitoring
tools.

�� Web and Application Server resource
requirements: These are models of the
resource level (e.g. CPU, disk) service times
(i.e. the net usage time of each resource) of each
web and application level request. The service
time is modeled by a load dependant
distribution function. These functions are
automatically generated using statistical and
machine learning techniques using data gathered
from performance tools at the web site.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

5.2 Model updates

Whenever a significant change is detected in the
system, the model must be updated to ensure that
reliable results are obtained by the optimization
processes. Therefore, automatic procedures are
required for updating the model.

Updates may be required either in the standard
components of the system (e.g. as a result of the failure
of a server), or in the site specific models. In the case
of updates to the standard components, the model is
modified by the addition, deletion, or update to a
building block. For example, if a server fails, the
building blocks representing that server and the
middleware executing on that server are removed from
the model.

Updates to the site specific models are handled,
(similarly to the initial derivation) by using machine
learning and statistical techniques. Following are more
details regarding such an algorithm for the update to
the system-user behavior model.

In order to update this model in response to a
significant change in the environment, a copy of the
client traffic model is constantly updated from
monitored system traffic, using on-line clustering
algorithms. Whenever a significant change is detected,
the model is incorporated into the predictive model,
and the optimization process restarts with the new
model in place. Figure 6 outlines the algorithm.

// Model Update
�� Make a copy of the user

attribute model
�� While no significance change is

detected:
{

Update the copy of the model
with real environment input,
using online clustering methods

}

�� Once a significant change is
detected substitute the copy for
the model in the predictive
system

Figure 6: Automatic model update algorithm

6. Validation

Two main types of validation tests were carried out
by us. The first is optimizing an e-Commerce site
according to business objectives, intended to test
whether carrying out the above outlined process can
indeed result in a significant improvement to business
results. The second is recognizing significant changes
in such a site, and re-optimizing accordingly, intended

to test the value of carrying out the optimization
process each time a significant change occurs.

A detailed description of optimizing a web site
appears in Section 6.1. Regarding tests of the second
type, a detailed description of recognizing and reacting
to significant changes is beyond the scope of this paper.
However, following is a brief description of such a test:

�� An e-Trading site’s policy was optimized
according to a certain number of users (10,000).

�� The number of users was increased significantly
(15,000), without changing any of the other
model parameters.

�� Such a change was recognized and re-
optimization was carried out.

�� The policy after the re-optimization yielded a
significant improvement in business results
(more then 23%) over remaining with the
previous policy.

6.1 Validation of the optimization architecture

In this validation test, an e-Trading web site (i.e. a
web site allowing the buying and selling of stocks on
the internet) was optimized according to business
objectives. This e-Trading web site was based on
IBM’s Trade3 benchmark application ([14]), i.e. a
three-tier J2EE e-Trading web application.

The following steps were carried out as a part of this
test:
�� The site’s architecture was defined. This

architecture included the following components:

Edge
Server

IHS+WAS

IHS+WAS

DB�

Figure 7: Case study architecture

o Two web/application servers, i.e. two
servers, so that on each server, both IBM’s
HTTP Server (IHS) and IBM’s Websphere
Application Server (WAS) are installed.

o One DB server, using IBM’s DB2 that
serves the database requests from both
web/application servers.

o An Edge server, which serves as the effector.
In this configuration, the Edge Server not
only allocates the bandwidth, but serves as a
load balancer, i.e. it directs incoming web
requests to actual web servers.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

A diagram of this architecture appears in
Figure 7.

�� The business objectives were defined as
follows:
o For each buying/selling of a stock, a

commission of 4% or $25 is collected,
whichever is greater

o Two types of service level agreements
(SLAs) exist, Platinum and Gold. A
platinum customer pays a daily flat fee of
$50 and a gold customer pays a daily flat fee
of $20.

o A platinum customer is promised an average
response time of 1 second. For each 1%
deviation from this response time, the site
pays a penalty of $5.5.

o A gold customer is promised an average
response time of 2 seconds. For each 1%
deviation from this response time, the site
pays a penalty of $3.5.

�� These business rules were then written as AMIT
rules. An example of an AMIT rule that is used
for the calculation of the commission appears in
Figure 8.

<situation internal="true"
lifespan="NeverEnding"
name="AggregatedComission"
persistent="false">
<operator>

<report detectionMode="immediate"
repeatMode="always" where="">

<operandReport addToSum="amount!=0"
average=""
event="Transaction" max="" min=""
override="false"
partAvg="false" partMax="false"
partMin="false"
quantifier="each" retain="true"

sampleMeasurementUnit="occurrences"
sampleRate="1"
sum="max(25,amount*0.04)"

threshold=""
/>

<operandReport addToSum="true"
average=""

event="DayStart" max="" min=""
override="false"
partAvg="false" partMax="false"
partMin="false"
quantifier="each" retain="true"

sampleMeasurementUnit="occurrences"
sampleRate="1"
sum="0" threshold=""

/>
</report>

</operator>
<situationAttribute expression="sum"
name="commission" type="number"/>
<comment commentText=""/>

</situation>

Figure 8: Example of an AMIT rule

�� The architecture was modelled using building
blocks. The following building blocks were
used:

o A hardware building block: This is a
queuing network building block, which

contains queues and servers for physical
resources such as CPUs and disk.

o The IHS and WAS server: These were
queuing network building blocks. The IHS
model enables taking into account
parameters such as connection pooling and
web server process pool, while the WAS
model consists of several components such
as web container, EJB container and JDBC
pool.

o A black box model of DB2 was created, i.e.
the DB2 is represented by two functions.

The first function,
� �,r f Ri ��

returns the
response time for request Ri given the state

of the database, � . The second function,

� �, 'g Ri� ��
, returns the new state, � ,

given the new request Ri, and the previous

state, '� . The state encapsulates all factors
that affect the response time of the request,
such as the CPU load on the database server.

In our implementation, Bayesian Network
Learning algorithms are used to generate
these functions from performance
measurements in the environment.

o The model was created based on these
building blocks, using XJTek’s ([12])
Anylogic 4.5 simulation product. A diagram
of the simulation model appears in Figure 9.

Figure 9: Simulation model

�� The edge server policy was optimized using the
Tabu Search algorithm.

The results of the case study were the following:
With no effector policy (no bandwidth limits), the total
income was -$475,376. The optimization process, after
7 iterations, improved the total income and brought it
to $179,088, i.e. changed an initial negative income to
a positive value. Figure 10 shows these results.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

6.2 Conclusions

Based on the above two validation tests, the
following conclusions can be reached:

�� Given a valid model of the system, very
significant improvements in business objectives
can be obtained using this methodology, by
setting the policy of currently available tools
such as IBM’s Edge Server.

�� In order to keep the site optimized according to
business objectives, it is important to recognize
significant changes and respond to them.

O ptim ization Results

-600000

-400000

-200000

0

200000

400000

600000

800000

1000000

1200000

Co m miss ion Penalty Income

Result co m parison

$

D efault policy (no
B andw idth lim its)

O p tim ized R esults

Figure 10: Default vs. optimized policies

7. Summary

This paper presented a process, architecture, and a
set of technologies for autonomic, on demand
optimization of an IT business infrastructure according
to high-level business objectives, rather than IT level
metrics. This approach has benefits of constantly
keeping the infrastructure aligned with business
objectives, and results in a clear connection of IT
related policy decisions to business level metrics such
as profit or ROI.

The architecture of the optimization component is
very general, and may apply to various IT scenarios,
such as e-Commerce sites and messaging infrastructure.
Although simulation technologies were used in the
implementation presented in this article, other types of
models, such as functional and analytical models, may
be incorporated into this architecture. In addition, it is
possible to replace the rule-based economical models
presented in this article with other types of models.

Several future research directions are available.
Most implementation choices for the different
algorithms and techniques are not exclusive. Analytical
and functional predictive models should be examined
and analyzed. The definition of suitable economical
models should be explored. The Tabu-search algorithm
used for the optimization process could be substituted
with another. Finally, the various ways in which to

automatically acquire various models should be
explored.

8. References

[1] A. Adi and O. Etzion, “The Situation Manager Rule
Language”, International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, 2002,
pp. 36-57.

[2] Brownlee, K. A., Statistical Theory and Methodology in
Science and Engineering 2nd Edition, Robert E. Krieger
Publishing Company, Inc., 1965.

[3] Everit, B., Cluster Analysis, Halted Press, New York,
1980.

[4] Glover, F. and M. Laguna, Tabu Search, Kluwer
Academic Publishers, 2002.

[5] L. Huynh, “Policy Based Quality of Service in z/OS
V1R2”, IBM Corp., 2001, http://www-
1.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gm1
30027.pdf

[6] Z. Ghahramani, “Learning Dynamic Bayesian Networks”,
Adaptive Processing of Sequences and Data Structures .
Lecture Notes in Artificial Intelligence, pp. 168-197.

[7] M. Golani and S. Pinter, Generating a Process Model
from a Process Audit Log, Business Process Management
2003, pp. 136-151

[8] D. Menasce, J. Almeida, R. Fonseca, and M. Mendes,
“Business-oriented resource management policies for
ecommerce servers”, Performance Evaluation”, 2000, 42(2-
3): pp. 223- 239.

[9] D. Menasce, D. Barbara, and R. Dodge, “Preserving QoS
of E-commerce Sites Through Self-Tuning: A Performance
Model Approach”, Proceedings of 2001 ACM Conference on
E-commerce, Tampa, 2001, pp. 224–234.

[10] D. Menasce, V. Almeida, R. Fonseca, and M. Mendes,
“A Methodology for Workload Characterization of E-
commerce Sites”, Proc. 1999 ACM Conference in Electronic
Commerce, Denver, CO, Nov. 1999.

[11] http://www.peakstone.com

[12] http://www.xjtek.com

[13] http://www.ibm.com/software/webservers/edgeserver/

[14]http://www-
3.ibm.com/software/webservers/appserv/benchmark3.html

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

