

Automated Multi-Tier System Design
for Service Availability

G. (John) Janakiraman, Jose Renato Santos, Yoshio Turner
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2003-109
May 22nd , 2003*

self-management,
automated design,
data center
infrastructure,
availability model

Creating a cost-effective large-scale multi-tier Enterprise service
requires judicious selection and configuration of infrastructure
elements and mechanisms. The minimum cost solution that satisfies
business requirements for service availability and performance
should be identified. Emerging self-managed computing utility
environments demand an automated solution to this problem. This
solution must be integrated with the utility controller, which
typically virtualizes resources for services, thus hiding from them
information about the characteristics of the underlying physical
infrastructure. In this paper, we present AVED, our initial version
of an engine that automatically designs a cost-effective service
infrastructure which will meet the service's availability
requirements. AVED explores a design space consisting of multiple
combinations of hardware/software configurations presenting
various tradeoffs among cost, availability, and performance. We
illustrate that AVED generates a complete picture of the cost-
availability tradeoff for the infrastructure design. We also describe
how AVED can be integrated with utility computing environments
to improve the automation of service lifecycles.

* Internal Accession Date Only Approved for External Publication
To be published in and presented at the First Workshop on Design of Self-Managing Systems (at DSN 2003) 22-25
June 2003, San Francisco, Ca lifornia
 Copyright Hewlett-Packard Company 2003

Automated Multi-Tier System Design for Service Availability

G. (John) Janakiraman, Jose Renato Santos, Yoshio Turner

Abstract

Creating a cost-effective large-scale multi-tier Enterprise service requires judicious selection and configura-

tion of infrastructure elements and mechanisms. The minimum cost solution that satisfies business requirements

for service availability and performance should be identified. Emerging self-managed computing utility environ-

ments demand an automated solution to this problem. This solution must be integrated with the utility controller,

which typically virtualizes resources for services, thus hiding from them information about the characteristics

of the underlying physical infrastructure. In this paper, we present AVED, our initial version of an engine that

automatically designs a cost-effective service infrastructure which will meet the service’s availability require-

ments. AVED explores a design space consisting of multiple combinations of hardware/software configurations

presenting various tradeoffs among cost, availability, and performance. We illustrate that AVED generates a com-

plete picture of the cost-availability tradeoff for the infrastructure design. We also describe how AVED can be

integrated with utility computing environments to improve the automation of service lifecycles.

1 Introduction

Major systems vendors such as HP, IBM, and Sun Microsystems are vigorously pursuing the grand vision of

delivering computing as a utility to dramatically improve the efficiency and simplify the management of information

technology resources [7][14][9][3]. The idea is that a user who wishes to deploy an Internet or Enterprise service

could issue a request to a computing utility, which in response would automatically allocate and configure appro-

priate resources from pools of compute, storage, and networking resources to create a secure, virtualized computing

environment that realizes the service. Even more ambitious is the notion that a computing utility would automati-

cally manage the provisioned service throughout its lifetime by dynamically tuning the design and deployment of the

service’s computing infrastructure in response to changes in service workload, component failures, etc. The comput-

ing utility would continuously manage the service infrastructure to ensure that service availability and performance

are at levels that are adequate for the user’s business mission.

A key component of such a self-managing computing utility is an automated design engine which would design

1

a service’s computing infrastructure and dynamically re-design it whenever necessary throughout the service’s life-

time. In contrast, manual design and re-design processes are likely to become increasingly problematic as the use of

resource virtualization becomes pervasive within utility computing environments. To illustrate this point, consider

the impact of virtualization in Hewlett Packard’s Utility Data Center (UDC) [7], a commercial solution that exempli-

fies the current state of industry progress toward realizing the utility computing vision. With its current functionality,

the UDC makes infrastructure management simpler and more flexible by allocating virtualized compute, storage, and

network resources (and services such as DNS) to users on demand. The UDC can improve service availability by

automatically replacing failed resources in a user’s environment with virtually similar resources from the physical

pool. However, service availability is not entirely in the user’s control because the virtualization layer hides informa-

tion about availability properties of the underlying physical resources (e.g., failure correlation of servers attached to

a shared switch that can fail1). In the future as the use of infrastructure virtualization widens, other relevant attributes

of a physical resource may be abstracted (e.g., knowledge about sharing of a physical server between multiple virtu-

alized servers). Since these attribute values are available only to the utility’s control software, an automated design

engine that is integrated with the control software can be used to determine the right amount of virtual resources to

be allocated to a service and the right set of physical resources to be used, given high level specifications of desired

performance and availability.

In this paper, we present AVED, an initial, proof-of-concept prototype which automates the design of a highly

available system infrastructure for a service through exploration of a design space of resource and configuration

alternatives. AVED targets the automated design of services that have the common multi-tier structure (e.g., web tier

plus application server tier plus database tier). We describe AVED in the context of the UDC. We can envision future

versions of the UDC that would integrate AVED into the utility control software for improved self-management

functionality.

The design space that must be explored automatically by AVED can be large and consist of multiple dimen-

sions such as choice of hardware components, software configurations such as database checkpointing frequency,

use of redundancy through active, standby, or cold sparing, redundancy in network paths, use of software rejuvena-

tion techniques, etc. Each choice within each of these dimensions presents a different tradeoff among availability,

performance, and cost of ownership. The problem is to find a solution from this multi-dimensional design space

that provides the best cost-benefit tradeoff to the user. This tradeoff can be modeled with a utility function of cost,

1In fact, with the UDC network topology, two network devices would need to fail before the attached computing devices are disconnected.

2

performance, and availability. In a simple case, the problem can be reduced to finding a minimum cost solution that

meets the user’s availability and performance goals specified as simple thresholds. We take this simple approach for

our initial version of AVED.

In current practice, human system designers explore the design space by drawing on their expertise and expe-

rience to manually generate system design alternatives. To evaluate the availability of the generated design alter-

natives, designers use an availability modeling tool [4][2][13], and databases of component failure rates and repair

times. The modeling tool predicts service downtime and the cost of downtime based on a business mission, which

expresses for example that downtime during weekends is less costly than downtime on weekdays. The predictions

are predicated on the use of best practice IT management [12] and thus provide an upper limit on the availability that

can be achieved. Thus these tools are most useful for revealing the cost-benefit tradeoffs of different infrastructure

options. With our approach, AVED automatically generates designs and evaluates them using an availability mod-

eling tool inside an execution loop that iterates to find a design that meets availability and performance requirements

at minimum cost. AVED can be faster than human designers in generating optimal designs. In addition, AVED

may improve solution quality by covering a wider range of design alternatives than is usually feasible with a manual

approach.

The rest of this paper is organized as follows. Section 2 briefly describes how self-managing systems such as

the UDC could integrate support for automatic design and management for service availability. Section 3 presents

the interfaces and architecture of AVED. We describe the method used in AVED to represent designs and repair

options, and present an initial strategy for searching the design space. Section 4 presents an example showing the

potential use of AVED. The example illustrates that the optimal design for a target level of availability can change as

a function of service or system properties such as workload or the introduction of upgraded software with different

failure behavior. Section 5 briefly summarizes related automated technologies for high availability. Finally, Section 6

presents our conclusions and future work.

2 Factoring Availability in Self-Managing IT Infrastructures

IT infrastructures powering a computing utility must be self-managing. The functional scope of these self-

managing IT infrastructures must include automation for service availability. Prevailing solutions for IT infrastruc-

3

ture self-management have minimal or no functionality to automate the delivery of high availability for services. Our

work is focused on extending IT infrastructure self-management solutions with support for automated availability.

To discuss these extensions in context, we first identify the key components of a typical self-managing system by

examining HP’s Utility Data Center (UDC) solution.

The UDC is a programmable computing infrastructure with a utility controller that automates the creation, mon-

itoring and metering of multi-tier server farms. To host a service in the UDC, a user must describe the service to

the UDC through a web portal, identifying required hardware resources, the manner in which they should be in-

terconnected, and operating system images. The utility controller maintains infrastructure information such as the

hardware components that are part of the UDC’s physical infrastructure and their physical interconnection topology.

A resource allocation engine in the utility controller uses this information and the usage status of infrastructure

resources to determine the set of physical resources that are free to be allocated to the service. Once the resources

are allocated, the utility controller automatically deploys the farm by configuring network and storage components,

and configuring and booting servers with specified disk images and operating systems. Furthermore, during service

operation, the utility controller monitors all resources deployed in the farm and also performs runtime management

functions. For example, if it detects any resource failure, it automatically deploys replacement resources. From

this functional description of the UDC, we can derive that typical self-managing systems will be composed of these

functional components: 1) service description means, 2) infrastructure attributes repository, 3) resource allocation

engine, 4) automated deployment, 5) monitoring infrastructure, and 6) automated runtime management.

Next-generation self-managing systems will likely include richer implementations of these same functional com-

ponents. In addition, since next-generation self-managing systems are likely to be driven by higher level service

descriptions (e.g., specifying the service as a database with a minimum transaction throughput requirement, rather

than specifying the use of a particular type of hardware resource), they will also need a design engine that maps

these high level requirements to infrastructure requirements (e.g., determining the type of machine and the number

of these machines based on the performance requirement). Fig. 1 illustrates these functional components of a self-

managing system. We discuss below our approach for extending this self-managing system framework to automate

the delivery of highly available services.

To automate for availability, service descriptions must be extended to specify the failure and recovery proper-

ties of service components. These properties include the Mean Time Between Failure (MTBF) and Mean Time to

4

self-managing system

monitoring
infrastructure

automated
runtime mgmt

managed infrastructure

automated
deployment

infrastructure
repository

resource allocation
engine

service
descriptions

automated design
engine

deploy /
configure

reconfiguremonitor

service specification

Figure 1: Components of a self-managing system

Repair (MTTR) of application components comprising the service and dependencies among these application com-

ponents which will influence how each failure event impacts overall service delivery (e.g., it may result in total or

partial service failure or performance may degrade due to recovery action in the components that are still alive). It

is impractical to define a universal schema suitable for describing these for arbitrary services. We envision schema

templates for categories of services (e.g., three-tier online stores, media rendering farms) that can be customized for

specific service instances. We describe one such example in Section 3. The service description should also specify

the availability requirements of the service, ideally through high level properties that are meaningful to the service

rather than in low component-level requirements. High level properties include service uptime, throughput and

response time objectives, tolerable degradation in these objectives, bounds on the duration of any instance of degra-

dation, business cost of degradations and time-dependent variations in these factors. The service can, alternatively,

specify a utility function that quantifies the utility of various levels of availability allowing the automated system to

choose the right level of availability that balances this utility function against the cost of providing availability.

The self-managing system’s infrastructure attribute repository must be extended to provide empirical informa-

tion about the failure properties of infrastructure elements2 such as their transient failure rates and restart times,

permanent failure rates, and the scope of their failures. The infrastructure will support a range of availability mecha-

nisms, whose attributes must also be described. The attributes must identify the infrastructure component and failure

mode that is protected by the mechanism, repair and recovery latencies, as well as the impact on the service during

2We define infrastructure elements loosely to include hardware, system software and application software components that are general to
several services, such as server platforms, operating systems, and database systems.

5

normal operation and recovery.

A key component needed to automate availability is an automated design engine that is responsible for se-

lecting and configuring infrastructure components and availability mechanisms such that high level requirements

are met. The work we describe in this paper represents our initial efforts in developing this automated design en-

gine. The design engine must automatically explore several design alternatives and embed appropriate models of

the environment to determine which design alternative will satisfy higher level requirements at minimal cost. The

automated design engine will likely be implemented as a hierarchy of engines, each of which is responsible for

the design/configuration (initial and subsequent re-design) of a subset of the overall environment. For example,

a service that includes a database system may have an automated configuration/tuning engine associated with the

database system in addition to a service-level design engine.

The extensions necessary to the remaining components of a self-managing system are fairly straightforward. The

automated deployment and automated runtime management mechanisms must be capable of deploying and config-

uring the availability mechanisms. For example, with a new mechanism for minimizing the downtime associated

with planned upgrades, these systems must automate the provisioning of the required set of backup resources during

the upgrade and the scheduling of the upgrade to a time window when impact on the business mission is minimal.

In addition, the monitoring infrastructure should be extended to monitor failure and recovery characteristics such as

failure dependencies, failure rates, repair times, recovery times etc.

3 Automated Design for High Availability

AVED is our proof-of-concept initial prototype of a simplified automated design engine for utility computing.

AVED identifies and describes the minimum cost design that satisfies the user’s requirements. The key challenge

for the architecture and operation of AVED is to devise workable techniques for modeling and searching the service

design space, including the various combinations of availability mechanism options that can be used in each design.

In this section we present our progress so far in meeting that ambitious challenge.

The overall architecture of AVED is shown in Fig. 2. The inputs consist of a service description and an infras-

tructure repository. They describe the design space by specifying the structure of the system design and the various

6

Design Generator

Translator

service
specification

intermediate
representation

availability
model

deployment
description

Availability
Evaluation

Engine

Deployment Mechanism

intermediate
representation

infrastructure
attributes

Translator

Service Description UI Infrastructure Repository

final design

candidate design

candidate design

final design

AVED

availability
estimate

Figure 2: AVED architecture

availability mechanism options. AVED searches the design space in an execution loop, generating a series of designs

that it feeds to an availability evaluation engine for analysis. The designs AVED generates are represented internally

using a data structure that is independent of the evaluation engine. A translation module inside AVED converts this

intermediate representation of a design into an availability model that is input to an availability evaluation engine

such as AVANTO3, Möbius [2], SHARPE [13], etc. By using this approach, AVED can be interfaced to a variety of

availability modeling tools simply by customizing the translator to the evaluation engine. This modularity could al-

low us to experiment with speeding up the design space search, for example by using a two-phase approach in which

first a fast but imprecise model (e.g., combinatorial modeling) is used to quickly characterize regions of the design

space, and secondly a more precise but slower model (e.g., discrete event simulation) could be used to focus on an

interesting region identified in the first phase. AVED translates the optimal design’s intermediate representation to

a format useable by an automated service deployment engine (see Fig. 2), which instantiates the service on actual

hardware.

The service description input to AVED has two purposes. First, it specifies the high-level performability require-

ments that must be satisfied by the service. The performability requirements currently have a simple specification

consisting of just two parameters: the minimum acceptable performance (in service-specific units such as transac-

tions per second for the expected type of transaction), and the maximum annual downtime allowed. We use the

term annual downtime or simply downtime to indicate the expected time a system will be unavailable in a year. We

3An HP tool used by HP Services to evaluate infrastructure availability

7

consider a system is unavailable whenever the number of active resources is not sufficient to achieve the service

performance requirement. Second, the service description describes the service structure by listing the tiers that

are to comprise the service implementation, the candidate resources that can be used in each tier, their performance

characterization, and indication if the service could be deployed in a clustered configuration4. For example, the

following attribute-value pairs describe an example three-tier structure:

tier_name=Web-Tier
tier_resource=ResourceA cluster=True singleload=100 nmax=25
tier_resource=ResourceB cluster=True singleload=300 nmax=25

tier_name = Application-Tier
tier_resource=ResourceC cluster=True singleload=200 nmax=25
tier_resource=ResourceD cluster=True singleload=600 nmax=25

tier_name = Database-Tier
tier_resource=ResourceE cluster=False singleload=500 nmax=1
tier_resource=ResourceF cluster=False singleload=1500 nmax=1

For each tier, the specification provides a list of candidate resource types that can be selected to design the tier. Each

distinct resource type corresponds to a unique combination of hardware and software components (described in the

next paragraph). In this example, the web tier can be implemented either with resources of the ResourceA type or

with resources of the ResourceB type. Each design generated by AVED chooses exactly one of these options for

each tier. For each candidate resource type, a boolean flag cluster indicates if the resources can be used in a cluster

configuration. If not, active spares cannot be used. In this example, active spares cannot be used for the database

tier, which is limited to a single active node, but they can be used for other tiers. In addition, the description of

a resource includes a characterization of its performance under the service’s workload. We currently use a simple

linear saturating performance model for cluster configurations. The parameter singleload indicates the performance,

in service-specific load units, of a single resource, and the performance of a cluster of resources of the same type5

scales linearly with the number of active resources until saturating at a cluster of size nmax active resources.

The infrastructure repository input to AVED describes the availability properties and costs of the various resource

options. Each resource consists of a collection of hardware and software components. In our current model any

component failure causes the resource that contains it to be down, and we intend to capture more general failure

dependency relationships in future versions of AVED. The following example defines two resource types, each

consisting of three component types (in this case: hardware, OS, and application):

4In the future, we would additionally like to enable specification and modeling of failure dependences between application components.
5For simplicity, we currently limit each tier to be homogeneous in resource type.

8

resource=ResourceA MachineB Linux WebServerX
resource=ResourceB MachineA Unix WebServerX

For each component type, the repository specifies its cost and availability properties. We next explain how these are

described using the following example specification of a hardware component type:

component=MachineA cost_cold=1000 cost_active=1100
perm_mtbf=650d failover_used=true failover_duration=2m

repair_mttr=15h repair_cost=580
repair_mttr=6h repair_cost=1500

tran_mtbf=75d failover_used=false
repair_mttr=30s repair_cost=0

• Cost: The annualized cost of a component is given for its various operating modes. In this example, the

component can be either powered off if it is a cold spare (cost cold = 1000) or powered on if it is an active

spare (cost active = 1100). The cost difference may account for the electrical power costs that are incurred

only when the hardware is powered on. As another example of mode dependent cost, an application software

component might incur cost only when it holds a floating license. The annual cost of a component is the sum of

the annual cost to operate it in its operating mode and the initial (capital) cost of the component annualized by

dividing by its useful lifetime in years. The annual cost of a resource is the sum of the costs of its components

in their corresponding operating modes.

• Failure modes: A component can have multiple failure modes. This example indicates a permanent failure

mode with MTBF perm mtbf = 650 days and a transient failure mode with MTBF tran mtbf = 75 days.

For each failure mode, its failover behavior and repair options are specified as follows:

– Failover: For each failure mode, failover to an available cold spare is enabled if the mode’s failover used

flag is true, in which case failover requires time failover duration to complete. In this example, a per-

manent failure triggers failover to a cold spare resource in two minutes, but a transient failure does not

trigger failover.

– Repair options: Multiple repair options can be specified for each failure mode. A design selects exactly

one of these repair options for each component instance, and the selection applies to all peer components

in the same tier. Each repair option is described by the Mean Time To Repair (MTTR) it enables6, and

6Currently, we include failure detection latency into the MTTR values. We intend to extend AVED to enable exploration of alternative
detection mechanism options that differ in detection latency, coverage, accuracy, and performance degradation impact.

9

the annualized cost per node of choosing the repair option. Availability mechanisms with continuous

parameters, such as checkpointing with configurable checkpoint frequency, can be represented as mul-

tiple discrete repair options. In the example above, permanent failure has two repair options. One costs

$580.00 per node and completes repair with repair mttr = 15 hours, and the other costs $1500.00 per

node but completes repair in only 6 hours. These could represent, for example, maintenance contracts

that differ in cost and in the response time of the hardware repair staff. For transient failure, there is only

one option, which corresponds to resetting the hardware. It takes 30 seconds for the hardware to come

back up, and there is no cost to have this option.

For each repair option, a performance degradation parameter (not shown in this example) can optionally

be specified. This parameter indicates the degradation (as a percentage value) of the component’s perfor-

mance during fault-free operation as a result of having the repair option in the design (e.g., checkpoint

overhead). Although this parameter is part of the infrastructure repository, the precise value of perfor-

mance degradation is likely service-specific, and therefore this value should be monitored and verified

during normal operation of a deployed service or prior to deployment through offline evaluation. Per-

formance degradation also may occur after a component is repaired but before it has been completely

reintegrated into the service infrastructure. This degradation may affect one or more components in the

cluster during this integration process. In the future we plan to specify and model this type of perfor-

mance degradation during recovery.

– Preemptive maintenance: In addition to failover behavior and repair options, we see the need to de-

scribe the impact of preemptive maintenance on availability. For example, the use of software rejuvena-

tion [8] can have the effect of improving MTBF for a failure mode, as opposed to repair options which

have impact on MTTR, not MTBF. In the future we plan to define parameters for describing preventive

maintenance options.

The number of components of each type that can be used to build a design may be limited, particularly in a utility

computing environment in which existing hardware is intended to be used instead of purchasing and installing new

hardware. For now, an optional parameter (not shown in this example) is used to indicate the maximum number of

components of each type that can be selected for a design. In the future we intend to add the ability to describe more

sophisticated resource constraints.

10

To generate a design, AVED makes a series of design choices as it incrementally builds an intermediate represen-

tation for the generated design. This representation has a hierarchical structure of tiers, resources, and components.

AVED selects exactly one resource type for each tier and the number of active resources of that type to instantiate.

Some of these active resources may be active spares, not needed to meet performance requirements unless some re-

source fails. In addition to choosing the active resources, AVED selects the number of cold spare resources for each

tier7. AVED selects exactly one repair option for each failure mode of each component of each resource, ensuring

that the selection is identical for resources that are peers in a tier. As AVED creates the hierarchical intermediate

representation of a service design, it also calculates the design’s cost, which is the sum of the cost of the components

and the cost of the repair options selected for the components. The cost and availability of all the designs determine

which one is optimal.

AVED’s design space search strategy is designed to minimize the number of designs that need availability eval-

uation, since this is the most time consuming operation. The search strategy is composed of two stages. In the first

stage each tier is evaluated independently to compute its the optimal design. In the second stage the solutions for the

tiers are combined and the global optimal design.

Algorithm 1 describes the algorithm for searching the optimal solution for a single tier, using a single resource.

The optimal design for the tier can be obtained using this algorithm for all available resource types and selecting the

solution with lowest cost. In the algorithm description, MinCostDesigni indicates the minimum cost solution that

can be used with i spare resources (i.e., i active or cold resources in addition to the minimum number of resources

required to satisfy the required throughput). This design can be selected by setting the spares state to the minimum

cost state and setting the repair of all failures to the option with minimum cost or minimum performance overhead

(We assume that for a particular failure, repair options differ only in cost or in performance overhead, but not in

both). Similarily, MinDowntimeDesigni is an optimistic design with i spares in which the resource state is set to

the best option (active if possible, cold otherwise) and all failure repairs set to the option with the minimum MTTR,

ignoring any performance overhead that may be associated with the selected repair options. To limit the search to

a finite number of designs, we define a maximum number of spares that can be selected which is indicated by the

constant MaxSpares in the algorithm description. The function Cost(design) returns the cost of a design if the

design is valid; otherwise it returns a value greater than the cost of any design. Initially, the algorithm determines a

7Currently, designs generated by AVED cannot include both active spares and cold spares in a single tier. We plan to remove this restriction
in the future.

11

Algorithm 1 Single tier design space search for a single resource
1: dt = Evaluate(MinCostDesign0)
2: if (dt ≤ downtime) then
3: return (MinCostDesign0)
4: end if
5: dt = Evaluate(MinDowntimeDesignMaxSpares)
6: if (dt > downtime) then
7: return NO SOLUTION
8: end if
9: MinSpares = MaxSpares

10: Current = MinDowntimeDesignMaxSpares

11: for i=0 to MaxSpares-1 do
12: dt = Evaluate(MinDowntimeDesigni)
13: if (dt ≤ downtime) then
14: MinSpares = i
15: exit for loop
16: end if
17: end for
18: Current = InvalidDesign
19: for i=MinSpares to MaxSpares do
20: if (Cost(MinCostDesigni) > Cost(Current)) then
21: return Current
22: end if
23: for all possible Designs with i spares do
24: if (Cost(Design) < Cost(Current) then
25: dt = Evaluate(Design)
26: if (dt ≤ Downtime) then
27: Current = Design
28: end if
29: end if
30: end for
31: end for
32: return NO SOLUTION

12

lower bound MinSpares on the number of spares that are required by a feasible solution. The search for a solution

starts from this point, pruning all designs that have lower number of spares. Also, only designs that have lower cost

than the best solution found so far are evaluated. The search stops either when the maximum number of spares is

exceeded or when the minimum cost design for a particular number of spares has higher cost than the best design

found so far.

A multi-tier system is down when any of the tiers is down. We approximate the service downtime as the sum of

the downtime of individual tiers. While two tiers can be down at the same time, resulting in a total downtime that is

slightly less than the sum of individual tiers downtime, for practical values of downtime much lower than the entire

year, the error incurred by this approximation is negligible.

The single tier search algorithm finds the best design for each tier, using the service required downtime. Thus, it

is possible that the design using the individual tier optimal designs exceeds the required downtime. If that is the case

the multi-tier search continues. Otherwise, the combination of the individual tiers solutions is the optimal multi-tier

design, and no further search is necessary.

In case the multi-tier solution needs to proceed, we reduce the downtime requirement for all tiers to a value

slightly lower than what is achieved for the current tier design, and recompute the best “next” design for all tiers.

We continue this process until the sum of the individual tiers downtime does not exceed the service requirement. At

this point we have a list of designs lsti for each tier i. Assume the lists are ordered in decreasing order of downtime.

The multi-tier design composed of the last design in each tier list lsti satisfies the service requirement, but may not

be the minimum cost one. To search for the minimum cost design, we compute the global downtime of all possible

combinations, containing one design from each list lsti, selecting the one that satisfies the downtime requirement

with minimum cost8. If the current solution has at least one component which is the last design on a tier list lsti, we

increment the size of that list, obtaining the “next” best design for that tier. We then evaluate if any new combination

of tier designs lead to a lower cost solution. The algorithm stops when the minimum cost solution found so far does

not include any of the last design of each list lsti.

8Note that this step does not require any design availability evaluation which is most expensive operation. The multi-tier downtime for
each combination is just the sum of each tier downtime.

13

4 Example

We illustrate the value of AVED using a simple example scenario: designing the Application Tier of an Internet

Service for high availability.

In this scenario, the following design dimensions are explored by AVED: 1) resource type, 2) number of extra

machines, 3) state of extra machines 4) selection of maintenance contract. We assume the infrastructure supports

two different types of machines: a dual processor machine (machine type M-A) which can run Linux and a more

powerful 8-way machine (machine type M-B) which can run a proprietary version of UNIX. In addition, we assume

we have a choice of two different types of J2EE Application Servers software, AS-A and AS-B, that can be installed

on either hardware platform. By combining the two hardware options with the two software options, AVED can

explore four different resource options. We assume that the application server can be used in a cluster environment

and the J2EE application scales linearly up to 25 nodes for any of the resource configurations. We assume AS−B

is a more mature product with a lower failure rate than AS-A, but AS-B has a higher cost. In addition, we assume

AS-B has a lower recovery time than AS-A (for example, this may be because AS-A provides a mechanism for

checkpointing the application state on a network attached filesystem, which is slow, while AS−B provides a mech-

anism for checkpointing the application state on remote peer memory, which is fast).9. Extra (redundant) machines

added to improve availability could be used in two states: 1) active: the machines are added to the cluster and are

always operational, except when they fail. 2) cold spare: the machines are turned off and only turned on to replace

a failed machine. Cold spares have lower cost than active resources because both operational and software licence

costs are avoided. However, service downtime is incurred during failover to a cold spare. Finally, the repair options

for failed hardware consist of four different maintenance contracts10 that can be purchased from a service provider.

Each contract has a different cost and provides a different response time for on-site technical support necessary to

repair hardware failures.

We have described this scenario using the notation introduced in Section 3. Tables 1 and 2 show the input values

used in this example. Although this is an hypothetical design, we made an effort to choose realistic input parameters.

We obtained failure rates or MTBF values for hardware components from the manufacturer historical database. We

9For simplicity, we assume the performance impact in normal operation, for both mechanisms, is insignificant and can be ignored
10Maintenance contracts are more meaningful in a manually designed and managed IT environment than in a self-managed IT environment.

We have chosen to show this in our example because we have not yet completed obtaining realistic data for other mechanisms such as dynamic
resource replacement, database checkpointing tuning, and software rejuvenation which are applicable in a self-managed environment.

14

Component Cost Cold Cost Active Failures MTBF Repair Option MTTR Repair Cost Failover
Time

Transient 75 days Reset 30 sec. $0.00 No
Permanent 650 days Serv. Contract 2 min.

Machine A $2,400.00 $2,640.00 1.Bronze 38 hours $380.00/machine
(M-A) 2.Silver 15 hours $580.00/machine

3. Gold 8 hours $750.00/machine
4. Platinum 6 hours $1500.00/machine

Transient 150 days Reset 60 sec. $0.00 No
Permanent 1300 days Serv. Contract 2 min.

Machine B $85,000.00 $93,500.00 1.Bronze 38 hours $10,000.00/machine
(M-B) 2.Silver 15 hours $12,500.00/machine

3. Gold 8 hours $16,000.00/machine
4. Platinum 6 hours $25,000/machine

Linux $0.00 $0.00 Crash 60 days Reboot 2 min. $0.00 No
UNIX $0.00 $200.00 Crash 365 days Reboot 4 min. $0.00 No
Applic. Server A $0.00 $1,700.00 Crash 30 days Restart 2 min. $0.00 No
(AS-A)
Applic. Server B $0.00 $2,000.00 Crash 90 days Restart 30 sec. $0.00 No
(AS-B)

Table 1: Example input parameters: Components failure behavior and costs

Resource Performance Model
singleload nmax cluster flag

M-A/linux/AS-A 200 load units 25 nodes true
M-B/unix/AS-A 1600 load units 25 nodes true
M-A/linux/AS-B 200 load units 25 nodes true
M-B/unix/AS-B 1600 load units 25 nodes true

Table 2: Example input parameters: Service characteristics

selected costs and response times for service maintenance contracts offered by the hardware vendors. Software and

hardware costs were obtained from vendors’ published prices. However, software failures rates were estimated based

on the authors’ own intuition, since this data was not readily available.

4.1 Optimal designs

We have used AVED to identify the optimal designs for this example scenario over a range of service perfor-

mance and availability requirements. Fig. 3 shows these optimal designs as a function of the performance require-

ment (Units of load) and the availability requirement (Maximum annual downtime11). The designs are represented

in Fig. 3 by a tuple (resource,contract,redundancy), where resource indicates the selected type of resource, contract

indicates the selected Service Maintenance Contract, and redundancy indicates the number of spares and their state

11We refer to maximum annual downtime simply as downtime in the rest our discussion.

15

0.1

1

10

100

1000

10000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
nn

ua
l D

ow
nt

im
e

L
im

it
[m

in
s]

Units of load (service specific)

1 - M-A/linux/AS-A, bronze, no spare
2 - M-A/linux/AS-A, silver, no spare
3 - M-A/linux/AS-A, gold, no spare
4 - M-A/linux/AS-B, gold, no spare
5 - M-A/linux/AS-A, platinum, no spare
6 - M-A/linux/AS-A, bronze, 1 cold spare
7 - M-A/linux/AS-B, bronze, 1 cold spare
8 - M-A/linux/AS-B, silver, 1 cold spare
9 - M-A/linux/AS-A, bronze, 1 active spare
10 - M-A/linux/AS-A, silver, 1 active spare
11 - M-A/linux/AS-A, gold, 1 active spare
12 - M-A/linux/AS-B, gold, 1 active spare
13 - M-A/linux/AS-A, platinum, 1 active spare
14 - M-A/linux/AS-B, platinum, 1 active spare
15 - M-A/linux/AS-A, bronze, 2 active spare
16 - M-A/linux/AS-A, silver, 2 active spare
17 - M-A/linux/AS-A, bronze, 3 active spare

Figure 3: Optimal solution for a range of service requirements: load and annual downtime limit.

(active or cold spare)12. To facilitate the discussion in the rest of the paper we also refer to the designs using numbers

as identified in Fig. 3. The load range shown on the x axis varies from 400 to 5000 units13, which corresponds to

a range of 2 to 25 nodes. The y axis shows the range of practical annual downtime values, from a fraction of a

minute to 10,000 minutes, i.e., approximately one week14. In the two-dimensional space of requirements mapped

by the performance requirement and the availability requirement, each curve corresponds to a particular design that

is cost optimal for all requirement points above the curve (and points on the curve) and beneath the immediately

higher curve. Furthermore, the curve plots the downtime estimate for this design at various load levels where it is

the optimal solution. Therefore, for requirement points above the curve, the downtime estimated with this design

is less (i.e., better) than the requirement. For example, for a requirement (load = 1000, downtime = 100) in

Fig. 3, the curve immediately below this point corresponds to the optimal design (number 9), which has downtime

of approximately 50 minutes.

The results in Fig. 3 show that despite the small size of our example design space, the number of optimal

solutions distributed across the requirements space is large and would be tedious to evaluate manually. The results

also show that AVED filters out suboptimal solutions. For example, design 3 (M-A/linux/AS-A, gold, no spare) is

not selected for loads above 1400 units. For loads above that, design 6 (MA-A/linux/AS-A, bronze, 1 cold spare),

which provides lower downtime, is selected instead of design 3. For low loads the extra cost of the gold maintenance

12Note that the same design can use a different number of machines depending on the load, i.e., design with m spares has a fixed number
of redundant machines, in addition to the number of primary machines which can vary as function of a load.

13Our unit of load is associated with an arbitrary unit of work per unit of time that is meaningful for the specific service, as for example
transactions/sec.

14We believe it is not useful to explore very low downtime values, since AVED only models infrastructure availability. When the infras-
tructure availability is reduced to very low levels, other external factors, difficult to model and characterize such as human error, environment
effects, etc., will dominate.

16

contract is lower than the cost of an additional resource and design 3 is the preferred design when its downtime

satisfies the service requirement. As the load increases, the extra cost of the gold contract becomes higher than an

extra resource, since the cost of a maintenance contract is proportional to the total number of machines it covers.

Thus for higher loads it is better to use an extra node than to pay for a higher maintenance contract. In fact, we

observe in Fig. 3 that as the load increases, all the selected designs use the lowest cost bronze maintenance service

contract.

As shown in Fig. 3, the more powerful machine M-B is never selected. This is expected since we assumed linear

scalability for the application, and the low end machines have a better cost-performance ratio (i.e., lower cost per

unit of load). However, the situation may be different if the application scales sublinearly with the number of nodes.

In such cases, beyond a certain load, it may be possible to achieve a better cost-performance ratio by using a lower

number of more powerful machines than a higher number of low-end machines.

We observe in Fig. 3 that the downtime estimated for a particular design increases with load. This is expected

since higher load levels require a larger number of nodes which results in a higher failure rate (because if any of these

nodes fail, the service cannot meet its minimum performance requirement and the service is considered down). Thus

in self-managed environments such as the UDC, where the infrastructure can be dynamically changed to adapt to

load fluctuations, the optimal design may change as the load changes. For example, consider a service that tolerates

at most 200 minutes downtime and has an initial expected load of 400 units. From Fig. 3, design 6 is the optimal

design. However, if the loads increases to 1200 units, the optimal design changes to design 9.

4.2 Cost of availability

Although the curves shown in Fig. 3 enable the selection of the optimal design for a given performance and

availability requirement, the knowledge of the cost associated with each design can help to make a better design

choice as discussed below.

Fig. 4 shows the cost associated with the optimal designs at various levels of availability and performance

requirements. Each curve shows the additional annual availability cost as a function of the required downtime, for

a particular load, where the additional availability cost is the extra annual cost necessary to provide the required

availability when compared to a minimum cost design that can support the same load when there is no availability

17

0

2000

4000

6000

8000

10000

12000

14000

0.1 1 10 100 1000 10000

A
dd

iti
on

al
 A

nn
ua

l C
os

t f
or

 A
va

ila
bi

lit
y

Downtime (minutes)

Load= 400 units
Load= 800 units

Load= 1,600 units
Load= 3,200 units

(a) Absolute Cost

0

20

40

60

80

100

0.1 1 10 100 1000 10000A
dd

iti
on

al
 A

nn
ua

l C
os

t f
or

 A
va

ila
bi

lit
y

(%
 in

cr
ea

se
 f

or
 H

A
 r

eq
ui

re
m

en
t)

Downtime (minutes)

Load= 400 units
Load= 800 units

Load= 1,600 units
Load= 3,200 units

(b) Relative Cost - Percentage

Figure 4: Additional annual cost required for availability.

requirement. Additional availability cost becomes zero when the the required downtime increases beyond a certain

point. Fig. 4(a) shows the absolute additional annual availability cost while Fig. 4(b) shows the relative additional

cost, as a percentage of the minimum cost design for the same load.

Each step in Fig. 4 corresponds to a change in the selected design. The size of each step corresponds to the

difference in the costs of the associated designs. Fig. 4 enables understanding of the tradeoff between cost and

availability useful in making a judicious design choice. In some cases a large improvement in downtime can be

achieved with a low additional cost. Alternatively, slightly relaxing the downtime requirement can significantly

reduce the additional availability cost. For example, for a service with 800 units of load in Fig. 4, the cost to

reduce downtime from 150 minutes to 10 minutes increases slightly from $4,700 to $5,700. Alternatively, increasing

required downtime from 1.5 minutes to to 2.5 minutes for the same 800 units of load, can significantly reduce the

cost from $9,500 to $6,600.

In an automated dynamic environment, the tradeoff between cost and availability must be evaluated automati-

cally. For these environments, we envision the use of a utility function, specified by the service, which estimates

the cost associated with each value of annual downtime (e.g., the expected loss in revenues when the service is not

operational). Given this utility function, a system may automatically select the best design to minimize the aggregate

cost, combining the cost for providing availability given in Fig. 4 with the cost of lost revenue given by the utility

function.

18

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8

A
nn

ua
l D

ow
nt

im
e

(m
in

ut
es

)

OS boot time (minutes)

Load= 3,200 units
Load= 1,600 units

Load= 800 units
Load= 400 units

(a) AS A, bronze, 1 cold spare

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8

A
nn

ua
l D

ow
nt

im
e

(m
in

ut
es

)

OS boot time (minutes)

Load= 800 units
Load= 400 units

(b) AS B, bronze, 1 cold spare

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8

A
nn

ua
l D

ow
nt

im
e

(m
in

ut
es

)

OS boot time (minutes)

Load= 1,600 units
Load= 800 units
Load= 400 units

(c) AS A, bronze, 1 active spare

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

A
nn

ua
l D

ow
nt

im
e

(m
in

ut
es

)

OS boot time (minutes)

Load= 1,600 units
Load= 800 units
Load= 400 units

(d) AS A, bronze, 2 active spares

Figure 5: Downtime sensitivity to repair time.

4.3 Sensitivity to input parameters

As we have previously discussed, in flexible hosting environments such as the UDC, a change in load may trigger

a change in the selection and configuration of availability mechanisms. Changes in other parameters may require

design changes as well. For example, assume the OS is upgraded to a new version and that the boot time of the OS is

significantly higher with the new version. In this case, the availability of the system will be reduced and the service

requirement may be violated if the same design is maintained. To illustrate this, Fig. 5 shows how downtime varies as

a function of the OS boot times for several designs in our example scenario. We note that the variation in downtime

can be significant in some cases as illustrated in Fig. 5(a) and 5(b). For example, suppose the original boot time of

the OS is 1 minute, the expected load is 800 units of load and the required downtime is 120 minutes. In that case,

from Fig.3, the initially selected design is design 7 (M-A/linux/AS-B, bronze, 1 cold spare). If the OS boot time

19

increases to 3 minutes, Fig.5(b) shows the downtime of this design increases to more than 200 minutes, violating

the availability service requirement. To continue to meet the 120 minutes downtime requirement, the system has to

be reconfigured to use a new optimal design, which in this particular case is design 9, (M-A/linux/AS-A, bronze, 1

active node).

The graphs in Fig. 5 also illustrate that different designs have different sensitivity to variation in the OS boot

time. The designs illustrated in Figs. 5(c) and 5(d) show very low variations in downtime when the OS boot time

changes. This suggests that it may be beneficial to perform a sensitive analysis for parameters with lower certainty in

values and preferentially select designs that are less sensitive to those parameters. We plan to add sensitivity analysis

to selected parameters, in future versions of AVED.

5 Related Work

The idea of automating the design and configuration of systems to meet user’s availability requirements is rel-

atively recent. We are only aware of a few examples, each of which is focused on a limited domain. The Oracle

database implements a function that automatically determines when to flush data and logs to persistent storage such

that the recovery time after a failure is likely to meet a user-specified bound [11]. Researchers at HP Labs have

proposed automated design of storage systems to meet user requirements for data dependability, which encompasses

both data availability and data loss [10]. Our research addresses the automated design of multi-tier systems which

include databases, storage systems in addition to other hardware/software components. Hence, technologies for au-

tomating subsystems such as databases and storage systems will be integrated as elements of our overall solution for

automating availability.

Most other work on system automation for managing availability has been limited to automated monitoring and

automated response to failure events and other such triggers. For example, cluster failover products such as HP

MC/Serviceguard [5] SunCluster [15] and Trucluster [6] detect nodes that fail, automatically failover application

components to surviving nodes, and reintegrate failed nodes into active service when they recover from failure.

IBM Director [1] detects resource exhaustion in its software components and automates the rejuvenation of these

components at appropriate intervals. Various utility computing efforts underway will also automatically detect failed

components and automatically replace them with equivalent components from a free pool [7][14][9].

20

6 Summary and Future Work

Management for service availability must be a critical component in self-managing IT infrastructures, since

degraded service availability can lead to significant loss of business. Our research aims to advance the state of

the art in self-managed systems (an area largely in its infancy) by integrating support for automatically managing

service availability. We believe automation for availability is most valuable and usable if it is driven by high level

availability requirements that are intuitive at the service level. To enable goal-driven automation, our approach

proposes several extensions to emerging self-managing system designs. Services must be permitted to specify their

requirements in the form of high-level goals, such as an utility function, rather than in component-level requirements

typical for current SLAs. In addition, the service description provided to the management system must specify the

failure model and recovery model of the service components as well as failure, recovery, and repair parameters

of service-specific components. Most importantly, the self-management system must include a design function

that automatically generates design alternatives, builds their availability models and evaluates them to identify the

best design that meets specified requirements. To facilitate automated design and subsequent automated redesign,

the self-management system must maintain empirical information about the failure, recovery and repair attributes of

infrastructure components and their availability mechanisms, and also monitor and record the runtime characteristics

of these availability attributes. The capability to deploy and configure availability mechanisms is needed as well.

Our current efforts in this direction have been focused on the automated design engine. We have described

the architecture of our initial version of the automated design engine, AVED, including a model for describing the

availability characteristics of a service and the infrastructure. AVED maintains system designs internally in an inter-

mediate form of representation, and these intermediate representations are then translated and input to an availability

evaluation engine. We have examined a simple example scenario using AVED to illustrate the usefulness of AVED.

The example exposes varying tradeoffs between the availability knobs across the design space and requirement

space, justifying the value of automated design space exploration. In some cases, designs with small differences in

their cost may have substantial differences in their availability. The automated design engine can take advantage

of such tradeoffs if services specify their requirements using utility functions (e.g., one that describes the business

cost of various downtimes) rather than as particular points (e.g., 5 min annual downtime maximum). In addition,

parameters such as the number of resources running the service and repair times, which will change dynamically

(the number of resources running the service will likely change with dynamic changes in the applied load in a self-

21

managed environment), are seen influencing the selection of the design. This indicates that the self-management

system must automatically reevaluate and reconfigure designs in response to changes in such parameters.

We intend to enhance AVED in several ways. To address overall service availability, the design engine must

examine the impact of the network and storage subsystems. We will be extending AVED to factor network topolo-

gies (LAN), application placement in the network and network failures and recovery. We also plan to integrate

AVED with an automatic process for storage system design and management for data dependability[10]. We also

intend to make AVED’s design space richer by adding consideration of several other knobs, including configuration

parameters of the database engine (e.g., its checkpointing frequency), configuration parameters of the application

server (e.g., the location where persistent state is replicated), the use of virtual machines to host multiple application

components on a single hardware platform, and software rejuvenation. We are also looking to make small changes

such as relaxing the restriction in our current implementation that each tier be homogeneous, and permit tiers with

heterogeneous components.

In addition to these AVED enhancements, we also plan to couple AVED to a UDC environment for automated

deployment of a highly available multi-tier service. AVED will take the user requirements and generate a design

specification, and the deployment system will instantiate the service in the infrastructure. We envision that the

deployment will include monitoring software that will deliver feedback to AVED such as failure frequencies and

performance metrics. That feedback can be used by AVED to adjust the design specification, resulting in a control

loop for service availability lifecycle management.

References

[1] CASTELLI, V., HARPER, R. E., HEIDELBERGER, P., HUNTER, S. W., TRIVEDI, K. S., VAIDYANATHAN,
K., AND ZEGGERT, W. P. Proactive management of software aging. IBM Journal of Research and Develop-
ment 45, 2 (March 2001), 311–332.

[2] CLARK, G., COURTNEY, T., DALY, D., DEAVOURS, D., DERISAVI, S., DOYLE, J. M., SANDERS, W. H.,
AND WEBSTER, P. The Möbius modeling tool. In 9th Int’l Workshop on Petri Nets and Performance Models
(Sep 2001), pp. 241–250.

[3] FOSTER, I., KESSELMAN, C., NICK, J., AND TUECKE, S. Grid Services for distributed system integration.
Computer 35, 6 (2002).

[4] HEWLETT PACKARD COMPANY. Availability advantage. (http://h18005.www1.hp.com/services/advan-
tage/aa avanto.html), January 2003.

22

[5] HEWLETT PACKARD COMPANY. HP MC/ServiceGuard. (http://www.hp.com/products1/unix/highavailabil-
ity/-ar/mcserviceguard/index.html), January 2003.

[6] HEWLETT PACKARD COMPANY. TruCluster software. (http://www.tru64unix.compaq.com/cluster/), January
2003.

[7] HEWLETT PACKARD COMPANY. Utility computing. (http://devresource.hp.com/topics/utility comp.html),
January 2003.

[8] HUANG, Y., KINTALA, C., KOLETTIS, N., AND FULTON, N. D. Software rejuvenation: analysis, module and
applications. In 25th Symposium on Fault Tolerant Computer Systems (Pasadena, CA, June 1995), pp. 381–390.

[9] INTERNATIONAL BUSINESS MACHINES, INC. Autonomic computing. (http://www.ibm.com/autono-
mic/index.shtml), January 2003.

[10] KEETON, K., AND WILKES, J. Automating data dependability. In 10th ACM-SIGOPS European Workshop
(Sep 2002).

[11] LAHIRI, T., GANESH, A., WEISS, R., AND JOSHI, A. Fast-Start: quick fault recovery in Oracle. In ACM
SIGMOD (2001), pp. 593–598.

[12] OFFICE OF GOVERNMENT COMMERCE. ITIL Service Support. IT Infrastructure Library. The Stationery
Office, United Kingdom, June 2000.

[13] SAHNER, R. A., AND TRIVEDI, K. S. Reliability modeling using SHARPE. IEEE Transactions on Reliability
R-36, 2 (June 1987), 186–193.

[14] SUN MICROSYSTEMS, INC. N1: Revolutionary IT architecture for business. (http://www.sun.com/soft-
ware/solutions/n1/index.html), January 2003.

[15] SUN MICROSYSTEMS, INC. Sun[tm] Cluster. (http://www.sun.com/software/cluster/), January 2003.

23

