
A Cost-oriented methodology for the design
of Web based IT architectures

Danilo Ardagna
Politecnico di Milano

Via PonzJo 3415
20133 Milano, Italy
+39 02 2399 3561

ardagna@elet.pol imi. i t

Chiara Francalanci
Politecnico di Milano

Via Ponzio 3415
20133 Milano, Italy
+39 02 2399 3457

francala@elet.polimi.it

ABSTRACT
This paper proposes a design methodology of Web-based IT
architectures tying organizational requirements to technical
choices and costs. Information system design and optimum sizing
is the result of a reconciliation of several conflicting requirements,
including technical performance and costs. Web-based IT
architectures involve a number of design choices with significant
cost implications: the adoption of thin clients executing Web
applications remotely, the choice of the number of architectural
tiers over the Web, the allocation of applications on physical
machines and the total number of servers involved. The main goal
of this paper is the identification of a sequence o f design steps,
from requirements ~a lys i s to physical implementation, that
allows designers to estimate the cost implications of architectural
choices and, by evaluating multiple design
alternatives, determine the minimum-cost architectural solution.
Preliminary results from the empirical verification of the
methodology indicate that for Web-based architectures cost
reductions can be significant and would support the practical use
of a cost-oriented approach as a complement to traditional
performance evaluations.

Keywords
IT architectures, Web architectures, cost minimization.

1. INTRODUCTION
Information system design and optimum sizing is the result o f a
reconciliation of several conflicting requirements, including
technical performance and costs, organization impact, and user
acceptance. Web-based IT architectures involve a number of
design choices with significant cost implications: the adoption of
thin clients executing Web applications remotely, the choice of
the number of architectural tiers over the Web, the allocation of
applications on physical machines and the total number of servers
involved. Theoretical research and practitioners oiten focus on
specific techniques for the optimization of individual design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or dislributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
5AC2002, Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03...$5.00.

phases, usually leading to local technical optima, with little
understanding of the relationships among different choices at
different design stages. This paper attempts the definition of a
comprehensive design methodology. The main goal is the
identification of a sequence o f design steps that identify the cost
implications of design choices from requirements analysis to
physical implementation.

The focus is on architectural design tying the information
requirements of an organization to the IT components necessary
to satisfy those requirements: costs are associated with these
components (of. [12]). This process has many degrees of fi'eodom,
since different Web-based architectures can be built to satisfy a
given set of requirements. The proposed methodology guides the
system designer through a sequence of choices at different design
steps in order to distinguish alternative solutions and evaluate
their costs. The methodology helps choose the architecture that
minimizes the overall cost, including hardware, software,
maintenance, management and training.

The next Section reviews previous approaches and highlights the
main organizational and technical variables of interest. Section 3
presents the phases of the design methodology and the
corresponding architectural models. Section 4 reports and
discusses experimental results from a comparative analysis of
costs of different architectures and describes a prototype that
implements the proposed methodology Finally, Section 5 draws
conclusions and suggests directions for future research.

2. RESEARCH BACKGROUNG AND
MOTIVATION
Cost analyses of technical choices have highlighted numerous
design trade-offs primarily related to the appropriate sizing and
location of computing resources within an IT architecture (cf.
[3]). In the early '80s a lower cost of processing capacity on
smaller computers and a generally reduced soft, yore complexity
have created the belief that a decentralized IT architecture would
involve lower overall costs for an organization and Web-based
architectures would comply with this traditional trend. A number
of technical factors would instead work against decentralization.
First among them, communication costs can be significantly
higher in a decentralized architecture, due to a more cumbersome
data retrieval and consolidation in distributed transaction
processing (cf. [7]). In practice, databases were duplicated to limit
remote data access through geographical networks, while raising

1127

data consistency issues and causing additional communication
load to align multiple copies o f the same data.

The most general technical model answering the research question
of this paper is provided by [5], studying the optimal sizing of a
distributed system to minimize the costs o f communication for
remote transactions, processors, primary and secondary storage,
while guaranteeing maximum file availability and minimum
response time for queries. Francalanci and Piuri (cf. [2]) also
proposed a design methodology that ties organization
requirements to IT technical and management costs. They refer to
the Gartner Group client-server model classification that considers
applications presentation, logic and data management component
allocation.

Recently, practitioners are considering re-centralization o f data
and application functionalities in order to decrease management
effort and costs. This seems to indicate that the design of the IT
architecture is often guided more by current beliefs and market
offer, than by an understanding of organizational requirements
and technology costs. System centralization is encouraged
primarily by new thin client architectures. Thin clients execute the
presentation component o f applications, that is they manage the
user interface, while they delegate the execution of application
logic to server computers, that can be outsourced to ASPs and
accessed through the Web. Outsourcing is considered an
important factor that promotes thin client diffusion (cf. [4]).

Two different types of thin client architectures can be
implemented, Network Computers (NC) and Windows Terminals
(WT). WT are supported by a Windows NT/2000 server, while
NCs can execute only pure Java applications and are usually
supported by non-Windows servers, such as Sun servers. NCs
manage the user interface by means of a browser which is
executed locally and supports access to Web-based server
applications. On the contrary, WTs typically do not locally
execute a browser and require an additional server to manage
w ' r s ' access to applications that is achieved through a remote
protocol (Citrix ICA or Microsoft RDP). WTs simply emulate a
GUI and manage users interactions. Thin client shipments are
currently growing. IDC forecast a growth of unit shipments of
90% in 2001 (in the past two years shipments growth were on
average 84.7%).

WTs are the most widespread thin client platform but in the long
term practitioners forecast NC shipments growth due to Java
applications and Intranet/Extranet environment diffusion. Thin
clients will probably replace dumb terminals but cannot replace
PCs because they are suitable for the execution of data entry and
office automation application, but cannot execute computation-
intensive applications. Anyway ICA and RDP protocols allow
remote access to windows applications by traditional PCs and new
hand-held devices and practitioners suggest that the remote
execution o f applications when PCs are adopted can reduce the
total cost o f ownership (TCO). As PDAs and 3G phones will
become more widespread CIOs will face the problem of planning
access to enterprise servers from these new devices. Capacity

planning is an important issue that CIOs have to face to guarantee
system performance and availability, which are more and more
critical especially for Web-based systems. With the development
o f n-tier systems, the design paradigm that is followed by planners
can be expressed as "design large, but build small" (cf. [I I]).
That is, by introducing multiple tiers, additional computing
capacity can be obtained by introducing new machines and
sharing computation load.

Capacity planning today is achieved following two different
methodologies: planners focus on system performance, which is
usually measured in terms of response time, and analyze a reduced
set of design alternatives since the performance analysis of a
single solution is cumbersome (cf. [8]). On the other hand,
practitioners refer to empirical methodologies based on costs,
partly supported also by software tools such as Main Control or
Gartner Group TCO Manager. However, these methodologies are
not systematic and have no scientific justification/basis. This
paper is an attempt to fill this literature gap by proposing a
methodology that systematically and formally tackles architectural
choices and their cost impact on a company's]T infrastructure.

3. DESIGN M E T H O D O L O G Y
The architectural design process ties the information system
requirements o f an organization to the physical components
necessary to satisfy those requirements. For Web based
architectures design alternatives are summarized in the next
section. The following sections describe the phases o f the
architectural design process, the architectural model that is
generated by each phase and the input required from the designer
needed as an input to the final optimization algorithm.

3.1 Architectural Design Alterna t ives
The following design alternatives for Web-based architectures are
considered:

• Th in v e r s u s f a t c l i e n t s - Thin clients manage the user interface
o f applications stored and executed remotely, while fat clients
store and execute applications locally. The choice between fat
and thin clients can significantly change the processing load on
server machines.

• N u m b e r o f t i e r s - T h e client-server paradigm can organize
applications in multiple tiers. Each application tier is typically
allocated on a separate machine and responds to service requests
from lower tiers, while sending service requests to higher tiers.

• To ta l n u m b e r o f s e r v e r s - T h e required computing capacity can
be allocated on one or multiple servers, whose total number
represents an architectural alternative.

• A l l o c a t i o n o f a p p l i c a t i o n s - Different applications (or
application tiers) cart be allocated on separate computers and,
vice versa, multiple applications can be allocated on the same
computer.

1128

sam S t [
tIm~O,-mutmy

i Bm'LEmll H t

n=,O~,']

Umm e'~-~f I
A,c~ 70

a q m i t a] ,it, av~-'a ,,,#~a

~l~.'m,,- dkb..t.--

~ 0.3
tJ o.1

A~ 3.4 I , l

n~,a ta~ ----iv, ~a.~-, ,,,q'=ia

" "1 " ' - I " 0J n~
~ : t 0.1

I W<~l'arm i (wJnoo~u s~.
p4id..~ v~m~

¢%,,-m m

Gwmo.Fn[tso.
Ratt.,5
.,qJu~A.~ m ~m
df,q,j~ J JO lure

:5o~e i i :5oe
t , i :

t~l~e)-m',~ t p f ~ i ~ t

d ~)= lmlMj~ J20 Ii i ~ l n n

I
~pl ~ O$ D

J4 gJ ~ ~DP

I ° ' / °" I ~ ® 1 : ^ i nj / ~ I ~re: I ~e
I °~ I ' I " ~ ® I " " " ~

' ~^0-m um

_ . . I ('aeles.~.e.b-~ me

, ~ / I m,i~3~

~ol¢e~ _.,q ~ I k

a.~d,J a c ~ I \ I u s I
J

, ~ - , o o ~ l

~(aa:
] " ' 1 " " I °' I
l[~o I n6 I w~: I
~Jo I ,, Iwmo l z.% :.
Ii'1 I""] a g . i ~ n n IC4t, Low

J 7 q~9 m W3P H i ~

g | 7 1'7~,m XCA a ~

T~q~.~ un

u l ~ RAId OB IB !'I

7 g l g/JgD0 I ~ P Line

1:3J5 gJa ~ 0 ICA Lnw

J 7 ~ ~ mlP:
p 7 ~ ~ A Will

Figure 1. Graphical representation of a technology requirement model

Note that these design alternatives are mutually interdependent.
For example, a higher number of tiers increases the degrees of
freedom in allocating applications and improves load balancing
among servers. Since this paper focuses on hardware choices,
application design alternatives are not included in the list above
and in the architectural models discussed in the next sections.
However, the designer can define constraints on hardware
alternatives imposed by previous application design choices.

The design alternatives listed above are credited an impact on the
total cost o f the corresponding IT architecture (cf. [10], [11]).
However, the most appropriate criterion to select a solution
among a set of applicable alternatives may not be cost
minimization (c£ [8], [6]). First of all, technical constraints can
represent a driver of choice. For example, the need to integrate
new architectural components with legacy systems can constrain
the selection of the hardware and network standards, such as the
number of tiers or the communication protocol. Similarly,
organizational constraints, such as security policies or
centralization practices, may reduce the set o f viable solutions.
The methodology presented in this paper assumes that technical
and organizational constraints translate into architectural design
decisions that reduce the degrees of freedom of the cost-
minimization algorithm. Constraints can be defined as

predetermined solutions for one or more of the design alternatives
listed above, as explained in the next sections.

3.2 Architectural Design Phases
The minimum-cost]T architecture satisfying organizational
requirements and constraints is identified with three design
phases. First, organizational requirements are specified by
building the technology requirements model. Then, a theoretical
model of the minimum-cost IT architecture satisfying
organizational requirements, the infrastrnctural model, is built
under the assumption that archffectural components can meet
requirements with no approximation. Theoretical components are
replaced with real components in a final design phase building the
minimum-cost physical model of the IT architecture. Each model
of the technology architecture is translated into the model
produced in the subsequent design phase by a specification
activity. Specification activities involve design choices that, in
turn, affect architectural costs. The mapping from a model to the
following one is semi-automatic, since the designer is involved in
the definition o f the optimization domain and bounds. The next
three sections discuss the technology requirements, infrastructural
and physical models, respectively, and corresponding
specification activities.

1129

3.3 The Technology Requirements Model
Technology requirements are expressed by means of the following
fundamental variables:
• Organization sites Si, defined as sets o f organizational resources

(users, premises and technologies) located within a 1 Km
distance from each other. Conversely, the closest resources
within different sites should be separated by more than 1 Kin. A
i Km threshold distance is chosen to distinguish between
different network technologies within and among sites, local
and geographical, respectively,

• Buildings Bi, defined as the smallest components o f an
organization's premises.

• Applications Ai, defined as a set o f functionalities that can be
accessed by activating a single computing process. Note that
commercial programs mapping into multiple processes can be
represented by means o f multiple applications.

• User classes Ci, defined as a group of ni users using the same
subset o f applications, with common capacity requirements and
operating from the same floor of a si te 's building.

• Requests Ri, defined as interactions among applications aimed
at exchanging services according to the client-server paradigm.

• Databases Di, defined as separate sets o f data that can be
independently stored, accessed and managed.

A sample technology requirements model is reported in Figure 1.
As a preliminary observation, the specification o f sites, buildings
and user classes is critical to select and size the network
components of the architecture during infrastructural design.
Applications, requests and databases are instead the main drivers
of infrastructural design choices related to client and server
computers and to their management policies.

User classes are supposed to be located on a single floor o f a
building and to use the same set of applications with a common
think-time. User think-time is a qualitative indicator o f the
frequency with which users interact with their client computer and
is used in subsequent sizing activities (see Section 3.4). It has
been empirically demonstrated that computing capacity
requirements o f client and monolithic applications depend on
users' behavior. For example, users could be responsible for
difficult decision-making tasks and spend part o f their time in
evaluating application outputs without interacting with their client
computers, that is, they would have a high think-time. In this case,
even i f they simultaneously open numerous applications, their
computing requirements would be low. It has also been found
that typing speed is an accurate proxy of users' think-time (cf. [9])
and that think-time can be considered low i f typing speed is above
50 hits per minute. Empirical evaluations of capacity requirements
for client and monolithic applications are based on a qualitative
distinction between high and low values o f think-time.

Applications are classified as client, monolithic, server or
external. Note that a server application can also play the role o f
client and convey requests to other server applications.
Computing capacity requirements for client and monolithic
applications are traditionally expressed in MIPS (cf. [5]). MIPS
and RAM requirements are not independent o f the operating
system and possibly o f the remote protocol adopted and,
therefore, applications are associated with mult iple capacity
requirements for different operating systems and remote
protocols. In subsequent design activities, MIPS and RAM

requirements are adjusted according to users" think-time (see
Section 3.4)_ Irrespective of their allocation on a personal
computer or on a server, client and monolithic applications do not
require the specification o f secondary memory ' s performance
requirements, since disks have been demonstrated not to represent
a capacity bottleneck (eft [9]).

On the contrary, server applications require the specification o f
disks ' response time (el. [8], [6]). Servers are modeled by means
of the queuing network model. The model we adopt includes a
single disk, since current secondary memory technologies based
on RAID disks can be modeled as a single resource (cf. [g]). Note
that DBMSs are supposed to be specified as server applications
and, accordingly, databases can be more simply described through
their required size o f secondary memory.

Requests are initiated by a client or an external application and
are answered by one or multiple server applications. I f mult iple
server applications are involved, they coordinate by triggering one
another in a sequence and building the response incrementally
according to the client-server paradigm. The first one is in charge
of conveying the response to the requesting application.

Server applications are characterized by the CPU and disk
demanding times required to support the execution o f requests.
Demanding times are supposed to be evaluated on a tuning
system_ This allows the estimate of demanding times on a
different system by means o f benchmarking data (cf. [8]). Tuning
systems are associated with applications as opposed to individual
requests_ Demanding times are in fact evaluated on a single
system for all the requests served by an application.

3.4 The Infrastructurai Design Model
The goal of the infrastructural design phase is to bui ld a virtual IT
architecture satisfying technology requirements under the
assumption that architectural components can meet requirements
with no approximation. Since physical machines have a discrete
distribution in the requirements space, during physical design
virtual architectural components will be associated with real
equipment. A Technology Requirements Model can be associated
with N Infrastructural Models obtained through the exploration o f
the solution domain defined by the designer. On the contrary,
each Infrastructural Model can be assigned a single Physical
Model satisfying infi'astructural requirements and m/nimizing
costs. The solution domain is defined specifying the fol lowing
architectural design choices:

l .Type of client computers - Client computers can be constrained
to fat, thin, fat hybrid or terminal (host-based) solutions.

2.Number o f computing levels o f requests - The number o f
computers involved in responding to requests can be
constrained to a specific value.

3.4.1 Number of computing levels o f requests
As discussed in Section 3.3, requests can involve mult iple server
applications triggering one another sequentially. Server
applications can be executed by the same or by different
computers. I f separate computers execute server applications, the
resulting hardware architecture is referred to as multi- level and
the number o f levels evaluates to the maximum number o f distinct
computers involved by the same request. For each request, the
upper bound of the number of levels o f the corresponding

1 1 3 0

Table I - S u m m a r y o f v ir tua l c o m p u t i n g re sources a n d sizing

Vir tual Symbol Variables Analyt ical Formula t ion
C o m p u t i n g

R e s o u r c e
Virtual Server VSi Frequency of f(Ri)

requests

Virtual
application server
for WT/I-IFC

Virtual fat client

Virtual HFC

VAS;

VFCj

VHFCI

Primary Memory

Computing
Power

Primary Memory

Computing
Power

Primary Memory

Computing
Power

R A M = Z RAM(A,)
AieVSi

MIPS = n(C i)- p(C i).

m . (IJIPS(A,, OS, RP, think - time(C,)))
AJc4"A~

RAM = n(Ci), p(Ci).

Z RAM(A, ,OS,RP, th ink - t ime(C ,))
AIIVA3[

MIPS = .lml~_c~,(UleS(d,,OS))

= Z MO,,os)
AIeFFO

MIPS= m . (MIPS(A,,OS))
A ,d//./FO

P . - - y Memory RAM = y. U (,4,,os)
AIeFllFQ

Notes

MIPS(A[, OS, RP,think-time(Ci)) returns MIPS
required to support execution of application Ai
on the target operating system OS under the
specified remote protocol RP for a user of
specified think-time; p(Ci) returns the
percentage of concurrent users in class Cl

RAM(A,, OS, RP) returns RAM required to
support execution of application Ai on the laxSet
operating syst~ln OS under the specified remote
protocol RP for a user of specified think-time.

MIPS(A,, OS) returns MIPS required to support
execution o f application Ai on the target
operating system OS

RAM(Ai, OS) ~tums RAM required to support
execution of application A, on the target
operating system OS

MIPS(A~, OS) returns MIPS required to support
execution of application Ai on the target
operating system OS

RAMCAi, OS) returns RAM required to support
execution of application Ai on the target
operating system OS

architecture is the number o f applications involved; the lower
bound is always two. corresponding to the execution of all server
applications on the same computer.

At this stage the designer has to specify for each request path the
acceptable numbers of levels and sets of applications that have to
be executed by the same server. For the same path multiple
number of levels and allocations can be defined. For example, for
the same path the 3 and 4 level alternative may both be explored.

3 .4 .2 T h e i n f r a s t r u c t u r a [d e s i g n p r o c e s s
Virtual computing resources are associated with server
applications and user classes and sized by accounting for
computing requirements of all user classes, as specified in Table
I. Virtual computing resources r~ resen t hardware components
that meet requirements and satisfy constraints with no
approximation. The following virtual computing resources are
considered during infrastructural design:

l. Virtual s e r v e r s - Virtual servers represent computers that
execute at least one server application for one user class. They
are described by their primary and secondary memory and by
the frequency of requests to be served. The frequency of
requests is used to evaluate the capacity of servers during
physical design.

2. Virtual WT and HFC servers - Virtual WT and HFC servers
represent computers that execute at least one client or
monolithic application for one user class constrained to use a

or HFC client architecture. They are described by their
computing capacity, primary and secondary memory.

3. Virtual fa t clients and HFC - Virtual fat clients and HFC both
represent computers that execute at least one client or
monolithic application. They are described by their computing
capacity, primary and secondary memory.

4.Virtual thin clients - Virtual thin clients represent computers
that execute or emulate the presentation component of an
application. Different from other architectural components, they
are not described quantitatively, but simply categorized as either
low or high performance devices.

Table 1 reports the formal description of virtual computing
resources and summarizes their sizing rules. The following criteria
are applied to associate virtual computing resources with server
applications and user classes:

1.Each computing tier defined in Section 3.4.1 is assigned a
virtual server.

2.Each user class Ci that has been constrained to a fat client
architecture is assigned n(Ci) virtual fat clients. Each fat client is
assumed to execute all client and monolithic applications in
[(Aj,C~} (this set defines the applications used by class CO.

3.Each user class Ci that has been constrained to a NC thin client
architecture is assigned n(C-,) virtual network computers.

4.Each class C i that has been constrained to a WT thin client
architecture is assigned n(C0 virtual windows terminals and a

1 1 3 1

WT virtual server. The WT virtual server is assumed to execute
all client and monolithic applications in ((Aj,Ci) } .

5.Each class Ci that has been constrained to a hybrid fat client
architecture is assigned n(O-J HFC virtual clients and a HFC
virtual server.

Secondary memory is sized as the summation o f secondary
memory requirements d(A~ of applications Ai executed by the
virtual computer and o f secondary memory requirements d(Dj) o f
databases Dj in {(Dj,Ai)} that are managed by applications Ai.
Similarly, primary memory evaluates to the summation of RAM
requirements of the applications Ai simultaneously executed by the
virtual computer, of RAM(A.,) for server applications and of the
RAM values specified in zl land Azfor client and monolithic
applications (see Figure 1). The computing capacity of PCs is
obtained as the maximum value o f MIPS required by applications
that are executed locally. In the same way, capacity requirements
for Virtual WT and HFC servers are evaluated by considering the
maximum value for MIPS required by applications that are
remotely executed multiplied by the number o f concurrent users.

3.5 The Physical Design Model
Physical design transforms virtual computing resources into
commercial components according to a cost-minimization
process. The overall output o f the physical design phase is the
minimum-cost IT architecture satisfying technology requirements
and constraints. As noted before, multiple infrastructural models
can be built in compliance with technology requirements. The
number o f infrasUuctural models to be compared can be high and
cost minimization can represent a computationally complex
process. The algorithmic approach to cost minimization adopted
in the prototype tool implementing the methodology is described
in Section 4. As a general consideration, optimization iterates the
following two steps in order to design the minimum-cost
architecture:

1 .selection o f an infrastructural model;

2.association o f conanercial components with virtual computing
resources of the selected infrastructural model.

Commercial components are selected for association with virtual
resources as the lowest-cost devices satisfying the following
criteria:

• Vir tual servers: the utilization of physical resources CPU and
disk should be lower than 60%, in order to guarantee an
acceptable response time (c£ [8]). With values of utilization
greater than 60%, small variations of throughput would cause a
substantial growth o f response time and, overall, performance
would become unreliable.

• Y ir tua i W'F a n d H F C servers, v i r tua l f a t c l ients a n d HFC:
computing capacity is greater than that o f corresponding virtual
resources.

• The primary and secondary memory of commercial components
should be greater than those o f corresponding virtual resources.

• Virtual WT: design criteria that discriminate low and high
performance devices are satisfied.

4. EMPIRICAL VERIFICATIONS
The methodology has been empirically validated by verifying that
the design alternatives listed in Section 3.1 can be optimized with
significant cost advantages. This validation has been supported by
a prototype software tool, ISIDE (In format ion Sys tem In tegra ted
Des ign Env i ronmen t) , that implements the methodological design
steps described in Section 3. ISIDE's optimizer is based on the
tabu search heuristic algorithm (cf. Aarts and Lenstra 1997).

In the following we report the cost reductions that can be obtained
by applying the cost-minimization methodology to the design
alternatives listed in Section 3.1.

• Thin versus f a t c l ients - To evaluate cost reductions from the
optimization o f the thin vs. fat client aitemative, the data entry
worker (DEW), structured task worker (STW) and knowledge
worker (KW) user classes have been considered, as described in
[9]. DEW, STW and K W have been assigned PCs and WTs of
low, intermediate and high profile, respectively. The number o f
users in each class has been increased from 5 to 2500. A system
life time o f 3 years has been considered. [n the first year,
acquisition and management cost have been accounted for,
while for next two years only management cost have been
included. Management costs for WTs and PCs have been
estimated as described in [10]. In particular, in [10] it is
assumed that management costs for WTs are between 25% and
35% lower than management costs for PCs. Analyses have been
performed for the extreme values of this cost range. Results
show that, on average, the WT solution involves a reduction o f
TCO of 19%, 23% and 30% for DEW, STW and KW,
respectively, when WTs ' management costs are hypothesized to
be 25% lower than PCs ' management costs. Reductions grow to
35%, 39% and 44% when WTs ' management costs are
hypothesized to be 35% lower.

• N u m b e r o f t iers - A request typology involving 4 server
processes has been considered to evaluate the 2, 3, 4 and 5 tier
alternatives. RAM requirements for the four processes were
256, 256, 512 and 512 MB. Two different scenarios have been
considered. In the first scenario, the application load was
uniformly distributed among computing tiers and the frequency
o f requests varied from 0 to 7.54 req/min (the frequency
increase step was 0.01). In the second scenario, a one second
demanding time has been considered for the fourth and fifth
tiers and frequency varied from 0 to 3.54 req/min. A disk
demanding time of 0.1 see. on a 5 disk Raid-5 mono-channei
Ultra SCSI disk system has been considered. The average cost
reduction from optimization was 46.44% and 33.04% for the
first and second scenario, respectively.

• Total n u m b e r o f servers - Two different server farm analyses
have been performed. The first referred to a server application
that generated requests which required 0.5 sec. of CPU in a
tuning system based on a P i l l 550. Request frequency varied
from 0 to 37.68 req/min. (step 0.01). RAM requirements were
512 MB and disk demanding time was 0.1 sec. on a 5 disk,
Raid-5 mono-channel Ultra SCSI disk system. The optimization
process delivered a 79.92% average cost reduction. A server
farm supporting WT has also been considered. Analyses were
performed for DEW, K W and STW users. The number of users
varied from 5 to 2100 users with a 5-user increase step. The
optimization process delivered an average cost reduction o f

1132

45.39%, 29.75% and 38.40%, respectively. In this analysis,
management costs were excluded, since recent software
management tools allow the administration of a server farm with
an effort comparable with a single server.

• Server sharing - Two server applications have been considered
and a single-server has been compared with a two-server
architecture. We supposed that applications require 512 MB of
RAM and support two types o f requests. Three different
computing loads have been considered:

• Both types of requests required 0.5 sac. of CPU on a PIIl
550 tuning system and frequencies varied from 0 to 3.56
req/min.

• The first type of request required 0.5 sac. of CPU and the
second 1 sac. on a PII1550 and frequencies varied from 0 to
3.56 and 1.78 req/min respectively.

• The first type of request still required 0.5 sac. of CPU and
the second I sac. on a PIIZ 550, but frequencies varied from
0 to 1.87 and 2.82 req/min, respectively.

Disk demanding time was 0.1 sac. on 5 disk, Raid-5 mono-
channel Ultra SCSI disk system in all cases. The average cost
reduction was 50.03%, 54.67% and 37.80%, respectively.

Then, two user classes have been considered and the single
server vs. two server option was evaluated. The analysis was
performed for DEW, KW and STW, with the following
distribution of users across classes:

• DEW: both users classes varied from 5 to 1090 users, from
5 to 545 and 1635 and from 5 to 270 and 1900. Cost
reductions were 11.08%, 12.88% and 13.33%, respectively.

• KW: both users classes varied from 5 to 300 users, from 5
to 165 and 495 and from 5 to 80 and 575. Cost reductions
were 26.35%, 21.65% and 22.79%, respectively.

• STW: both users classes varied from 5 to 235 users, from 5
to 115 and 350 and from 5 to 60 and 410. Cost reductions
were 30.63 %, 24.01% and 24.04%, respectively.

Either the single server or the two server option was preferred
depending on the total number of users.

5. CONCLUSIONS
The proposed methodology allows the identification of the
architectural solution that minimizes costs, against different
information system requirements and multiple design alternatives.
Preliminary results from the empirical verification of the
methodology indicate that cost reductions can be significant and
would support the practical use of a cost-oriented approach as a
complement to traditional performance evaluations. On the
contrary, experience-driven decisions can lead to sub-optimal
architectural choices, since analyses have shown that the
minimum-cost solution is often different from the expected
solution based on the professional literature. In turn, this would

encourage future research to both extend the methodology and
improve the support tool towards its practical application. In
particular, future work will consider network design alternatives
and will include the analysis of legacy systems end of their impact
on the optimization process.

6. R E F E R E N C E S
[1] Aarts, E., Lenstra, J. K. Local Search in Combinatorial

Optimization. John Wiley & Sons Ltd, 1997.

[2] Francalanci, C., Piuri, V. Designing information technology
architectures: a cost-oriented methodology. Journal of
Information Teenology, 1999.

[3] Guengerich, S. Downsizing Information Systems. Sams
Publishing, 1992.

[4] Horowitz, A.,S. Thin clients tapped in times of change.
Mergers and acquisition, growth of ASPs push technology
further into the mainstream. Information Week
www.informationweek.com.

[5] Jain, H. K. A comprehensive model for the design of
distributed computer systems. IEEE transactions on software
engineering. 13(10), 1092-1104, 1987.

[6] Lazowska, E. D., Zahorjen, J., Graham, G. S., Kenneth, C.
S. Quantitative System Performance Computer system
analysis using queueing network models. Prentice-Hall,
1984.

[7] Lee, H., Shi, Y., Stolen, J. Allocating Data Files over a Wide
Area Network: Goal Setting and Compromise Design.
Information & Management, 26, 85-93, 1994.

[8] Menasc~, D. A., Almeida, V. A. F. Scaling for E-business.
Technologies, models, performance end capacity planning.
Prentice-Hall, 2000.

[9] Microsoft. Windows 2000 Terminal Services Capacity end
Scaling.
www.microsoft.com/windows2OOO/library/technologies/term
inal/tscaling.asp.

[10] Molta, D. Thin Client computers come o f age. Network
Computing
www.networkcomputing.corn/1009/1009buyers l.html.

[11] Scheier, R.,L. Scaling up for e-commerce. Computerworld
www.computerworld.con'L

[12]Zachman, J. A. A framework for information system
architecture. IBM System Journal. 38(2), 454-470, 1999.

1133

