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ABSTRACT 
This paper proposes a design methodology of  Web-based IT 
architectures tying organizational requirements to technical 
choices and costs. Information system design and optimum sizing 
is the result of  a reconciliation of  several conflicting requirements, 
including technical performance and costs. Web-based IT 
architectures involve a number of  design choices with significant 
cost implications: the adoption of  thin clients executing Web 
applications remotely, the choice of  the number of  architectural 
tiers over the Web, the allocation of  applications on physical 
machines and the total number of  servers involved. The main goal 
of  this paper is the identification of  a sequence o f  design steps, 
from requirements ~a lys i s  to physical implementation, that 
allows designers to estimate the cost implications of  architectural 
choices and, by evaluating multiple design 
alternatives, determine the minimum-cost architectural solution. 
Preliminary results from the empirical verification of  the 
methodology indicate that for Web-based architectures cost 
reductions can be significant and would support the practical use 
of  a cost-oriented approach as a complement to traditional 
performance evaluations. 

Keywords 
IT architectures, Web architectures, cost minimization. 

1. INTRODUCTION 
Information system design and optimum sizing is the result o f  a 
reconciliation of  several conflicting requirements, including 
technical performance and costs, organization impact, and user 
acceptance. Web-based IT architectures involve a number of  
design choices with significant cost implications: the adoption of  
thin clients executing Web applications remotely, the choice of  
the number of  architectural tiers over the Web, the allocation of  
applications on physical machines and the total number of  servers 
involved. Theoretical research and practitioners oiten focus on 
specific techniques for the optimization of  individual design 
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phases, usually leading to local technical optima, with little 
understanding of  the relationships among different choices at 
different design stages. This paper attempts the definition of  a 
comprehensive design methodology. The main goal is the 
identification of  a sequence o f  design steps that identify the cost 
implications of  design choices from requirements analysis to 
physical implementation. 

The focus is on architectural design tying the information 
requirements of  an organization to the IT components necessary 
to satisfy those requirements: costs are associated with these 
components (of. [12]). This process has many degrees of  fi'eodom, 
since different Web-based architectures can be built to satisfy a 
given set of  requirements. The proposed methodology guides the 
system designer through a sequence of  choices at different design 
steps in order to distinguish alternative solutions and evaluate 
their costs. The methodology helps choose the architecture that 
minimizes the overall cost, including hardware, software, 
maintenance, management and training. 

The next Section reviews previous approaches and highlights the 
main organizational and technical variables of  interest. Section 3 
presents the phases of  the design methodology and the 
corresponding architectural models. Section 4 reports and 
discusses experimental results from a comparative analysis of  
costs of  different architectures and describes a prototype that 
implements the proposed methodology Finally, Section 5 draws 
conclusions and suggests directions for future research. 

2. RESEARCH BACKGROUNG AND 
MOTIVATION 
Cost analyses of  technical choices have highlighted numerous 
design trade-offs primarily related to the appropriate sizing and 
location of  computing resources within an IT architecture (cf. 
[3]). In the early '80s a lower cost of processing capacity on 
smaller computers and a generally reduced soft, yore complexity 
have created the belief that a decentralized IT architecture would 
involve lower overall costs for an organization and Web-based 
architectures would comply with this traditional trend. A number 
of  technical factors would instead work against decentralization. 
First among them, communication costs can be significantly 
higher in a decentralized architecture, due to a more cumbersome 
data retrieval and consolidation in distributed transaction 
processing (cf. [7]). In practice, databases were duplicated to limit 
remote data access through geographical networks, while raising 
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data consistency issues and causing additional communication 
load to align multiple copies o f  the same data. 

The most general technical model answering the research question 
of  this paper is provided by [5], studying the optimal sizing of  a 
distributed system to minimize the costs o f  communication for 
remote transactions, processors, primary and secondary storage, 
while guaranteeing maximum file availability and minimum 
response time for queries. Francalanci and Piuri (cf. [2]) also 
proposed a design methodology that ties organization 
requirements to IT technical and management costs. They refer to 
the Gartner Group client-server model classification that considers 
applications presentation, logic and data management component 
allocation. 

Recently, practitioners are considering re-centralization o f  data 
and application functionalities in order to decrease management 
effort and costs. This seems to indicate that the design of  the IT 
architecture is often guided more by current beliefs and market 
offer, than by an understanding of  organizational requirements 
and technology costs. System centralization is encouraged 
primarily by new thin client architectures. Thin clients execute the 
presentation component o f  applications, that is they manage the 
user interface, while they delegate the execution of  application 
logic to server computers, that can be outsourced to ASPs and 
accessed through the Web. Outsourcing is considered an 
important factor that promotes thin client diffusion (cf. [4]). 

Two different types of  thin client architectures can be 
implemented, Network Computers (NC) and Windows Terminals 
(WT). WT are supported by a Windows NT/2000 server, while 
NCs can execute only pure Java applications and are usually 
supported by non-Windows servers, such as Sun servers. NCs 
manage the user interface by means of  a browser which is 
executed locally and supports access to Web-based server 
applications. On the contrary, WTs typically do not locally 
execute a browser and require an additional server to manage 
w ' r s '  access to applications that is achieved through a remote 
protocol (Citrix ICA or Microsoft RDP). WTs simply emulate a 
GUI and manage users interactions. Thin client shipments are 
currently growing. IDC forecast a growth of  unit shipments of  
90% in 2001 (in the past two years shipments growth were on 
average 84.7%). 

WTs are the most widespread thin client platform but in the long 
term practitioners forecast NC shipments growth due to Java 
applications and Intranet/Extranet environment diffusion. Thin 
clients will probably replace dumb terminals but cannot replace 
PCs because they are suitable for the execution of  data entry and 
office automation application, but cannot execute computation- 
intensive applications. Anyway ICA and RDP protocols allow 
remote access to windows applications by traditional PCs and new 
hand-held devices and practitioners suggest that the remote 
execution o f  applications when PCs are adopted can reduce the 
total cost o f  ownership (TCO). As PDAs and 3G phones will 
become more widespread CIOs will face the problem of  planning 
access to enterprise servers from these new devices. Capacity 

planning is an important issue that CIOs have to face to guarantee 
system performance and availability, which are more and more 
critical especially for Web-based systems. With the development 
o f  n-tier systems, the design paradigm that is followed by planners 
can be expressed as "design large, but build small" (cf. [I I]). 
That is, by introducing multiple tiers, additional computing 
capacity can be obtained by introducing new machines and 
sharing computation load. 

Capacity planning today is achieved following two different 
methodologies: planners focus on system performance, which is 
usually measured in terms of  response time, and analyze a reduced 
set of  design alternatives since the performance analysis of  a 
single solution is cumbersome (cf. [8]). On the other hand, 
practitioners refer to empirical methodologies based on costs, 
partly supported also by software tools such as Main Control or 
Gartner Group TCO Manager. However, these methodologies are 
not systematic and have no scientific justification/basis. This 
paper is an attempt to fill this literature gap by proposing a 
methodology that systematically and formally tackles architectural 
choices and their cost impact on a company's ]T infrastructure. 

3. DESIGN M E T H O D O L O G Y  
The architectural design process ties the information system 
requirements o f  an organization to the physical components 
necessary to satisfy those requirements. For Web based 
architectures design alternatives are summarized in the next 
section. The following sections describe the phases o f  the 
architectural design process, the architectural model that is 
generated by each phase and the input required from the designer 
needed as an input to the final optimization algorithm. 

3.1 Architectural Design Alterna t ives  
The following design alternatives for Web-based architectures are 
considered: 

• Th in  v e r s u s  f a t  c l i e n t s  - Thin clients manage the user interface 
o f  applications stored and executed remotely, while fat clients 
store and execute applications locally. The choice between fat 
and thin clients can significantly change the processing load on 
server machines. 

• N u m b e r  o f  t i e r s  - T h e  client-server paradigm can organize 
applications in multiple tiers. Each application tier is typically 
allocated on a separate machine and responds to service requests 
from lower tiers, while sending service requests to higher tiers. 

• To ta l  n u m b e r  o f  s e r v e r s  - T h e  required computing capacity can 
be allocated on one or multiple servers, whose total number 
represents an architectural alternative. 

• A l l o c a t i o n  o f  a p p l i c a t i o n s  - Different applications (or 
application tiers) cart be allocated on separate computers and, 
vice versa, multiple applications can be allocated on the same 
computer. 
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Figure 1. Graphical representation of a technology requirement model 

Note that these design alternatives are mutually interdependent. 
For example, a higher number of tiers increases the degrees of  
freedom in allocating applications and improves load balancing 
among servers. Since this paper focuses on hardware choices, 
application design alternatives are not included in the list above 
and in the architectural models discussed in the next sections. 
However, the designer can define constraints on hardware 
alternatives imposed by previous application design choices. 

The design alternatives listed above are credited an impact on the 
total cost o f  the corresponding IT architecture (cf. [10], [11]). 
However, the most appropriate criterion to select a solution 
among a set of  applicable alternatives may not be cost 
minimization (c£ [8], [6]). First of  all, technical constraints can 
represent a driver of  choice. For example, the need to integrate 
new architectural components with legacy systems can constrain 
the selection of  the hardware and network standards, such as the 
number of  tiers or the communication protocol. Similarly, 
organizational constraints, such as security policies or 
centralization practices, may reduce the set o f  viable solutions. 
The methodology presented in this paper assumes that technical 
and organizational constraints translate into architectural design 
decisions that reduce the degrees of  freedom of  the cost- 
minimization algorithm. Constraints can be defined as 

predetermined solutions for one or more of the design alternatives 
listed above, as explained in the next sections. 

3.2 Architectural Design Phases 
The minimum-cost ]T architecture satisfying organizational 
requirements and constraints is identified with three design 
phases. First, organizational requirements are specified by 
building the technology requirements model. Then, a theoretical 
model of  the minimum-cost IT architecture satisfying 
organizational requirements, the infrastrnctural model, is built 
under the assumption that archffectural components can meet 
requirements with no approximation. Theoretical components are 
replaced with real components in a final design phase building the 
minimum-cost physical model of the IT architecture. Each model 
of  the technology architecture is translated into the model 
produced in the subsequent design phase by a specification 
activity. Specification activities involve design choices that, in 
turn, affect architectural costs. The mapping from a model to the 
following one is semi-automatic, since the designer is involved in 
the definition o f  the optimization domain and bounds. The next 
three sections discuss the technology requirements, infrastructural 
and physical models, respectively, and corresponding 
specification activities. 
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3.3 The Technology Requirements Model 
Technology requirements are expressed by means of  the following 
fundamental variables: 
• Organization sites Si, defined as sets o f  organizational resources 

(users, premises and technologies) located within a 1 Km 
distance from each other. Conversely, the closest resources 
within different sites should be separated by  more than 1 Kin. A 
i Km threshold distance is chosen to distinguish between 
different network technologies within and among sites, local 
and geographical, respectively, 

• Buildings Bi, defined as the smallest components o f  an 
organization's  premises. 

• Applications Ai, defined as a set o f  functionalities that can be  
accessed by activating a single computing process. Note that 
commercial programs mapping into multiple processes can be 
represented by means o f  multiple applications. 

• User classes Ci, defined as a group of  ni users using the same 
subset o f  applications, with common capacity requirements and 
operating from the same floor of  a si te 's  building. 

• Requests Ri, defined as interactions among applications aimed 
at exchanging services according to the client-server paradigm. 

• Databases Di, defined as separate sets o f  data that can be 
independently stored, accessed and managed. 

A sample technology requirements model is reported in Figure 1. 
As a preliminary observation, the specification o f  sites, buildings 
and user classes is critical to select and size the network 
components of  the architecture during infrastructural design. 
Applications,  requests and databases are instead the main drivers 
of  infrastructural design choices related to client and server 
computers and to their management policies. 

User classes are supposed to be located on a single floor o f  a 
building and to use the same set of  applications with a common 
think-time. User think-time is a qualitative indicator o f  the 
frequency with which users interact with their client computer  and 
is used in subsequent sizing activities (see Section 3.4). It has 
been empirically demonstrated that computing capacity 
requirements o f  client and monolithic applications depend on 
users'  behavior. For example, users could be responsible for 
difficult decision-making tasks and spend part o f  their time in 
evaluating application outputs without interacting with their client 
computers, that is, they would have a high think-time. In this case, 
even i f  they simultaneously open numerous applications, their 
computing requirements would be low. It has also been found 
that typing speed is an accurate proxy of  users'  think-time (cf. [9]) 
and that think-time can be considered low i f  typing speed is above 
50 hits per minute. Empirical evaluations of  capacity requirements 
for client and monolithic applications are based on a qualitative 
distinction between high and low values o f  think-time. 

Applications are classified as client, monolithic,  server or 
external. Note that a server application can also play the role o f  
client and convey requests to other server applications. 
Computing capacity requirements for client and monolithic 
applications are traditionally expressed in MIPS (cf. [5]). MIPS 
and RAM requirements are not independent o f  the operating 
system and possibly o f  the remote protocol adopted and, 
therefore, applications are associated with mult iple capacity 
requirements for different operating systems and remote 
protocols. In subsequent design activities, MIPS and RAM 

requirements are adjusted according to users" think-time (see 
Section 3.4)_ Irrespective of  their allocation on a personal 
computer or on a server, client and monolithic applications do not  
require the specification o f  secondary memory ' s  performance 
requirements, since disks have been demonstrated not to represent 
a capacity bottleneck (eft [9]). 

On the contrary, server applications require the specification o f  
disks '  response time (el. [8], [6]). Servers are modeled by  means 
of  the queuing network model. The model  we adopt includes a 
single disk, since current secondary memory technologies based 
on RAID disks can be modeled as a single resource (cf. [g]). Note 
that DBMSs are supposed to be specified as server applications 
and, accordingly, databases can be more simply described through 
their required size o f  secondary memory. 

Requests are initiated by a client or an external application and 
are answered by  one or multiple server applications. I f  mult iple 
server applications are involved, they coordinate by  triggering one 
another in a sequence and building the response incrementally 
according to the client-server paradigm. The first one is in charge 
of  conveying the response to the requesting application. 

Server applications are characterized by  the CPU and disk 
demanding times required to support the execution o f  requests. 
Demanding times are supposed to be evaluated on a tuning 
system_ This allows the estimate of  demanding times on a 
different system by means o f  benchmarking data (cf. [8]). Tuning 
systems are associated with applications as opposed to individual 
requests_ Demanding times are in fact evaluated on a single 
system for all the requests served by  an application. 

3.4 The Infrastructurai Design Model 
The goal of  the infrastructural design phase is to bui ld a virtual IT 
architecture satisfying technology requirements under the 
assumption that architectural components can meet requirements 
with no approximation. Since physical machines have a discrete 
distribution in the requirements space, during physical  design 
virtual architectural components will be associated with real 
equipment. A Technology Requirements Model  can be  associated 
with N Infrastructural Models  obtained through the exploration o f  
the solution domain defined by the designer. On the contrary, 
each Infrastructural Model  can be assigned a single Physical  
Model satisfying infi'astructural requirements and m/nimizing 
costs. The solution domain is defined specifying the fol lowing 
architectural design choices: 

l .Type  of  client computers - Client computers can be constrained 
to fat, thin, fat hybrid or terminal (host-based) solutions. 

2.Number o f  computing levels o f  requests - The number  o f  
computers involved in responding to requests can be 
constrained to a specific value. 

3.4.1 Number of  computing levels o f  requests 
As discussed in Section 3.3, requests can involve mult iple server 
applications triggering one another sequentially. Server 
applications can be executed by the same or by different 
computers. I f  separate computers execute server applications, the 
resulting hardware architecture is referred to as multi- level  and 
the number o f  levels evaluates to the maximum number o f  distinct 
computers involved by the same request. For  each request, the 
upper bound of  the number of  levels o f  the corresponding 
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Table  I - S u m m a r y  o f  v ir tua l  c o m p u t i n g  re sources  a n d  sizing 

Vir tual  Symbol Variables Analyt ical  Formula t ion  
C o m p u t i n g  

R e s o u r c e  
Virtual Server VSi Frequency of f(Ri) 

requests 

Virtual 
application server 
for WT/I-IFC 

Virtual fat client 

Virtual HFC 

VAS; 

VFCj 

VHFCI 

Primary Memory 

Computing 
Power 

Primary Memory 

Computing 
Power 

Primary Memory 

Computing 
Power 

R A M =  Z RAM(A,)  
AieVSi 

MIPS = n(C i)- p(C i). 

m .  (IJIPS(A,, OS, RP, think - time(C, ))) 
AJc4"A~ 

RAM = n(Ci), p(Ci). 

Z RAM(A, ,OS,RP, th ink  - t ime(C , ) )  
AIIVA3[ 

MIPS = .lml~_c~,(UleS(d,,OS)) 

= Z  MO,,os) 
AIeFFO 

MIPS= m .  (MIPS(A,,OS)) 
A ,d//./FO 

P . - - y  Memory RAM = y. U (,4,,os) 
AIeFllFQ 

Notes  

MIPS(A[, OS, RP,think-time(Ci)) returns MIPS 
required to support execution of application Ai 
on the target operating system OS under the 
specified remote protocol RP for a user of 
specified think-time; p(Ci) returns the 
percentage of concurrent users in class Cl 

RAM(A,, OS, RP) returns RAM required to 
support execution of application Ai on the laxSet 
operating syst~ln OS under the specified remote 
protocol RP for a user of specified think-time. 

MIPS(A,, OS) returns MIPS required to support 
execution o f  application Ai on the target 
operating system OS 

RAM(Ai, OS) ~tums RAM required to support 
execution of application A, on the target 
operating system OS 

MIPS(A~, OS) returns MIPS required to support 
execution of application Ai on the target 
operating system OS 

RAMCAi, OS) returns RAM required to support 
execution of application Ai on the target 
operating system OS 

architecture is the number o f  applications involved; the lower 
bound is always two. corresponding to the execution of  all server 
applications on the same computer. 

At this stage the designer has to specify for each request path the 
acceptable numbers of  levels and sets of  applications that have to 
be executed by the same server. For the same path multiple 
number of  levels and allocations can be defined. For example, for 
the same path the 3 and 4 level alternative may both be explored. 

3 .4 .2  T h e  i n f r a s t r u c t u r a [  d e s i g n  p r o c e s s  
Virtual computing resources are associated with server 
applications and user classes and sized by accounting for 
computing requirements of  all user classes, as specified in Table 
I. Virtual computing resources r~ resen t  hardware components 
that meet requirements and satisfy constraints with no 
approximation. The following virtual computing resources are 
considered during infrastructural design: 

l. Virtual s e r v e r s -  Virtual servers represent computers that 
execute at least one server application for one user class. They 
are described by their primary and secondary memory and by 
the frequency of requests to be served. The frequency of  
requests is used to evaluate the capacity of  servers during 
physical design. 

2. Virtual WT and HFC servers - Virtual WT and HFC servers 
represent computers that execute at least one client or 
monolithic application for one user class constrained to use a 

or HFC client architecture. They are described by their 
computing capacity, primary and secondary memory. 

3. Virtual fa t  clients and HFC - Virtual fat clients and HFC both 
represent computers that execute at least one client or 
monolithic application. They are described by  their computing 
capacity, primary and secondary memory. 

4.Virtual thin clients - Virtual thin clients represent computers 
that execute or emulate the presentation component of  an 
application. Different from other architectural components, they 
are not described quantitatively, but simply categorized as either 
low or high performance devices. 

Table 1 reports the formal description of  virtual computing 
resources and summarizes their sizing rules. The following criteria 
are applied to associate virtual computing resources with server 
applications and user classes: 

1.Each computing tier defined in Section 3.4.1 is assigned a 
virtual server. 

2.Each user class Ci that has been constrained to a fat client 
architecture is assigned n(Ci) virtual fat clients. Each fat client is 
assumed to execute all client and monolithic applications in 
[(Aj,C~} (this set defines the applications used by class CO. 

3.Each user class Ci that has been constrained to a NC thin client 
architecture is assigned n(C-,) virtual network computers. 

4.Each class C i that has been constrained to a WT thin client 
architecture is assigned n(C0 virtual windows terminals and a 
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WT virtual server. The WT virtual server is assumed to execute 
all client and monolithic applications in ((Aj,Ci) } . 

5.Each class Ci that has been constrained to a hybrid fat client 
architecture is assigned n(O-J HFC virtual clients and a HFC 
virtual server. 

Secondary memory is sized as the summation o f  secondary 
memory requirements d(A~ of  applications Ai executed by  the 
virtual computer and o f  secondary memory requirements d(Dj) o f  
databases Dj in {(Dj,Ai)} that are managed by  applications Ai. 
Similarly, primary memory evaluates to the summation of  RAM 
requirements of  the applications Ai simultaneously executed by the 
virtual computer, of  RAM(A.,) for server applications and of  the 
RAM values specified in zl land Azfor client and monolithic 
applications (see Figure 1). The computing capacity of  PCs is 
obtained as the maximum value o f  MIPS required by applications 
that are executed locally. In the same way, capacity requirements 
for Virtual WT and HFC servers are evaluated by considering the 
maximum value for MIPS required by applications that are 
remotely executed multiplied by the number o f  concurrent users. 

3.5 The Physical Design Model 
Physical design transforms virtual computing resources into 
commercial components according to a cost-minimization 
process. The overall output o f  the physical design phase is the 
minimum-cost IT architecture satisfying technology requirements 
and constraints. As noted before, multiple infrastructural models 
can be built in compliance with technology requirements. The 
number o f  infrasUuctural models to be compared can be high and 
cost minimization can represent a computationally complex 
process. The algorithmic approach to cost minimization adopted 
in the prototype tool implementing the methodology is described 
in Section 4. As a general consideration, optimization iterates the 
following two steps in order to design the minimum-cost 
architecture: 

1 .selection o f  an infrastructural model; 

2.association o f  conanercial components with virtual computing 
resources of  the selected infrastructural model. 

Commercial components are selected for association with virtual 
resources as the lowest-cost devices satisfying the following 
criteria: 

• Vir tual  servers: the utilization of  physical resources CPU and 
disk should be lower than 60%, in order to guarantee an 
acceptable response time (c£ [8]). With values of  utilization 
greater than 60%, small variations of  throughput would cause a 
substantial growth o f  response time and, overall, performance 
would become unreliable. 

• Y ir tua i  W'F a n d  H F C  servers,  v i r tua l  f a t  c l ients  a n d  HFC:  
computing capacity is greater than that o f  corresponding virtual 
resources. 

• The primary and secondary memory of  commercial components 
should be greater than those o f  corresponding virtual resources. 

• Virtual WT: design criteria that discriminate low and high 
performance devices are satisfied. 

4. EMPIRICAL VERIFICATIONS 
The methodology has been empirically validated by verifying that 
the design alternatives listed in Section 3.1 can be optimized with 
significant cost advantages. This validation has been supported by 
a prototype software tool, ISIDE ( In format ion  Sys tem In tegra ted  
Des ign  Env i ronmen t ) ,  that implements the methodological design 
steps described in Section 3. ISIDE's  optimizer is based on the 
tabu  search  heuristic algorithm (cf. Aarts and Lenstra 1997). 

In the following we report the cost reductions that can be obtained 
by applying the cost-minimization methodology to the design 
alternatives listed in Section 3.1. 

• Thin versus  f a t  c l ients  - To evaluate cost reductions from the 
optimization o f  the thin vs. fat client aitemative, the data entry 
worker (DEW), structured task worker (STW) and knowledge 
worker (KW) user classes have been considered, as described in 
[9]. DEW, STW and K W  have been assigned PCs and WTs of  
low, intermediate and high profile, respectively. The number o f  
users in each class has been increased from 5 to 2500. A system 
life time o f  3 years has been considered. [n the first year, 
acquisition and management cost have been accounted for, 
while for next two years only management cost have been 
included. Management costs for WTs and PCs have been 
estimated as described in [10]. In particular, in [10] it is 
assumed that management costs for WTs are between 25% and 
35% lower than management costs for PCs. Analyses have been 
performed for the extreme values of  this cost range. Results 
show that, on average, the WT solution involves a reduction o f  
TCO of  19%, 23% and 30% for DEW, STW and KW, 
respectively, when WTs '  management costs are hypothesized to 
be 25% lower than PCs '  management costs. Reductions grow to 
35%, 39% and 44% when WTs '  management costs are 
hypothesized to be 35% lower. 

• N u m b e r  o f  t iers  - A request typology involving 4 server 
processes has been considered to evaluate the 2, 3, 4 and 5 tier 
alternatives. RAM requirements for the four processes were 
256, 256, 512 and 512 MB. Two different scenarios have been 
considered. In the first scenario, the application load was 
uniformly distributed among computing tiers and the frequency 
o f  requests varied from 0 to 7.54 req/min (the frequency 
increase step was 0.01). In the second scenario, a one second 
demanding time has been considered for the fourth and fifth 
tiers and frequency varied from 0 to 3.54 req/min. A disk 
demanding time of  0.1 see. on a 5 disk Raid-5 mono-channei 
Ultra SCSI disk system has been considered. The average cost 
reduction from optimization was 46.44% and 33.04% for the 
first and second scenario, respectively. 

• Total  n u m b e r  o f  servers  - Two different server farm analyses 
have been performed. The first referred to a server application 
that generated requests which required 0.5 sec. of  CPU in a 
tuning system based on a P i l l  550. Request frequency varied 
from 0 to 37.68 req/min. (step 0.01). RAM requirements were 
512 MB and disk demanding time was 0.1 sec. on a 5 disk, 
Raid-5 mono-channel Ultra SCSI disk system. The optimization 
process delivered a 79.92% average cost reduction. A server 
farm supporting WT has also been considered. Analyses were 
performed for DEW, K W  and STW users. The number of  users 
varied from 5 to 2100 users with a 5-user increase step. The 
optimization process delivered an average cost reduction o f  
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45.39%, 29.75% and 38.40%, respectively. In this analysis, 
management costs were excluded, since recent software 
management tools allow the administration of  a server farm with 
an effort comparable with a single server. 

• Server sharing - Two server applications have been considered 
and a single-server has been compared with a two-server 
architecture. We supposed that applications require 512 MB of  
RAM and support two types o f  requests. Three different 
computing loads have been considered: 

• Both types of  requests required 0.5 sac. of  CPU on a PIIl 
550 tuning system and frequencies varied from 0 to 3.56 
req/min. 

• The first type of request required 0.5 sac. of  CPU and the 
second 1 sac. on a PII1550 and frequencies varied from 0 to 
3.56 and 1.78 req/min respectively. 

• The first type of  request still required 0.5 sac. of  CPU and 
the second I sac. on a PIIZ 550, but frequencies varied from 
0 to 1.87 and 2.82 req/min, respectively. 

Disk demanding time was 0.1 sac. on 5 disk, Raid-5 mono- 
channel Ultra SCSI disk system in all cases. The average cost 
reduction was 50.03%, 54.67% and 37.80%, respectively. 

Then, two user classes have been considered and the single 
server vs. two server option was evaluated. The analysis was 
performed for DEW, KW and STW, with the following 
distribution of  users across classes: 

• DEW: both users classes varied from 5 to 1090 users, from 
5 to 545 and 1635 and from 5 to 270 and 1900. Cost 
reductions were 11.08%, 12.88% and 13.33%, respectively. 

• KW: both users classes varied from 5 to 300 users, from 5 
to 165 and 495 and from 5 to 80 and 575. Cost reductions 
were 26.35%, 21.65% and 22.79%, respectively. 

• STW: both users classes varied from 5 to 235 users, from 5 
to 115 and 350 and from 5 to 60 and 410. Cost reductions 
were 30.63 %, 24.01% and 24.04%, respectively. 

Either the single server or the two server option was preferred 
depending on the total number of  users. 

5. CONCLUSIONS 
The proposed methodology allows the identification of  the 
architectural solution that minimizes costs, against different 
information system requirements and multiple design alternatives. 
Preliminary results from the empirical verification of  the 
methodology indicate that cost reductions can be significant and 
would support the practical use of a cost-oriented approach as a 
complement to traditional performance evaluations. On the 
contrary, experience-driven decisions can lead to sub-optimal 
architectural choices, since analyses have shown that the 
minimum-cost solution is often different from the expected 
solution based on the professional literature. In turn, this would 

encourage future research to both extend the methodology and 
improve the support tool towards its practical application. In 
particular, future work will consider network design alternatives 
and will include the analysis of legacy systems end of their impact 
on the optimization process. 

6. R E F E R E N C E S  
[1] Aarts, E., Lenstra, J. K. Local Search in Combinatorial 

Optimization. John Wiley & Sons Ltd, 1997. 

[2] Francalanci, C., Piuri, V. Designing information technology 
architectures: a cost-oriented methodology. Journal of  
Information Teenology, 1999. 

[3] Guengerich, S. Downsizing Information Systems. Sams 
Publishing, 1992. 

[4] Horowitz, A.,S. Thin clients tapped in times of  change. 
Mergers and acquisition, growth of  ASPs push technology 
further into the mainstream. Information Week 
www.informationweek.com. 

[5] Jain, H. K. A comprehensive model for the design of 
distributed computer systems. IEEE transactions on software 
engineering. 13(10), 1092-1104, 1987. 

[6] Lazowska, E. D., Zahorjen, J., Graham, G. S., Kenneth, C. 
S. Quantitative System Performance Computer system 
analysis using queueing network models. Prentice-Hall, 
1984. 

[7] Lee, H., Shi, Y., Stolen, J. Allocating Data Files over a Wide 
Area Network: Goal Setting and Compromise Design. 
Information & Management, 26, 85-93, 1994. 

[8] Menasc~, D. A., Almeida, V. A. F. Scaling for E-business. 
Technologies, models, performance end capacity planning. 
Prentice-Hall, 2000. 

[9] Microsoft. Windows 2000 Terminal Services Capacity end 
Scaling. 
www.microsoft.com/windows2OOO/library/technologies/term 
inal/tscaling.asp. 

[10] Molta, D. Thin Client computers come o f  age. Network 
Computing 
www.networkcomputing.corn/1009/1009buyers l.html. 

[11] Scheier, R.,L. Scaling up for e-commerce. Computerworld 
www.computerworld.con'L 

[12]Zachman, J. A. A framework for information system 
architecture. IBM System Journal. 38(2), 454-470, 1999. 

1133 


