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Many useful techniques exist for optimizing a Java program. Instead of focusing Conclusion
on one particular technique, this article considers the optimization processasa  —
whole. Authors Erwin Vervaet and Maarten De Cock walk readersthroughthe ~ Resources
performance tuning of a puzzle-solving program, applying an assortment of About the authors

techniques ranging from simple technical tips to more advanced a gorithm
optimizations. The end result is a spectacular performance increase (more than a
million fold) between the first working implementation and the fully optimized
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solution. Related content:

Merlin brings nonblocking

Most Java performance-related articles focus on the many techniques that programmers

can employ to speed up their programs. At one end of the spectrum you can find 1/0 to the Java platform
descriptions of relatively simple programming idioms, like the use of the Improve the performance of
St ri ngBuf f er class. At the other end you find discussions of more advanced your Java code
techniques, like the use of object caches. Instead of adding to thislist of techniques, Subscribe to the
welll present a practical example that combines them to speed up a puzzle-solving

developerWorks newsl etter

program.

The program we will develop and optimize calculates all possible solutions for the
Meteor puzzle, abrain teaser consisting of 10 puzzle pieces, each a different color
made up of five hexagons (six-sided polygons with each side of equal length). The
puzzle board itself is arectangular grid of 50 hexagonslaid out in a 5-by-10 pattern.
Y ou solve the puzzle by covering the entire board using the 10 available pieces. A
possible solution to this puzzleis shown in Figure 1.

Figure 1. A solution for the Meteor puzzle The Eter nity puzzle

While the Java
program discussed in
this article solves the
10-piece Meteor
puzzle, the rea goal
was to solve amuch

called the Eternity
puzzle, devised by

and introduced in
Britain in June 1999.
At the same time that
Eternity was released,
Monckton released

larger 209-piece puzzle

Christopher Monckton
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various smaller

puzzles: Meteor, Delta,
and Heart. By solving
any of these puzzles, a
player could send off
for one of various hints
that showed where on
the Eternity grid
particular pieces were
located in Monckton's
solution. A £1 million
award (approximately
$1.5 million USD) was
offered for the first
person who solved the
Eternity puzzle, which
was finally collected by
Alex Selby and Oliver
Riordan on May 15,
2000. A second
solution was | ater
found by Guenter
Stertenbrink.
Interestingly, neither of
these solutions matched
the six clues given by
Christopher Monckton
First, aworking solution for his solution, which
In this section, we'll discuss an initial implementation of our | remains unknown.
puzzle-solving program. Thiswill involve quite afew code
fragments, so bear with us; once we have explained the basic agorithmsinvolved, we will start optimizing. Source
codefor thisinitial implementation as well as the optimizations we'll discuss later in the article, isavailable in
Resources.

As simple asfinding this solution might seem, itisa
non-trivial problem to implement in a computer program.
Writing that program will be a refreshing change from the
contrived examples you can find in many other Java
performance-related articles. It allows ustoillustrate a
number of different optimization techniques and the ways of
combining them. However, before we start optimizing, we
first need to develop aworking solution.

The puzzle-solving algorithm

Our puzzle-solving program will calculate all possible solutions for the Meteor puzzle. This means that we will have
to exhaustively search for every possible tiling of the board using the pieces. One step in accomplishing thistask isto
determine all the permutations of apiece. A permutation is a possible way of placing a piece on the board. Knowing
that every piece can be flipped upside down and can be rotated around the six sides of one of its hexagons, we arrive
at atotal of 12 (2 x 6) possible ways to put a piece on one position of the board. With 50 board positions, the total
number of possible ways to put a single piece on the board equals 600 (2 x 6 x 50).

Not all of these "possibilities’ would actually work, of course. For instance, some have a piece hanging over the edge
of the board, which clearly does not lead to a solution. Recursively repeating this process for all piecesbringsusto a
first algorithm that will find every possible solution by trying every possible tiling of the board using the pieces.
Listing 1 presents the code for this algorithm. We useasimple Ar r ayLi st object caled pi eceLi st to hold all
the pieces. The boar d object represents the puzzle board, which we will discuss shortly.

Listing 1. Theinitial puzzle-solving algorithm



public void solve() {
if (!pieceList.isEmty()) {
/'l Take the first avail abl e piece
Pi ece current Pi ece = (Piece)piecelist.renmve(0);

for (int i = 0; i < Piece. NUMBEROFPERMUTATI ONS; i ++) {
Pi ece permutation = currentPi ece. next Perrutation();

for (int j = 0; j < Board. NUMBEROFCELLS; j++) {
if (board. pl acePi ece(permutation, j)) {

/* W have now put a piece on the board, so we have to
continue this process with the next piece by
recursively calling the solve() nethod */

sol ve();

/* We're back fromthe recursion and we have to conti nue
searching at this level, so we renbve the piece we
just added fromthe board */

boar d. renovePi ece( per mut ati on) ;

}

/] Else the pernutation doesn't fit on the board

}
}

/Il W're done with this piece
pi ecelLi st.add(0, currentPiece);

}

el se {

/* Al'l pieces have been placed on the board so we
have found a sol ution! */

puzzl eSol ved() ;

}
}

Now that we have our basic agorithm set up, we need to investigate two other important issues:
« How will we represent a piece of the puzzle?
o How will we implement the puzzle board?

In the algorithm shown in Listing 1, we used aPi ece classand aBoar d class. Now let's take alook at the
implementation of those two classes.

The Piece class

Before we start designing the Pi ece class, we need to consider what this class should represent. When you look at
Figure 2, you can see that a Meteor puzzle piece consists of five connected cells. Each cell is aregular hexagon with
six sides: EAST, SOUTHEAST, SOUTHWEST, WEST, NORTHWEST, and NORTHEAST. When two cells of a
piece are joined at a particular side, we call these cells neighbours. In the end, aPi ece object is nothing more than a
set of five connected Cel | objects. Each Cel | object has six sides and six possible neighbouring cells.
Implementing the Cel | classis straightforward, as shown in Listing 2. Note that we maintain apr ocessed flagin
aCel | object. We will usethisflag later on to avoid infinite loops.

Figure 2. A puzzle piece and its cells
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Listing 2. The Cell class

public class Cell {
public static final int NUVBEROFSI DES = 6;

/] The sides of a cell

public static final int EAST = 0;
public static final int SOUTHEAST = 1,
public static final int SOUTHWEST = 2;
public static final int WEST = 3;
public static final int NORTHWEST = 4,
public static final int NORTHEAST = 5;

private Cell[] neighbours = new Cel | [ NUVMBEROFSI DES] ;

pri vate bool ean processed = fal se;

public Cell getNei ghbour(int side) {
return nei ghbours[ si dej;

}

public void setNei ghbour(int side, Cell cell) {
nei ghbours[side] = cell;

}

publ i c bool ean i sProcessed() {
return processed;

}

public void setProcessed(bool ean b) {
processed = b;

}
}

The Pi ece classis more interesting because we need a method to cal culate the permutations of a Piece. We can find
all permutations by first rotating the piece around the six sides of one of its cells, flipping it upside down, and finally
rotating it again around the six sides of one of its cells. As we mentioned before, a piece consists of five adjacent
cells. Flipping or rotating the pieceis simply flipping or rotating al of itscells. Soweneedf | i p() andr ot at e()
methods for Cel | objects. Both flipping and rotating are easily accomplished by changing the neighbouring sides
accordingly. These methods are provided inthe Pi eceCel | subclass of the Cel | class, shownin Listing 3. A

Pi eceCel | objectisacell usedinaPi ece object.

Listing 3. The PieceCell subclass



public class PieceCell extends Cell {
public void flip() {
Cel | buffer = getNei ghbour ( NORTHEAST) ;
set Nei ghbour ( NORTHEAST, get Nei ghbour ( NORTHWEST) ) ;
set Nei ghbour ( NORTHWEST, buffer);
buf fer = get Nei ghbour ( EAST) ;
set Nei ghbour ( EAST, get Nei ghbour (VEST)) ;
set Nei ghbour (VWEST, buffer);
buf fer = get Nei ghbour ( SOUTHEAST) ;
set Nei ghbour ( SOUTHEAST, get Nei ghbour ( SOUTHWEST) ) ;
set Nei ghbour ( SOUTHVEST, buffer);

}

public void rotate() {
/1 C ockw se rotation
Cel | east Nei ghbour = get Nei ghbour ( EAST) ;
set Nei ghbour ( EAST, get Nei ghbour ( NORTHEAST) ) ;
set Nei ghbour ( NORTHEAST, get Nei ghbour ( NORTHWEST) ) ;
set Nei ghbour ( NORTHWEST, get Nei ghbour (VEST) ) ;
set Nei ghbour (VWEST, get Nei ghbour ( SOUTHWEST) ) ;
set Nei ghbour ( SOUTHWEST, get Nei ghbour ( SOUTHEAST) ) ;
set Nei ghbour ( SOUTHEAST, east Nei ghbour) ;

}

}

Using the Pi eceCel | class, we can complete the implementation of the Pi ece class. Listing 4 shows you the
source code:

Listing 4. The Piece class

public class Piece {
public static final int NUVBEROFCELLS = 5;
public static final int NUVBEROFPERMUTATI ONS = 12;

private PieceCell[] pieceCells new Pi eceCel | [ NUMBEROFCELLS] ;

private int currentPernmutation 0;
private void rotatePiece() {
for (int i =0; i < NUMBEROFCELLS; i++) {
pi eceCel I s[i].rotate();
}
}
private void flipPiece() {
for (int i = 0; i < NUMBEROFCELLS; i++) {
pi eceCel I s[i].flip();
}
}

public Piece nextPernutation() {
if (currentPernutation == NUVBEROFPERMUTATI ONS)
currentPernutation = O;

switch (currentPernmutation%) ({
case O:
/1l Flip after every 6 rotations




flipPiece();
br eak;

def aul t:
r ot at ePi ece() ;
br eak;

}

current Pernmut ati on++;

return this;

}
public void resetProcessed() {
for (int i =0; i < NUMBEROFCELLS; i++) {
pi eceCel |l s[i].setProcessed(false);
}
}

[/ Getters and setters have been om tted

}

The Board class

Before we implement the Boar d class, we'll need to tackle two interesting problems. First we have to decide on a
data structure. A Meteor puzzle board is basically a 5-by-10 grid of regular hexagons, which we can represent as an
array of 50 Cel | objects. Instead of using the Cel | classdirectly, we'll usethe Boar dCel | subclass, shownin
Listing 5, which keeps track of the piece that occupies the cdll:

Listing 5. The BoardCell subclass

public class BoardCell extends Cell ({
private Piece piece = null;

public Piece getPiece() {
return piece;

}

public void setPiece(Piece piece) {
thi s. pi ece = pi ece;

}

}

If we store all 50 board cells of the board in an array, we'll have to write some tedious initialisation code. This
initialisation identifies the neighbouring board cells for each cell of the board, asillustrated in Figure 3. For instance,
cell 0 hastwo neighbours: cell 1 inthe east and cell 5 in the southeast. Listing 6 showsthe

initializeBoardCell () method that iscalled from the constructor of the Boar d class to do thisinitialisation.

Figure 3. Theboard represented asan array of cells

001 2 3 4
5 6

Now that we've implemented the data structure for the board, we move on to the next problem: writing a

pl acePi ece() method that puts a piece on the board. The hardest part of writing this method is deciding whether
the piece fits on the board at the given position. One way to determine whether the piece fitsisto first find all the
board cells that would be occupied by the cells of the pieceif it were placed on the board. After we have this set of



board cells, we can easily determine if the new piece would fit: all corresponding board cells need to be empty and
the piece needsto fit completely on the board. This processisimplemented by the

fi ndQccupi edBoar dCel | s() method and pl acePi ece() method shown in Listing 6. Note that we use the
processed field of the Pi eceCel | objectsto avoid an infinite recursion in the

fi ndQccupi edBoar dCel | s() method.

Listing 6. The Board class

public class Board {
public static final int NUVBEROFCELLS = 50;
public static final int NUVBEROFCELLSI NROW = 5;
private BoardCel | [] boardCells = new BoardCel | [ NUMBEROFCELLS] ;

public Board() {

for (int i =0; i < NUMBEROFCELLS; i++) {
boardCel I s[i] = new BoardCell ();
}
for (int i =0; i < NUMBEROFCELLS; i++) {
initializeBoardCell (boardCells[i], i);
}
}
/**

* Initialize the neighbours of the given boardCell at the given
* index on the board

*/
private void initializeBoardCell (BoardCell boardCell, int index) {
int row = i ndex/ NUVMBEROFCELLSI NROW
/Il Check if cell is in last or first col umm

bool ean i sFirst = (i ndexYNUVBEROFCELLSI NROW == 0);
bool ean isLast = ((index+1) YNUVBEROFCELLSI NROW == 0);

if (row == 0) { // Even rows
if (row!=0) {
/'l Northern nei ghbours
if (lisFirst) {
boar dCel | . set Nei ghbour (Cel | . NORTHWEST, boardCel | s[i ndex-6]);
}
boar dCel | . set Nei ghbour (Cel | . NORTHEAST, boardCel | s[i ndex-5]);
}
if (row!= ((NUVMBEROFCELLS/ NUVMBEROFCELLSI NROW -1)) {
/1 Sout hern nei ghbours
if (lisFirst) {
boar dCel | . set Nei ghbour (Cel | . SOUTHWEST, boardCel | s[i ndex+4]);

}
boar dCel | . set Nei ghbour (Cel | . SOUTHEAST, boardCel | s[i ndex+5]);

}

el se { // Uneven rows
/'l Northern nei ghbours
if (!isLast) {
boar dCel | . set Nei ghbour (Cel | . NORTHEAST, boardCel | s[i ndex-4]);
}

boar dCel | . set Nei ghbour (Cel | . NORTHWEST, boardCel | s[i ndex-5]);
/| Sout hern nei ghbours




if (row != (( NUMBEROFCELLS/ NUVBEROFCELLSI NROW -1)) {
if (!'isLast) {
boar dCel | . set Nei ghbour ( Cel | . SOUTHEAST, boardCel | s[i ndex+6]) ;

}
boar dCel | . set Nei ghbour (Cel | . SOUTHWEST, boardCel | s[i ndex+5]);

}
}

/'l Set the east and west nei ghbours
if (lisFirst) {
boar dCel | . set Nei ghbour (Cel | . WEST, boardCel | s[i ndex-1]);

}
if (!isLast) {
boar dCel | . set Nei ghbour (Cel | . EAST, boardCel | s[i ndex+1]);
}
}

public void findOccupi edBoar dCel | s(
ArraylLi st occupiedCells, PieceCell pieceCell, BoardCell boardCell) {
if (pieceCell !'= null &&% boardCell !'= null && !pieceCell.isProcessed()) {
occupi edCel | s. add(boardCel | ) ;

/* Nei ghbouring cells can form | oops, which would |lead to an
infinite recursion. Avoid this by marking the processed
cells. */

pi eceCel | . set Processed(true);

/'l Repeat for each nei ghbour of the piece cel
for (int i = 0; i < Cell.NUMBEROFSIDES; i++) {
fi ndCccupi edBoar dCel | s(occupi edCel | s,
(Pi eceCel |I') pi eceCel | . get Nei ghbour (i),
(BoardCel | ) boar dCel | . get Nei ghbour (i));

}
}
}

publ i ¢ bool ean pl acePi ece(Pi ece piece, int boardCellldx) {
I/ W will manipulate the piece using its first cel
return pl acePi ece(pi ece, 0, boardCellldx);

}

publ i c bool ean
pl acePi ece(Pi ece piece, int pieceCellldx, int boardCellldx) {
/Il W're going to process the piece
pi ece. reset Processed();

/Il Get all the boardCells that this piece would occupy
ArraylLi st occupi edBoardCells = new ArraylList();
fi ndCccupi edBoar dCel | s(occupi edBoar dCel | s,
pi ece. get Pi eceCel | (pi eceCel | | dx),
boar dCel | s[ boardCel | I dx]);

if (occupi edBoardCel | s.size() != Piece. NUMBEROFCELLS) {
/1l Some cells of the piece don't fall on the board
return fal se;

}




for (int i =0; i < occupiedBoardCells.size(); i++) {
if (((BoardCell)occupi edBoardCells.get(i)).getPiece() '= null)
/1l The board cell is already occupi ed by another piece
return fal se;
}
/1 Cccupy the board cells with the piece
for (int i = 0; i < occupi edBoardCel | s.size(); i++) {
((BoardCel | ) occupi edBoardCel | s. get(i)).set Pi ece(piece);
}
return true; // The piece fits on the board
}
public void renovePi ece(Pi ece piece) {
for (int i = 0; i < NUMBEROFCELLS; i++) {
/'l Piece objects are unique, so use reference equality
if (boardCells[i].getPiece() == piece) {
boardCel | s[i].setPiece(null);
}
}
}
}

This completes the implementation of our initial solution. Let's put it to the test.

Running the program

Now that we have finished our first puzzle-solving program, we can run it to find all possible solutions for the M eteor
puzzle. The source code described in the previous sectionsisfound inthe met eor . i ni ti al package of the source
download. This package containsa Sol ver classthat hasasol ve() method and amai n() method to start the
program. The constructor of the Sol ver classinitializes all puzzle pieces and adds them to pi ecelLi st . Wecan
launch the program usingj ava neteor.initial . Sol ver.

The program starts searching for solutions, but as you will notice, it doesn't seem to find any. Actually, it doesfind
all possible solutions, but you will have to be very patient. It takes several hoursto find just one solution. Our test
computer, an Athlon XP 1500+ with 512MB of RAM running RedHat Linux 7.2 and Java 1.4.0, finds the first
solution after about eight hours. Finding all of them would take several months, if not years.

Clearly, we have a performance problem. A first candidate for optimization is the puzzle-solving algorithm. We're
currently using a naive, brute-force approach to find all possible solutions. We should try to fine tune this algorithm.
A second thing we can do isto cache temporary data. For instance, instead of recal culating the permutations of a
piece every time, we could cache those permutations. Finally, we can try to apply some low-level optimization
techniques, like avoiding unnecessary method calls. In the next sections, we'll study these optimization techniques.

Improving the algorithm

Take alook back at Listing 1 and think about how we might be able optimize our initial puzzle-solving algorithm. A
good way to optimize an algorithm isto visualize it. Visualisation allows us to get a better understanding of the
process being implemented and its possible downsides. The next sections discuss two inefficiencies we can discern.
We leave the actual visualisation code for our puzzle-solving program to the interested reader.

Island detection pruning

The algorithm in Listing 1 fits pieces (or more precisely, the piece cells of a piece) onto every position of the board.
Figure 4 shows a possible board situation at the beginning of the process. The current permutation of the blue piece
has been placed on the first available board position and the current permutation of the yellow piece has moved to its
second possible board position. Our agorithm then continues with the third piece, and so on. However, if we look
carefully at Figure 4, it's clear that there will be no possible solutions for the puzzle with the blue and yellow pieces
in these positions. The reason is those two pieces have formed an island of three neighbouring empty cells. Because
all the puzzle pieces consist of five cells, thereis no way to fill thisisland. All the effort that our algorithm exerts
trying to fit the remaining eight pieces on the board is useless. What we need to do is cut off our algorithm if we



detect an island on the board that cannot be filled.
Figure4. Anisland on the board

Text books call this process of interrupting a recursive search algorithm pruning. Adding a pruning function to our
Sol ver classiseasy. Before every recursive call to the sol ve() method, we check for islands on the board. If we
find an island consisting of a number of empty cells that is not amultiple of five, we do not make the recursive call.

Instead, the algorithm continues at the current level of recursion. Listings 7 and 8 show the necessary code
adjustments:

Listing 7. A puzzle-solving algorithm with pruning

public class Sol ver {
public void solve() {

if (!prune()) solve();
}

private bool ean prune() {
/* We'l| use the processed field of board cells to avoid
infinite | oops */
boar d. reset Processed() ;

for (int i = 0; i < Board. NUMBEROFCELLS; i++) {
if (board.getBoardCell (i).getlslandSize()%i ece. NUMBEROFCELLS != 0) {
/1 W have found an unsol vabl e isl and
return true;
}
}

return false;
}
}

Listing 8. The getl landSize() method



public class BoardCel |l {
public int getlslandSize() {
if (!'isProcessed() && iseEnpty()) {
set Processed(true); // Avoid infinite recursion
int nunberOCellslinlsland = 1; // this cell

for (int i =0; i < Cell.NUMBEROFSIDES; i ++) {
Boar dCel | nei ghbour =( Boar dCel | ) get Nei ghbour (i) ;
if (neighbour !'= null) {

nurmber O Cel | sl nl sl and += nei ghbour. get| sl andSi ze() ;

}

}

return nunmber O Cel | sl nl sl and;

}

el se {
return O;
}

}
}

The fill-up agorithm

A second downside of our initial algorithm isthat it intrinsically generates alot of islands. This happens because we
take one permutation of a piece and move that over the board before switching to the next permutation of the piece.
For instance, in Figure 5 we have moved the current permutation of the blue piece to its third possible board position.
Asyou can seg, this generates an island at the top of the board. While the island-detection pruning we added in the
previous section will generate drastic performance improvements because of the large number of islands we're
generating, it would be even better if we could update our algorithm to minimize the number of islandsit generatesin
thefirst place.

Figure5. Generating islands

To reduce the number of islands we generate, it would be best if our algorithm concentrated on filling empty board
positions. So instead of just focusing on trying every possible way of tiling the board, well try to fill the board
left-to-right, top-to-bottom. This new puzzle-solving agorithm is shown in Listing 9:

Listing 9. Thefill-up puzzle-solving algorithm

public void solve() {
if (!pieceList.isEmty()) {
/1 We'll try to find a piece that fits on this board cel
int enptyBoardCel | 1 dx = board. get Fi r st Enpt yBoar dCel | | ndex();

/1 Try all avail abl e pieces
for (int h = 0; h < pieceList.size(); h++) {
Pi ece current Pi ece = (Piece)piecelList.renmve(h);

for (int i = 0; i < Piece. NUMBEROFPERMUTATI ONS; i ++) {
Pi ece permutation = currentPi ece. next Perrnutation();

/* Instead of always using the first cell to manipul ate




the piece, we nowtry to fit any cell of the piece on
the first enpty board cell */

for (int j = 0; j < Piece. NUMBEROFCELLS; j++) {
i f (board. pl acePi ece(permutation, j, enptyBoardCellldx)) {
if (!prune()) solve();
boar d. renovePi ece( per mut ati on);
}
}
}

/* Put the piece back into the list at the position where
we took it to maintain the order of the list */

pi ecelLi st.add(h, currentPiece);

}
}

el se {
puzzl eSol ved();

}
}

Our new approach triesto fit any available piece on the first empty board cell. Just trying all possible permutations of
al available piecesis not enough. We should also try to cover the empty board cell with any piece cell in the piece. In
theinitial algorithm, we silently assumed that we were manipulating the piece using itsfirst cell. Now we haveto try
every cdl in the piece, asillustrated in Figure 6. The current permutation of the pink piece does not fit on the board
when we try to put the piece cell with index 0 on board position 5 (circled in Figure 6). However, it does fit when we
use the second piece cell.

Figure 6. The cells of a piece

Running the updated program

When we ran our initial program, it failed to find any solutions in a reasonable amount of time. Let'stry again with
our improved algorithm and island-detection pruning. The code for this version of the program can be found in the
package net eor . al gori t hm Whenwe launchit usingj ava net eor. al gorit hm Sol ver, we amost
immediately see solutions popping up. Our test computer calculates all 2,098 possible solutions in 157 seconds. So
we've made a gigantic performance improvement: from severa hours per solution to less than one-tenth of a second.
That's roughly 400,000 times as fast! Asan aside, the initial algorithm combined with island detection pruning
completesin 6,363 seconds. So the pruning optimization causes a 10,000-fold speedup, while the fill-up algorithm
generates an extra 40-fold speedup. It clearly pays off to spend some time studying your algorithms and attempting to
optimize them.

Caching intermediate results

The redesign of our puzzle-solving algorithm dramatically improved the execution speed of our program. For further
optimizations, we'll have to look at technical performance techniques. An important issue to consider in Java
programs is garbage collection. Y ou can show the activity of the garbage collector during program execution by
using the - ver bose: gc command line switch.



java -verbose: gc neteor.al gorithm Sol ver

If we run our program with this switch, we see alot of output from the garbage collector. Studying the source code
tells us that the problem is the instantiation of atemporary Ar r ayLi st object inthepl acePi ece() method of
the Boar d class (see Listing 6). We usethis Ar r ayLi st object to hold the board cells that a particular permutation

of a piece would occupy. Instead of recalculating thislist every time, it would be better to cache the results for later
reference.

Thef i ndGCccupi edBoar dCel | s() method determines the cells of the puzzle board that would be occupied by a
puzzle pieceif acertain cell of that pieceis placed on a certain board position. The results of the method are
determined by three parameters: first we have the puzzle piece, or a permutation thereof; second we have the cell of
the piece that we're using to manipulate the piece; and finally we have the cell of the board we'll put the piece on. To
cache these results, we can associate a table with every possible piece permutation. This table holds the results of the
fi ndCccupi edBoar dCel | s() method for that permutation using a specified piece cell index and board cell
position. Listing 10 shows an updated version of the Pi ece class that maintains such atable:

Listing 10. Caching theresults of the findOccupiedBoar dCells() method

public class Piece {
private Piece[] permutations = new Pi ece[ NUVBEROFPERMUTATI ONS] ;
private ArrayList[][] occupi edBoardCells =
new Arrayli st[ Pi ece. NUMBEROFCELLS] [ Boar d. NUVBEROFCELLS] ;

private void generatePernutations(Board board) {
Pi ece prevPermut ati on=t hi s;
for (int i = 0; i < NUVBEROFPERMUTATI ONS; i ++) {
/'l The original nextPernutation() has been renaned
pernutations[i]=
((Piece)prevPermutation.clone()).nextPernutation_orig();
prevPer mut ati on=pernut ations[i];

}

/1 Cal cul ate occupied board cells for every pernutation

for (int i = 0; i < NUVBEROFPERMUTATI ONS; i ++) {
pernutations[i].generateCccupi edBoardCel | s(board);

}

}

private void generateCOccupi edBoar dCel | s(Board board) {
for (int i = 0; i < Piece. NUMBEROFCELLS; i ++) {
for (int j = 0; J < Board. NUMBEROFCELLS; j++) {
occupi edBoardCel | s[i][]]=new ArraylList();
reset Processed(); // We're going to process the piece
boar d. fi ndCccupi edBoar dCel | s(occupi edBoardCel I s[i][]],
pi eceCel I s[i],
boar d. get BoardCel | (j));
}
}
}

public Piece nextPernutation() {
if (currentPernutati on == NUVBEROFPERMUTATI ONS)
currentPernutation = O;

/'l The new i npl ement ati on of next Pernutati on()
/| accesses the cache
return permnutations[currentPernutation++];

}




public ArraylLi st
get Cccupi edBoardCel | s(int pieceCellldx, int boardCellldx) {
/'l Access requested data in cache
return occupi edBoardCel | s[ pi eceCel | 1 dx] [ boardCel | | dx] ;

}
}

Thegener at ePer nut at i ons() method istriggered when aPi ece object is created. It calculates every
permutation of the piece and caches all possible results of thef i ndCccupi edBoar dCel | s() method for those
permutations. It is clear that we'll need access to the puzzle board if we want to calculate the occupied board cells.
Also note that the permutations of a piece are clones of the original Pi ece object. Cloning aPi ece involves a deep
copy of al of itscells.

The only thing left to do is to access the cache from the pl acePi ece() method of the Boar d class, whichis
shownin Listing 11:

Listing 11. Accessing the occupied-boar d-cells cache

public class Board {
publ i ¢ bool ean
pl acePi ece( Pi ece piece, int pieceCellldx, int boardCellldx) {
/1l Get all the boardCells that this piece would occupy
ArraylLi st occupi edBoardCel | s =
pi ece. get Cccupi edBoar dCel | s(pi eceCel | 1 dx, boardCel | | dx);

}

}

Running the program once more

The source code of this updated version of our puzzle-solving program can be found in the net eor . cachi ng
package. Running j ava net eor. cachi ng. Sol ver shows usthat we again improved the performance
considerably. On our test machine all solutions are found in 25 seconds. Caching resulted in a six-fold speedup. If we
usethe- ver bose: gc switch, we also see that garbage collection is no longer an issue.

The extra code we introduced to implement the cache obviously complicates the program. Thisis atypical downside
of performance techniques that try to reduce computation time by storing intermediate results. However, in this case
the performance gain seems to outweigh the added code complexity.

Programming optimizations

A final possible step in the optimization process for our puzzle-solving program is the use of low-level Java code
optimization idioms. We're not manipulating any strings in our application, so applying the well-known

St ri ngBuf f er idiom isuseless. We could try to avoid the method call overhead for getters and setters by
replacing those getters and setters with direct member access. However, this clearly degrades the quality of our code
and tests show that this hardly generates any speedup at al. The sameistruefor theuse of f i nal methods. By
declaring our methods asf i nal , we avoid dynamic binding and allow the Java virtual machine to use more efficient
static binding. But aas, this does not produce any noticeable speedup. Also, the use of the - O optimization switch of
the Java compiler does not produce any real performance increase.

A slight execution speedup can still be obtained by improving the implementation of the pr une() method. The
codein Listing 7 always makes a call to therecursiveget | sl andSi ze() method, even if the board cell is aready
processed or is not empty. If we proactively do these checks before invoking get | sl andSi ze( ) , we gain about
10 percent.

Asisclear from this discussion, low-level optimizations result in very small performance increases. This, combined
with the fact that some of these optimization techniques deteriorate the quality of your code, makes the use of
low-level optimizations unappealing.

Conclusion
All our effort to improve the implementation of our puzzle-solving program certainly paid off. Table 1 summarizes



the different versions we created and their execution times. The overall result is an amazing estimated 2,000,000-fold
speedup.

Table 1. Comparing execution times

Version Time (seconds)
meteor.initial ~ 60,422,400 (about 2 years)
meteor.algorithm 157

meteor.caching 25

However impressive this optimization might be, the important question is what can we learn from this experiment?
The different optimization techniques we used each have their benefits and drawbacks. Combining them into asingle
optimization process clarifies their use and prevents out-of-order application:

« High-level optimization techniques, like the algorithm improvements we used, have great potential. If you
need to optimize a performance-critical piece of code, first try to analyse the process this code implements.
Visualizing the processis an excellent way to gain a better understanding of it. Also try to tackle the problem
from different angles. Y ou might come up with avastly better solution than the one you originally invented.
An obvious difficulty with this kind of optimization is that it's hard to generalize. Every agorithm is specific to
aparticular application domain and as such there are few general guidelines that can be provided. It's up to the
programmer to be creative.

« Onceyou're sure you have a good working solution in place, it's time to apply technical performance
improvement techniques. The basic idea is to exchange time complexity for data complexity. Object caches are
one of the most typical of such techniques. In Java programs, object caches are particularly useful because they
help you avoid expensive object creation and garbage collection overhead. Remember, this kind of system
adds extra infrastructure code to your programs, so don't introduce it too early. The more complex your code
is, the harder it isto optimize.

« Finaly, we can apply arange of low-level programming optimizations. Most Java programmers are familiar
with these kinds of techniques. However, their benefit islimited in most real-world programs. Apply them
where possible, but don't focus all your optimization effort on these kinds of idioms. Rather, they should be
part of your programming toolset to help you avoid well-known performance traps.

The spectacular performance increases we achieved by combining different optimization techniquesin our
puzzle-solving program should motivate all Java programmers to take alook at their own code and see how it could
be optimized.
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Resources
« Participate in the discussion forum on this article by clicking Discuss at the top or bottom of the article.

« You can download the source code for the three different versions of the Meteor puzzle-solving program we

developed in this article. This zip file also contains the solution viewer that allows you to visualize the found
solutions.

« Therecently released Java 2 Platform, Standard Edition version 1.4 introduces severa performance-oriented
features. "Merlin brings nonblocking I/O to the Java platform” (devel operWorks, March 2002) describes one of

these features: the new 1/0 API.

« "Improve the performance of your Java code" (devel operWorks, May 2001) is an installment of Eric Allen's
Diagnosing Java code series. In it, he discusses tail-recursive methods and some of the issuesinvolved in



javascript:void forumWindow()
ftp://www6.software.ibm.com/software/developer/library/j-javaopt.zip
http://www-106.ibm.com/developerworks/java/library/j-javaio
http://www-106.ibm.com/developerworks/java/library/j-diag8.html
http://www-106.ibm.com/developerworks/java/library/j-djccol.html

optimizing them.

« Profiling tools can be a big help when exploring and visualizing the run-time behaviour of your program.
"Jinsight: A tool for visualizing the execution of Java programs" (devel operWorks, November 1999) describes

the use of one such tool (Jinsight), which was developed at IBM's Research Division and is available for free.

» Best Practice: String Concatenation with Java explains the well-known StringBuffer idiom. Another
description of this technique can be found in the March 5, 2002, issue of JDC Tech Tips.

« The December 22, 2000, issue of JDC Tech Tips explains the use of the Java garbage collector. Techniques for
tracking and controlling memory allocation in Java programs are further discussed in "Heap of trouble"
(devel operWorks, September 1999).

« If you areinterested in learning more about the larger 209-piece Eternity puzzle and how it was solved, take a
look at Prize specimens by Mark Wainwright. It turns out that solving Eternity was quite abit harder than

solving Meteor, like we did in this article. Further information about the Eternity puzzle can also be found on
the Eternity page.

« Find other Java programming resources on the devel operWorks Java technology zone. Of particular interest are
the Java performance articles you can find there.
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