
Oracle System Performance Group Technical Paper — June 28, 1999

Performance Management: Myths & Facts

Cary V. Millsap
Oracle Corporation

June 28, 1999

Performance management consists of problem diagnosis and repair, resource management, application op-
timization, and capacity planning. In constructing a reliable performance management method for hundreds
of Oracle database sites, my colleagues and I have encountered bits of interesting folklore that, ironically,
block progress toward the ultimate goal of lasting system performance satisfaction. In this paper, I will take
a fun look at the dangers of several popular but bad guidelines, and I will offer alternative advice that helps
you avoid the risk of costly performance management mistakes while not losing sight of the friendly goals:
fast, easy, and cheap.

 1999 Oracle Corporation.

2 • Cary V. Millsap

June 28, 1999 — Oracle System Performance Group Technical Paper

Contents
1. INTRODUCTION
2. THE CPU UPGRADE MYTH
3. THE USER COUNT MYTH
4. THE BENCHMARK MYTH
5. THE PERMANENT SATISFACTION MYTH
6. THE CPU UTILIZATION MYTH
7. THE TOO-EXOTIC MYTH
8. CONCLUSION

1. Introduction

In my colleagues’ and my construction of a reliable
performance management method for Oracle sys-
tems, we have encountered bits of interesting folk-
lore that, ironically, block progress toward the
ultimate goal of lasting system performance satisfac-
tion. A rule of thumb is by definition a useful com-
promise between precision and simplicity that errs in
favor of simplicity. However, there is a big difference
between a rule of thumb, which is useful; and a
myth, which is treacherous. We need rules of thumb
that are fast, easy, and cheap, but we don’t need
guidelines that mislead us.

Certainly, it is much easier to poke holes into other
people’s rules of thumb and to call them “folklore”
or “myths” than it is to create accurate guidelines
that are fast, easy, and cheap. In this paper, I shall
try to hold myself to two standards. First, I will criti-
cize a statement only if it meets two criteria:

 1. The statement is often wrong. It is not sufficient
to show that a statement is wrong under only a
contrived or bizarre set of conditions. It must be
incorrect under sufficiently many normal cir-
cumstances as to pose a material risk to the sys-
tem designers who would need to rely upon the
guideline.

 2. When the statement is wrong, the consequence
of having relied on it is highly painful.

Second, for every tradition that I characterize as a
“myth,” I will offer alternative advice that mitigates
the specific risks I describe, as quickly, easily, and
inexpensively as possible. My mission in this paper
is to help you avoid the risk of costly performance
management mistakes while not losing sight of the
friendly goals: fast, easy, and cheap.

2. The CPU Upgrade Myth

MYTH: Installing a faster CPU always
helps performance.

This myth illustrates the value of analytical perform-
ance models with drama. The statement is almost
irresistible to the intuition, especially when you’re
desperate for a performance boost and your hardware
provider is encouraging you along. However, this
statement is wrong with astonishing frequency, and
the damage that it can inflict upon IT credibility is
tremendous—sometimes irreversible.

People commonly fail to perceive even the possibility
that a CPU upgrade could be a performance risk.
Why, surely a CPU upgrade couldn’t hurt my per-
formance!1 And even if there’s a chance that a CPU
upgrade won’t help my system, isn’t the likelihood
so great that my expected benefits greatly outweigh
the cost of the upgrade?

In actual fact, upgrading CPUs can hurt system per-
formance. And even when an upgrade helps, there is
often a better way to spend the same money that
would have yielded a greater system performance
return on investment. How can something so coun-
terintuitive be not only possible, but likely? Neil
Gunther presents a splendid example [Gunther
(1998) 117–122] that clearly illustrates how the
“CPU upgrade always helps” statement can be un-
true, and how it can be untrue with such astonishing
frequency.

He begins by setting up a simple system, like many
typical Oracle applications, that hosts both batch jobs
and interactive users.

DiskCPU

Batch
jobs

Interactive
users

Figure 1. A Simple Model of a Computer

Each batch job requests service from a CPU, for
which it queues behind competing requests that ar-
rived before it. Once it passes through the CPU
queue and receives CPU service, it queues for service

1 I’m not going to trick you with some notion like, “If the
new faster CPU provides lower reliability because it is so
new and therefore untested….” It’s something to consider,
but the point I shall make in a moment is much more fun-
damental.

Performance Management: Myths & Facts • 3

Oracle System Performance Group Technical Paper — June 28, 1999

from a disk. After it clears the disk queue and re-
ceives I/O service, the batch job then is either fin-
ished, or it immediately hits the CPU queue again.
When a batch job is finished, there’s another job
waiting to run.

Interactive users go through the same routine, with
just one difference. When a user request has been
served by the CPU and disk, then instead of immedi-
ately queueing again for the CPU, the user consumes
“think time” before making the next request.

Gunther supplies example parameters to this model,
such as how many batch jobs and users there are,
how long the users’ think times are, the speeds with
which the CPU and disk can service requests, and
the completion rate of jobs through the system. Each
of these parameters is a real-life, operationally
measurable quantity. He then uses a well-known and
widely accepted algorithm2 to predict the effect of
upgrading to a five-times-faster CPU. To the
reader’s presumed astonishment, the upgrade results
in what Gunther advertises as a 20 percent degrada-
tion in response time for the online users.3

Gunther’s realistic example is a dramatic illustration
of what happens when you tune something that’s not
the bottleneck. The bottleneck for Gunther’s batch
jobs was the CPU, but the interactive jobs were bot-
tlenecked on the disk. With the introduction of a
five-times-faster CPU, the batch jobs ran faster. But
because they cleared the CPU five times more
quickly, batch jobs issued disk service requests more
quickly. The intensified competition for disk I/O
service made the users’ already existing bottleneck
even worse, making their workdays miserable com-
pared to what they had before the upgrade.

We don’t need a lot of fine print to convert the “CPU
upgrade always helps” myth into an accurate and
usable rule of thumb:

Installing a faster CPU will help
performance only if CPU is the bottleneck.

2 See [Kleinrock (1975), Kleinrock (1976), Jain (1991),
Allen (1994), Menascé (1994), Tanner (1994), Gunther
(1998)], and others for a description of the queueing the-
ory models that Gunther uses.
3 An incomplete self-assigned bit of homework is to verify
with Dr. Gunther whether the 20% figure he quotes isn’t
actually a typographical error. I presently believe that the
degradation is actually 153% (even worse than Gunther’s
already dramatic claim!)—from an average online re-
sponse time of 3.99 seconds before the upgrade to
10.11 seconds after.

When you add capacity, add it to the
bottleneck device.

CPU upgrades are often the result of desperation.
The system is too slow, and we all know that in our
young industry, there aren’t enough people available
who know how to diagnose or optimize complex
application performance problems. And rather than
trying to find the system’s true bottleneck when you
don’t know how, the CPU upgrade plan often
emerges as the savior.

However, “Just buy a faster CPU” is a truly treacher-
ous myth, because the strategy it represents so often
blocks the analysis required to maximize system
performance per dollar of investment. Even in cases
in which a CPU upgrade has improved performance
for individual users by a factor of two (a nice gain
for a CPU upgrade!), a plan of application optimiza-
tion could often have provided opportunity to im-
prove performance for those users by a factor of tens,
hundreds, or even thousands.

System performance problems can impact reputa-
tions all the way to your customers, your board, and
your shareholders. The great danger of the “CPU
upgrade always helps” myth is that choosing the
wrong plan in an environment of tremendous stress
and equally tremendous expectations can cost your
career. “CPU upgrade always helps” is a bad guide-
line.

Before any upgrade, determine—by testing
or at least by modeling—whether it will
have an unexpectedly adverse effect on

your system’s performance.

3. The User Count Myth

MYTH: The number of users accessing a
system is a good predictor of CPU

requirements.

It used to happen every week. Someone would de-
scribe an application, a machine, how much mem-
ory, the disk model. Then would come the inevitable
question: “600 users. How many CPUs?” It’s just not
possible to give a reliable answer to that one.

The reason? Because total workload depends on a lot
more than just the number of users:

{total workload}
= {# jobs} × {avg. load per job}
+ {# users} × {avg. load per user}.

4 • Cary V. Millsap

June 28, 1999 — Oracle System Performance Group Technical Paper

In systems that serve a mixture of online and batch
processing, the batch loads dominate the total work-
load of the system, often overwhelmingly. One batch
job can generate as much workload as a hundred or
more interactive users. Thus, not only is user count
one of four factors of total workload, it’s possibly the
least significant of four factors. Your commitment to
managing your interactive and batch workload is the
chief determinant of the total required capacity of a
new system.

Unfortunately, there is no reliable user-count rule of
thumb for sizing most Oracle systems. Furthermore,
such a rule of thumb can never exist for an applica-
tion that is either flexibly configurable or that does
not impose a strict batch workload discipline upon
its users. Consequently, capacity planners seeking a
simple user-count rule of thumb are doomed never to
find one for most applications.

For example, Oracle Applications™ (e.g., Financials
and Manufacturing) generate dynamic SQL that is
unique to an implementation-specific set of customi-
zation options. And our Concurrent Manager™
batch queue management system provides an ex-
tremely flexible means for an Oracle Applications
owner to execute whatever batch workload discipline
he or she likes—including no discipline at all. It is
impossible to make precise workload forecasts for an
Oracle Applications system without being able to test
the specific setup options, and without imposing
strict constraints upon the allowable amount of batch
processing.

Use-case policies also drive huge workload variance.
For example, do you generate aged trial balance re-
ports daily? or monthly? Do you generate manufac-
turing alerts for each process status change? or in
one-hour intervals? Is your system 100% out-of-the-
box? or do you use six custom forms and twenty
custom reports? Each of these differences in how the
application is used—not how many are using it—
significantly impacts the amount of system capacity
required to drive it to satisfactory performance lev-
els.

If we can’t rely on user counts to help gauge the ca-
pacity requirement of an application, then what can
we use? The practical answer is often this:

Buy as much hardware as you can afford,
and then create a workload management

program to ensure that your workload will
fit within the constraints of the capacity

that you’ve purchased.

How can you maximize your chances that the hard-
ware you can afford will provide sufficient capacity?
For systems that will resemble others that are already
in production, architects often borrow initial specifi-
cations from similar sites. For systems that are
unique in their size or performance requirements, or
which otherwise bear extra risk, architects must
mitigate those risks by inserting tasks for configura-
tion analysis and workload forecasting into their
implementation project plans.

To determine how much hardware you’ll
need, test performance.

And remember, sometimes you have to be flexible. If
your financial limits require you to put your work-
load on a budget, then put your workload on a
budget.

The chief determinant of your new system’s
total capacity requirement is your
commitment to your own system

performance goals.

Commit to reducing batch job workload if
your batch workload begins to jeopardize
interactive response time performance.

And commit to reducing interactive
workload if your interactive workload
begins to jeopardize batch throughput

performance.

You can reduce workload in three ways: (1) You can
prohibit users from doing some of the things they
want to do; (2) you can require users to reschedule
some of the things they want to do to off-peak times;
or (3) you can improve the efficiency of the applica-
tions they’re using. Improving application efficiency
makes everybody happy, and from experience I can
tell you, the art of doing so can make for a happy
and rewarding career.

4. The Benchmark Myth

MYTH: TPC-Cs and TPC-Ds are good
capacity and performance predictors for my

project.

This one is closely related to the user-count myth,
because it doesn’t address the different possibilities
for workload variance. Industry standard bench-
marks simply don’t bear a close enough resemblance
to most real-life workloads to provide a useful per-
formance correlation.

Performance Management: Myths & Facts • 5

Oracle System Performance Group Technical Paper — June 28, 1999

However, TPC benchmarks are good for doing what
they were designed to do: to highlight the perform-
ance differences between competing hardware or
software vendors’ products. And they’re actually
excellent at showcasing the skills and dedication of a
vendor’s pre-sales technical staff whose job it is to
inflict embarrassment by making their benchmark
run faster than all their competitors’ benchmarks.

In the previous section, we explored why software
configuration and use-case differences drive work-
load variances. These variances can make even an
identical application implementation an unreliable
predictor for a new system. Imagine how unreliable,
then, a contrived benchmark will be as a predictor of
system performance. There is no reliable conversion
formula that will allow you to translate a TPC
benchmark workload into an equivalent workload for
a real-life application.

Use industry-standard benchmarks only for
their intended purpose: to compare the
performance of hardware or software

vendors’ products on as “level” a playing
field as you will probably find.

5. The Permanent Satisfaction Myth

MYTH: Once a system is sized and tuned, it
should meet the performance goals of the

project.

This is an easy one. Real systems change continu-
ously, demanding continual reaction and adaptation.
I am amazed by the number of database application
owners who express their disappointment that, in
spite of the tuning we did together two years ago,
their system just isn’t performing up to expectations
today. Never mind that in the two years since we
tackled their original problems, they’ve grown their
data size by two orders of magnitude, they’ve added
seventeen custom reports and six custom forms,
they’ve increased their user base by 50%, and they
haven’t upgraded their hardware in two years.

Performance management requires
continual commitment to diagnosis and

problem resolution, resource management,
application optimization, and capacity

planning. The commitment may cease only
when the application system is

decommissioned.

6. The CPU Utilization Myth

MYTH: A high-performance system needs
to have CPU utilization below x%.

A very popular performance management goal, un-
fortunately, at sites that I’ve seen is, “We shall be
satisfied with the performance of our system as soon
as it starts running below x% CPU utilization.” The
basis for this goal is that when CPU utilization gets
above x%—and x is different for different systems—
response times for both online and batch jobs starts
to vary wildly as queueing jobs compete for the busy
CPU. But measuring the success of your system per-
formance management program by comparing your
CPU utilization to a given threshold is the wrong
thing to do. I’ll show you why.

First, some background. CPU utilization is the num-
ber of CPU busy cycles in a desired interval divided
by the total number of cycles in the interval. Re-
member that a CPU operates in tiny time slices that
I’m calling “cycles.” A 300 MHz CPU exploits
300 million such cycles per second. During each
cycle, the CPU is either busy or not busy—in a sin-
gle cycle, there is no in-between. The concept of a
CPU utilization between 0% and 100% for a given
time interval exists only because we are averaging
the zeros and the ones of all the cycles during that
interval. For example, here is a ten-cycle interval for
which CPU utilization is 60%:

1 1 0 1 0 1 1 0 0 1

Figure 2. CPU Utilization of 60%
in a 10-Cycle Interval

A symmetric multiprocessing (or SMP) system uses
multiple CPUs in a single system. CPU utilization
for an SMP system is a single statistic representing,
again, the number of CPU busy cycles during an
interval divided by the total number of cycles avail-
able in the interval. This is equivalent to the average
of the individual utilization numbers chosen one
from each CPU. Here is one way to achieve 60%
CPU utilization on a 2-way SMP configuration:

6 • Cary V. Millsap

June 28, 1999 — Oracle System Performance Group Technical Paper

1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 0 0

C P U # 1

C P U # 2

Figure 3. CPU Utilization of 60%
on a 2-way SMP Machine

Note that a 2-CPU SMP machine can produce a lei-
surely sounding 60% utilization by having one CPU
completely killed with work while another idles
along at 20% utilization. Or a 2-CPU SMP system
can produce 60% utilization by running both CPUs
at 60% in a given interval. Single system-wide SMP
CPU utilization statistics hide important informa-
tion.

The secret to understanding the CPU utilization
myth is contained in Figure 1. Consider the two
workload classes separately for a moment. First,
imagine that our system had no interactive users,
only batch jobs, as follows:

DiskCPU

Batch
jobs

Let’s imagine that there is a large backlog of batch
jobs that are permitted to run one at a time. In this
system, a job would first request service from the
CPU. Since this job is alone in the system, it would
find no queue at the CPU (in the drawing, none of
the “on-edge M&Ms” would be waiting for the “on-
face M&M” CPU slot), so it would be serviced im-
mediately. Upon CPU service completion, the job
would request service from the disk. Again, because
this job is the only job in the system, it would find no
queue at the disk, and the job would be serviced im-
mediately.

The first thing you might notice in this system is that
the single job would finish completely unabated by
queueing delays, with a job completion time re-
stricted only by the raw speeds of the CPU and disk.
The second thing you would probably notice is an
opportunity. You have a large backlog of batch jobs
waiting to be run while this single job was in the
system. Yet if you had monitored the CPU utilization
during the job run, you would have noticed that sev-
eral CPU cycles went unused. Namely, every CPU

clock tick that passed while the solitary job was re-
ceiving disk service was wasted as idle time. Like-
wise, you might have noticed that during every clock
tick when the job was receiving CPU service, the
disk sat idle.

Perhaps if you had submitted a second job to run in
parallel with the first, you could have stuffed two
batch jobs through the system in almost the same
time as it took to finish just one job. Perhaps you
could have crammed three or four jobs through the
system without response time degradation. In actual
fact, several man-years of field data collection have
verified a valuable rule of thumb:

A single CPU can service roughly two
Oracle batch jobs concurrently without
degrading the time required to complete

either job.

We have tried this for a variety of different Oracle
batch jobs, from reports to massive updates, from
stock Oracle Applications products to exotic custom
applications; and we’ve experimented with numer-
ous combinations of CPUs and disks. The optimal
concurrency number appears to vary only from about
1.5 jobs to about 2.5.

Note that for batch jobs, there is no delay—no “think
time”—between when a job completes a disk I/O and
either that job or a new job enters the CPU queue. It
is not job think time that allows two jobs to run con-
currently with minimal performance degradation; it
is the phenomenon that a job leaves one resource idle
while it hops off to request service from another re-
source.

In a batch-only system, CPU utilization
below 100% is bad if there is a backlog of

jobs to be run.

Each CPU cycle that passes by unused is a cycle that
you will never have a chance to use again; it is
wasted forever. Time marches irrevocably onward.

Hopefully, you’ve enjoyed your reading so far, but
how relevant is it to spend time thinking about a
pure “batch-only” system? Even if your system is not
batch-only, chances are good that it has intervals of
pure batch processing, such as nighttime operations
in a system that has interactive users only during the
local business day. But we have more work to do.

Now let’s look at the other extreme: an interactive-
only system with no batch jobs at all. We shall meet
in the middle to talk about mixed systems in a mo-
ment.

Performance Management: Myths & Facts • 7

Oracle System Performance Group Technical Paper — June 28, 1999

DiskCPU

Interactive
users

A key distinction between interactive users and batch
jobs is that interactive users consume so-called think
time. In this example, the users consume think time
after disk service and before reentry into the CPU
queue, denoted in the picture above by the angle-
bracketed interactive user pool in the graph.

In Gunther’s example, he modeled interactive user
think time at 30 seconds. Real-life think times can
range for different operations from just a few milli-
seconds to several minutes. For example, a user who
types 60 words per minute will consume a think time
of 0.004 seconds between keystrokes. On a 300 MHz
CPU, each such delay accounts for 1.2 million CPU
cycles. On an Internet-based email system, a user
may consume several hours of think time between
database calls from the server’s perspective. Users
attend meetings, make phone calls, write papers for
conferences, and judiciously obey their biophysical
requirements.

There are lots of reasons why CPU utilization would
be below 100% on a system like this, even if there
were a lot of concurrent users on the system. Re-
member that a batch-only system can handle about
two concurrent batch jobs per CPU because a job
leaves one resource idle while it is served by another
resource. Interactive-only systems leave resources
idle for this reason too, plus each interactive job
leaves all sorts of idle resources because of think
times that are gigantic in comparison to resource
service times. Hence:

One batch job consumes the tens to
hundreds of times the workload of a typical

interactive user.

How many interactive users you can put on a system
before the queueing makes them miserable depends
upon the speeds of the resources, the amount of work
each interactive user is trying to do, and the think
times.

A good way to estimate how many
interactive users a system can handle is to

use a queueing theory model like the ones
described by Allen, Gunther, Jain,

Kleinrock, Menascé, Tanner, and others.

Next, we have a useful guideline for interactive-only
systems that is going to take me out onto a limb:

To maximize performance stability for an
interactive-only system, run at no more
than about 70%–80% CPU utilization.

Here’s why I’m on a limb: Arnold Allen and Ste-
phen Samson independently point out that any
“Keep CPU utilization below x%” rule of thumb is of
questionable virtue. When established experts say
your rule of thumb is “of questionable virtue,” you’re
on a limb. They object to the format of the rule on
two separate grounds:

 1. Allen points out that any such rule of thumb
“overlooks the fact that it is sometimes very de-
sirable for a computer system to run with 100%
CPU utilization.” [Allen (1994), 27]

 2. Samson asserts that most functions of interest
resemble the M/M/1 queueing function, which
contains no “knee” in the curve. He states, “The
choice of a guideline number is not easy, but the
rule-of-thumb makers go right on. In most cases,
there is not a knee, no matter how much we
wish to find one.” [Samson (1988)]

As I have described above during the batch-only dis-
cussion, Allen’s point is one with which I agree
wholeheartedly. By restricting the scope of my rule
of thumb to interactive-only systems, I believe we
have overcome this very valid objection. To be clear:
for a batch-only system, you want to run at 100%
utilization. For an interactive-only system, you don’t.
I promise: I’ll address soon what happens when you
mix workloads.

In response to the second point, first please remem-
ber the reason people so persistently want a rule of
thumb in this format: they are trying to avoid the
problem of having CPU utilization cranked up so
high that their users suffer. The whole argument
about whether or not there’s a knee in the curve re-
minds me of a disturbing parable—hopefully a par-
able validated only by thought experiments—
involving a frog and a pan of boiling water. The par-
able states that if you drop a frog into a pan of boil-
ing water, he will quickly hop out, minimizing his
burn injury. But, the story says that if you put a frog
into a pan of cool water and slowly heat it, then the
frog will sit patiently in place until he is boiled to
death.

8 • Cary V. Millsap

June 28, 1999 — Oracle System Performance Group Technical Paper

The intended lesson is that, because the condition of
the frog’s environment is never materially different
from the condition in moments past, the frog is never
stimulated to take bold action. But of course, in spite
of the imperceptibly small degradation steps, over
time the environment in the pan will deteriorate to
the point at which life for the frog is no longer pos-
sible. M/M/1 curves remind me of the frog story (see
Figure 4). Samson is right. There’s no single utili-
zation value on the curve as we move rightward at
which the queueing time goes from being ok to being
not-ok. But if you go right far enough, then you’re in
a region on the curve in which users are clearly suf-
fering.

The question, then, is this: at what point does the
suffering become so great that bold action is neces-
sary—in the frog’s case, a hop out of the pan; and in
the system manager’s case, a restricting workload? A
valid “x%” rule of thumb would help to prevent suf-
fering, but what is the right value of x? We must take
care not to choose x so small that we waste perfectly
useful CPU cycles. But if we choose x too large, we
cause suffering.

I have two issues with Samson’s line of reasoning.
First, I believe there is a knee in the M/M/1 curve,
and that a useful formal definition of knee is the
point at which the vertical momentum of the curve
begins to exceed its horizontal momentum. Figure 4
shows that even for the M/M/1 curve, there is a point
near 70% utilization at which the curve begins to go
“up” faster than it goes “out.” Regardless of whether
you will agree with me that there is a single “knee,”
it is certain that nobody wants to rely on a system
whose queueing delays accumulate faster than the
pace at which load is added to the system.

Second, Samson has based his argument upon the
assumption that M/M/1 is the always right model.
Although this was definitely true in the days predat-
ing SMP hardware, it is an incorrect assumption
today, at least for Oracle applications. For any SMP
computer implementation, the “functions of interest”
resemble the M/M/m queueing function, for m> 1.
The M/M/m model produces flatter hockey-stick
shaped curves with knee-bends that become more
pronounced as you use more CPUs. The more CPUs
you have in your system (the larger your m is), the
farther to the right your knee will occur, but also the
more quickly your average queueing time will de-
grade as you add load. SMP machines with lots of
CPUs scale exceptionally well for high concurrency
applications, but response time performance practi-

cally falls off a cliff as utilization approaches 100%,
as shown below.

0.00

0.10

0.20

0.30

0.40

0.50

0
.0

0

0
.2

0

0
.4

0

0
.6

0

0
.8

0

1
.0

0

Utilization

Q
ue

ue
in

g
T

im
e

1

4

16

Figure 4. Queueing Time vs. Utilization
for M/M/ m Systems, for m = 1, 4, 16

Whether or not you can pinpoint the exact utilization
beyond which queueing delays become intolerable,
you definitely want to avoid running an interactive
system at a CPU utilization that is “too high.” I be-
lieve that the rule-of-thumb makers are right to
highlight the knee-in-the-curve phenomenon for
interactive-only systems, but not for systems with
batch job activity.4

Having gained insight into batch-only and interac-
tive-only systems, we are now prepared to tackle a
performance management challenge of the highest
order: mixing interactive users into a system with
batch jobs. Most applications work this way. For
example, Oracle Applications provide interactive
services to users on the same system that runs back-
ground jobs managed by the Concurrent Manager.

The tradeoffs should now be clear. To maximize
batch job throughput, you want to run your system at
100% CPU utilization. However, to optimize inter-
active user response times, you want some CPU
utilization headroom so that users aren’t exposed to
high-variance queueing delays. The contradiction
you see here is one reason why running an Oracle

4 I invite the reader to race me to create a more useful rule
of thumb with a threshold percentage customized for the
number of CPUs in an SMP system. Here’s how: If you
adopt my formal definition of knee, then it becomes possi-
ble to compute the utilization at which the knee occurs.
The way to do it is to compute the partial derivative
∂w/∂ρ, where w= f (ρ,µ,m) is Jain’s function
E[w] = E[nq]/λ [Jain (1994), 529]. Once the derivative
∂w/∂ρ is obtained, then solve to find the value of ρ for the
particular m of interest for which ∂w/∂ρ = 1. The result
would be a much more useful rule of thumb that would
compensate appropriately for particular values of m.

Performance Management: Myths & Facts • 9

Oracle System Performance Group Technical Paper — June 28, 1999

Applications database is considered by many to be so
difficult. The appropriate compromise is this:

If interactive response time constraints
dominate your requirements, then

determine how much CPU capacity is
required by your interactive users. Then

restrict the number of concurrent batch jobs
so that the batch workload does not impose
upon the capacity allocated to those users.

Otherwise, if batch throughput constraints
dominate your requirements, then

determine how much CPU capacity is
required by your batch jobs. Then restrict
the number of concurrent users so that the
interactive workload does not impose upon
the capacity allocated to those batch jobs.

Both of these guidelines are fast, easy, and cheap.
And both prevent you from falling into the trap of
letting spare CPU cycles go to waste simply because
you’re guided by a myth saying you should always
run your system at less than 100% CPU utilization.

7. The Too-Exotic Myth

MYTH: Capacity planning is too
intellectually exotic for me to take on.

In the nineteenth century before A. K. Erlang dis-
covered how to forecast wait times in a multiserver
queueing network, accurate capacity planning would
have been a real novelty. But today atop Erlang’s
original work we have a skyscraper of queueing the-
ory and analysis techniques specialized to meet all
the performance management goals of the modern
computing system owner. Today we indeed have
several prepackaged software tools to choose from
that do all of the hard mathematics for us. Many
come free with the purchase of the books that ex-
plain them [Gunther (1998), Menasacé (1994), Allen
(1994)]. Lack of mathematical sophistication is cer-
tainly not a valid impediment to the modern capacity
planner.

The biggest obstacle to accurate capacity planning is
actually the difficulty in obtaining usable workload
forecasts. Ironically, the difficulty here doesn’t stem
from a lack of mathematical sophistication at all, but
rather from the inability or unwillingness of a busi-
ness to commit to a program of performance man-
agement that includes testing, workload
management, and the collection and analysis of data
describing how a system is being used.

Even without sophisticated queueing theory models,5

you can do a quite respectable job of predicting per-
formance problems using simple linear models and
rules of thumb. For example, if my system is 55%
busy today and I expect my workload to double in the
next year, then I need to expand my capacity this
year if I want to stay ahead of my users’ performance
expectations.

Simple capacity planning is better than no
capacity planning at all.

8. Conclusion

The world is full of great ideas. But the Second Law
of Thermodynamics ensures that for every great idea
there are a thousand bad ones. I hope that this paper
has helped you sort some of the good ideas from the
bad ones and that you’ll now more quickly, easily,
and cheaply provide the highest levels of system
performance that you wish to achieve.

References
ALLEN, A. 1994. Computer Performance Analysis with

Mathematica. Academic Press, Cambridge MA.

ERLANG, A. K. 1917. “On the rational determination of the
number of circuits,” in The Life and Works of A. K. Er-
lang, 1948. BROCKMEYER, E.; HALSTROM, H. L.;
JENSEN, A. (eds.). Trans. Danish Academy of Tech. Sci.,
216.

GUNTHER, N. 1998. The Practical Performance Analyst.
McGraw-Hill, New York.

JAIN, R. 1991. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, New York.

KLEINROCK, L. 1975. Queueing Systems Volume I: Theory.
Wiley-Interscience, New York.

KLEINROCK, L. 1976. Queueing Systems Volume II: Com-
puter Applications. Wiley-Interscience, New York.

MENASCÉ, D.; ALMEIDA , V.; DOWDY, L. 1994. Capacity
Planning and Performance Modeling. PTR Prentice
Hall, Englewood Cliffs NJ.

SAMSON, S. 1988. “MVS performance legends,” in CMG
’88 Conference Proceedings. Computer Measurement
Group, 148–159.

TANNER, M. 1994. Practical Queueing Analysis. McGraw-
Hill, London.

5 …Which are themselves perhaps sophisticated to build,
but not sophisticated to use.

10 • Cary V. Millsap

June 28, 1999 — Oracle System Performance Group Technical Paper

Acknowledgments
Thanks to Ellen Dudar for conversations leading to
the wonderful idea of presenting thoughts about ca-
pacity planning this way, and for many of the ideas
and much of the data behind this paper; to Espen
Braekken, my group’s chief capacity planning re-
searcher and practitioner, who has ignited the engine
that has turned capacity planning into a business that
helps our customers; to Dominic Delmolino and my
wife for helping me proofread my paper in a hurry;
to Probal Shome for his encouragement; and to
Mogens Nørgaard and Steen Rønsberg, my friends
who I’m sure are descended from Erlang and who
insisted that I propose this paper for presentation to
the EOUG audience in Copenhagen.

About the Author
Cary Millsap is Vice President of the System Per-
formance Group, which provides high performance
and high availability to Oracle’s largest customers
worldwide. He is also responsible for the construc-
tion and global deployment of Oracle Consulting’s
system architecture and system management serv-
ices.

