
How to Keep Track of Your
Network Configuration

J. Schönwälder & H. Langendörfer – TU Braunschweig, Germany

ABSTRACT

In this paper we present extensions for the Ined network editor allowing us to discover
the structure of an IP network automatically. The discovering algorithm is based on an
active probing technique that fits well with our interactive editor. We have chosen a multi-
threaded approach to minimize response times which seems reasonable in fast networks but
may fail when run over slow serial links. A set of utilities have been designed to lay out the
discovered network based on additional information found in the Domain Name System.

Introduction

Maps showing the network configuration are
very important documents for a variety of tasks. This
motivated us to design and implement a domain
specific editor called Ined that is specialized for
drawing and maintaining network maps [7].

Ined provides all necessary editing features to
draw and maintain network maps. Maps may be
composed of node, network and link objects. Link
objects represent connections between two node
objects or a node and a network object. A large map
can be structured into a hierarchical map using group
objects that can contain other Ined objects. The edi-
tor has a programming interface allowing scripts
written in the Tool Command Language (tcl) [3] to
control objects shown inside of the editor. This inter-
face enables users to write macros for frequently
used command sequences. It also serves as an inter-
face for scripts performing network management
tasks.

Once we had a proper drawing program, we
found it a very lengthy and tedious task to enter all
the network information into the editor. Another
problem is to keep network maps current since there
are frequent changes in our network with about
1.300 registered hosts. So we decided to design and
implement extensions for the Ined editor that will
assist us in these tasks. The result of our work is an
IP network discovery tool and a set of utilities sim-
plifying the final layout process.

Design Decisions

When designing a network discovering pro-
gram, you have to make some very important design
decisions. First you have to determine the network
layer on which to focus. It is much easier to design
a smart discovering program if you have a clear
understanding of what information should be
discovered. We focus on the IP layer since this is
the most frequently used protocol in our environment
and it is supported by nearly every device on the
network.

Next you have to decide if you will use passive
monitoring techniques or if you will actively probe
the network to gather information about its internal
structure. The first alternative provides no direct way
to guide the discovering process since you can only
observe the current packet exchanges. Therefore it
may take a long time gathering enough information
to derive a complete picture of your network.
Another problem with passive techniques is that you
must have monitoring devices attached to all your
subnetworks (e.g., Ethernets) and that the implemen-
tation under the UNIX operating systems requires a
network interface tap which is not available on every
machine.

The main advantage of passive monitoring
techniques is that they put no additional load on the
network itself. Using active probing techniques you
must be aware of the additional load your network
must carry. If your network is sensitive in this
respect you will probably be in favor of passive
techniques. On the other hand, active techniques can
be directed easily. Therefore it is possible to minim-
ize the time needed to get a complete map of your
network.

Since our program should support an interactive
editor we have decided to use an active probing
technique. We are taking an aggressive approach in
order to minimize the total time needed to discover a
complete network. This is reasonable on fast net-
works but may fail when run over slow serial links.

The third design decision concerns the informa-
tion sources available to the discovering program.
There are two realistic choices. You can either use
a network management protocol (e.g., SNMP [12])
to gather information, or you can try to use features
of protocols handling ordinary network traffic for
your purpose.1 Using a management protocol seems
attractive at first sight but it requires that most

1Sure, you can invent your own protocol. But it is very
unlikely that it will be installed on every machine in a
large network.

1993 LISA – November 1-5, 1993 – Monterey, CA 101

How to Keep Track of Your Network Configuration Schönwälder & Langendörfer

machines on your network are able to respond to
management protocol requests. The second alterna-
tive is more likely to work with a large set of dif-
ferent devices but makes the analysis of the acquired
data difficult.

The discovering algorithm described in the next
section mainly uses the ICMP protocol [5] to dis-
cover the structure of a network. This has the advan-
tage that every device on the IP network can be
detected since every IP implementation must support
the ICMP protocol. Additional information is
retrieved from the Domain Name System (DNS) if
available.

How Discovering Works

The network discovering algorithm is divided
into nine steps. The first four steps send probing
packets to gather data while the remaining steps are
used for data analysis. The algorithm assumes an
implementation which will be able to send request
packets in a round-robin fashion while waiting for
outstanding reply packets to arrive or timeout. This
way the total time needed for a given address space
remains constant, regardless of the number of
responding hosts.

1. Determine IP addresses in use by sending
ICMP echo request packets to every address
of the given address space. We use a sequen-
tial approach since directed broadcast ICMP
echo requests tend to cause lots of collisions
or even broadcast storms due to errors in
some IP implementations. Some IP router
even remove incoming broadcast packets
reducing the usefulness of directed broadcasts.

2. Trace the routes to all IP addresses discovered
in step one using the Van Jacobsen algorithm
[10]. The traces are stored for later analysis.
Gateways showing up during the traces are
added to the IP address list.

3. Determine the network mask for each IP
address using the ICMP mask request. The
network masks are saved for later analysis.

4. For every IP address, send an UDP packet to
an unused port and save the IP address con-
tained in the port unreachable reply packet.
Some multi-homed devices respond to an
incoming packet addressed to one of the
remote interfaces with a packet containing the
IP address of the incoming interface. The
returned address is stored for later analysis.

5. Identify networks and subnetworks. Class A,
B and C networks are easily recognized by
examining the IP addresses. Subnetworks are
a bit tricky. First collect all potential subnets
based on the netmasks returned in step 3.
Afterwards, check if the majority of all
members of a potential subnet has reported a
suitable netmask. This two level approach is
needed to handle incorrect netmasks properly.

6. Identify multi-homed machines based on the
traces and the address contained in the port
unreachable reply packet of step four. Com-
paring the Domain Names of the IP addresses
gives additional hints to multi-homed
machines since the Domain Name Service
often contains records with the same name for
each interface of a multi-homed host.

7. Connect IP addresses to the networks
identified during step six. Gateways are con-
nected based on the traces. We found that
gateways often return a different IP address
when being traced. Therefore we skip the last
hop of traces that end at a gateway machine.

8. Merge the IP addresses of multi-homed
machines. This step cleans up duplicate infor-
mation stored for each interface of a multi-
homed machine.

9. Download the current map from the Ined edi-
tor and add all discovered objects to the map
that do not exist yet. Hosts and gateways are
mapped to node objects, networks to network
objects and IP interfaces to link objects.

The above algorithm can be used to discover
routing traces by initializing the list of IP addresses
and starting the algorithm at step two. This is a very
nice extension to the traceroute program [10]. The
resulting map lets you easily identify machines
where branches join that are important for your site.

Layout

The output of the discovering algorithm is a set
of nodes, networks and links placed on a grid. Some
separate tools help us to lay out the discovered
topology. The separation of these tools from the dis-
cover process allows us to use them even when
entering network maps interactively.

The layout tools are divided in a set of com-
mands that are specific to IP networks and a set of
commands that are of general use. The second set
includes commands to manipulate the selection of
the editor and the text shown inside the labels.

The IP specific commands mostly deal with the
Domain Name Service (DNS). They fill empty attri-
butes of Ined objects with DNS information or set
icons automatically based on HINFO records. A
table of regular expressions maps HINFO records to
icon names.2 Another IP specific command removes
identical domain name endings from host names.
This command shortens labels considerably resulting
in more readable maps.

The most important layout utility rearranges
icons on the map. We have chosen a simple method
that places hosts connected to a network on a grid

2Many site administrators have their own naming
convention although there are some guidelines and Official
Machine Names in the Assigned Numbers RFC [9].

102 1993 LISA – November 1-5, 1993 – Monterey, CA

Schönwälder & Langendörfer How to Keep Track of Your Network Configuration

around the network. Hosts with more than one inter-
face are placed on the border of a cluster. Another
command allows us to group all nodes of a network
having exactly one interface. Used in conjunction
with the previous command, we get a map focusing
on networks and their gateways.

Figure 1: A sample Map

The map in Figure 1 shows the networks
owned by the computer science departments of our
University. All 6 subnetworks are linked by the
backbone network (134.169), the cisco router and the
serial line network (134.169.247). Subnet 134.169.33
is shown as an expanded group. The icons have been
arranged around the network and the domain name
endings have been removed.

Implementation

The network discovering algorithm is imple-
mented as a script written in the Tool Command
Language (tcl). We have extended the standard tcl
interpreter with a command allowing us to send
ICMP packets. The use of a script language has the
advantage to allow modifications and customizations
at very low cost.

The ICMP module is implemented as a
separate process called ntping. ntping runs setuid
root since sending and receiving ICMP packets
requires access to raw sockets. ntping creates a new
job for each destination address read from stdin and

processes these jobs in round-robin fashion. A tcl
command hides the communication with ntping from
the tcl programmer. Figure 2 shows the options of
the tcl icmp command.

icmp [-size] [-delay <ms>]
[-retries <n>] [-timeout <s>]
[-ttl <n>] [-trace <n>] [-mask]
<hosts>

Figure 2: tcl icmp command

The -ttl and -trace options are used to send an UDP
packet to an unused port with a time to live set to
<n>. The difference between these two options is
that -trace always returns the IP address of the desti-
nation host while -ttl returns the IP address actually
contained in the reply packet. The -delay option can
be used to force a minimum delay between two suc-
cessive packets. Delays have proven useful to reduce
load on intermediate nodes like bridges or routers.
The implementation of the delay option uses a loop
with calls to gettimeofday for short intervalls since
the usleep library call does not handle short intervals
reliable on many machines.3

3Berkeley Unix uses signals to implement usleep. This
causes a series of system calls which usually take more
time to complete than the requested interval if the interval
is short. The minimal delay obtained using usleep on a
SparcStation was 20ms.

1993 LISA – November 1-5, 1993 – Monterey, CA 103

How to Keep Track of Your Network Configuration Schönwälder & Langendörfer

The efficiency of the script can be controlled
by adjusting the parameters shown in table 1. We
found the default values appropriate on our network
(mainly Ethernet networks). You should increase the
delay and timeout times if you have slow serial lines
in your environment. The maximal length of a route
only affects step two of our algorithm. Increasing
this value is useful if you want to use the script to
discover routes on a wide area network.

Parameter Default
number of retries 3
timeout [s] 3
delay [ms] 5
max route length 8

Table 1: Discover Parameter

Table 2 shows some measurements for class C
and class B networks. For each step of our algo-
rithm, the number of discovered devices and the
completion time is given. The most time consuming
part is the initial pass to discover IP addresses in
use. The current implementation breaks a class B
address space in 255 class C like networks and
processes these networks sequentially. Removing this
limitation will increase the number of active threads
which will reduce the overall time needed for class
B networks.

Step Class C Class B
Number Time [s] Number Time[s]

ICMP echo request 51 10 610 2453
Trace routes 51 9 610 289
ICMP mask request 52 4 610 24
Get remote interface address 52 3 610 15
Identify networks 2 2 5 32
Identify multi-homed machines 1 1 23 7
Connect hosts to networks 97 4 1004 260
Merge multi-homed machines 1 0 23 1
Create Ined objects 107 8 1219 102

Time to complete 41 3181

Table 2: Speed of the Discovering Script

Related Work

Another network discovering system called
Fremont has been build by Wood, Coleman and
Schwartz [8]. Fremont uses eight different explorer
modules to discover network characteristics. All
information gathered by these explorer modules is
stored in a journal that is used to direct the exploring
process and to uncover network problems.

The first difference of our approach and the
Fremont systems is that we do not use passive moni-
toring techniques. Passive monitoring of network
traffic only extracts information about the subnet the

monitoring host is directly attached and it requires a
long observation period. Since we are trying to dis-
cover network characteristics fast, passive monitor-
ing techniques did not seem attractive to us.

The Fremont systems takes care not to load the
network with probing packets. This seems reasonable
since the explorer of the Fremont system makes reg-
ular passes through the network. Our system is
meant to operate in fast local area networks, and is
designed as a network analysis utility to be run occa-
sionally. Hence an active probing algorithm seems
applicable.

We further believe that gathering of informa-
tion about the structure of subnetwork layers is best
done by the hardware that connects these subnet-
works (e.g., bridges and routers). Since more and
more of these devices are capable of running SNMP,
we are convinced that supporting SNMP and ICMP
suffices.

Future Work

Our current work on the discovering tool will
add support for SNMP. This will allow us to detect
network configuration below the IP layer by query-
ing hosts, gateways and bridges for their address
translation tables. P. H. Kamp [1] has done some
work to implement SNMP extensions for tcl support-
ing an asynchronous interface to send and receive
SNMP packets. We expect to get the SNMP dis-
cover tools as fast as ntping using this asynchronous
interface.

Routing tables retrieved via SNMP can be used
to discover routes between two remote hosts. We
will implement an algorithm similar to that of xpath
[11] once we have finished our SNMP implementa-
tion.

Another activity is the integration of a
configuration database in order to store information
about discovered devices. The database is compar-
able to the journal server of the Fremont system but

104 1993 LISA – November 1-5, 1993 – Monterey, CA

Schönwälder & Langendörfer How to Keep Track of Your Network Configuration

may be used for general system management tasks
as well [6].

Conclusions

In this paper we have presented a network dis-
covering tool and how it provides an efficient
method to get a map of your current IP network
setup. The discovering mechanism is designed to
operate on fast local area networks that wont suffer
from the aggressive probing algorithm used. First
experiments show that the approach is working fast
and reliable. As noted by Wood, Coleman and
Schwartz, discovering IP networks using ICMP
packets is a very attractive approach. Other protocols
that can be used for exploration are less widespread
and they often require additional knowledge (like
community names for SNMP).

Acknowledgements

We would like to thank Erik Schönfelder for
the implementation of ntping. Also many thanks to
Stefan Petri for his helpful experiments with directed
broadcast pings.

Availability

The Ined editor has been re-implemented using
the tk toolkit [4] and is now called tkined. It is
available by anonymous ftp from ftp.ibr.cs.tu-bs.de
in the directory /pub/local. You will find the source
of our tcl interpreter scotty which includes ntping
and the script described in this paper in the same
directory. You are invited to join the tkined mailing
list. Send your request message to tkined-
request@ibr.cs.tu-bs.de

Author Information

Jürgen Schönwälder received his diploma
degree in Computer Science from the Technical
University of Braunschweig. He is now a member of
the research staff at the Institute for Operating Sys-
tems and Computer Networks. His interests include
system administration, network management, distri-
buted systems and network security. Reach him via
Mail at TU Braunschweig, Bültenweg 74/75, D-
38106 Braunschweig, Germany. Electronic Mail
should be sent to schoenw@ibr.cs.tu-bs.de.

Horst Langendörfer is Professor at the Techni-
cal University of Braunschweig since 1981. His
research interests include operating systems, distri-
buted systems, performance analysis, computer net-
works, network management and network security.

References

[1] P. H. Kamp. tcl_snmp – SNMP interface for
tool command language. March, 1993.

[2] R. Lehman, G. Carpenter, and N. Hien, Con-
current Network Management with a Distri-

buted Management Tool. Proc. of LISA VI,
pages 235-244, 1992.

[3] J. K. Ousterhout. TCL: An Embeddable Com-
mand Language. Proc. Winter USENIX
Conference, pages 133-146, 1990.

[4] J. K. Ousterhout. An X11 Toolkit Based on the
TCL Language. Proc. Winter USENIX Confer-
ence, pages 105-115, 1991.

[5] J. Postel. Internet Control Message Protocol.
RFC 792, September 1981.

[6] J. Schönwälder and H. Langendörfer. Adminis-
tration of large distributed UNIX LANs with
BONES. Proc. SANS II, Arlington, April 1993.

[7] J. Schönwälder and H. Langendörfer. INED –
An Application Independent Network Editor.
Proc. SANS II, Arlington, April 1993.

[8] D. C. M. Wood, S. S. Coleman, and M. F.
Schwartz. Fremont: A System for Discovering
Network Characteristics and Problems. Proc.
USENIX Winter Conference, pages 335-347,
January 1993.

[9] J. Reynolds and J. Postel. Assigned Numbers.
RFC 1340, July 1992

[10] V. Jacobsen. Traceroute Software. Lawrence
Berkeley Laboratories, December, 1988.

[11] A. Leinwand and J. Okamoto. Two Network
Management Tools. Proc. Winter USENIX
Conference, pages 195-205, 1990.

[12] J. Case, K. McCloghrie, M. Rose, S. Wald-
busser. Introduction to version 2 of the
Internet-standard Network Management Frame-
work. RFC 1441, April 1993

1993 LISA – November 1-5, 1993 – Monterey, CA 105

106 1993 LISA – November 1-5, 1993 – Monterey, CA

