
The
Developer’s Guide
to Understanding
Enterprise JavaBeans™

Nova Laboratories
www.nova-labs.com

For more information about Nova Laboratories or the Developer Kitchen Series, or to add your
name to our monthly mailing list, visit our website at http://www.nova-labs.com. Nova
Laboratories also offers in-house and on-site training and consulting services.

Nova Laboratories
187 Monmouth Park Highway
West Long Branch, New Jersey 08691

732-263-9000 voice
732-263-0189 fax

This material is copyrighted by Nova Laboratories © 1998. This material shall not be
reproduced or distributed in any form without the express written consent of Nova Laboratories.
All rights reserved.

The Developer Kitchen is a registered servicemark of Nova Laboratories. Java and all Java-
based trademarks and logos trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries. All other products referenced herein are trademarks of
their respective holders. © 1998 Nova Laboratories.

1 - Preface
How to read this document

This document consists of three sections, plus this Preface. Additional sections will be
added to this document over time that address some of the more specific advanced features
of Enterprise JavaBeansTM.

 Preface - This section. Defines some basic terms that will be used throughout this
document. Lists some available documents and products that may be useful to the reader.

Introducing Enterprise JavaBeans - This section more fully describes the purpose of this
document. The high-level architecture of Enterprise JavaBeans is illustrated, along with
simplified definitions of the major components. Also in this section are explanations of
how Enterprise JavaBeans relates to other technologies, such as JavaTM RMI, JavaBeansTM,
and CORBA®. Some of the benefits of Enterprise JavaBeans are listed here, along with
definitions of the various roles that a developer or vendor may fill in creating an Enterprise
JavaBeans solution.

Understanding EJB Components - In this section the reader will get very detailed
definitions of the components of Enterprise JavaBeans. The focus of this section is to
explain how these components operate in a runtime environment. An attempt is made to
describe the minimal behavioral requirements of the components as defined in the
Enterprise JavaBeans Specification, along with some practical scenarios describing how
vendors will likely implement these components.

Transactions - Transaction control is a powerful feature of Enterprise JavaBeans, and can
be a very complicated subject. This section will explain how transactions are used and
controlled within Enterprise JavaBeans. Also in this section is coverage of the CORBA
Object Transaction Service, or OTS. The transaction model in Enterprise JavaBeans is
essentially an implementation of OTS, and understanding the interfaces and semantics of
the components in OTS will allow the reader to better understand transactions in Enterprise
JavaBeans.

Defining some basic terms

EJB - a common abbreviation of Enterprise JavaBeans.

developer - person who writes implementations of EJB classes.

vendor - creator of an EJB product that can be used to develop, install, or deploy an EJB
class written by a developer. This term is generally used in this document to refer to an
Copyright © 1998 Nova Laboratories™ 1

Developer’s Guide to Understanding Enterprise JavaBeans™

bject

, Inc.
organization that has created a server product capable of running EJB classes written by an
EJB developer.

EJB class - a Java class written and compiled by a developer that conform to the interfaces
and requirements described in the Enterprise JavaBeans Specification.

EJB instance - an instantiation of an EJB class.

Specification - the Enterprise JavaBeans Specification

Additional terms will be defined at the appropriate times throughout this document.

Sources and references

Documentation

Nova LaboratoriesTM website containing this document, descriptions and availability of EJB
lecture and workshop training, and source code examples:

http://www.Nova-Labs.com

Main page for Enterprise JavaBeans:

http://java.sun.com/products/ejb

Enterprise JavaBeans Specification and other documentation:

http://java.sun.com/products/ejb/docs.html

JNDI - Java Naming and Directory Interface™:

http://java.sun.com/products/jndi

JTS - Java Transaction Service:

http://java.sun.com/products/jts

OTS - CORBAservices® Object Transaction Service:

http://www.omg.org/docs/formal/97-12-17.pdf

All About Enterprise JavaBeans (presentation):

http://www.persistence.com

Products

Persistence® PowerTier™:

http://www.persistence.com

Weblogic® Tengah®:

http://www.weblogic.com

Trademarks

Enterprise JavaBeans™ , Java™, JavaBeans™, JDBC™, and Java Naming and Directory
Interface™ are trademarks or registered trademarks of Sun Microsystems, Inc.

CORBA®, CORBAservices®, and IIOP™ are trademarks or registered trademarks of O
Management Group, Inc.

Weblogic® and Tengah® are registered trademarks of Weblogic, Inc.

Persistence® and PowerTier™ are trademarks or registered trademarks of Persistence
2 Copyright © 1998 Nova Laboratories™

 2 - Introducing Enterprise JavaBeans™
JB,

B. It
who

vices
o
 to

 not
e it
dom
Introducing Enterprise JavaBeans™

Purpose of this Document

In reading the Enterprise JavaBeans™ 1.0 Specification, I found it to be a very complete
and invaluable document. It formally defines a set of standards for a Java™ server
component specification. However, it tends to be targeted more toward the vendors who
need a blueprint describing the mininal requirements for creating an EJB server than for
developers who are looking to learn about EJB.

This document is not intended to replace the Specification. The Specification is the official
blueprint for the Enterprise JavaBeans™. Instead, this document will hopefully serve as a
useful primer for developers who want a technical introduction to EJB. It attempts to
summarize areas of the Specification that are of particular interest to developers who are
trying to learn EJB.

Nor is this document a tutorial on EJB. Such a document could be several hundred pages in
itself. Instead, I’ve tried to clearly lay out a detailed description of the architecture of E
and how the various components fit together.

Overall, the purpose of this document is to provide a solid technical introduction to EJ
should benefit both developers looking to start writing with EJB as well as developers
need to perform a detailed analysis of EJB to determine whether an EJB solution is
appropriate for their application.

Services Framework

Enterprise JavaBeans is not a product. It is a specification for a Java server-side ser
framework from which vendors can create EJB server implementations. The benefit t
application developers is that they can focus on writing the business logic necessary
support their application without having to worry about implementing the surrounding
framework.

The Specification details certain minimal, yet crucial, services such as transactions,
security, and naming. The vendors must follow these specifications to ensure that an
enterprise bean can always rely on certain required services. The Specification does
state how vendors should go about implementing these services. While this can mak
harder to learn EJB simply by reading the Specification, it does allows vendors the free
to provide enhancements without sacrificing portability regarding core services.
Copyright © 1998 Nova Laboratories™ 3

Developer’s Guide to Understanding Enterprise JavaBeans™

e
ce is
re

ply
vent.

long
cific
s such

nd a
JavaBeans vs Enterprise JavaBeans

JavaBeans is the component model for Java. Within the JavaBeans™ Specification there are
features defined such as events and properties. Enterprise JavaBeans also describes, among
other things, a Java component model, but the component model for Enterprise JavaBeans is
not the same as JavaBeans™.

With JavaBeans the emphasis is on allowing developers to visually manipulate components in
a builder tool. To that end, the JavaBeans Specification describes in detail the APIs and
semantics for inter-component event registration and delivery, recognition and utilization of
properties, customization, and persistence.

The emphasis for Enterprise JavaBeans is to detail a model for a services framework into
which Java components can be portably deployed. Consequently, there is no mention of
events, since enterprise beans do not typically send or receive events. Nor is there mention of
properties. Customization does exist, but is not performed at development time using
properties, but at runtime (deployment time, actually) using a deployment descriptor.

Do not look for similarities between JavaBeans and Enterprise JavaBeans. They are both
specifications for component models, but one addresses issues of application assembly in a
builder tool, while the other details a services framework into which components can be
deployed.

Don’t make the mistake of thinking that JavaBeans is for client-side development and
Enterprise JavaBeans is for server-side development. JavaBeans can be an appropriat
component model for building non-graphical server-side Java applications. The differen
that when you use JavaBeans to create a server application, you have to build the enti
server framework. With Enterprise JavaBeans the framework is provided for you; you sim
conform to its APIs. For complex server-side applications it is easier to plug in than rein

Enterprise JavaBeans Architecture

The EJB server is the high-level process or application that manages EJB containers, a
with providing access to system services. The EJB server may also provide vendor-spe
features, such as optimized database access interfaces, availability of additional service
as CORBAservices®, support for SSL 3.0, and so forth.

An EJB server is required to provide availability of a JNDI-accessible naming service a
transaction service.

Some examples of EJB servers may be:

• database servers

• application servers

• middleware servers

The EJB container is an abstraction that manages one or more EJB classes and/or instances.
It makes required services available to the EJB classes through an interface defined in the
Specification. The container vendor may also provide interfaces to additional services
implemented either in the container or in the server.

There is currently no specification for the interface between the EJB server and the container.
Therefore the container is currently provided by the EJB server. Once an interface is
standardized, it is likely that vendors will create containers that can run in any conformant
EJB server.
4 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

er-
A®

l go
The home interface lists the available factory methods for locating, creating, and removing
instances of EJB classes. The home object is the implementation of the home interface. The
developer of the EJB class must also define the home interface. The container vendor should
provide the means to generate the home object implementation from the home interface.

The remote interface lists the business methods in the EJB class. The EJBObject implements
the remote interface, and is the object that the client must use to access the business methods
of the EJB instance. The EJB class developer defines the remote interface, and the container
vendor should provide the means to generate the corresponding EJBObject.

The client never gets a reference to the EJB instance, only its EJBObject instance. When the
client invokes a method, the EJBObject receives the request and delegates it to the EJB
instance, providing any necessary wrapper functionality in the process.

The client is an application that uses the home object to locate, create, or destroy instances of
an EJB class, and uses the EJBObject to invokes the business methods of an instance. The
client can be written in Java and use Java RMI to access the home object and EJBObject, or
it may be written in another language using CORBA/IIOP™, providing the required serv
side components are deployed in a manner that makes them accessible through CORB
interfaces.

Here is an illustration of the architecture of Enterprise JavaBeans. The next section wil
into greater detail to describe the individual components.

Client

Home Object

Container

EJB Server

R
em

o
te

H
om

e

enterprise beanEJBObject

R
em

ot
e

EJBObject enterprise bean

Other Services

Naming
Transaction
Security
Copyright © 1998 Nova Laboratories 5

Developer’s Guide to Understanding Enterprise JavaBeans™

ore
to

market
Benefits of Enterprise JavaBeans

As a developer you should be considering whether an EJB solution is right for your product.
There are considerations to using EJB.

• the EJB server is a product that you must purchase

• you must implement a minimal API, and understand its semantics

The advantages far outweigh the disadvantages, especially for more complex applications.

Establishing Roles for Application Development

EJB allows the right person to do the right job. Business developers can focus on writing
code that implements business functions. The deployer can take care of installation issues in
a simple and portable fashion. The EJB server vendors will take care of providing support for
complex services, and make them available to the bean often without the knowledge or
assistance of the bean developer.

Automatic Transaction Management

One of these services transparently provided by the container vendor is transaction control.
The person writing the business functions does not have to worry about starting and
terminating transactions, nor about whether or not the operations in this business function
will work correctly in conjunction with business functions in other beans.

Distributed Transaction Support

Part of the transparency of transactions is through distributed transaction support. A client
can, for example, begin a transaction and then invoke methods on beans in two different
servers. Methods in one bean can call methods in another bean with the assurance that they
will execute in the same transaction context.

Portability

With the exception of publicized vendor-specific enhancements, an enterprise bean will
install and run in a portable fashion in any EJB server.

Scalability

While the architecture of EJB may appear to be somewhat complex, you’ll find that the m
you understand the architecture, the more you’ll see that the Specification was written
allow vendors to provide extremely high-performance implementations. In addition, you
should expect to see such features as load-balancing and failover once the EJB server
matures.

Integration with CORBA®

If you are familiar with CORBA, a question may arise regarding the apparent competition
between CORBA and EJB. But in fact CORBA and EJB are a natural complement to each
other. EJB is moving in the direction of using CORBA/IIOP to provide a more robust
transport mechanism. In addition, pure CORBA clients will be able to access enterprise beans
as EJB clients.

CORBAservices provides a wealth of features to an application developer. Rather than trying
to replace these services, EJB server vendors will likely include CORBAservices into their
product through a simplified API, allowing bean developers to use CORBAservices without
needing to become experts in CORBA. An excellent example of this is the transaction
support provided by EJB servers to enterprise beans. The transaction service is actually an
6 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

at
 in the

d
 of
and

 forth.
lable
e

an EJB
 runs.
itten
rlying

oyer
ment

lasses
ovide
 the
implementation of CORBA OTS. For an EJB server to work correctly with CORBA clients,
its transaction and naming services will have to support the OTS and CORBA Naming
Service interfaces, respectively.

Vendor Enhancements

The real value in Enterprise JavaBeans is the flexibility the specification allows for vendors
to provide their own enhancements. Features like automatic object-relational mapping when
using container-managed persistence, gateway services into existing applications,
customizable business frameworks, and integration of CORBAservices are just a few
examples of added value to be provided by vendors.

Roles in EJB Development

EJB Developer

The EJB developer writes EJB classes using the required classes and interfaces as defined in
the Specification. Within this class are the methods for creating and removing the EJB
instance, along with the business methods of this class.

The EJB developer is a Java developer with an understanding of the interfaces and semantics
of Enterprise JavaBeans, and understands the business needs that must be addressed. The EJB
developer is responsible for implementing the functionality of the business application’s
server side as discrete business objects.

While the EJB container will usually handle all transaction control on behalf of the EJB
instance, it is important that the EJB developer understand how transactions work so th
he/she may stipulate to the EJB deployer the transactional needs of the various methods
EJB class.

EJB Deployer

The EJB deployer is responsible for taking the EJB class and its supporting classes an
installing them correctly in the EJB server. The deployer has an in-depth understanding
EJB and the characteristics of the runtime server environment, such as database type
location, and so forth.

The deployer receives the EJB class requirements from the EJB developer, such as
transactional needs, names and descriptions of required environment properties, and so
The deployer must make these properties, along with their correct runtime values, avai
to the EJB class at runtime. The deployer is also responsible for ensuring that the hom
object for the EJB class is available in a namespace accessible through JNDI.

The EJB deployer may not be a Java developer nor understand the business rules that
class implements, but understands the application framework in which the EJB instance
For example, the deployer may not understand the details of a database application wr
using EJB, but knows the location, schema, and transactional requirements of the unde
database.The deployer may be the person to decide critical runtime attributes such as
transaction isolation levels, and so forth. It is important for the EJB developer and depl
to communicate clearly to ensure that the EJB class is deployed with the correct deploy
attributes.

EJB Container Vendor

The EJB container vendor provides software to install an EJB class and its supporting c
into an EJB server. The container vendor must also supply runtime classes that can pr
the required services to the EJB instances at runtime. Examples of additional tasks are
Copyright © 1998 Nova Laboratories 7

Developer’s Guide to Understanding Enterprise JavaBeans™

ct and
ace,

rs.
-

tainer,

ay be

B
llows
tion to
generation of stub and skeleton classes to provide access to the EJB class’ home obje
EJBObjects, installation of references to the home object in a JNDI-accessible namesp
and availability of a suitable EJBObject implementation that can provide correct proxy
services for the EJB class.

EJB Server Vendor

The EJB server vendor provides an application framework in which to run EJB containe
The EJB server will implement, or provide access to, required services such as a JNDI
accessible naming service and an OTS-compatible transaction service.

Since there is currently no standard interface between the EJB server and the EJB con
the EJB container is actually provided by the EJB server vendor.

Application Developer

The application developer writes the client applications that use EJB classes. A client m
a Java applet or application, a servlet, or a natively compiled application that uses a
CORBA/IIOP interface to access the EJB components.

The application developer is providing a business application that uses the available EJ
classes and methods as abstractions for obtaining low-level application services. This a
the application developer to concentrate on high-level functions such as data representa
the user without having to worry about how such data is obtained.
8 Copyright © 1998 Nova Laboratories™

 3 - Understanding the EJB Components
ithin

the

cation
client

 be
e EJB
ree,
You should now be familiar with the overall architecture of EJB, along with its major
components. This section will describe these components in considerably more detail, and
will explain their runtime behavioral semantics.

Home Interface

Factory for Enterprise Beans

A client needing the use of an enterprise bean creates one through its home interface. The
home interface lists one or more create() methods that can be used to create an instance
of this enterprise bean. This home interface is not implemented by the bean, but by some
other class we’ll call the home object. An instance of this home object is instantiated w
the server and made available to clients as a factory for the enterprise bean.

Locating the Home Object

A reference to the home object is placed in a naming service that is accessible from
client using JNDI. The EJB server will likely provide some sort of namespace
implementation, although an external namespace could be used. In either case the lo
of the namespace and the JNDI context factory class name must be provided to the
initially. For example, a client applet might receive the namespace location and JNDI
context factory class name as applet parameters.

In addition to providing the location and class name, the client must also have some
knowledge of how to locate the home object within the naming tree. This should also
provided to the client at startup. When the deployer installs the enterprise bean into th
server, he/she may have the option of specifying a particular location in the naming t
such as “ejb/accounting/AccountsPayable” . The client must be given this fully-
qualified pathname to locate and obtain the reference to the “AccountsPayable” home
object.

It is incorrect to say that a container is made available to clients through JNDI. Clients look
up a home interface implementation using JNDI. That implementation may be provided by
a custom container, but this is a vendor-specific detail that should be ignored by both the
enterprise bean developer and the client.

Methods in the Home Interface

The developer that defines ejbCreate() methods in the enterprise bean must also
declare corresponding create() methods with matching signatures in the enterprise
bean’s home interface.
Copyright © 1998 Nova Laboratories™ 9

Developer’s Guide to Understanding Enterprise JavaBeans™
Entity beans may also have finder methods which allow clients to locate existing entity beans
based on their identity.

The home interface is defined as extending from javax.ejb.EJBHome. This interface has
the following methods:

public interface javax.ejb.EJBHome extends Remote {

public EJBMetaData getEJBMetaData() throws RemoteException;

public void remove(Handle handle) throws RemoteException,

 RemoveException;

public void remove(Object primaryKey) throws RemoteException,

 RemoveException;

}

The home interface for a bean might look like this:

public interface myHome extends EJBHome {

public myRem create() throws RemoteException;

public myRem create(String str) throws RemoteException;

}

where
public interface myRem extends EJBObject { ... }

The container vendor is responsible for providing the home object which implements this
home interface, since only the vendor can implement the code that can act as the factory to
create the enterprise beans.

Container

Defining the Container

In reading the Enterprise JavaBeans™ 1.0 Specification the term container should not be
taken literally as a class, but as a level of responsibility where a set of services must be
performed on behalf of the bean. A container vendor will provide a set of tools and classes
that run within an EJB server that fulfill these responsibilities.

Some of these services are:

• swapping to and from secondary storage (for session beans)

• persistence management (for entity beans)

• availability of a home object implementing creation and lookup services

• visibility of the home object in a JNDI-accessible namespace

• proper creation, initialization, and removal of beans

• ensuring that business methods run in the proper transaction context

• implementation of certain basic security services

• generation of stubs and skeletons for remote method invocation on the home
object and EJBObject
10 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

uting
lity

ould
back

ion
ctually
Container and EJBObject as a Pair

The Specification often refers to services that may be provided by either the container or the
EJBObject. These references are illustrative and do not imply service requirements of a
specific class.

Both the EJBObject and the container class(es) are provided by the container vendor to
support an enterprise bean. Together these classes must fulfill the responsibilities of the bean
container.

Both the container and the EJBObject have distinct entry points into the bean, giving each a
unique ability to provide support for a specific service. For example, the container knows
which transaction attributes apply to the methods of the bean by reading its deployment
descriptor. However, it is through the EJBObject that these business methods are invoked.
The EJBObject must communicate with the container to determine in what transaction
context to call the business method. Once this is determined, the EJBObject must establish
this transaction context before invoking the business method.

All that matters is that the EJBObject and container work together to implement the services
required by a container. The container vendor provides the implementations of both objects,
and is free to partition this work any way it likes.

Relationship to the Home Interface

Vendors currently provide their own tools which read the home interface and generate the
home objects as containers. In this case the vendor is using a separate container class for each
enterprise bean class.

A container vendor is free to use some other implementation strategy, such as one container
class that implements multiple home interfaces, or even a standard container class with
separately created custom home implementation objects. The only requirement is that the
container vendor make a home object available to clients through JNDI.

Neither the client nor the bean developer are concerned with the implementation details of
the container and home object.

Enterprise JavaBean

The enterprise bean is the class that the developer writes to provide application functionality.
The developer has the option of creating either a session bean or an entity bean, and will
make this distinction by implementing the appropriate interface and declaring its type in the
deployment descriptor.

For session beans:
public class myBean implements javax.ejb.SessionBean ...

For entity beans:
public class myBean implements javax.ejb.EntityBean ...

The methods in your enterprise bean will never be invoked directly from the client. The client
calls the bean’s methods indirectly through the EJBObject, which acts as a proxy. In ro
all invocations through the EJBObject, the container vendor can insert its own functiona
into the invocation through wrapper code, or method interposition. An example of this w
be to create a new transaction context for each method invocation, or to commit or roll
the transaction when the method returns (to the EJBObject).

When the container vendor’s tool generates stubs and skeletons as part of the installat
process of a bean, it creates a stub and skeleton for the bean’s EJBObject. It doesn’t a
Copyright © 1998 Nova Laboratories 11

Developer’s Guide to Understanding Enterprise JavaBeans™

.

xy for

 class.
create a stub or skeleton for the bean itself, since it is never accessed over the network. The
EJBObject is the true network object. The bean is the delegate that contains the application-
specific business code.

The container may also call certain methods in the bean. For example, the container will
ensure that after a new instance of a bean is created, that the arguments used in the call to
create() on the home object are passed to the corresponding ejbCreate() in the bean.

There are additional interfaces and requirements for enterprise beans. However, these
requirements vary based on whether the bean is a session bean or an entity bean. These will
be covered in the subsequent sections detailing session and entity beans.

Remote Interface

After writing the enterprise bean the developer created a home interface to specify the
signatures of the creation methods that should be made available to the client, with the
restriction that for each create() method specified in the home interface, there had to be a
corresponding ejbCreate() method in the bean.

In a similar fashion, the developer must create a remote interface which describes the
business methods of the bean that the developer would like the client to be able to invoke.
Since all client invocations come through the EJBObject, it is the EJBObject, not the home
object, that will formally implement this interface.

The method names and signatures listed in the remote interface exactly match the method
names and signatures implemented in the bean. This differs from the home interface, whose
method signatures matched, but the names were different.

Here is an example of a remote interface:

public interface Account extends javax.ejb.EJBObject {

public void deposit(double amount) throws RemoteException;

public void withdraw(double amount)throws RemoteException;

public double balance() throws RemoteException;

}

The methods all declare that they may throw a RemoteException, since the specification
states that the client-side stub is RMI-compliant. Keep in mind that this does not preclude the
stub/skeleton implementation from using a different transport, such as CORBA®/IIOP™

The remote interface extends the javax.ejb.EJBObject interface, which adds
additional method requirements.

EJBObject

The EJBObject is the network-visible object, with a stub and skeleton, that acts as a pro
the bean. The bean’s remote interface extends the EJBObject interface, and the EJBObject
class implements this remote interface, making the EJBObject class specific to the bean
For each bean class there will be a custom EJBObject class.

Here is the definition of the EJBObject interface, which the bean’s remote interface
extends:

public interface javax.ejb.EJBObject extends java.rmi.Remote {

public EJBHome getEJBHome() throws RemoteException;
12 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

erated
 class

 through
annot
 state.

ms to

h
public Object getPrimaryKey() throws RemoteException;

public Handle getHandle() throws RemoteException;

public void remove() throws RemoteException,

RemoveException;

public boolean isIdentical(EJBObject other)

throws RemoteException;

}

The EJBObject class that implements this interface is an RMI server object, since it is
implementing an RMI remote interface. Note that the bean itself is not a remote object and is
not visible over the network. When the container instantiates this EJBObject class it will
initialize it with the reference to the bean instance, so that it may delegate the business
method calls appropriately. The vendor implementation will likely maintain this one-to-one
relationship between an EJBObject instance and a bean instance.

Since the remote interface includes the methods of the EJBObject interface, the bean should
obviously not implement this interface, although it does provide implementations of the listed
business methods.

Since the EJBObject must formally implement the remote interface of the bean, the container
vendors generate the EJBObject’s source code at bean installation time, where the gen
code implements the bean’s remote interface. The EJBObject is typically given a unique
name and associated with the bean as its EJBObject class.

Session Bean

A session bean is an enterprise bean where each instance of a session bean is created
its home interface and is private to that client connection. The session bean instance c
be easily shared with other clients. This allows the session bean to maintain the client’s
An example of this might be a shopping cart bean, where many customers can shop
simultaneously, adding to their private cart, instead of everyone adding their personal ite
a community shopping cart.

Defining a Session Bean

You create a session bean by defining a class that implements the
javax.ejb.SessionBean interface. The interface is defined as follows:

public interface javax.ejb.SessionBean extends
 javax.ejb.EnterpriseBean {

public void ejbActivate() throws RemoteException;

public void ejbPassivate() throws RemoteException;

public void ejbRemove() throws RemoteException;

public void setSessionContext(SessionContext context)

throws RemoteException;

}

The javax.ejb.EnterpriseBean is an empty interface, and is the supertype for bot
session and entity beans.
Copyright © 1998 Nova Laboratories 13

Developer’s Guide to Understanding Enterprise JavaBeans™

shold,

t likely
id

storing

ped
to
hile the
e

an be

When
bean
 call to

ave
time.

r
ould

teful. A
lls. In
nt.

tate,
n

ence is
with
 else to
Swapping Session Beans

The container vendor may optionally implement a swapping mechanism to move instances of
session beans from memory to secondary storage, increasing the total number of beans that
can appear to be instantiated at a time. The implementation would presumably maintain a
timeout threshold on its beans, and when a bean’s inactivity period has reached the thre
it would be copied to secondary storage and deleted from memory.

A container can use any mechanism it chooses to store the bean persistently. The mos
means of doing this would be serialization of the bean. The bean developer should avo
using transient fields in the bean. Instead, the ejbActivate() and ejbPassivate()
should be used to maintain the fields values.

Activation and Passivation

To provide support for swapping by the vendors, the specification formally defines
passivation as the process of swapping out a bean, and activation as the process of re
it to memory. The methods ejbActivate() and ejbPassivate(), declared in the
SessionBean interface, allow the container to tell the bean that it is about to be swap
out, and that it has just been swapped in. The bean developer can use these methods
release and restore values, references, and system resources that should not be held w
bean is in a passivated state. An example of this might be a database connection, sinc
connections are limited resources and cannot be used by a bean while it is passivated.

Using these methods makes the use of transient unnecessary. In fact, using transient c
somewhat unsafe, since it results in fields that are reset to null or 0 implicitly by the
serialization mechanism. It is better that the developer explicitly maintains these fields
through the ejbActivate() and ejbPassivate() methods.

If the container does not provide swapping, then these methods will never be called.

The passivated bean is activated as a result of a business method call from the client.
the EJBObject receives the method invocation request it informs the container that the
must be activated. Once the activation is complete the EJBObject delegates the method
the bean.

If the bean is currently in a transaction, it will not be passivated. It is more efficient to le
the bean in memory, since transactions normally complete within a fairly short period of

If the bean does not have state that must be released prior to passivation or reset afte
activation, then these methods can be left empty. In most cases, the bean developer sh
not expect to have to do anything in these methods.

Session Bean Management State

A session bean’s deployment descriptor must declare the bean as either stateless or sta
stateless bean is one which does not maintain any state information between method ca
general, the benefit of a session bean is that it does maintain state on behalf of the clie
However, there is a benefit to having session beans that are stateless.

Stateless session beans are not swapped (or passivated). Since they do not maintain s
there is nothing to preserve. The container instead has the option of destroying the bea
instance. The client is never aware that the bean has been destroyed. The client’s refer
to the EJBObject. If the client later invokes a business method, the EJBObject will work
the container to instantiate a new session bean. Since there is no state, there is nothing
restore.
14 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

an

r
n can
resents

 orders

r
tance
ss that
ed

ns
nce

ans. This
se.
Also, stateless session beans can be shared by clients, with the restriction that only one client
may be executing a method within the bean at a time. Since there is no state maintained
between the method calls, any client can use any stateless bean instance. This would allow
the container to possibly maintain a smaller pool of reusable session beans, saving memory.

Since a stateless session bean cannot maintain state between method calls, it is technically an
error to define create() methods in the home interface that take arguments. Passing
arguments to the bean during creation implies that state may be maintained in the bean after
the call to ejbCreate() returns. Furthermore, the container must be able to fully recreate
a stateless session bean as a result of a business method call on the EJBObject. At that point
it would no longer have the startup arguments that were used to create the bean initially. The
vendor’s installation tool should check that the home interface of a stateless session be
does not contain create() methods with arguments.

Entity Beans

Role of the Entity Bean

Entity beans are used to represent underlying objects. The most common application fo
entity beans is their representation of data in a relational database. A simple entity bea
be defined to represent a row in a database table, where each instance of the bean rep
a specific row. More complex entity beans could represent views of joined tables in a
database, where one instance represents a specific customer and all of that customer’s
and order items. For these beans there should be considerable demand for vendor
enhancements, such as integrated object-relational mapping.

Comparing Entity and Session Beans

It may seem that session beans are not very useful, especially for applications that are
database-driven. This is certainly not true. Since an entity bean instance represents (fo
example) an underlying row in a database, the relationship between the entity bean ins
and the database row is exactly one-to-one. Since multiple clients must be able to acce
underlying row, it means that, unlike session beans, the entity bean instances are shar
among clients. Since they are shared, they do not allow storage of per-client state
information.

Session beans allow the client to store state information on behalf of the client, and the
relationship between the client and the session bean instance is one-to-one. Entity bea
allow storage of row information, making the relationship between the entity bean insta
and the row one-to-one. An ideal solution might be a client which calls into the server
through a session bean, and the session bean accesses the database through entity be
allows for storage of state information both for the client and for the rows in the databa
The following diagram illustrates this:
Copyright © 1998 Nova Laboratories 15

Developer’s Guide to Understanding Enterprise JavaBeans™
Session beans are also invaluable for providing overall control of transactions across
invocations of methods in the same or different EJB classes. Without session beans it might
be necessary for the application developer (i.e., client developer) to understand the
transactional requirements of the EJB classes, and to utilize client-demarcated transactions to
provide transaction control. One major benefit of EJB is that an application developer can
write applications without requiring knowledge of the transactional requirements of the EJB
classes. A session bean can be created to represent a business operation, and that session bean
can control the transaction, making client-demarcated transactions unnecessary.

Finder Methods

Creating and removing bean instances, either through the home or remote interface, have
different meanings for entity beans than session beans. For session beans, removing means
the bean instance is removed from the container and cannot be used again, and its state
information is lost. For entity beans, removal means that the underlying row in the database
is deleted. For this reason, removal is not considered a part of the normal lifecycle of the
entity bean.

The only way to have a session been is to create it. Creating an entity bean means that a row
is inserted into the database. Similar to the remove operation, the create operation is generally
not considered part of the normal lifecycle of an entity bean.

For a client to get access to an entity bean, it finds it. In addition to create() methods, the
home interface of an entity bean will also have finder methods. The client must determine
some means of identifying the specific row based on some application qualification. For
example:

public interface AccountHome extends EJBHome {

...

public Account findByFirstLast(String first, String last)

throws RemoteException;

public Account findByAccountNumber(String acctNum)

throws RemoteException;

}

When the client invokes one of these methods on the home object, the container passes the
invocation to the corresponding method in the entity bean.

public class myEntityBean implements EntityBean {

...

public Object ejbFindByFirstLast(String first, String last) {

Client 1

Client 2
State

Client 1
State

Client 2

Row 2

Row 4

Row 6

Row 8

Session Beans Entity Beans Database
16 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

an

ique
might

ct is
bject.

ntity
hold
ntation
just
// runs appropriate singleton SELECT statement

// returns primary key for selected row

}

public Object ejbFindByAccountNumber(String acctNum) {

// runs appropriate singleton SELECT statement

// returns primary key for selected row

}

}

A good way to think of each finder method is as a database SELECT statement, where the
dynamic SQL parameters are supplied as the method arguments.

Notice that the finder methods in the home interface return a remote reference (to the
EJBObject) back to the client. The finder methods in the bean return a unique identifier, or
primary key, to the container. The container will take this primary key and use it to instantiate
a new EJBObject to represent the selected row. Regardless of the implementation of the
finder method, the selected row is always represented to the container using a primary key. It
is up to the entity bean class to decide how to construct a primary key to uniquely identify the
row.

It is likely that a finder method may find several rows that meet the criteria in the SELECT
statement. In this case the bean’s finder method is defined to return an enumeration of
primary keys. The finder method in the home interface is defined to return to the client
enumeration of EJBObject references.

public interface AccountHome extends EJBHome {

...

public Enumeration findByCompany(String companyName)

throws RemoteException;

}

public class myEntityBean implements EntityBean {

...

public Enumeration ejbFindByCompany(String companyName) {

// runs appropriate SELECT statement

// returns an Enumeration of primary keys

}

}

Primary Key

The term primary key can be misleading. It would be more appropriate to consider it a un
identifier. In the case of an entity bean that represents a row in a table, the primary key
be a representation of the values of the composite key for that row.

For every entity bean instance, there is a corresponding EJBObject. When an EJBObje
paired with an entity bean instance, the primary key of the instance is stored in its EJBO
This entity bean instance is said to now have an identity.

When the client invokes a finder method on the home object, the container will use an e
bean instance that has no identity to perform the request. The container may privately
one or more of these anonymous instances for this purpose. Regardless of the impleme
of the finder method, its implementation in the bean will always return to the container
Copyright © 1998 Nova Laboratories 17

Developer’s Guide to Understanding Enterprise JavaBeans™
the primary key of the underlying data, such as the row in the database. If multiple rows met
the search criteria, then multiple primary keys are returned to the container.

Now that the container has the primary key (or keys) it will instantiate an EJBObject (or
EJBObjects) and initialize them with the primary keys. The container then has the option of
also instantiating the entity bean instances to associate with each EJBObject. Since the
identity of the underlying row is actually in the EJBObject, there would be no state within the
bean instances. For this reason, the container may defer the instantiation of the bean instances
until a business method request is made on the EJBObject, conserving memory resources.

When a finder method returns a primary key to the container, the container will first check to
see if an EJBObject with that primary key already exists. If so, the container will not create a
new EJBObject, but will return the reference to the existing EJBObject to the client. This
assures that there is only one EJBObject instance per row, and that all clients share the
EJBObjects.

The primary key uniquely identifies the bean instance only within its class, or home. The
container is responsible for ensuring this distinction.

The home object will always make the following method available to clients:

public Remote findByPrimaryKey(Object key);

The EJBObject provides an implementation of the following method:

public Object getPrimaryKey();

The client can obtain the primary key of an entity at any time, and use the primary key at a
later point in time to re-establish a reference to the entity.

The class type of the primary key is specified in the deployment descriptor. The bean
developer may represent the primary key using any class type. The only requirement is that
the class must implement Serializable, since it must be possible to pass the primary key
between the client and server.

Swapping Entity Beans

Now would be a good time to look at the javax.ejb.EntityBean interface.

public interface javax.ejb.EntityBean extends EnterpriseBean {

public void ejbActivate() throws RemoteException;

public void ejbPassivate() throws RemoteException;

public void ejbRemove() throws RemoteException,

RemoveException;

public void setEntityContext(EntityContext ctx)

throws RemoteException;

public void unsetEntityContext() throws RemoteException;

public void ejbLoad() throws RemoteException;

public void ejbStore() throws RemoteException;

}

Activation and passivation work in a similar fashion to session beans. However, entity beans
are stateless when they are not in a transaction; their state is always synchronized with the
underlying data store. If we apply the same rules for swapping that we used for session beans,
then we would not swap out a stateless entity bean, we would just destroy it. However, since
the container needs anonymous entity beans to invoke the finder methods, the container will
18 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

’s
ase.
at

out
d the

ation
he

ntext
y the

en the
 will

od

ly by

ke the
likely passivate entity beans into a private in-memory pool for this purpose. Once the entity
bean instance is taken away from the EJBObject, it no longer has an identity (or primary key
association).

The container may also use this in-memory pool for re-allocation of entity beans when a
business method is requested on an EJBObject that has no corresponding entity bean.
Remember that when a bean is in this pool it has no identity and can be reused by any other
EJBObject. The container may implement a policy which does not maintain any entity beans
with EJBObjects, except when a business method is currently be executed through that
EJBObject. More properly, the entity bean would remain associated with the EJBObject while
the bean is involved in a transaction.

Bean-Managed Persistence

Since an entity bean represents underlying data, we need to fetch the data from the database
and place it in the bean. When the container first associates an entity bean instance with an
EJBObject, it invokes the ejbLoad() method of the bean. Within this method the developer
must provide the code that will extract the appropriate data from the database and place it in
the bean. When the container wishes to passivate the bean, it will first invoke the bean
ejbStore() method. This method is responsible for writing the data back to the datab
We call this bean-managed persistence, since is the code within the bean’s methods th
provide this synchronization.

When the ejbLoad() method completes, there is the potential for the bean to become
of synch with the underlying database. The business method invocation which triggere
allocation of the bean to the EJBObject, and subsequent ejbLoad(), must be declared in
the deployment descriptor to run within a transaction. Upon receiving the business invoc
request, the EJBObject will work with the container to establish a transaction context. T
container will then allocate the bean to the EJBObject and invoke the bean’s ejbLoad()
method. This method is now running in the context of a transaction. This transaction co
is passed to the database, where the accessed rows in the database become locked b
transaction, according to the transaction isolation level specified in the deployment
descriptor.

The rows in the database remain locked as long as the transaction context is alive. Wh
transaction is about to be committed, either by the client or the container, the container
first invoke the bean’s ejbStore() method, causing the bean to flush its data to the
database.

Keeping the appropriate database rows locked between the ejbLoad() and ejbStore()
ensure that the bean is always synchronized with the database. Multiple business meth
invocations could occur during this time. More specifically, the ejbLoad() and
ejbStore() demarcate the transaction boundaries, and multiple business method
invocations can occur within the transaction.

The duration of the transaction is determined by the deployment descriptor, and possib
the client.

Note that the ejbActivate() and ejbPassivate() methods should not be used to
perform synchronization with the database.

Container-Managed Persistence

If the deployment descriptor declares that the bean will utilize container-managed
persistence, the ejbLoad() and ejbStore() methods will not be used to access the
database. The container will load the data from the database into the bean and then invo
bean’s ejbLoad() method to tell it that it has just received data from the database.
Copyright © 1998 Nova Laboratories 19

Developer’s Guide to Understanding Enterprise JavaBeans™

se

n and
hem

t
per

loyer.
etwork
tor acts
y the
he
d.

t and
w the
cess
 can
bly

abase
ing

d with
ent to
he

cribe
Likewise, the container will invoke the bean’s ejbStore() method to tell it that its data is
about to be written to the database. These methods do not actually perform any databa
operations.

While a vendor may provide sophisticated tools to accomplish this, such as automatic
generation of entity bean classes utilizing object-relational mapping, the specification
describes a minimal set of requirements for a vendor to provide container-managed
persistence.

The deployment descriptor can specify a simple mapping of public fields in the bean to
columns in the database. The container uses this to read the public fields from the bea
write them into the appropriate columns, and to read the database columns and write t
into the public fields.

While container-managed persistence can be a great service to EJB developers, withou
having a more sophisticated mechanism, such as object-relational mapping, the develo
may find it more effective to use bean-managed persistence.

Deployment Descriptor

Distinguishing EJB Development Roles

There are two primary roles for EJB development, the bean developer and the bean dep
There are a number of attributes which cannot be predicted by the developer, such as n
addresses of databases, database drivers to use, and so forth. The deployment descrip
as property sheet which can defined by the developer, and filled in with correct values b
deployer. The deployment descriptor is a standard format, and so is portable between t
development and deployment environments, even when different EJB platforms are use

Controlling the Behavior of Enterprise Beans

In addition to providing a standard property sheet for collaboration between developmen
deployment time, the deployment descriptor also contains detailed information about ho
bean should execute regarding transactions and security. Certain attributes, such as ac
control lists, will likely be adjusted by the deployer to ensure that the appropriate users
utilize the beans at runtime. Other attributes, such as transaction information, will proba
be specified completely by the developer, since it is the developer who created the dat
access code and has intimate knowledge of how the bean’s methods should run regard
transactions.

Defining the Deployment Descriptor

The deployment descriptor is a standard Java™ class. An instance is created, populate
values, and serialized. This serialized deployment descriptor is placed in a jar file and s
the deployment area along with the enterprise bean classes. The deployer will read in t
serialized deployment descriptor, possibly modify some values, and use this modified
deployment descriptor to install the enterprise bean.

Here are the contents of the deployment descriptor. It is the superclass to two other
deployment descriptor classes. The subclasses are the descriptors actually used to des
the bean.

javax.ejb.deployment.DeploymentDescriptor

• bean home name

• bean class name
20 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™
• home interface class name

• remote interface class name

• environment properties

• control descriptors

• access control list

These two classes are subclasses of DeploymentDescriptor:

javax.ejb.deployment.SessionDescriptor

• state management type

• session timeout

javax.ejb.deployment.EntityDescriptor

• list of container-managed fields

• primary key class name

This descriptor defines transaction and security attributes for the entire bean and for
individual methods. An array of these objects are specified in DeploymentDescriptor.

javax.ejb.deployment.ControlDescriptor

• transaction isolation level

• Method object to which this descriptor applies

• run-as mode (for identity mapping)

• run-as identity (for identity mapping)

• transaction attribute

To deploy an enterprise bean the appropriate descriptor is allocated, initialized, and
serialized, and placed in the jar file along with the enterprise bean classes.

Each vendor may have a different means for defining a deployment descriptor. One may use
a text specification file, for instance, while another provides a graphical tool. The end result
is a descriptor which is in a standard format, and is portable across vendor platforms.

EJB Jar File

To package the enterprise bean, the bean classes, including the interfaces, and the serialized
deployment descriptor are placed in a jar file. This jar file must have a manifest file entry
which declares the deployment descriptor as an enterprise bean.

Name: AccountDD.ser
Enterprise-Bean: true

It is the deployment descriptor, not the bean class, that is listed in the manifest as an
enterprise bean. The deployment descriptor provides the full description of all the files in the
jar that together define the enterprise bean.

The developer should not have to be concerned with the creation of the EJB jar file. The
vendor should provide a tool which will assist the developer in creating the deployment
descriptor, and then package all the necessary files into a jar with the appropriate manifest
file entries.
Copyright © 1998 Nova Laboratories 21

Developer’s Guide to Understanding Enterprise JavaBeans™
22 Copyright © 1998 Nova Laboratories™

4 - Transactions

e
ed by

ts
c
on the
the
 data

two
s

is

n

these
s in
CORBA® OTS

The transaction model used in EJB similar to OTS. In fact, CORBA®-compliant EJB
servers must provide an OTS-compliant transaction service. Understanding how OTS
works helps to understand how transactions work in EJB.

Defining Transactions

A transaction is formally defined as an atomic unit of work. Multiple operations can b
included in a transaction, and when the transaction is terminated, all changes perform
the operations are either applied or undone as a whole. These operations are called commit
and rollback.

Transactions are used extensively with database applications. Good database produc
provide very strong support for transactions. Rows that are accessed during a specifi
transaction become locked and stay locked for the duration of the transaction. Based
database product there can be multiple locking levels which can be selected prior to
start of the transaction. The appropriate locking level should guarantee integrity of the
while optimizing concurrency of access for operations in other transactions.

Transactions may also be distributed across the network, such as a client accessing
different databases from within a single transaction. To support distributed transaction
most transaction managers (including databases) support two-phase commits. This is a
simple protocol where the transaction manager first asks all participants if their work
finished and would like to attempt to commit their work. This is the first phase of the
protocol. Once everyone agrees to commit, the second phase begins. The transactio
manager gives the command to perform their individual commit operations.

Key Components in OTS

To better understand how OTS works we need to look at its key components. The
following components can be mapped almost directly to EJB, and understanding how
components work in OTS will provide a good foundation for understanding transaction
EJB.

• Control

• Terminator

• Coordinator

• Resource
Copyright © 1998 Nova Laboratories™ 23

Developer’s Guide to Understanding Enterprise JavaBeans™
• Synchronization

The following diagram illustrates the significant methods defined for these objects, and how
the objects fit into the transaction architecture.

The dashed box represents a transaction. Within the transaction are all of the objects
participating in the transaction. Commits and rollbacks will be applied to all the Resource
objects in this group.

The Control object represents the transaction. From this object we can obtain the
Coordinator and the Terminator. An EJB developer never sees the Control object.
It is used by the container to manage the transaction on behalf of the bean.

The Terminator is also used by the container to commit or roll back the transaction when
a thread returns from a bean method where the method is described in the deployment
descriptor as requiring the container to terminate the transaction upon completion of the
method. When a commit or rollback is requested, all the objects in the transaction will be
committed or rolled back, as appropriate.

The Resource is the object that has transactional state. For example, it may be a connection
to a database. Calling commit() on this object would cause the database updates to be
applied to the database. A rollback() would revert all changed made to the database
through this connection since the start of the transaction. Once the commit or rollback
completed, the corresponding rows in the database would be unlocked. The level of locking
applied would have been specified in the deployment descriptor. The full set of methods for
this object would show that these objects actually implement the two-phase commit protocol,
allowing each object to vote as to whether the entire transaction should be committed or
rolled back.

The Synchronization is an object that wishes to be notified upon completion of the
transaction whether the transaction was committed or rolled back. Unlike the Resource, it
does not participate in the two-phase commit protocol and has no vote as to whether the

commit()
rollback()

commit()
rollback()

get_terminator()
get_coordinator()

Control

Resource

Transaction

commit()

rollback()

register_resource(Resource r);
register_synchronization(Synchronization s);
rollback_only();

before_completion();
after_completion(Status s);

Terminator Coordinator

Synchronization

before_completion();
after_completion(Status s);
24 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

EJB.

ject

rable

ct’s

tain a
an are
 does
e

tten,
f a
rable

mmit

es to

ach

iptor

ds.
transaction should be committed or rolled back. It plays a passive role in the transaction. This
is the role that a session bean may play by implementing a special interface.

The Coordinator is the object that makes all this work. Through this object both
Resource objects and Synchronization objects are registered in the transaction. The
bean does not get access to this object directly. Transaction-aware objects that are intended
for use with EJB will transparently obtain a reference to the current transaction’s
Coordinator to register itself.

Transactional vs Recoverable Objects

OTS distinguishes transactional and recoverable objects. This distinction is relevant to
While the full definition of these types is rather extensive in the OTS specification, it
essentially means that recoverable objects have a commit() and rollback() method,
allowing the transaction to directly manipulate their state or behavior. A transactional ob
does not have these methods, and cannot be influenced by the transaction. However, a
transactional object is an object that has a transaction associated with it, so that recove
objects (or Resources) that are allocated will be associated with the transactional obje
current transaction.

An enterprise bean is a good example of a transactional object. The container will main
transaction on behalf of the bean. Any recoverable objects that are allocated by the be
transparently placed into the current transaction with the help of the container. The bean
not have a commit() or rollback() method, and so the transaction cannot manipulat
the bean directly. It doesn’t really make sense to make a bean a recoverable Resource since
this would require additional work on the part of the bean developer for every bean wri
and enterprise beans rarely have internal state that should directly affect the outcome o
transaction. They function better as managers of recoverable objects, letting the recove
objects do the work.

Note that a bean can vote to roll back a transaction prior to the container attempting a co
or rollback. The rollback_only() method in the Coordinator is provided to the
bean so that the bean can flag the transaction as requiring a rollback when the time com
terminate the transaction.

A bean can still be told of the outcome of a transaction through the
SessionSynchronization interface.

Specifying Transaction Controls in the Deployment Descriptor

The deployment descriptor for a bean contains an array of ControlDescriptor objects. E
ControlDescriptor describes, among other things, the transaction control that should be
associated with that method.

The bean developer specifies the transaction controls for the methods in the bean. The
deployer generally should not change these values without detailed knowledge of the
transaction-related behavior of the method.

The following six transaction controls are integer constants defined in the ControlDescr
class. Aside from the methods of this class, there are no other APIs that access this
information. The bean itself does not get access to its transaction controls for its metho
The container will read these control values to maintain the appropriate transactional
behavior for the bean.

• TX_NOT_SUPPORTED

• TX_SUPPORTS
Copyright © 1998 Nova Laboratories 25

Developer’s Guide to Understanding Enterprise JavaBeans™

e

ction

the
tainer
ction
e

ew
ither
ould

ted.

hread

l is
art of
rough

ion
It is
ugh
• TX_REQUIRED

• TX_REQUIRES_NEW

• TX_MANDATORY

• TX_BEAN_MANAGED

You would apply the appropriate value to the ControlDescriptor for your bean’s method
typically through a vendor-provided tool for creating deployment descriptors.

TX_NOT_SUPPORTED

This method should not run in a transactional context. If the executing thread is running
within the transaction, the transaction will be suspended until the thread returns from th
method.

TX_SUPPORTS

While a transaction is not required for this method, the thread may have an active transa
when running this method.

TX_REQUIRED

This method must be run within in transaction. If the thread already has a transaction,
thread is allowed to enter the method. If the thread does not have a transaction, the con
will start one on behalf of the thread, allow the thread to enter, and terminate the transa
once the thread returns. Normally the transaction is committed. If the thread invoked th
setRollbackOnly() method, the container will perform a rollback instead.

TX_REQUIRES_NEW

Regardless of whether or not the thread has a transaction, the container will create a n
transaction for the duration of this method. When the thread returns, the container will e
commit or roll back the transaction. If the thread already had a transaction underway, it w
be suspended until after the thread returned and the method’s transaction was termina

TX_MANDATORY

The thread must already be in a transaction when attempting to call this method. If the t
does not have a transaction, the container will throw an exception.

TX_BEAN_MANAGED

This control is somewhat different from the previous controls. A method with this contro
stating that the container should not play any part in transaction management on the p
the method. Instead, the method is going to create and terminate its own transaction th
a special interface that is accessible only for methods with this transaction control. This
control will be covered in more detail in a later section.

JTS - Java Transaction Service

The JTS is actually not a transaction service, but an interface to an underlying transact
service provider. JTS is very simple, consisting of one interface an several exceptions.
apparent by looking at its list of exceptions that it was modeled to work with OTS, altho
it could be used as an interface to other transaction services also.
26 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™
For beans that declare their transaction control as bean-managed, the bean can get access to
the transaction service through this interface. It can also be used for vendors that provide
support for client-demarcated transactions.

Here is the interface definition for UserTransaction:

public interface javax.jts.UserTransaction {

public void begin() throws IllegalStateException;

public void commit() throws

TransactionRolledBackException,

HeuristicMixedException,

HeuristicRollbackException,

SecurityException,

IllegalStateException;

public void rollback() throws

SecurityException,

IllegalStateException;

public void setRollbackOnly() throws IllegalStateException;

public void setTransactionTimeout(int seconds);

public int getStatus();

// STATUS_ACTIVE, STATUS_COMMITTING,

// STATUS_COMMITTED, STATUS_MARKED_ROLLBACK

// STATUS_NO_TRANSACTION, STATUS_PREPARED

// STATUS_PREPARING, STATUS_ROLLEDBACK

// STATUS_ROLLING_BACK, STATUS_UNKNOWN

}

Bean-Managed Transactions

A bean can get access to the transaction service provided the bean is declared with a
transaction control of bean-managed. While transaction controls apply to individual methods,
this control can only be applied to the entire bean. The ability of the bean to access the
transaction service cannot be selectively applied to only certain methods of the bean.
Therefore, it is an error for one method of the bean to declare the transaction control of bean-
managed while another method declares a different transaction control. The vendor’s
installation tool should detect this and report an error.

The bean gets access to the transaction service through the SessionContext or
EntityContext provided to bean initialization as the argument to
setSessionContext() or setEntityContext(), respectively. Each of these
interfaces subclasses from EJBContext. The definition of EJBContext is as follows:

public interface javax.ejb.EJBContext {

public Identity getCallerIdentity();

public boolean isCallerInRole(Identity other);

public EJBHome getEJBHome();

public Properties getEnvironment();

public UserTransaction getUserTransaction() throws

IllegalStateException;

public boolean getRollbackOnly();
Copyright © 1998 Nova Laboratories 27

Developer’s Guide to Understanding Enterprise JavaBeans™

s to
spend
action
is not

 return

less
en

ate in
per

ware,

tion
ith it

o enter

tly
form
public void setRollbackOnly();

}

Once the bean obtains a UserTransaction reference, it can use the reference to manage
its own transactions.

For stateful session beans, a method in the bean can create a transaction and return without
terminating the transaction. Upon a subsequent call to one of the methods of the bean, the
container will detect that a bean-created transaction is still in effect, and if the transaction
being carried by the calling thread is the same transaction, the container will allow the thread
to re-enter the bean. If the bean is in a transaction and a thread carrying a different
transaction context attempts to enter the bean, the container will block the thread until the
bean’s transaction terminates. If the bean is not in a transaction when a thread attempt
enter the bean, and the thread is carrying a transaction of its own, the container will su
the thread’s current transaction and allow the thread to enter. The thread’s original trans
is restored once the thread leaves the method, but any transaction created by method
terminated by the container.

For both stateless session beans and entity beans, the bean’s method is not allowed to
with its transaction still active. The container should catch this and throw an exception.
Leaving a transaction active across method calls is stateful, and is not allowed for state
session beans. For similar reasons, entity beans are also not allowed to maintain an op
transaction state across method calls when the bean has declared the bean-managed
transaction control.

Session Synchronization Interface

A session bean, stateless or stateful, is allowed to access a database, and can particip
transactions. To assist the bean in performing its work in a transaction, the bean develo
can have the bean implement the javax.ejb.SessionSynchronization interface.
This interface is automatically detected by the container, and the container will use the
methods in the interface as callbacks to keep the bean informed about the state of the
transaction.

Entity beans do not support this interface. Since entity beans are implicitly transaction-a
the container uses different semantics for controlling an entity bean while it is within a
transaction.

The SessionSynchronization interface is defined as follows:

public interface javax.ejb.SessionSynchronization {

public void afterBegin() throws
RemoteException;

public void beforeCompletion() throws
RemoteException;

public void afterCompletion(boolean yn) throws
RemoteException;

}

A transaction does not actually belong to a particular bean instance. A thread of execu
creates a transaction, either in the client or in the container, and carries its transaction w
when executes the code in the bean. If a thread that has a transaction context is about t
a session bean, the container first invokes its afterBegin() method. The bean can record
the fact that all business method calls are running within a transaction, and subsequen
allow certain transactional operations to execute. It would similarly reject requests to per
28 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

or.

mit
w a
od
ot.
rcing

nal

 that
not

wo
transactional operations if its internal flag indicated that this thread was not running within a
transaction.

The bean would continue to assume that its business method calls are part of a transaction
until the afterCompletion() method is called. It would presumably clear its internal
flag indicating that subsequent requests that require transactions should be rejected.

If a thread that carries a transaction context attempts to enter a bean that is already a part of
another transaction, the container will block the entry until the previous transaction either
commits or rolls back and the afterCompletion() method is called, allowing the bean
to restore its state. The container is responsible for providing these behaviors.

The beforeCompletion() method will be called on all session beans that are a part of a
particular transaction when the container realizes that it is about to attempt to commit the
transaction. This gives the bean the opportunity to finish its transactional operations, such as
flushing any remaining data to the database, before the transaction is committed. If the
container realizes it is about to perform a rollback instead, the beforeCompletion()
method will not be called, since it is pointless to flush data in a transaction where the
transaction is going to be rolled back, anyway.

The afterCompletion() method is called after the transaction is either committed or
rolled back to inform the bean about the final outcome of its transactional operations. It can
use this information to update its internal state, but it should not use it to try to maintain any
internal transactions it may be trying to maintain. While it is possible for a session bean to
create, commit, and roll back its own transactions, it is generally discouraged. The
SessionSynchronization interface does not provide the capability of functionally
merging outer transactions with an inner transaction being maintained directly by the session
bean.

A session bean that implements this interface implies that it is maintaining state across
method calls. Specifically, the implication is that between the calls to afterBegin() and
afterCompletion() the bean is within a transaction. Therefore, it is an error for a bean
to implement the SessionSynchronization interface and be declared as stateless in its
deployment descriptor. The vendor’s installation tool should catch this and report an err

Stateless session beans can participate in transactions, but they cannot implement this
interface. The transaction could be bean-managed, or the container could start and com
the transaction upon entry to and return from the method. The container should not allo
thread with an existing transaction to enter the method, since the stateless bean’s meth
would not know if the executing thread were running in the context of a transaction or n
One way around this would be to have the container suspend an existing transaction, fo
the method to always assume that the thread is not running the method in a transactio
context.

Stateful session beans can also participate in a transaction without implementing this
interface. However, the deployment descriptor would have to be configured carefully so
the business methods always execute in the correct transaction state. The bean would
have the benefit of being informed of its transaction state through this interface.

Taking Part in Transactions

The EJBContext interface was illustrated in a previous section. In that interface were t
methods:

public boolean getRollbackOnly();
Copyright © 1998 Nova Laboratories 29

Developer’s Guide to Understanding Enterprise JavaBeans™

t
on two
e
tons
ction

of
uto-
n.

public void setRollbackOnly();

These methods can be used by any bean, not just beans that declare their transaction control
as bean-managed. In fact, beans that manage their own transactions would not use these
methods, since these methods are used to communicate transaction status to an outside
transaction manager.

When a bean calls setRollbackOnly() it is requesting to the transaction manager that
when it comes time to terminate the current transaction that the transaction be rolled back. It
gives beans a vote in the outcome of the transactions in which they participate. These
methods also exist in the UserTransaction interface, but since most beans will not have
access to this interface, these methods must be provided to the bean directly in the
EJBContext. Note that this method does not initiate a rollback, it simply sets a flag that the
transaction should be rolled back when the transaction is terminated.

Unlike JavaBeans property setter methods, this one does not take a boolean value as an
argument. The method is designed this way deliberately so that a bean cannot revert the
rollback request of another bean.

A bean may wish to use the getRollbackOnly() method to check the current status of
the transaction. If another bean has already flagged the transaction for rollback, the calling
bean could presumably decide not to perform intensive operations, such as database updates,
that would be reverted once the transaction were terminated.

Client-Demarcated Transactions

While not a requirement for EJB vendors, a server vendor may decide to provide a class that
can be used by the client to directly access the transaction manager. A client may wish to do
this if it were necessary to invoke beans in two different servers in the same context. Of
course, each bean’s deployment descriptor would have to allow this behavior. The clien
could create a transaction and then invoke the business methods in two different beans
different servers, passing the transaction context as part of the call. Once the calls wer
completed, the client would presumably terminate the transaction. The stubs and skele
generated by the container vendor would have to support the implicit passing of a transa
context for this to work.

Here is a possible example:

Current current = new Current();
current.setServiceProvider(txMgrURL);
current.create();
current.begin();
remRef1.doSomeWork();
remRef2.doMoreWork();
current.commit();

Transaction Management of Database Operations

It is certainly desirable for a bean to be able to use JDBC™ to create connections to
databases and to perform work on that connection. However, to fit into the EJB model
having the container manage the bean’s transaction, the connection must not use the a
commit feature, and the bean should not attempt a commit or rollback on the connectio
Presumably the container is the one that should determine if all transactional behavior
executed within this transaction should be committed or rolled back.

A good question at this point is how the container could see and manage a database
connection created internally by the bean’s method. Although not stated explicitly in the
30 Copyright © 1998 Nova Laboratories™

Developer’s Guide to Understanding Enterprise JavaBeans™

cides
ith it.
aged

e
t of the
on’s
n

er

ill
ote

 when
Specification, enterprise beans should only use JDBC drivers that were intended for use with
EJB. Upon creation of a database connection, these drivers will transparently register the
connection with the executing thread’s current transaction. Later when the container de
to terminate the transaction, the database connection will be automatically terminated w
In OTS terms, the database connection is a recoverable Resource that is implicitly man
by the transaction service with the help of the container.

While it is possible to use JDBC drivers that are not transaction-aware in this sense, th
developer should be aware that any work done on this database connection is not a par
bean’s transaction, and the developer must be sure to terminate the database connecti
transaction prior to returning from the method. Trying to use the SessionSynchronizatio
interface to functionally merge the database connection’s transaction with the bean’s
transaction is unreliable and should not be attempted.

Distributed Transaction Support

A distributed transaction would be needed in the following cases:

• a client using client-demarcated transactions that creates and transaction and calls
a method in one or more beans on one or more servers

• a bean’s method that invokes a method in another enterprise bean on anoth
server

For this to work the vendor must generate stubs and skeletons for the EJBObject that w
implicitly obtain the current transaction context and send it in the method call to the rem
bean. The skeleton for the remote bean’s EJBObject must apply this transaction context
delegating the business method call to the bean.
Copyright © 1998 Nova Laboratories 31

Developer’s Guide to Understanding Enterprise JavaBeans™
32 Copyright © 1998 Nova Laboratories™

	1 - Preface
	How to read this document
	Defining some basic terms
	Sources and references
	Documentation
	Products

	Trademarks

	2 - Introducing Enterprise JavaBeans™
	Introducing Enterprise JavaBeans™
	Purpose of this Document
	Services Framework
	JavaBeans vs Enterprise JavaBeans

	Enterprise JavaBeans Architecture
	Benefits of Enterprise JavaBeans
	Establishing Roles for Application Development
	Automatic Transaction Management
	Distributed Transaction Support
	Portability
	Scalability
	Integration with CORBA®
	Vendor Enhancements

	Roles in EJB Development
	EJB Developer
	EJB Deployer
	EJB Container Vendor
	EJB Server Vendor
	Application Developer

	3 - Understanding the EJB Components
	Home Interface
	Factory for Enterprise Beans
	Locating the Home Object
	Methods in the Home Interface

	Container
	Defining the Container
	Container and EJBObject as a Pair
	Relationship to the Home Interface

	Enterprise JavaBean
	Remote Interface
	EJBObject
	Session Bean
	Defining a Session Bean
	Swapping Session Beans
	Activation and Passivation
	Session Bean Management State

	Entity Beans
	Role of the Entity Bean
	Comparing Entity and Session Beans
	Finder Methods
	Primary Key
	Swapping Entity Beans
	Bean-Managed Persistence
	Container-Managed Persistence

	Deployment Descriptor
	Distinguishing EJB Development Roles
	Controlling the Behavior of Enterprise Beans
	Defining the Deployment Descriptor

	EJB Jar File

	4 - Transactions
	CORBA® OTS
	Defining Transactions
	Key Components in OTS
	Transactional vs Recoverable Objects

	Specifying Transaction Controls in the Deployment Descriptor
	TX_NOT_SUPPORTED
	TX_SUPPORTS
	TX_REQUIRED
	TX_REQUIRES_NEW
	TX_MANDATORY
	TX_BEAN_MANAGED

	JTS - Java Transaction Service
	Bean-Managed Transactions
	Session Synchronization Interface
	Taking Part in Transactions
	Client-Demarcated Transactions
	Transaction Management of Database Operations
	Distributed Transaction Support

