Lahey/Fujitsu Fortran 95
User’s Guide

Revision C

Copyright

Copyright © 1995-2000 Lahey Computer Systems, Inc. All rights reserved worldwide. Copyright © 1999
FUJITSU, LTD. All rights reserved. Copyright © 1986-1999 Phar Lap Software, Inc. All rights reserved. This
manual is protected by federal copyright law. No part of this manual may be copied or distributed, transmitted,
transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by
any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks

Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Disclaimer

Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no obligation of
Lahey Computer Systems, Inc. to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. be liable for any loss of profit or any other commercial damage, including but not lim-
ited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
865 Tahoe Boulevard
P.O. Box 6091
Incline Village, NV 89450-6091
(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
(775) 831-2500 (PRO version only)
support@lahey.com (all versions)

Table of Contents

Getting Started................oeeeee, 1 Mixed Language Programming...................... 38
System REQUIrEMENTSovvvereeereereeeereeeeenn. 1 USINgDLLS......cooiiiiii 38
Manual Organizationcccocveveveeeerenenns 1 What Is SUPported ..o, 39
Notational CONVENtionsSccoeeveveeeevrnnns 2 Declaring Your Procedures....................... 39
Product RegiStrationccooeveueerecnnnnn. 2 Building FOrran DLLScooocviinniinnnnn. 40
Installing Lahey/Fujitsu Fortran 95.................. 3 Calling DLLS from FOrtran........................ 41
Network Installationc.covveeeeiiiiieiiiieeens 3 Pas,smg Data...-......- """"" s 41
Maintenance Updatesccccccoviiiiiiiiieennnnnnn. 5 I[:)ellverlrég ,IAl_pphI(::atlons VDVII:[E LF95 DLLs.4}11
Building Your First LF95 Program 5 Cogrfﬁn i Intg Og[?_n Seeeeenenens 42

Generating the Executable Program............ 6 alling rortran S
Running the Program 6 Fortran Calling C DLLS.......cccvvvveeieeeeennnnn. 42
o : L e Referencing DLL Procedures 42
Building Your First WiSK Program................. 7 : - . .
. Microsoft Visual Basic Information........... 45
Generating the Executable Program............ 7) .
Borland Delphi Information....................... a7
Run the Program..........ccccccovviiiiiiiniiineennn 7 . .
, Delphi Calling Fortrancccuveeeeeeennn. 47
What's NeXt?coooiiiiiiiieeieeee e 8 . .
: Fortran Calling Delphi DLLs.................... 48
Other Sources of Information..............ccceeenee. 8
EXamples.......cooveiiiiiiiiiiiiiee s 48

Developing with LF95..........cccccvvvivinnes 11 Calling the Windows APlccccevieenns 48
The Development PrOCESSovvwrvvererenen, 11 Static Linking APPSR PSPPSR 49
HOW the Drver WOTKSo.oeveveveveeeeesesnnn 12 OpenGL Graphics Programs..............c.ocooeeve. 50
RUNNING LFO5 v 12 ~ Recommended Switch Settings.................... 50

Filgnames .. lZEditing and Debugging with ED 51
.SW|tches. RTINS 13 Setting Up and Starting ED...........oovvveevvvenn.. 51
Driver Configuration File (LF9S.FIG) 14 STAMUP e 51
Command Files ..., KT =210 [= 0 YOS 52
Passing INformation ..., 15 THE ED SCreeN .o 52
Return Codes from the Driver 15 The MeNU BAar........ccovoveveeeeeeeeeeeereeen, 52
Creating a Console-Mode Application.......... 15 The Status Bar.........cccoocveiieeiiie e 53
Creating a Windows GUI application 16 The Text Bar......cccovieeiicee e 53
Creating a WiSK Application........................ 16 TOOIDAS ... 53
Creating a 32-bit Windows DLL 16 The WIindow Bar...........cc.ccoeveveeueeeeeereen. 54
Controlling Compilation...............c.cccccooeni. 17 Getting HelP c.c.cvveeeeeeeeeeeeeeeeee e 54
Errors in Compilation..............oooeiiins 17 Managing Files..........ccceeuveeueeeerereeereeeeeene 54
Compiler and Linker Switches.................. 17 Creating A File From Scratch.................... 54
LINKING RUIEScovveiiiiiieece e 37 Opening AFile......ccoeeiiiiiecccceeececieee e, 55
Fortran 90 Modules............cccoveiciiininnenne. 37 Syntax Highlightingccccocciiiiiis 56
Searching RUlesS........coooiiiiniiiie Y A \F- 1Y/ To - Vi (o] o 56
Object File Processing Rules..................... 37 Previous/Next Procedurecccvvveeen.... 56
Library Searching Rules..............ccccoeeee. 37 Function/Procedure List...........ccccccvvvnnnnnnn 56

Lahey/Fuijitsu Fortran 95 User’s Guide i

Contents

FINA oo 57
Matching Parentheses and Statements...... 57
Editing ..ccooo oo 57
Undo and RedO.........cccccvveeeeiiiiciiiiiieeeeenn, 57
Extended Charactersccccceeevivieeennnn 57
BIOCKS....ci ittt 58
Coding ShortCutSevvveeiiiiiiie i, 58
Templates ... 58
SMAIYPE .o 59
Case CONVErSIONccevvvveeeeiniiiiiiiieeeeeenn 59
Code Completioncccceevvieeieeniiiieeeeee 59
Compiling froM ED......ccovvveeiiiiiieeiiieee 60
Compiling Your Program............ccceeeeenne 60
Locating Errorsococeeevviieeeeeniieeeeeee, 60
Changing Compiler Optionsccc...... 61
Debuggingccoovviiiiieiii 61
Starting the Debuggercccccoevviieeinnn. 62
Running Your Program...........ccccovvveeeeenns 63
Running aLineata Time............cccceeenee 63
Setting Breakpoints.........cccccoevviviiiiiinennenn. 63
Displaying the Values of Variables 65
Changing the Values of Variables 66
Reloading your Programceeeeene... 66
Configuration.............coooeeiiiiiii 66
Command-Line Debugging with FDB. 67
Starting FDB......oovvieeii 67
ComMMaANAS........ccciiieeieieee e 67
Executing and Terminating a Program 68
rUn arglist.......coeeeeeeiniiiiiieee e 68
RUN (e, 68
Kill.oeeee e 68
param commandline arglist.................. 68
param commandlineccoceeeees 68
clear commandlineccccccvvvvennnnn. 68
QUIL e 68
Shell Commandscccccceeevvecviiiiiiiireeeenn 68
(oo [o || S 68
PWA .. 68
Breakpointscccoeeveeiviiiiiiie 69
break [file’] lineceevivvriiiieiinns 69
break ['file’] funcname...................... 69
break *addr..........cccovvvveeiiiiiiic, 69
break ... 69

Lahey/Fujitsu Fortran 95 User’s Guide

condition #N eXPr.....cevveeeeeiiccciienieeee 70
condition #N ...oeveeviiii 70
oncebreakoooceeiiiiiiiiii e 70
regularbreak "regex"cccocveerereennnnn, 70
delete location.........ccccooeeeeieiiiieeeenen 70
delete ['file’ 1liN€oevverieiiiiiiiiiiee 70
delete ['file’] funcname 70
delete *addr.......cccccvveeeeeeeiiiiieee e 70
delete #N ... 70
delete....oo e 70
SKip #n COUNt.....oeeiiiiiiieiiiieee e 70
onstop #n cmd[;cmd2;cmd3...;cmdn] .. 71
show breakccccevveeeiiiiiiciiiiieeeee, 71
Controlling Program Execution................. 71
continue [CoUNE] ...eueveeeeieeeeniiiiiiiiiee, 71
silentcontinue [count]ccccevvvieeenn. 71
step [CoUNt] .o 71
silentstep [count J....ccoeeeeeiiiiiiiiiiiiennenn. 71
stepi [CouNt] . ueeeeeiiiee e, 71
silentstepi [count].......cocoeeeiiiiiinnnns 71
Next [CouNt].....occuuveiieeeieieee e 72
silentnext [count]cccoceeeviiiieeennninnen. 72
Nexti [COUNt]evriiiiiiiieiiecceeen 72
silentnexti [count] or nin [count].....72
UNLI .o 72
UNLITTOC e 72
UNtil *addr ... 72
until +[-offset.......ccoeeiiii 72
UNLIl FetUrN. .. 72
Displaying Program Stack Information..... 72
traceback [N]ccvvevviiiiiiei e, 72
frame [#N] ..o 73
upside [N] ..covvveeiieeeeee 73
downside [N] c.ceeevvvieeeniiiieeeeeeee e 73
ShOW args ...cooeevveeeieiieieece, 73
show locals.........ccceviviiieieiiiiiie, 73
Show reg [Br] e 73
show freg [$fr] .covvevieeiecec e, 73
SHOW regS ..., 73
SNOW MAP ..t 73
Setting and Displaying Program Variables73
setvariable =valuecccccceeiinins 73
set *addr =valuecoocveeeiniiinennnne, 74
setreg=value......ccccoevrrreerrnrrrnnnrnnnnnnnnn, 74

Contents

print [:F][variable]cccccvvvnnnnnn. 74 breakallmdl..........cccccvvveeeiiiieee, 78
memprint FuN]addr..........ccccocvueeenn. 74 breakall func............ccoeuvieieeiinina, 78
Source File Displaycccuveeeeieiiiiinniinns 75 Show ffile......coooii 78
ShOW SOUICE ..o, 75 ShOW fOPL....oiieiiieiecce e 79
SENOW .o 75 Communicating with fdbccocevveneee. 79
list[next]. ..o 75 FUNCHONS ... 79
liSt Previous ... 75 Variablesccccveveveveeeeeeceeeeeeenas 79
listaround ... & VAIUES ... 79
liSt['file" UM 75 AAArESSES ..o 80
liSt +[-OffSeL.....ooiiviiiiiiis 75 REGISIEIS ..., 80
list[*file’] tOp,bOt ... s NAMES.....cveeeeeeeeeeeeeeee e 80
list [func[tion] funchame.................... 75
GISAS ..ot 76Windows Debugging with WinFDB......81
disas *addrl [,*addr2].......cccooeene... 76 How to Start and Terminate WinFDB 81
disas funcnamecoviieieeeeninnnn, 76 Starting from the command prompt........... 81
Automatic Dlsplay 76 Starting from the Windows desktop __________ 82
SCreen [(F] @XPr...cocceeeieeeniee e 76 Starting from the ED Developer 82
SCIEEM ..ttt 76 Terminating the Debugger............coo....... 82
UNSCTEEN [#N] ...ovviiiiiiiiiiiis 76 Debugger Windowcoecoeeeveerveeereeneans. 83
screenoff [#n]........oocviiiinn, 76 Debugger Window.............cceeveveveerevennne. 83
SCreENON [#N] ..o 76 Debugger MENUSovveeeveeeeeeeeeeeeeeeeee. 84
SHOW SCIEEN ..o 6 File MeNU......coooiieee e 84
Symbols e R 76 PrOGram MENU «.....vveeeeeeeeeeeeeeerseeereeeeeeee 84
Show function ['regex’y.........cccoevvvve. 76 DEDUG MENU oo 85
show variable ["fegexy......wwrrreerss " Mode MENU......ccovviieeiiiiie e 85
SCHPLS et 77 .
alias omd “emd-str' 77 Wlndow MeNUooovviiiiiiiiiieieeeeeeeeeeee 86
. VIEW MENU ... 86
alias [emd]oeveeeeeeeeeeiiiee e 77 Help Menu 86
unalias [emd]coooviiiiiiiiiiieeee s 77 EID MENU o
SIGNAIS oo 77~ USING the DEDUGQET.......ovvvv 87
signal Sig actionccccevvveeeieninnnnen, 77 Startlng the Progtam """"""" e 87
show signal [Sig].......c.coovvvreeriiiiieennnnnn, 77 Settlng_and Deleting Breakp0|nts """"""" 87
Miscellaneous CONtrolSoveveveveveen.. 77 Setting & Breakpoint...............oocooveeenne. 87
param listSize NUMc.ccceceveverinane. 77 Releasing the Breakpoint................ooooo..e. 88
param prompt "Strcoeeeeeeeevernn. 77 Running and Stopping the Program........... 89
param printelements NUMc........ 78 Running the Programcccccccoeo... 89
PAFAM PIM.....c.eeeeeereeeeeeeeeeeeresseeeeeenen, 78 Stopping the Program...............c.cce... 89
FIIES w.voveveeee e 78 Rerunning the Program............................. 89
SNOW EXEC ..., 78 Displaying Debug Information................... 89
param execpath [path]cc.cccoeenni.. 78 Displaying Variables............ccccocuueenn. 90
param srcpath [path]cccccceveeuneanen. 78 Displaying Registers...............ccccoccviviininen. 91
SNOW SOUICE ... 78 Displaying a Tracebackc.coeieines 91
Show SOUrces..........ccccovvvivvevveeiiiiiiiin, 78 Displaying a Load Map........cccceeeeeeeeeeeennnnn. 92
Fortran 95 Specific............ccccevvviiiiiiiiinnnn, 78 Entering FDB Commands.............cccccenennn. 92

Lahey/Fuijitsu Fortran 90 User’s Guidéii

Contents

RESHIHCHONS ..o 93 Displaying Tuning Information............... 120
Other Remarks.........ccccvvveviiiiieiiiiiieee i, 95 Displaying the Cost for Each Function....121
. . Displaying the Cost Per Line................... 121
LM lelrarlan .. 97 The Calling Relationship Diagram........ 192
SWItCHES....eeiiiiiiiieie e 97
JEXTRACTALL oo 97 The Coverage Tool.........cccovniinnn, 125
IPAQESIZE ... 98 Starting and Terminating the Coverage Tool125
/Help .. 98 Starting the Coverage TOOl .o, 125
COMMANGS .. ettt 98 Starting from the desktop icon........... 125
Add ModulesS........c..eeeviiiiiiiiie e 98 Starting from the Command prompt..125
Delete Modulesoooviiiiiiiiiiiiiiis 98 Terminating the Coverage Tool......... 125
Replace Modules.............coocviiiiiinn. 99 Coverage Windowcocovvevveeeereenenn. 126
Copy MOdUIES ..o 99 Coverage MeNnUSccoooeeeeomveeeeeeeseeneen. 126
Move MOdUIES ...y 99 FIIE MENU. v eeeereeeeeereseeeeeeeeeees 127
Respon_se FIleS .o, 99 COVErage MENU.......ovevveeeeeeseeeeeeeeeee. 127
Interactive Mode...........ccceeeeeieeiiiiiiiiiiiieeeen. 100 View MeNU e 128
AULOMAKEcovveieeieceece e 101 Window Menu ... 128
INtroducCtionc..euviiiiiiii e, 101 Help MENU ..o 128
What DOES 1t DO?...cccuvvvverrrrrrrrimmieeienereeen 101 Using the Coverage TOOlooooooovvvivo. 129
How DOeS It DO That?ccooeerrrrrree 101 Collecting Coverage Information............ 129
How Do | Set It up? ..coeevvviveeeiciiieeee, 101 Storing & Merging Coverage Information ..130
What Can GO Wrong?.........ccc.oeeeeeneens 102 Storing Coverage Information................. 130
Running AUTOMAKEccccevevernnnnn, 102 Merging Coverage Information................ 130
The AUTOMAKE Configuration File Editor ... Displaying Coverage Information 130
102 i i i Utility Programs..........ccccceeeeeveiieieeeninn, 133
The AUTOMAKE Configuration File 106
Multi-Phase Compilationoovoo..... 111 CFIGSSG.E_XE s 133
Automake NOteS.......cccvvvieeieeiee i, 112 Configuring New Switches...................... 133
HDRSTRIP.FO0.....ccooiiiiiiiie e, 134
The Sampler Tool ... 115 PENTEST.FI0 ..., 134
Starting and Terminating the Sampler......... 115 SEQUNF.FO0.......cooiiiii i, 134
Starting the Sampler.........cccooviiiinnnnn. 115 TRYBLKIFOOoiiiiiiiiiiieeeeiee e 134
Starting from the Sampler icon 115 UNFSEQ.EXE ..cccoooiiiiiiiries 135
Starting from the Command prompt . 116 WHICH.EXE ... 135
Terminating the Sampler................... 116 RSE.EXE ...coooiiieeeiiiiiece e 135
The Sampler Window............ccccoovviiiineenen. 116 . .
Samplgr MENUS ..o 117Programm|ng HINGS oo 137
File MENU ..o 117 Efficiency Considerations............................ 137
Sampler MeNUc.cooveeveeeeeneeenen. 118 Side EffectS ... 137
VIEW MENU oo 118 File FOrmatsooeeiiiiieeee e 138
WiIindow MEeNU.........cccovreriiinieicien 119 Formatted Sequential File Format............ 138
Help Menu ... 119 Unformatted Sequential File Format....... 138
Using the Sampler ... 119 Direct File Formatcccooocvvveeeiiiiiennns 139
Collecting Tuning Information 120 Transparent File Format 139

iv

Lahey/Fujitsu Fortran 95 User’s Guide

Contents

Determine Load Image Sizecccccveeeeennnn. 139
LiNK TIMe ..eeeeiiiiiiii e 139
Year 2000 compliance.......cccccvveeeeeniiininnnnne. 140
Limits of Operation.cccoccveeiiniiieennne 141
Runtime OptioNS.........ccevevviiiiiieeeeeenn. 143
Command Format.........ccccceeeeeiiniiiiiiiiieeeeenn. 143
Command Shell Variable...............cccccccoo. 144
Execution Return Values..............cccoounnnee 145
Standard Input and Output...........ccceecuveeeenn. 145
Runtime OptioNSc.oocveeiiiiiiee e 145
Description of OptionScccceevviveeeens 146
Shell Variables for Input/Output 151
Lahey Technical Support................... 153
HOUIS e 153
Technical Support Servicescccuveeneee. 154
How Lahey Fixes Bugsccccccevviuvvnnen. 154
Contacting Laheyccccceeveeeiiiiiiiiiinnn, 154
Information You Providec..cccee. 154
Lahey Warrantiesccccoveeeeeeieennnnne 155
Return Procedure...........cccceeeiiiiiiinniinnne 156

Lahey/Fujitsu Fortran 90 User’s GuideV

Contents

Vi Lahey/Fujitsu Fortran 95 User’s Guide

0 Getting Started

Lahey/Fujitsu Fortran 95 (LF95) is a set of software tools for developing 32-bit Fortran appli-
cations. LF95 is a complete implementation of the Fortran 95 standard. The toolsetincludes
a compiler, editor, linker, debugger, profiler, coverage tool, librarian, make utility, video
graphics and user interface library.

LF95 includes three manuals: thiser’'s Guide(this book), which describes how to use the
tools; theLanguage Referencehich describes the Fortran 95 language; and¥igeracter
Starter Kit Manual, which describes the Windows video graphics and user interface library.

System Requirements

* An 80486DX, Pentium series or compatible processor
e 24 MB of RAM (32 MB or more recommended)

* 62 MB of available hard disk space for complete installation; 55 MB for typical
installation

* Windows 95, Windows 98, or Windows NT 4.0, or Windows 2000.

Manual Organization

This book is organized into eight chapters and two appendices.

» Chapter 1Getting Startedidentifies system requirements, describes the installation
process, and takes you through the steps of building of your first program.

» Chapter 2Developing with LF95describes the development process and the driver
program that controls compilation, linking, the generation of executable programs,
libraries, and DLLs.

« Chapter 3Editing and Debugging with EQdescribes program creation and debug-
ging using the Windows-based programming environment.

Lahey/Fujitsu Fortran 95 User’'s Guide 1

Chapter 1 Getting Started

e Chapter 4Command-Line Debugging with FDBescribes the command-line
debugger.

» Chapter 5Windows Debugging with WinFDQBescribes how to automate program.
» Chapter 6L M Librarian, describes command-line operation of the librarian.
» Chapter 7Automakedescribes how to automate program creation.

e Chapter 8;The Sampler TopHescribes how to profile your code to discover oppor-
tunities for execution speed optimization.

» Chapter 9;The Coverage Toptescribes the coverage analysis tool which can be
used to determine if all portions of your code are being executed.

» Chapter 10Utility Programs describes how to use the additional utility programs.

» Appendix 11 Programming Hint®offers suggestions about programming in Fortran
on the PC with LF95.

» Appendix 12, Runtime Optionslescribes options that can be added to your execut-
able’s command line to change program behavior.

» Appendix 13Lahey Technical Suppodiescribes the services available from Lahey
and what to do if you have trouble.

Notational Conventions

The following conventions are used throughout this manual:

Code andkeystrokes are indicated by courier font.

In syntax descriptiongbrackets]enclose optional items.

An ellipsis, "...", following an item indicates that more items of the same form may appear.
Italics indicate text to be replaced by the programmer.

Non-italic characters in syntax descriptions are to be entered exactly as they appear.

Product Registration

2

To all registered LF95 users, Lahey provides free, unlimited technical support via telephone
(PRO version only), fax, postal mail, and e-mail. Procedures for using Lahey Support Ser-
vices are documented in Appendix 1L&ahey Technical Support

To ensure that you receive technical support, product updates, newsletters, and new release
announcements, please register during installation or at our website: http://www.lahey.com.
If you move or transfer a Lahey product’s ownership, please let us know.

Lahey/Fujitsu Fortran 95 User’s Guide

Installing Lahey/Fujitsu Fortran 95

Installing Lahey/Fujitsu Fortran 95

1. Insertthe LF95 CD into your CD drive to display the Lahey/Fujitsu Fortran 95 Setup
Menu.

2. Ifthe Setup Menu does not display, mtkinstall.exe wheredis the drive letter
of your CD drive.

3. ForWindows NT and Windows 2000 users, run the installation while logged into the
account which you will be using when running LF95. Administrator rights are
required for installation.

4. Select ‘Install Lahey/Fujitsu Fortran 95’ from the Setup Menu. You'll be prompted
to enter or verify your LF95 serial number. The serial number is required to install
LF95 and to receive technical support. You'll also be given the choice to run Online
Update as a post-installation option. This will update your product to the most recent
version of LF95 from Lahey's web site.

5. Reboot your systefor log out and log in if using Windows NT) -- this insures that
your system environment is properly configured. You are now ready to build your
first program.

Network Installation

Network Administrator: The network administrator role is to install the files on a network
server drive for use by users on the client systems. Running the installation with the com-
mand line arguments below will install the product files without creating icons (except the
Internet folder to access Online Update) and without updating the system for use of the
installed product components. It is required that you have purchased a site license from
Lahey Computer Systems, Inc. or that you run monitoring software that limits the number of
concurrent users of each tool in the distribution to the number of licenses purchased.

1. Enter this in the Start|Run option (do not run from the autoplay Setup Menu):
<d>:\Install32 netservefr main<n-m> ed4wx<n-e>]

with these substitutions (the network pathname is the drive and directory specification):

<d> = the CD drive containing the Lahey/Fujitsu Fortran 95 CD
<n-m> = the network pathname for the compiler installation
<n-e> = the network pathname for the Lahey ED Developer installation

Note: the command line arguments surrounded by brackets are optional.

Lahey/Fujitsu Fortran 95 User’'s Guide 3

Chapter 1 Getting Started

4

2. You will be prompted to accept the License Agreement, enter your registration informa-
tion, enter/verify your installation directories, and to select which components you wish to
install.

3. Itis recommended that you make a batch procedure to distribute to your client users con-
taining the command line shown below for the Network Client. Copy the file
INSTALL32.EXE to a network-accessible drive for the clients to run the installation.

4. If the online documentation component is installed, then itis recommended that the Adobe
Acrobat Reader install be made available for client users. This can be accomplished by copy-
ing the "ARCOENG.EXE" installation program (whepexxis the version number) from the
product CD to a network drive for the network users to run.

Network Client: Running the installation with the command line arguments below will install
only those product files needed to be resident on the local system. The system files will be
updated as necessary and icons will be updated as appropriate.
1. You must have the network drive mapped as a local drive letter (e.g., starting with
"N:"); do not specify a UNC style name (e.g., starting with "\"). This requirement is
for proper startup of Lahey ED Developer.
2. Enter this in Start|Run (do not run from the autoplay Setup Menu):

<n-i>\install32 netclienf main<n-m> ed4wx<n-e> local:<d-I>]

with these substitutions (the network pathname is the drive and directory specification):

<n-i> = the network pathname where INSTALL32.EXE is located

<n-m> = the network pathname where the network admin installed the compiler
<n-e> = the network pathname where the network admin installed Lahey ED
<d-I> = the local pathname if the default of C:\Lahey is not desired.

Note: the command line arguments surrounded by brackets are optional.

3. If "main:" is not on the command line, the client user will be prompted to accept the
License Agreement, enter the network location of the product, select desired shortcuts, and
to choose whether or not to have the installation program update the system environment
variables.

If "main:" is contained in the command line, the client user will not be prompted for any
information, and the defaults will be used.

Lahey/Fujitsu Fortran 95 User’s Guide

Maintenance Updates

Maintenance Updates

Mainenance updates are made available for free from Lahey's web site. They comprise bug
fixes or enhancements or both for this version of LF95.The update program applies "patches"
to your files to bring them up-to-date. The maintenance update version shows as a letter after
the version of your compiler. This is displayed in the first line of output when you run the
compiler.

To check Lahey's web site for the latest maintenance update for this version, click on Online
Update in the Lahey/Fujitsu Fortran 95 Internet folder in your Programs menu, and a program
will step you through it. Online Update will first perform a quick check and tell you whether
you are up-to-date or if an update is available. If you choose to install the update, the neces-
sary file patches will be downloaded and applied. You will need to be connected to the
Internet to perform the check and to download the files.

Another way to get the latest maintenance update for this version is by going to this web page:
http://www.lahey.com/patchfix.htm

There you will find update programs you can download, as well as release notes and bug fix
descriptions. Once you have downloaded an update program, you will no longer need an
Internet connection. This method is preferred over Online Update by those who need to
update LF95 on systems that are not connected to the Internet, or who want the ability to
revert to a previous maintenance version.

Building Your First LF95 Program

LF95 is commonly referred to as a “compiler,” but it is comprised of a linker, a librarian, and
several other components. For this reason it is more accurately referred to as the “LF95
driver.” Building and running a Fortran program with LF95 involves three basic steps:

1. Creating a source file using the Lahey ED development environment or a suitable
non-formatting text editor.

2. Generating an executable program using LF95. The LF95 driver automatioaily
pilesthe source file(s) anlinks the resulting object file(s) with the runtime library
and other libraries you specify.

3. Running the program.
The following paragraphs take you through steps two and three usimzE©.F90source

file included with LF95. For the sake of illustration, we will use the command line interface
to invoke LF95, even though it is a windows application.

Lahey/Fujitsu Fortran 95 User’'s Guide 5

Chapter 1 Getting Started

Generating the Executable Program

Compiling a source file into an object file and linking that object file with routines from the
runtime library is accomplished using thE95.EXE driver program.

Open a system command prompt by selecting Start|Programs|Lahey-Fujitsu Fortran 95
v5.6|Command Prompt. From the command prompt, build the demo program by changing
to the directory wher®EMO.F90in LF95’s EXAMPLESirectory by default, and entering

LF95 demo

This causes the compiler to read the sourceif®0.F90(the extensior90 is assumed by
default) and compile it into the object filBEMO.OBJ OnceDEMO.OBJis created| F95

invokes the linker to combine necessary routines from the runtime library and produce the
executable progranQEMO.EXE

Running the Program

To run the program, type its name at the command prompt:

demo

and pres&nter . TheDEMQrogram begins and a screen similar to the following screen
displays:

You've successfully built and run the Lahey demonstration program.

6 Lahey/Fujitsu Fortran 95 User’s Guide

Building Your First WiSK Program

Building Your First W /SK Program

LF95 comes bundled with a graphics library called WiSK (thie¥tacterStarter Kit) which

is derived from the full ihteracterlibrary created by Interactive Software Services, Ltd.
Winteracteris a Win32 and Fortran 90 dedicated user-interface and graphics development
tool that allows Fortran programmers to incorporate dialogs, menus, presentation graphics,
and other windows features into their applications. Building and running an LF95 Windows
program with WSK is accomplished as follows:

1. Create a user interface using the DialogEd and MenuEd design tools (fully docu-
mented in th&VinteracterStarter Kit Manual). These tools will generate a Windows
resource (c) file.

2. Create a Fortran source file using the Lahey ED for Windows editor or any other
ASCII text editor. Parameters defined in the resource file and used in the Fortran
source must be declared in the Fortran source as well (s¥¢itheracterStarter Kit
Manual for a detailed explanation).

3. Generate an executable program using the LF95 driver. Specifwitie switch
and include your Fortran source(s) and resource file on the command line.

4. Run the program.

The following paragraphs take you through steps three and four usingi8«DEM@xam-
ple included with LF95.

Generating the Executable Program

To create the executable program, first locate theVilBKDEMO.F90in the EXAMPLES
directory, then enter

LF95 wiskdemo.F90 resource.rc -wisk

WISKDEMO.OBANARESOURCE.RE@re created.F95.EXE then automatically links in the
appropriate libraries to produce a 32-bit Windows executable progta8KDEMO.EXE

Now that you have mastered the command line, you are ready to try building programs from

within the Lahey ED development environment. We recommend that you firstEetitthg
and Debugging with ED”on page 51.

Run the Program

To run the program, enter:

wiskdemo

Lahey/Fujitsu Fortran 95 User’'s Guide 7

Chapter 1 Getting Started

Alternately, click ED's OS Program: Run button. The program begins and a window similar
to the following displays:

t Lahey Winteracter Starter Kit Demo program [_ O] %]
Demos Info Help Quit

Lahey/winteracter Starter Kit

Lahey

Computer Systems, Inc.

Diemanstration Program
] Interactive Software Services Ltd
and Lahey Computer Systems Inc. 1995-97
Further information from Lahey
Tel: [702) 831 2500
Fax: [F02) 831 8723
emal : sales@lahey. com

You've successfully created theiBK demo program for Windows.

What's Next?

For a more complete description of the development process and instructions for using
Lahey/Fujitsu Fortran 95, please turn to Chapted@yeloping with LF95

Before continuing, however, please read the fite&ime.txt anderrata.txt . These
contain important last-minute information and changes to the documentation.

Other Sources of Information

Files
README.TXT last-minute information
README_API.TXT Windows API programming information
README_C.TXT C-interface documentation
README_ASSEMBLY.TXT assembly-interface documentation
README_WISK.TXT last-minute WSK information

8 Lahey/Fujitsu Fortran 95 User’s Guide

Other Sources of Information

README_COMPATIBLE.TXT compatible products directory
README_F90GL.TXT F90GL (Fortran bindings to OpenGL) information
README_F90SQL.TXT f90SQL-Lite information
README_SERVICE_ROUTINES.TXT POSIX and other service routines
FILELIST.TXT description of all files distributed with LF95

ERRATA.TXT changes that were made after the manuals went to press
LINKERR.TXT linker error messages

Manuals (supplied both on-line and in hard copy)

Lahey/Fujitsu Fortran 95 Language Reference
Winteracter Starter Kit

Manuals (supplied on-line only)

C Compiler User’s Guidéif selected at installation time)
SSL2 User’s Guide

SSL2 Extended Capabilities User’s Guide

SSL2 Extended Capabilities User’s Guide Il

Visual Analyzer User’'s Guide

Help Files

WiSK Help
fo0SQL-Lite Help

Newsletters

The Lahey Fortraisourcenewsletter

Lahey Web Page

http://www.lahey.com

Lahey/Fujitsu Fortran 95 User’'s Guide 9

Chapter 1 Getting Started

10 Lahey/Fujitsu Fortran 95 User’s Guide

Developing with LF95

This chapter describes how to use Lahey/Fujitsu Fortran 95. It presents an overview of the
development process and describes how to build Fortran applications using the LF95 driver.
The driver controls compilation, linking, and the production of executable programs and
dynamic link libraries (DLLS).

The Development Process

Developing applications with LF95 involves the following tools:

Editor. Use the Lahey ED development environment to create or modify Fortran source files.
The driver can be run from within the editor. Compiler error messages are automatically
keyed to lines of source code. ED also integrates debugging facilities for Windows applica-
tions. See Chapter Editing and Debugging with E[Jor instructions on using Lahey ED.

Library Manager. Use the library manager to create, change, and list the contents of object
libraries. See Chapter 6M Librarian, for instructions on how to use the library manager.

Automake. Use the Automake utility to automate program creation. This is especially useful
if your program consists of multiple files. See ChapteAdtomakefor instructions on how
to use Automake.

DebuggersFor Windows console and GUI applications use FDB or WinFDB to debug your
code (See Chapter €ommand-Line Debugging with FDihd Chapter 5yVindows Debug-
ging with WinFDB.

Driver. Use the driverl(F95.EXE) to control the creation of object files, libraries, execut-
able programs, and DLL&F95.EXE is often referred to as the compiler, bit it is actually a
driver that invokes the compiler, linker, and other components used to create executables,
libraries, and other products.

The remainder of this chapter focuses on the driver and the processes it controls.

Lahey/Fujitsu Fortran 95 User's Guide 11

Chapter 2 Developing with LF95

How the Driver Works

The driver (F95.EXE) controls the two main processes—compilation and linking—used to
create an executable program. Two supplemental processes, creating import libraries and
processing Windows resources, are sometimes used depending on whether you are creating
a DLL or a 32-bit Windows program. These processes are performed by the following pro-
grams under control of the driver:

Compiler. The compiler compiles source files into object files and creates files required for
using Fortran 90 modules and files needed by the linker for creating DLLs.

Library Manager . LM.EXE s the library manager. It can be invoked from the driver or from
the command prompt to create or change static libraries.

Linker. 386LINK.EXE is the linker. The linker combines object files and libraries into a sin-
gle executable program or dynamic link library. The linker also adds Windows resources,
like icons and cursors, into Windows executables.

Import library manager. Import library managers are provided with various 32-bit Win-
dows user interface tools. From definition files output by the compiler, an import library
manager creates import libraries for use with LF95 dynamic link libraries (DLLS).

Resource Compiler.RC.EXEis the resource compiler. It converts Windows resource files
(.RC files) to.RES files. .RES files are converted bRES20BJ.EXEinto object files.

Running LF95

To run the driver, typ&F95 followed by a list of one or more file names and optional com-
mand-line switches:

LF95filenames [switches]

The driver searches for the various tools (the compiler, library manager, linker, import library
manager, and resource compiler) first in the directory the driver is located and then, if not
found, on the DOS path. The command line switches are discussed later in this chapter.

Filenames

Depending on the extension(s) of the filename(s) specified, the driver will invoke the neces-
sary tools. The extensiof®5 ,.F90 ,.FOR, andF , for example, cause the compiler to be
invoked. The extensioi®BJ causes the linker to be invoked; the extenskRd causes the
resource compileRES20BJ and the linker to be invokedRES causefRES20BJand the

linker to be invoked.

Filenames containing spaces must be enclosed in quotes.

12 Lahey/Fujitsu Fortran 95 User’s Guide

Switches

Note: the extensionMODis reserved for compiler-generated module files. Do not use this
extension for your Fortran source files.

Source Filenames
One or more source filenames may be specified, either by name or using the DOS wildcards
* and?. Filenames must be separated by a space.

Example
LF95 *f90

If the filesONE.F90, TWO.F90, andTHREE.FORwere in the current director@NE.F90 and
TWO.F90would be compiled and linked together, and the stub-bound executable file,
ONE.EXE, would be created because the driver fo@nE.F90 beforeTWO.F90in the cur-

rent directory. THREE.FORwould not be compiled because its extension does not match the
extension specified on the LF95 command line.

Source filenames are specified as a complete file name or can be given without an extension,
in which case LF95 supplies the default extenska® . In the absence of a switch specify-
ing otherwise:

.F90 specifies interpretation as Fortran 90 free source form.
.FOR and.F specify interpretation as Fortran 90 fixed source form.

If files with both the.FOR or.F and.F90 appear on the same command line, then all are
assumed to use the source form the driver assumes for the last file specified.

The-fix and-nfix compiler switches can be used to control the assumed extension and
override the interpretation specified by the extension.“4BBFIX” on page 23

Object Filenames

The default name for an object file is the same as the source file name. If a path is specified
for the source filename, the same path will be used for the object file name. If no path is spec-
ified, the current directory will be used.

Output Filenames

The default name for the executable file or dynamic link library produced by the driver is
based on the first source or object name encountered on the command line. This may be over-
ridden by specifying theOUT switch with a new name. séeOUT filename” on page 29

The default extension for executable fileseXE. The default extension for dynamic link
libraries is.DLL .

Switches

The driver recognizes one or more letters preceded by a hyphas @ command-line
switch. You may not combine switches after a hyphen: for exarmplend-y may not be
entered asxy .

Lahey/Fujitsu Fortran 95 User’s Guide 13

Chapter 2 Developing with LF95

Some switches take arguments in the form of filenames, strings, letters, or numbers. You
must enter a space between the option and its argument(s).

Example

-i incdir
If an unknown switch is detected, the entire text from the beginning of the unknown switch
to the beginning of the next switch or end of the command line is passed to the linker.

Conflicts Between Switches

Command line switches are processed from leftto right. If conflicting switches are specified,
the last one specified takes precedence. For example, if the command line conRised

foo -g -ng , the-ng switch would be used.

To display the LF95 version number and a summary of valid command-line options, type
LF95 without any command-line switches or filenames.

Driver Configuration File (LF95.FIG)

In addition to specifying switches on the command line, you may specify a default set of
switches in the.F95.FIG file. When the driver is invoked, the switches in t€95.FIG

file are processed before those on the command line. Command-line switches override those
intheLF95.FIG file. The driver searches fafF95.FIG first in the current directory and

then, if not found, in the directory in which the driver is located.

Command Files

14

If you have too many switches and files to fit on the command line, you can place them in a
command file. Enter LF95 command line arguments in a command file in exactly the same
manner as on the command line. Command files may have as many lines as needed. Lines
beginning with an initiak are comments.

To process a command file, preface the name of the file wit@amaracter. When LF95
encounters a filename that begins w@hbn the command line, it opens the file and processes
the commands in it.

Example
LF95 @mycmds

In this example, LF95 reads its commands from therfilemds.

Command files may be used both with other command-line switches and other command
files. Multiple command files are processed left to right in the order they are encountered.

Lahey/Fujitsu Fortran 95 User’s Guide

Passing Information

Passing Information

The LF95 driver uses temporary files for sending information between the driver and pro-
cesses it controls. These files are automatically created using random names and are deleted

Return Codes from the Driver
When the LF95 driver receives a failure return code, it aborts the build process. The driver
will return an error code depending on the success of the invoked tools. These return codes
are listed below:

Table 1: Driver Return Codes

Code Condition
0 Successful compilation and link|
1 Compiler fatal error
2 Library Manager error
3 Linker error
4 Driver error
5 Help requested
8 RES20BJerror
9 Resource compiler error

Creating a Console-Mode Application

To create a Windows console-mode executable that will run on Windows 95, Windows 98,
or Windows NT, no switches need be specified.

Example
LF95 MYPROG.F90

Lahey/Fujitsu Fortran 95 User’s Guide 15

Chapter 2 Developing with LF95

Creating a Windows GUI application

To create a Windows GUI application, either with a third-party package (such as Winteracter,
GINO, or RealWin) or by calling the Windows API's directly, specify thén switch. To

call the Windows API’s directly, you must also specify th@ winapi switch (se€-ML

target” on page 28 antlCalling the Windows API” on page 48 for more information).

Example
LF95 MYPROG.F90 -win

Creating a W ISK Application

To create a 32-bit Windows program using routines from th8K\ibrary, specify the
-wisk switch along with the name of a resource file created with DialogEd and MenuEd.

Example
LF95 myprog.f90 myrc.rc -wisk

In this example, the source filYPROG.F9@ontains calls to the V8K library andMYRC.RC
contains resource definitions created by MenuEd and DialogEd. The following takes place:

1. MYPROG.F9Gs compiled to creat®YPROG.OBJ

2. MYRC.RAs compiled to creat®YRC.RES

3. MYRC.RESs processed by RES20BJ to cre&téRC.OBJ
4

. MYPROG.OBandMYRC.OBJare automatically linked with the LF95 runtime library
andWISK.LIB, to createMYPROG.EXEa 32-bit Windows executable.

Creating a 32-bit Windows DLL

To create a 32-bit Windows DLL, use thdll switch.

Example
LF95 myprog.fo0 -dil -win -ml msvc

In this example, the source fildYPROG.F90contains routines with DLL_EXPORT state-
ments. The following takes place:

1. MYPROG.F9Gs compiled to creat®YPROG.OBJ

2. MYPROG.OBIJs automatically linked with the LF95 runtime library to create
MYPROG.DLIandMYPROG.LIB the corresponding import library. Calling conven-
tions in this case are those expected by Microsoft Visual C/C++.

For more information on DLLs, s€&sing DLLsS” on page 38.

16 Lahey/Fujitsu Fortran 95 User’s Guide

Controlling Compilation

Controlling Compilation

During the compilation phase, the driver submits specified source files to the compiler for
compilation and optimization. If the , compile only, switch is specified, processing will
stop after the compiler runs and modules are created (if necessary:[[§€2 on page

19. Otherwise, processing continues with linking and possibly import library creation.

Errors in Compilation

If the compiler encounters errors or questionable code, you may receive any of the following
types of diagnostic messages (a letter precedes each message, indicating its severity):

U:Unrecoverable error messages indicate it is not practical to continue
compilation.

S:Seriouserror messages indicate the compilation will continue, but no object file
will be generated.

W:Warning messages indicate probable programming errors that are not serious
enough to prevent execution. Can be suppressed with the -nw or -swm switch.

I:Informational messages suggest possible areas forimprovement in your code and
give details of optimizations performed by the compiler. These are normally sup-
pressed, but can be seen by specifying the -info switch’¢(ReENFO” on page

25).

If no unrecoverable or serious errors are detected by the compiler, theeERRSRLEVEIs

set to zero (se&Return Codes from the Driver”on page 15). Unrecoverable or serious
errors detected by the compiler (improper syntax, for example) terminate the build process.
An object file is not created.

Compiler and Linker Switches

You can control compilation and linking by using any of the following option switches.

These switches are not case sensitive. Some switches apply only to the compilation phase,
others to the linking phase, and still others (-g, -win, and -wisk) to both phases; this is indi-
cated next to the name of the switch. If compilation and linking are performed separately (i.e.,
in separate command lines), then switches that apply to both phases must be included in each
command line.

Compiling and linking can be broken into separate steps using the -c switch. Unless the -c
switch is specified, the LF95 driver will attempt to link and create an executable after the
compilation phase completes. Specifying -c anywhere in the command line will cause the
link phase to be abandoned and all linker switches to be ignored.

Lahey/Fujitsu Fortran 95 User’s Guide 17

Chapter 2 Developing with LF95

18

Note also that linker switches may be abbreviated as indicated by the uppercase characters in
the switch name. For example, théBPath switch can be specified as eithébpath

or -libp. Some linker switches require a number as an argument. By default, all numbers
are assumed to be decimal numbers. A different radix can be specified by appending a radix
specifier to the number. The following table lists the bases and their radix specifiers:

Table 2: Radix Specifiers

Base Radix Specifier Example of 32 in base
2 Borb 10000b
8 Qorq 40q
10 none 32
16 Horh 20h

The underscore character f can be used in numbers to make them more readable:
80000000h is the same a8000_0000h .

-[NJAP
Arithmetic Precision
Compile only. Default: -nap

Specify -ap to guarantee the consistency of REAL and COMPLEX calculations, regardless
of optimization level; user variables are not assigned to registers. Consider the following
example:

Example
X=S-T
2Y=X-U
3Y=X-U

By default (-nap), during compilation of statement 2, the compiler recognizes the value X is
already in a register and does not cause the value to be reloaded from memory. At statement
3, the value X may or may not already be in a register, and so the value may or may not be
reloaded accordingly. Because the precision of the datum is greater in a register than in mem-
ory, a difference in precision at statements 2 and 3 may occur.

Specify -ap to choose the memory reference for non-INTEGER operands; that is, registers
are reloaded. -ap must be specified when testing for the equality of randomly-generated
values.

The default, -nap, allows the compiler to take advantage of the current values in registers,
with possibly greater accuracy in low-order bits.

Specifying -ap will usually generate slower executables.

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

-INO]BANNER
Linker Banner

Link only. Default: -banner

-banner displays a 386|LINK copyright message with the 386|LINK version and serial
number. -nobanner suppresses the 386|LINK copyright message.

-BLOCK blocksize
Default blocksize

Compile only. Default: 8192 bytes

Specify-block to default to a specific blocksize on OPEN statements. BkeKsiz&in

the LF95 Language Referendalocksizenust be a decimal INTEGER constant. Specifying
an optimalblocksizecan make an enormous improvement in the speed of your executable.
The progranTRYBLOCK.F90in the SRCdirectory demonstrates how changing blocksize can
affect execution speed. Some experimentation tlilkksizeén your program is usually nec-
essary to determine the optimal value.

-[N]C

Suppress Linking

Compile only. Default:-nc

Specify-c to create object©BJ), and, if necessary, moduleMOD) files without creating

an executable. This is especially useful in makefiles (degomake” on page 101), where
it is not always desirable to perform the entire build process with one invocation of the driver.

-[IN]JCHK

Checking

Compile only. Default:-nchk

Specify-chk to generate a fatal runtime error message when substring and array subscripts
are out of range, when non-common variables are accessed before they are initialized, when

array expression shapes do not match, and when procedure arguments do not match in type,
attributes, size, or shape.

Syntax
-[n]ehk [([all.e]l.sIl.ull.xD]

Lahey/Fujitsu Fortran 95 User’s Guide 19

Chapter 2 Developing with LF95

20

Note: Commas are optional, but are recommended for readability.

Table 3: -chk Arguments

Diagnostic Checking Class Switch Argument
Arguments a
Array Expression Shape e
Subscripts S
Undefined variables u
Increased (extra) X
Specifying-chk with no arguments is equivalent to specifyietk (a,e,s,u) . Specify

-chk with any combination o, e, s, u andx to activate the specified diagnostic checking
class.

Specification of the argument x must be used for compilation of all files of the program, or
incorrect results may occur. Do not use with 3rd party compiled modules, objects, or librar-
ies. Specifically, the argument must be used to compile all USEd modules and to compile
program units which set values within COMMONSs. Specifying the argumevitl force
undefined variables checking)(and will increase the level of checking performed by any
other specified arguments.

Specifying-chk adds to the size of a program and causes it to run more slowly, sometimes
as much as an order of magnitude. It foreesce and removes optimization by forcing
-00 .

Example
LF95 myprog -chk (a,x)

instructs the compiler to activate increased runtime argument checking and increased unde-
fined variables checking.

The -chk switch will not check bounds in the following conditions:

* The referenced expression has the POINTER attribute or is a structure one or more
of whose structure components has the POINTER attribute.

* The referenced expression is an assumed-shape array.

» The referenced expression is an array section with vector subscript.

» The referenced variable is a dummy argument corresponding to an actual argument
that is an array section.

» The referenced expression is in a masked array assignment.

» The referenced expression is in a FORALL statements and constructs.

* The referenced expression has the PARAMETER attribute.

« The parent string is a scalar constant.

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

-INJCHKGLOBAL
Global Checking
Compile only. Default:nchkglobal

Specify-chkglobal to generate compiler error messages for inter-program-unit diagnos-
tics, and to perform full compile-time and runtime checking.

The global checking will only be performed on the source which is compiled within one invo-
cation of the compiler (the command line). For example, the checking will not occur on a
USEd module which is not compiled at the same time as the source containing the USE state-
ment, nor will the checking occur on object files or libraries specified on the command line.

Because specifyinghkglobal ~ forces-chk (x) , specification ofchkglobal — must be

used for compilation of all files of the program, or incorrect results may occur. Do not use
with 3rd-party-compiled modules, objects, or libraries. See the description of -chk for more
information.

Global checking diagnostics will not be published in the listing file. Specifythiglobal

adds to the size of a program and causes it to run more slowly, sometimes as much as an order
of magnitude. It forceschk (a,e,s,u,x) , -trace , and removes optimization by forcing

-00 .

-[N]JCO
Compiler Options
Compileandlink. Default: -co

Specify-co to display current settings of compiler options; speeifyo to suppress them.

-[INJCOVER
Coverage Information
Compileandlink. Default: -ncover

Specify-cover to generate information for use by the coverage tool (see Chapiée9,
Coverage Togl This switch is required to run the coverage tool if a separate link is
performed.

-[N]DAL
Deallocate Allocatables
Compile only. Default:-dal

Specify-dal to deallocate allocated arrays that do not appear in DEALLOCATE or SAVE
statements when a RETURN, STOP, or END statement is encountered in the program unit
containing the allocatable array. Note thatal will suppress automatic deallocation, even

for Fortran 95 files (automatic deallocation is standard behavior in Fortran 95).

-[N]DBL

Double
Compile only. Default:-ndbl

Lahey/Fujitsu Fortran 95 User’s Guide 21

Chapter 2 Developing with LF95

Specify-dbl to extend all single-precision REAL and single-precision COMPLEX vari-
ables, arrays, constants, and functions to REAL (KIND=8) and COMPLEX (KIND=8)
respectively. If you usedbl , all source files (including modules) in a program should be
compiled with-dbl . Specifying-dbl will usually result in somewhat slower executables.

-[N]JDLL
Dynamic Link Library
Link only. Default: -ndll

Specify-dll ,-ml , and-win to create a 32-bit Windows dynamic link library (for more
information, seéUsing DLLs” on page 38).

-[N]JFO0SQL
Use f90SQL Lite
Compile and link. Default:nfo0sq|

Specify-fo0sgl to create an application using fO0SQL Lite.
-[N]F95

Fortran 95 Conformance
Compile only. Default:-nf95

Specify-f95 to generate warnings when the compiler encounters non-standard Fortran 95
code.

Note thatnfd5 allows any intrinsic data type to be equivalenced to any other.

-FILE filename
Filename
Compileandlink. Default: not present

Precede the name of a file withle to ensure the driver will interpret the filename as the
name of a file and not an argument to a switch.

Example
On the following command lingyill.fo0 is correctly interpreted as a source file:

LF95 -checksum -file hill.fo0

On this next command linéijll.fo0 is not recognized as a source file. The driver passes
the unrecognized switchghecksum |, to the linker and assumes the following string,
“billfo0 7, is an argument to thechecksum switch.

LF95 -checksum bill.fo0

On this last command linefile is not necessary. The order of driver arguments allows
unambiguous interpretation:

LF95 bill.f90 -checksum

22 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

-[NJFIX
Fixed Source Form
Compile only. Default:-nfix for.f90 and.fo5 files;-fix for.for or.f files

Specify-fix toinstructthe compiler to interpret source files as Fortran 90 fixed source form.
-nfix instructs the compiler to interpret source files as Fortran 90 free source form.

Example
LF95 @bob.rsp bill.fo0

If the command fileBOB.RSPcontainsfix , BILL.F90 will be interpreted as fixed source
form even though it has the free source form extensfon .

LF95 assumes a default file extensionfob . Specifying-fix causes LF95 to assume a
default file extension offor

All source files compiled at the same time must be fixed or free. LF95 doesn’t compile files
(includingINCLUDEfiles) containing both fixed and free source form.

-INIG
Debug
Compileandlink. Default: -ng

Specify-g to instruct the compiler to generate an expanded symbol table and other informa-
tion for the debugger-g automatically overrides any optimization switch and foras,

no optimizations, so your executable will run more slowly than if one of the higher optimi-
zation levels were usedg is required to use the debugger. Supplemental debug information
is stored in a file having the same name as the executable file with extension .YDG. If the
following error message appears during linking

fwdmerg:[error] Terminated abnormally. (signal 11)

It means that the .YDG file was not created (contact Technical Support if this happens).

This switch is required to debug if a separate link is performed.

-| path
Include Path
Compile only. Default: current directory

Specify-i pathto instruct the compiler to search the specified path(s) for FomwahUDE
files after searching the current directory. Separate multiple search paths with a semicolon,
no spaces.

Example
LF95 demo -i ..\project2\includes;..\project3\includes

In this example, the compiler first searches the current directory, then searches
.\project2\includes and finally ..\project3\includes for INCLUDEfiles speci-
fied in the source fil®OEMO.F90

Lahey/Fujitsu Fortran 95 User’s Guide 23

Chapter 2 Developing with LF95

24

-IMPLIB
Specify DLL Library
Link only. Default: not specified.

The-implib switch specifies the name of the dynamic link library from which a program
has called functions listed in one or more subsequmipbrt switches. The library speci-
fied in the-implib switch is valid for all modules specified in any number of subsequent
import switches, until the specification of anothénplib switch.

Syntax
-IMPLIB libname

wherelibnameis the name and path of the DLL library from which to import functions using
subsequerimport statements.

Example
LF95 main -implib mydll -import myfuncl,myfunc2
LF95 main -implib A -import Al -implib B -import B1,B2,B3

-IMPORT
Import a DLL Function
Link only. Default: not specified.

Syntax
-IMPORT dllname.funcname

or
-IMPORT anyfunc=dllname.funchame

wheredllnameis the DLL library from which to import the functioriuncnames the name

of the function being imported, arahyfuncis an alias for the name of the actual function
(the alias is useful for handling differences in naming conventions). The name of the DLL
library can be omitted if it was specified previously with theplib switch.

Example
LF95 main -import mathlib.getnum mathlib.tan
LF95 main -import _getnum@212=mathlib.gethum
LF95 main -implib mathlib -import _getnum@212=getnum

-[N]IN
Implicit None
Compile only. Default:-nin

Specifying-in is equivalent to including an IMPLICIT NONE statement in each program
unit of your source file: no implicit typing is in effect over the source file.

When-nin is specified, standard implicit typing rules are in effect.

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

-[NJINFO
Display Informational Messages
Compile only. Default:-ninfo

Specify-info to display informational messages at compile time. Informational messages
include such things as the level of loop unrolling performed, variables declared but never
used, divisions changed to multiplication by reciprocal, etc.

-/NJLI
Lahey Intrinsic Procedures
Compile and link. Default:-li

Specify-nli to avoid recognizing non-standard Lahey intrinsic procedures.

-Lib filename
Library
Link only. Default: none

The-Lib switch specifies one or more library files. The names of the library files immedi-
ately follow the switch, separated by either spaces or commas. If no filename extension is
specified for a library file, the linker assumes the extensias, .

The-Lib switch may be used multiple times in a single linker command string. The linker
builds a list of the library files and processes them in the order they were specified on the
command line.

To create and maintain libraries of commonly-used functions, use the LM library manager.
See Chapter @,M Librarian.

Syntax
-Lib lib1[,lib2 ...]

libl andlib2 are one or more library files.
Example

LF95 hello.obj -lib mylib

-LIBPath path
Library Path
Link only. Default: current directory.

The-LIBPath switch allows specification of one or more directories to be searched for
libraries. Note that all necessary library files must still be called out in the command line.

Syntax
-LIBPath dirl[,dir2 ...]

dirl anddir2 are one or more directories to be searched.

Lahey/Fujitsu Fortran 95 User’s Guide 25

Chapter 2 Developing with LF95

26

Example
LF95 main.obj -libpath d:\mylibs -lib mine.lib -pack
LF95 main.obj -libp d:\mylibs,e:\yourlibs -lib mine,yours

Directory names specified ferIBPath must not end with a\
affix the directory delimiter to the file name being sought.

delimiter. The linker will

-[NJLONG
Long Integers
Compile only. Default:-nlong

Specify-long to extend all default INTEGER variables, arrays, constants, and functions to
INTEGER (KIND=8). If you uselong , all source files (including modules) in a program
should be compiled witHong .

-[NILST
Listing
Compile only. Default:-nlst

Specify-Ist to generate a listing file that contains the source program, compiler options,
date and time of compilation, and any compiler diagnostics. The compiler outputs one listing
file for each source file specified. By default, listing file names consist of the root of the
source file name plus the extensidsi

Syntax
-[n]ist [(spec=sval[, spec = sval] .).]

Where:
specisf for the listing file name, or to include INCLUDE files.

Forf =sval the listing file namesvalspecifies the listing file name to use instead of the
default. If a file with this name already exists, it is overwritten. If the file can't be overwrit-
ten, the compiler aborts. If the user specifies a listing file name and more than one source
file (possibly using wild cards) then the driver diagnoses the error and aborts.

Fori =sval svalis one of the characters of the seyn], whereY andy indicate that include
files should be included in the listing antindn indicate that they should not. By default,
include files are not included in the listing.

Example

LF95 myprog -Ist (i=y)
creates the listing filenyprog.Ist , which lists primary and included source. Note that
-xref overrideslst

See also
-[N]XREF

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

-[NO]Map filename
Map File
Link only. Default: -map

The linker map file is a text file describing the output load image. The map file contains the
following information:

» command switches specified when the program was linked,
» names of the input object files,

» alist of the segments comprising the program, and

» alist of the public symbols in the program.

By default, the linker produces a map file each time a program is linked. The default name
of the map file is the name of the output file, with its extension changedA®. Any path
information specifying a directory where the output file is to be placed also applies to the map
file.

The-Map switch renames or relocates the map file. The switch takes a single argument,
which is the path and name of the map file to be produced. If no file name extension is spec-
ified, then a default ofMAP is assumed. If no path information is specified in the map file
name, then it is placed in the current directory.

The linker can be prevented from producing a map file with-8@Mapswitch. The switch

takes no arguments. ThgOMapswitch is useful to make the linker run faster, since no time

is spent writing the map file. The switch is also a good way to save disk space, because map
files can become quite large.

Syntax
-Map filename

Example
LF95 moe.obj larry.obj curly.obj -m stooges
LF95 hello.obj -nom

-MAPNames nchars
Mapfile Name Length
Link only. Default: -mapnames 12

The-MAPNamesswitch controls the length of global symbol names displayed in the map file.

By default, segment, group, class, module, and public symbol names are truncated to 12 char-
acters in the map file. The switch takes a numeric constant argument which increases the
length of global symbols in the map file to the specified number of characters.

Increasing the symbol name length may cause the default maximum line width of 80 charac-
ters to be exceeded. If this occurs, the linker prints less information about segments and
public symbols. This loss of information can be prevented by usingMA@Wwidth switch.

Syntax
-MAPNames nchars

Lahey/Fujitsu Fortran 95 User’s Guide 27

Chapter 2 Developing with LF95

28

ncharsis the length of global symbols in the map file, expressed as number of characters.

Example
LF95 hello.obj -mapn 30

-MAPWidth nchars
Mapfile Line Width
Link only. Default: -mapwidth 80

The-MAPWidth switch controls the maximum line width in the program map file. The
switch takes a numeric constant argument which is the new maximum width for lines in the
map file.

Syntax
-MAPWidth nchars

ncharsis the maximum line width in the map file, expressed as number of characters.

Example
LF95 hello.obj -mapn 30 -mapw 120

-INIMAXFATALS number
Maximum Number of Fatal Errors
Compile only. Default:-maxfatals 50

Specify-maxfatals to limit the number of fatal errors LF95 will generate before aborting.

-ML target
Mixed Language
Compile only. Default:-ml 1f95

Specify theml switch if your code calls or is called by code written in another language or
if your code will call routines in DLLs created by LF95mI affects name mangling for rou-
tine names in DLL_IMPORT, DLL_EXPORT, and ML_EXTERNAL statements. See
"Mixed Language Programming’on page 38 for more information.

Syntax
-ML target

Where:

targetis bc for Borland C++;bd for Borland Delphi; msvb for Microsoft Visual Basic;
msvc for Microsoft Visual C++; fc for Fujitsu C;LF95 for LF95; LF90 for LF90; and
winapi for accessing the Windows API directly.

-MLDEFAULT target

Mixed Language Default
Compile only. Default:-mldefault

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

Specify the -mldefault switch to set the default target language name decoration/calling con-
vention for all program unitsmlidefault ~ affects name mangling for routine names in
DLL_IMPORT, DLL_EXPORT, and ML_EXTERNAL statements.

Syntax
-MLDEFAULT target

Where:

targetis bc for Borland C++;bd for Borland Delphi; msvb for Microsoft Visual Basic;
msvc for Microsoft Visual C++; fc for Fujitsu C; LF95 for LF95; LF90 for LF90; and
winapi for accessing the Windows API directly.

-MOD path
Module Path
Compile only. Default: current directory

Specify-mod pathto instruct the compiler to search the specified directory for LF95 module
files (MOD). New module and module object files will be placed in the first directory spec-
ified by path Note that any modulebjectfiles needed from previous compilations must be
added to the LF95 command line.

Example
LF95 modprog mod.obj othermod.obj -mod ..\mods;..\othermods

In this example, the compiler first searchasiods and then searchesothermods
Any module and module object files produced framadprog.f90 are placed in.\mods

-O0 and -O1
Optimization Level
Compile only. Default:-o1

Specify-00 to perform no optimization-o0 is automatically turned on when thg option
or the-chk option is specified. se€e[N]G” on page 23

Specify-o1 to perform full optimization.

-0 filename
Object Filename
Compile only. Default: name of the source file with the extens@BJ

Specify-o nameto override the default object file name. The compiler produces an object
file with the specified name. If multiple source file names are specified explicitly or by wild-
cards,-0 causes the driver to report a fatal error..

-OUT filename

Output Filename

Link only. Default: the name of the first object or source file, with tB®E or .DLL exten-
sion. The output file is not automatically placed in the current directory. By default itis
placed in the same directory as the first object file listed on the command line.

Lahey/Fujitsu Fortran 95 User’s Guide 29

Chapter 2 Developing with LF95

30

This switch takes a single argument, which is the path and name of the output file. If the file
extensionEXE is specified, an executable file will be created. If the file extendin is
specified, a dynamic-link library will be created. If the file extensioi® is specified, a

static library will be created. If no extension is specifidXE is assumed with -ndIlpLL

is assumed withdll . Ifthe-dll switch is specified,DLL is assumed. If no path informa-
tion is specified with the file name, then the output file is placed in the current directory.

Example
LF95 hello.obj -out d:\LF95\hello.exe
LF95 main.obj -out maintest

-INJPAUSE
Pause After Program Completion
Compile only. Default:-npause

Specifying-pause will cause the executable program to wait for a keystroke from the user
at program completion, before returning to the operating system. This switch can be used to
keep the console window from vanishing at program completion, thereby allowing the user
to view the final console output. A console window will vanish at program completion if the
program is invoked from Windows Explorer or the Start menu, or if the console is generated
by a Windows GUI application.

See also
-WIN or -WINCONSOLE

-[N]JPCA
Protect Constant Arguments
Compile only. Default:-npca

Specify-pca to prevent invoked subprograms from storing into constants.

Example
call sub(5)
print *, 5
end
subroutine sub(i)
i=i+1
end
This example would print 5 using -pca and 6 using -npca.

-[N]JPRIVATE
Default Module Accessibility
Compile only. Default:-nprivate

Specify-private to change the default accessiblity of module entities from PUBLIC to
PRIVATE (see“PUBLIC” and “PRIVATE” statements in the Language Reference).

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

-PUBLIst option
Map File Symbol Sort Order
Link only. Default: -publist byname

The-PUBLIst switch controls the ordering of the list of public symbols in the map file. The
-PUBLIst switch has options to control the ordering of public symbols. They are:

Table 4: -PUBLIst Options

Sort the list of public symbols which make up the program alphabetical
This is the default operation of the linker.

BYNAME Y-

Sort the list of public symbols in the program by value. This option is use-
BYVALUE | ful when using the map file to find out what routine or variable resides at a
particular memory location.

Produce two listings of the public symbols: one sorted alphabetically and

BOTH one sorted by value.
Cause the linker not to list the public symbols which make up the progfam
NONE . Lo . . .
at all. This option is useful for reducing the size of the map file.
Syntax

-PUBList BYNAME
-PUBLIist BYVALUE
-PUBLIist BOTH
-PUBList NONE

Example
LF95 hello.obj -publ byvalue

-INJQUAD
Quad Precision
Compile only. Default:-nquad

Specify-quad to extend all double-precision REAL and double-precision COMPLEX vari-
ables, arrays, constants, and functions to REAL (KIND=16) and COMPLEX (KIND=16)
respectively. If you usequad , all source files (including modules) in a program should be
compiled with-quad . Specifying-quad will usually result in significantly slower execut-
ables. All exceptions will be trapped by default. This behavior can be overridden using the
NDPEXC routine or the ERRSET service routine (see the file SERVICE.TXT).

-[N]SAV

SAVE Local Variables
Compile only. Default:-nsav

Lahey/Fujitsu Fortran 95 User’s Guide 31

Chapter 2 Developing with LF95

32

Specify-sav to allocate local variables in a compiler-generated SAVE aresav allo-
cates variables on the staclksav is equivalent to having a SAVE statement in each
subprogram except thatav does not apply to local variables in a recursive function
whereas the SAVE statement does. Specify#ag will cause your executable to run more
slowly, especially if you have many routines. Specifyingav may sometimes require
more than the default stack (s&8tack” on page 32).

-[N]STATICLINK
Static Link
Compileandlink. Default: -nstaticlink

Specify staticlink with -win and-ml to link statically with code produced by another
supported language system. Sktxed Language Programming”on page 38 for more
information.

-Stack
Stack Size
Link only. Default:100000h bytes (link only)

The-Stack switch specifies the size of the stack area for a program. The switch must be
followed by a numeric constant that specifies the number of bytes to be allocated to the stack.

If a stack segment is already present in the program, theisthek switch changes the size
of the existing segment. The linker, however, will only increase the size of the existing stack
area. If an attempt is made to decrease the size of the stack area, the linker issues an error.

If your program runs out of stack at runtime, increase the stack size-8tibk . Stack
requirements are noted in the listing file (Se@N]JLST” on page 26) Note that some recur-
sive procedures and files with large arrays compiled witlav can use very large amounts
of stack.

Syntax

-Stack nbytes
Example

LF95 hello.obj -s 200000
-[N]STCHK

Stack Overflow Check
Compile only. Default:-stchk

Specify-nstchk to cause the compiler not to generate code for stack overflow checking.
Though your program may execute faster, the stack is not protected from growing too large
and corrupting data.

-[N]SWM msgs
Suppress Warning Message(s)
Compile only. Default:nswm

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

To suppress a particular error message, specify its numbersftar

Example
-swm 16,32

This example would suppress warning messages 16 and 32. To suppress all warnings, use
-nw.

-T4, -TP, and -TPP
Target Processor
Compile only. Default: set on installation

Specify-t4 to generate code optimized for the Intel 80386 or 80486 processor.

Specify-tp to generate code optimized for the Intel Pentium or Pentium MMX processors,
or their generic counterparts.

Specify-tpp to generate code optimized for the Intel Pentium Pro, Pentium I, Pentium lIl,
or Celeron processors, or their generic counterparts. Please note: code generated with
is notcompatible with processors made earlier than the Pentium Pro.

-IN]ITRACE
Location and Call Traceback for Runtime Errors
Compile only. Default:-trace

The-trace switch causes a call traceback with routine names and line numbers to be gen-
erated with runtime error messages. Wittrace no line numbers are generated, and the
Sampler tool cannot be used (the Sampler tool requires line number information -- see Chap-
ter 8, The Sampler Todl

-[N]TRAP exceptions
Trap NDP Exceptions
Compile only. Default:-ntrap

The-trap switch specifies how each of four numeric data processor (NDP) exceptions will
be handled at execution time of your program.

Table 5: NDP Exceptions

NDP Exception Switch Argument

Divide-by-Zero d

Invalid Operation i

Overflow o

Underflow u

Lahey/Fujitsu Fortran 95 User’s Guide 33

Chapter 2 Developing with LF95

34

Specify-trap with any combination ofd, i , o, andu to instruct the NDP chip to generate

an interrupt when it detects the specified exception(s) and generate an error message. Note
that trapping cannot be disabled whenad is specified, except by using the NDPEXC

routine or the ERRSET service routine (see the file SERVICE.TXT)

Syntax
-TRAP [d][i][o][u]
Where:
the d, i, 0, and u arguments can be used in any combination, as exlained above.

-TwoCase and -OneCase
Linker Case Sensitivity
Link only. Default: -onecase

For-OneCase , the linker ignores the case of public symbols that make up the program being
linked. For example, the symbadsc, ABGC andaBc are equivalent in the linker.

The-TwoCase switch enables case-sensitive processing of user-defined symbols. When this
switch is used, upper- and lower-case versions of the same symbol are considered to be dif-
ferent. -win forces-TwoCase .

-OneCase enforces default behavior.

Example
LF95 hello.obj -lib \LF95\graph90 -tc

-INJVSW
Very Simple Windows
Compileandlink. Default: -nvsw

The-vsw switch creates a simple console-like Windows GUI application. The window is
scrollable.

-IN]JW
Warn
Compile only. Default:-w

Specify-w to generate compile warning and informational messages.

-INOJWARN and -FULLWARN
Warning Detail
Link only. Default: -warn

The linker detects some conditions that can potentially cause run-time problems but are not
necessarily errors. Warning messages for these conditions can optionally be generated on the
display and in the map file. The linker supports three warning lev®8RN -FULLWARN
and-NOWARN

-WARNenables basic linker warning messages.

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Switches

-FULLWARNenables additional warning messages for the following conditions:

« Multiple initializations of common blocks with different values. The last object
module processed is the one that supplies initial values to the output file.

» Pieces of a single segment from different object modules having different segment
attributes.

* Inconsistent segment grouping in different object modules.

-NOWARNMlisables all linker warning messages.

Example
LF95 hello.obj -warn

-WIN or -WINCONSOLE
Windows
Compileandlink. Default: -winconsole

Specify-win or -winconsole to create a 32-bit Windows application. Specifyimgn-

console will create an application for Windows console mode. Viewing of console output
may require thatpause also be specified in some cases. Under Windows 9x-viime

switch can only be used for GUI applications, not console-mode applicationsajusen-

sole for console-mode applications). Thein switch requires a WinMain.You can
accomplish this by one of the following methods: 1) Use the built-in WinMain in LF95 which
will call your LF95 main program; 2) Set up your own WinMain using calls to the Windows
API; 3) Build your user interface in another language where the WinMain is set up in that
other language (often without the user knowing it, as in Visual Basic and Delphi); 4) Some
library packages such as Winteracter and RealWin include a WinMain.

-winconsole will put a Windows console (DOS box) on the screen if the program is
invoked from Windows explorer or the Start menu. If the program is invoked from the com-
mand line of an existing console window, then all console 1/0 will be performed within that
window. In other words, awinconsole program has the “look and feel” of a DOS program
running in a DOS box. This is your best choice if you need to see program results after a pro-
gram run. Note that the console will disappear after program completion if the program is
invoked from Windows explorer or the Start menu.

Console output withwin is allowed if your program is running on Windows NT. If your
program reads from or writes to standard output, a console will be created but the console
will immediately disappear after your program runs to completion.

See also
-[N]JPAUSE

-[NJWISK
Winteracter Starter Kit
Compile and link. Default:-nwisk (compile and link)

Lahey/Fujitsu Fortran 95 User’s Guide 35

Chapter 2 Developing with LF95

36

Specify-wisk to create an application using tiéinteracterStarter Kit (WSK, see thaVin-
teracterStarter Kit Manual). Note that a resource file name must be given on the command
line whenever specifyingvisk . See theNinteracterStarter Kit manual for more

information.

-INJ]WO
Warn Obsolescent
Compile only. Default:-nwo

Specify-wo to generate warning messages when the compiler encounters obsolescent For-
tran 90 features.

-[IN]IXREF
Cross-Reference Listing
Compile only. Default:-nxref

Specify-xref to generate cross-reference information in the listing file. By default, cross
reference file names consist of the root of the source file name plus the extésision

Syntax
-[n]xref [(speesvall, specsvall..)]

Where:
specisf for the listing file name, or to include INCLUDE files.

Forf =sval the cross reference listing file nanswalspecifies the cross reference listing file
name to use instead of the default. If a file with this name already exists, it is overwritten. If
the file can't be overwritten, the compiler aborts.

Fori =sval svalis one of the characters of the §&yNn], whereY andy indicate that include
files should be included in the listing amteindn indicate that they should not. By default,
include files are not included in the listing.

Example
LF95 myprog -Ist -xref(i=y)

creates the cross reference filgprog.Ist and outputs cross reference information for the
source file.

See also
-[N]LST

-[N]ZERO
Initialize Variables to Zero
Compile only. Default:-zero

Specifying-zero will cause all variables and data areas to be initialized to zero at program
load time, if they are not already initialized by your Fortran code.

Lahey/Fujitsu Fortran 95 User’s Guide

Linking Rules

Linking Rules

During this phase, the driver submits object files, object file libraries, and compiled resource
files (Windows only) to the linker for creation of the executable or dynamic link library.

Fortran 90 Modules

If your program uses Fortran 90 modules that have already been compiled, you must add the
module object filenames to the LF95 command line.

Searching Rules

The linker reads individual object files and object module libraries, resolves references to
external symbols, and writes out a single executable file or dynamic link library. The linker
can also create a map file containing information about the segments and public symbols in
the program.

If an object module or library was specified on the command line and contains path informa-
tion, then it must reside at the location specified. If the path was not specified, the linker
looks for the files in the following order:

1. inthe current working directory

2. inany directories specified by thelBPath switch included in th&86LINK envi-
ronment variable.

3. inany directories specified with theiBPath switch (note thaiLIBPath searches
for library files only, not object modules).

Object File Processing Rules

Object modules specified as individual object files are processed in the order in which they
appear on the command line.

Library Searching Rules

The order in which object modules from libraries are processed is not always obvious. The
linker applies the following rules when searching object libraries:

1. Any libraries specified using theib switch are searched in the order in which they
appear in the LF95 command string before the LF95 runtime library. The compiler
writes the LF95 default library names into each object file it generates.

2. Each library is searched until all possible external references, including backward
references within the library, are resolved.

3. If necessary, the linker recursively scans the list of libraries until all external refer-
ences are resolved.

Lahey/Fujitsu Fortran 95 User’s Guide 37

Chapter 2 Developing with LF95

This algorithm is particularly important when two different object modules in two different
libraries each have a public symbol with the same name. If both object modules are linked,
the linker signals a duplicate symbol error because they both have public symbols which are
referenced elsewhere in the program. However, if the only symbol referenced in both object
modules is the duplicate symbol, then only the first object module encountered is linked and
no error message is generated. In this latter case, the object module which actually gets
linked is determined by applying the rules listed above.

Mixed Language Programming

LF95 code can call and be called by code written in certain other languages. This can be done
via dynamic linking (DLLs) or static linking.

Using DLLs

38

A Dynamic Link Library (DLL) is a collection of procedures packaged together as an exe-
cutable file, not a library file. Even though it is in the form of an executable, a DLL cannot
run on its own. The functions and subroutines in a DLL are called froexa file that con-
tains a main program. Note that issuing a STOP statement from within a Fortran DLL will
cause the entire program to terminate.

With LF95 you can create 32-bit DLLs for use with the language systems in the table below.

Console I/O in the Fortran code is hot recommended in Windows GUI applications, but just
about everything else that is supported under Windows will work. Calls can be made from

Fortran to Fortran, from Fortran to another language, and from another language to Fortran.
If you are calling DLL routines from a language system other than LF95, please refer to that
language system’s DLL documentation for more information.

Lahey/Fujitsu Fortran 95 User’s Guide

What Is Supported

What Is Supported
Lahey/Fujitsu Fortran 95 supports DLL interfaces to the following languages and operating
systems (this list is subject to change—&&&AD_DLL.TXT for any changes):

Table 6: Compiler Support for Lahey DLLs

Language System Version

Lahey/Fujitsu LF95 5.0
Lahey LF90 2.01 and later
Borland C++ 4.5 and later
Borland Delphi 2.0 and later
Microsoft Visual C++ 2.0 and later
Microsoft Visual Basic| 4.0 and later

Your assembly routines may be called from the Fortran routines, however the use of interrupt
21h is not supported. Refer README.ASNor more information regarding interfacing

LF95 with assembly code. LF95 can build DLLs callable from Microsoft Visual Basic.
Microsoft Visual Basic does not build DLLs callable by LF95.

Declaring Your Procedures

In order to reference a procedure across a DLL interface, the LF95 compiler must be
informed of the procedure name and told how to ‘decorate’ the external names in your DLL.
The procedure names are defined withihé_EXPORTandDLL_IMPORTSstatements (see
“DLL_EXPORT Statemérand “DLL_IMPORT Statemehin the LF95 Language Refer-
ence). Please note that in general, DLL procedure namessgssensitiveunlike the Fortran
naming convention, which ignores case)l._EXPORTis used when defining a DLL and
DLL_IMPORTIis used when referencing a DLL. The type of DLL interface is defined with the

Lahey/Fujitsu Fortran 95 User’s Guide 39

Chapter 2 Developing with LF95

use of theML compiler switch. You cannot miML options in a single invocation of LF95.
If you need to reference DLLs from multiple languages you can do so by putting the refer-
ences in separate source files and compiling them separately-MLt®witch options are:

Table 7: -ML Switch Options

Switch Compiler
-ML LF95 Lahey/Fujitsu Fortran 95
-ML LF90 Lahey Fortran 90
-ML MSVC Microsoft Visual C++
-ML MSVB Microsoft Visual Basic
-ML BC Borland C++
-ML BD Borland Delphi
-ML WINAPI Windows API functions invoked directly from Fortran

Building Fortran DLLs

When you create a Fortran DLL, you must indicate the procedures that you want to have
available in the DLL with thedLL_EXPORTstatement. The procedures may be subroutines
or functions. When mixing languages, the function results must be of type default INTEGER,
REAL, or LOGICAL. The case of the name as it appears inDhe EXPORTand
DLL_IMPORTSstatements is preserved for external resolution except whemthe F90

option is used; within the Fortran code the case is ignoredFoe.js the same as00

To export a procedure from a Fortran DLL, use the _EXPORTstatement, for example:

integer function half(x)
dil_export half !name is case-sensitive.
integer :: X
half = x/2

end

This code must be compiled using LF95¢sl targetswitch in order to be callable by lan-
guagetarget(see’-ML target” on page 28).

Note thatDLL_EXPORTandDLL_IMPORTare statements and not attributes. In other words,

DLL_EXPORTmMay not appear in an attribute listin an INTEGER, REAL, COMPLEX, LOG-
ICAL, CHARACTEROor TYPE statement.

40 Lahey/Fujitsu Fortran 95 User’s Guide

Calling DLLs from Fortran

Calling DLLs from Fortran

When you create a Fortran routine that references a procedure in a DLL you declare the DLL
procedure name with theLL_IMPORTSstatement in your Fortran code. The syntax of the
DLL_IMPORTSstatement is:

DLL_IMPORT dll-import-name-list

WheredIl-import-name-lisis a comma-separated list of names of DLL procedures refer-
enced in this scoping unit. The procedures may be subroutines or functions. Non-Fortran
DLL routines may only return default INTEGER, REAL, or LOGICAL results.

Use theDLL_IMPORTSstatement as follows:

program main
implicit none
real :: My_DII_Routine, x
dil_import My_DIl_Routine !name is case-sensitive.
x = My_DII_Routine()
write (*,*) X
end program main

For further examples, refer to the directories below LF¥X&MPLESlirectory.

Passing Data

The only ways to pass data to or from a DLL are as arguments, function results, or in files.
LF95 does not support the sharing of data (as with a COMMON block) across the boundaries
ofaDLL.

Delivering Applications with LF95 DLLs

When you deliver applications built with LF95 DLLs, you must deliver the DLLs you created
and any required by the GUI front-end generating tool. All of the DLLs must be available
on the path or in a directory that Windows checks for DLLs.

Fortran Calling Fortran DLLs
To create a DLL that works with a Fortran main program, indicate the exported procedure

with theDLL_EXPORTstatement, then run LF95 like this:
LF95 source.fo0 -win -dll -ml LF95

The LF95 compiler builds the DLkource.dll . It also builds aource.imp file contain-
ing the linker commands needed to link to this DLL. Note that the compiler allows you to
build your DLL from multiple.OBJ files. Remember that th®LL switch is needed on any
file that contains dLL_EXPORTstatement even if compiled with th€ option.

Lahey/Fujitsu Fortran 95 User’s Guide 41

Chapter 2 Developing with LF95

42

Next build the Fortran Main with:
LF95 main.fo0 -win -ml LF95 source.imp

Ensure that the DLL is available on your path.

C Calling Fortran DLLs

To use Fortran DLLs with Microsoft Visual C++, indicate in the Fortran source the proce-
dures that you want to make available with thid. EXPORTstatements. Remember that the
source for the DLL must not have a main program. Then run the LF95 compiler as follows:

LF95 source.f90 -win -ml msvc -dll
To compile your Fortran source for use with Borland C++, type this:
LF95 source.f90 -win -ml bc -dll

When LF95 creates a DLL to be called by C, it also creates an import library. Import libraries
tell a linker what is available from a DLL. LF95 uses the Microsoft progtain to build an
import library for Visual C++. It uses BorlandIiMPLIB to build the import library for Bor-
land C++. Once you've created the DLL, just link the associated import library

(source.lib inthe above cases) with your C object code, and be sure the DLL is available
on your system path.

Fortran Calling C DLLs

Before running the LF95 compiler, you must first build your DLL. Refer to your C manual
for specifics. The C compiler builds.alB file for the DLL.

To compile your Fortran source that calls a Microsoft Visual C++ DLL, type:
LF95 source.f90 -win -ml msvc -lib dil_srclib

To compile your Fortran source that calls a Borland C++ DLL, type:
LF95 source.f90 -win -ml bc -lib dil_srclib

Wheredll_srclib is the name of the import library. Passing arguments from Fortran to a
C DLL is done in the same way as for calling the Windows API. For more information, see
"Calling the Windows API” on page 48.

Referencing DLL Procedures
Fortran functions are called from C as functions returning a value.

For example, this Fortran function:

Lahey/Fujitsu Fortran 95 User’s Guide

Referencing DLL Procedures

integer function foo(i,j)
integer :: i, j

end fu.nction foo
uses this C prototype:
long foo(long int *i, long int *));
To reference the above function from your C code, declare it witidcall
long __ stdcall foo(long int *i, long int *);
In C++, use:
extern "C" {long __stdcall foo(long int *i, long int *)); };

For a short example, setvcf90.bat in LF95's MIX_LANG\MSVirectory(for Microsoft
Visual C++) ormkbcf90.bat (for Borland C++) in LF95’sMIX_LANG\BC directory.

Passing Arguments from C or C++
Subroutines and default INTEGER, REAL, and LOGICAL function types are supported.

Lahey’s calling conventions are as follows:
» Allarguments are pass-by-address, not pass-by-value as in C.
» Arrays of pointers cannot be passed.

« COMPLEX and derived type arguments can be passed as pointers to structures. For
COMPLEX, these structures are:

typedef struct {
float real;
float imaginary;
} complex;

typedef struct {
double real;
double imaginary;
} double_complex;

« Character arguments are passed as pointers to strings. When a Fortran program unit
contains character dummy arguments with len=*, then any routine calling that pro-
gram unit must append to the end of the argument list the length of each of the
corresponding actual arguments. The lengths must be passed by value.

For example, the Fortran subroutine:

Lahey/Fujitsu Fortran 95 User’s Guide 43

Chapter 2 Developing with LF95

44

subroutine example3 (intl, charl, int2, char2, charl_len)
integer intl, int2, charl_len
character (len=charl_len) :: charl
character (len=25) :: char2

end

would have this prototype in C:

void example3 (long int *intl, \
char *charl, \
long int *int2, \
char *char2, \
long int charl_len);

Passing Arrays in C or C++

Because C processes arrays as an array of arrays and Fortran processes arrays as multi-
dimensional arrays, there are some special considerations in processing a Fortran array.
Excluding a single-dimension array (which is stored the same in C as in Fortran), you will
need to reverse the indices when accessing a Fortran array in C. The reason for this is that in
C, the right-most index varies most quickly and in Fortran the left-most index varies most
quickly (multi-dimensional). In an array of arrays, the columns are stored sequentially: row
1-column 1 is followed by row 1-column 2, etc. In a multi-dimensional array, the rows are
stored sequentially: row 1-column 1 is followed by row 2-column 1, etc.

Also note that all C arrays start at 0. We do not recommend that you use a lower dimension
bound other than zero (0) as your C code will have to modify the indices based on the value
used. We strongly recommend that you do not use negative lower and upper dimension
bounds!

If the subscript ranges are not known at compile time, they can be passed at runtime, but you
will have to provide the code to scale the indices to access the proper members of the array.

Some sample code may help explain the array differences. Your Fortran code would look
like:

Lahey/Fujitsu Fortran 95 User’s Guide

Microsoft Visual Basic Information

subroutine test(real_array)
real :: real_array(0:4,0:5,0:6,0:7,0:8,0:9,0:10)
integer :: ij,k,l,m,n,0
do o=0, 10
don=20,9
dom=0, 8
dol =0,7
do k=0, 6
doj=0,5
doi=0, 4
real_array(i,j,k,l,m,n,0) = 12.00
end do
end do
end do
end do
end do
end do
end do
end subroutine test

The equivalent C code would look like:

void test(float real_array[10][9][8][71[6][5][4])
int ij,k,I,m,n,o;
/*
** this is what the subscripts would look like on the C side
*/
forfO = 0 ; 0o < 11; o++)
for(n = 0; n < 10; n++)
form = 0 ; m < 9; m++)
forl = 0; | < 8; I++)
for(k = 0; k < 7; k++)
forG = 0; j < 6; j++)
forG =0 ;i<5; i++)
real_array[o][n][m][N[KI[][i] = 12.000;
return;

}

On the Fortran side of the call, the array argument must not be dimensioned as an assumed-
shape array. You should use explicit shape, assumed size, or adjustable arrays.

Microsoft Visual Basic Information

To create a DLL that will work with Microsoft Visual Basic, take Fortran source (without a
main program) and indicate the procedures that you want available in the DLL with the
DLL_EXPORTstatement, then invoke the LF95 driver like this:

LF95 source.f90 -win -dll -ml msvb

Lahey/Fujitsu Fortran 95 User’s Guide 45

Chapter 2 Developing with LF95

46

Declaring your Procedure in Visual Basic

In your BASIC code, a procedure’s declaration will be like one of the following examples:

Private Declare Function my_func Lib "my_dIl" (ByRef my_arg As
Long) As Long

Private Declare Sub my_sub Lib "my_dIl" (ByRef my_arg As Long)

(see the relevant section below if an item on the argument list is either an array or is character
datatype). Note that in the example abowey“dll " must specify a complete path in order
to operate within the Visual Basic Environment.

Passing Character Data in Visual Basic

Character arguments are passed as strings with the length of each string appended at the end
of the argument list.

Character (string) arguments and hidden length arguments must be passed by value, i.e.,
declare the procedure’s arguments (actual and hidden) wiytfed keyword. Refer to the
examplevBDEM@rogram. The following restrictions apply:

» Character arguments should be declareG&RACTER(LEN=*)
» Fortran functions returning character data to Visual Basic are not supported.

Passing Arrays in Visual Basic

When passing an array from Microsoft Visual Basic you will need to declare the argument
as a scalar value in the Basic declaration, and pass the first element of the array as the actual
argument. Declare the array dummy argument normally in the Fortran procedure. Note that
the default lower bound for arrays in Visual Basiojso you may find it helpful to explicitly
declare your Fortran arrays with a lower bound dér each dimension, or explicitly declare

your Basic arrays to have a lower boundidfthis can be done at the module or procedure

level via theOption Base statement). Note also that arrays of strings cannot be passed from
Visual Basic to LF95.

Running the Visual Basic Demo

1. Compile theyBDEMO.F90file, located in LF95'MIX_LANG\MSVBdirectory, using
the-dll -win -ml msvb switches.

2. Ensure that the resultingBDEMO.DLLresides in a directory that is on your path.
Failure to do this will generally result in an “Error loading DLL” message from the
operating system.

3. Start Visual Basic and open ti@DEMO.VBRroject in LF95’sMIX_LANG\MSVB
directory.

4. Run the demor5).

Lahey/Fujitsu Fortran 95 User’s Guide

Borland Delphi Information

Borland Delphi Information

Passing Character Data in Delphi

Character arguments are passed as strings with the length of each string appended at the end
of the argument list.

Delphi has two kinds of strings: long strings and short strings, where a long string can contain
a very large number of characters and its length varies dynamically as needed, and a short
string has a specified length and may contain up to 255 characters. If your character argu-
ment is a short string you should use the keyword in your procedure’s declaration; omit
thevar keyword if your argument is a long string. Refer to B@DEM@ndBDDEMOPro-
grams to see examples for both of these cases.

As of this writing, the following conditions apply:

» Character arguments should be declareG&RACTER(LEN=*)

* ‘“Long string” character arguments should be treatetNaENT(IN) .

e “Short string” character arguments may be treateth@ENT(IN OUT) .

» Fortran functions returning CHARACTER data to Delphi are not supported.

Passing Arrays in Delphi

Because Delphi processes multi-dimensional arrays as an array of arrays (like C and C++)
and Fortran processes arrays as multi-dimensional arrays, there are some special consider-
ations in processing a Fortran array. Refer to the “Passing Arrays in C or C++” section for
more information.

Delphi Calling Fortran

To create a DLL that will work with Borland Delphi, take the Fortran source (without a main
program) and indicate the procedures that you want available in the DLL with the
DLL_EXPORTstatement, then invoke the LF95 driver like this:

LF95 source.f90 -win -dll -ml bd

Declaring your Procedure in Delphi
In your Delphi code, a procedure’s declaration will be like one of the following examples:

function my_LF95_function(var my_arg: Longint) : Longint;
stdcall; external ‘my_dlil.dIl’;

procedure my_LF95_subroutine(var my_arg: Single); stdcall;
external ‘my_dlIl.dll’;

(seethe relevant section below if an item on the argument list is either an array or is character
datatype).

Running the Delphi Calling Fortran Demo
1. Compile the8DDEMO2.F9(file located in LF95'sMIX_LANG\BDdirectory using the
-dll ,-win , and-ml bd switches.

Lahey/Fujitsu Fortran 95 User’s Guide 47

Chapter 2 Developing with LF95

48

2. Ensure that the resultidPDEMO2.DLLresides in a directory that is on your path.
Failure to do this will generally resultin an “Debugger Kernel Error” message from
the operating system.

3. Start Delphi and open tlBDDEMO2.DPRroject in LF95’sMIX_LANG\BD directory.

4. Run the demorQ).

Fortran Calling Delphi DLLs

Before running the LF95 compiler, you must first build your DLL. Refer to your Delphi
manual for the specifics. Because Delphi does not buildga file for the DLL, you will
need to specify the imported names on the command line.

To compile a Fortran routine to call a Delphi DLL:

LF95 main.f90 -win -ml bd -implib my_dil.dll -import funcl
func2 ...

wheremain.fo0 is the fortran program which caltasncl andfunc2 in my_dil.dll

Running the Fortran Calling Delphi Demo
1. From Delphi, ope®90CALBD.DPRin LF95’s MIX_LANG\BD directory.

2. Build the DLL by pressingtrl-F9

3. CopyF90CALBD.DLL to LF95’'sMIX_LANG\BD directory.
4. Change to LF95'MIX_LANG\BD directory.

5. Run the compiler as follows:

LF95 f90calbd.f90 -win -ml bd -implib f90calbd.dll -import
bd_min bd_max

6. Run the resulting executabE9OCALBD.EXE

Examples

Please refer to the examples in the directories below LA9%AMPLESIirectory for further
information on using the Fortran DLL interface.

Calling the Windows API
See the fileREAD_APIL.TXT for information on making direct calls to the Windows API.

Lahey/Fujitsu Fortran 95 User’s Guide

Static Linking

Static Linking

Linking statically gives a single executable file that contains all of the executable code and
static data in the program. LF95 can link statically with code produced with Microsoft Visual
C/C++ or Borland C/C++. Information on static linking is the same as for dynamic linking
(described above) with the following exceptions:

1. First make sure your LIB environment variable points to your C library directory.

2. Specify thestaticlink and-ml switches on the LF95 command line (do not
specify-dil).

3. UseML_EXTERNAIlnstead oDLL_IMPORTor DLL_EXPORTin your Fortran source.
4. You must have a Fortran main program.

5. Unlike with DLLs, Fortran common blocks can be accessed from within a statically
linked C routine. See the filETOC.BAT for more information.

6. Importlibraries andmp files do not need to be included on the LF95 command line
(import libraries andimp files are specific to DLLS).

7. Fortran common blocks can be accessed from C when the C is statically linked (this
is not possible with a DLL). If you have a common block caltesnmon_namer
COMMON_NAMEaccess itin C as a structure variable catle@mon_name_(note
the trailing underscore). For example, reference:

common /my_common/ a, b, ¢
real a, b, ¢

as:

extern struct

float a, b, c;
} my_common_; /* my_common must be all lower case */

Fortran common blocks are aligned on one-byte boundaries. To align your C struc-
tures along one-byte boundaries, use/fpe switch or thepack pragma with

Microsoft Visual C++. Use thea- switch ortheoption -a- pragma with Borland

C++. Note that use of these switches should be limited to files or sections of code
that require one-byte alignment; one-byte alignment can cause slower access to C
structure members.

For more information, see the examples in LFIS¥AMPLES\MIX_LANG\MSV@ndEXAM-
PLES\MIX_LANG\BC directories.

Lahey/Fujitsu Fortran 95 User’s Guide 49

Chapter 2 Developing with LF95

OpenGL Graphics Programs

OpenGL is a software interface for applications to generate interactive 2D and 3D computer
graphics independent of operating system and hardware operations. It is essentially a 2D/3D
graphics library which was originally developed by Silicon Graphics with the goal of creating
an efficient, platform-independent interface for graphical applications (Note: OpenGL is a
trademark of Silicon Graphics Inc.). It is available on many Win32 and Unix systems, and is
strong on 3D visualization and animation.

f90gl is a public domain implementation of the official Fortran 90 bindings for OpenGL, con-
sisting of a set of libraries and modules that define the function interfaces. The library,
module files, demonstration programs, and documentation are documented in the file
readfogl.txt . The f90gl interface was developed by William F. Mitchell of the Mathemat-
ical and Computational Sciences Division, National Institute of Standards and Technology,
Gaithersburg, in the USA. For information on f90gl, see the FO0GL web page at http://
math.nist.gov/f90gl.

Until recently, the OpenGL LF9x applications could only be built as statically linked appli-
cations targeted for Visual C. A much friendlier method is now available thanks to a porting
effortimplemented by Lawson B. Wakefield of Interactive Software Services Ltd. in the UK.
(ISS are the developers of the INTERACTER & Winteracter GUI/graphics Fortran develop-
ment tools). This implementation has made the OpenGL interface available within the
framework of the WISK and Winteracter libraries. A full set of examples is available under
the WISK directory of the LF95 installation.

Recommended Switch Settings

50

Inspect the.F95.FIG file to determine current switch settings.
For debugging, we recommend the following switch settings:
-chk (a,e,s,u,x) -chkglobal -g -pca -stchk -trace -w -info

(Note: Specifyingchkglobal — or-chk (x) mustbe used for compilation of all files of the
program, or incorrect results may occur.)

For further analysis during development, and consider specifying any of following switch
settings:

-ap -co -cover -f95 -info -Ist -wo -xref
For production code, we recommend the following switch settings:

-nap -nchk -nchkglobal -ncover -ng -0l -npca -nsav -nstchk
-ntrace

Use-t4 , -tp, or -tpp depending on your preferred target processor.

Lahey/Fujitsu Fortran 95 User’s Guide

Editing and
Debugging with ED

Lahey ED for Windows (ED) is a Fortran-smart development environment. You can edit,
compile, link, and run your programs all from within ED. ED offers sophisticated editing
features like syntax highlighting, intelligent procedure browsing, code completion, macros,
drag and drop, as well as the standard editing features you are accustomed to. Aftera com-
pilation, ED highlights the exact location of programming errors diagnosed by the compiler.

You can also debug Windows programs with ED. While debugging, you can watch the val-
ues of variables change during program execution and set breakpoints with a mouse click.

This chapter assumes a basic familiarity with Windows. It presents an overview of ED’s
functionality. For detailed information, please see ED’s on-line help.

Setting Up and Starting ED

Startup
ED must be run from Windows. Start ED by double-clicking the Lahey ED for Windows
icon.

Lahey/Fujitsu Fortran 95 User's Guide 51

Chapter 3 Editing and Debugging with ED

Exiting ED

The ED Screen

= I [=] B
Sl 4 demo.190 Window 1 M= B
c !
c !
- ! file : demo.£50
c !
c ! version o LF30 3.00
Ll
Current Window ,/%ﬁ' date : June 1996
11
Il function : This is a FORTRAN source file intended to te
[of the features of the Lahey LF90 compiler a
Il runtime support. Successful execution of thi
Il indicates that installation has besn success
|
C i
11
|
11
11

Menu Bar \
File Edit Block Buffer Gato Search Macro Tool \Optisps Window Help

Docked Toolbar \@ .@

To exit from ED, choos€ile|Exit from the menu, double-click the system menu icon in
the top left corner, or pregst-F4.

Always exit ED before turning off your computer. ED checks for unsaved changes and
enables you to save these before exiting.

Floating Toolbar

Toolbar Buttons

08 Lahey ED 4w/

compatibility : Thi= FORTEAN file can be compiled and run wi
LF90 language s=y=tem=. Hote that the code 1
use of extensions to the FORTRAN 77 standard

to createsrun : Enter the following twol commands in the orde =

Window Tabs
|:|emo.[9l:l\]L intdema. far]

Status Bar ———— [ingent [[161037 Wed 22 May 1396 [In 19/860 [clm 44 [[demo.an [
The Menu Bar
ED features pull-down menus from which the various ED commands can be invoked. To
open a menu, click on item on the menu bar with the mouse or pitesaunderlined letter
Select a command by clicking on it with the mouse or by pressitdgerlined letter

52 Lahey/Fuijitsu Fortran 95 User’s Guide

The Status Bar

The Status Bar

The status bar displays information about the current state of ED. It is more than informa-
tional. Click on:

» Insert/Overtype/View to toggle Insert/Overtype/View mode.

» the Word Wrap Status to toggle word wrap on or off.

» the Macro Status to play the current macro.

» the Time and Date to change the time and date format.

» the Cursor Line and Column to go to a particular line and column.
» Edited to save the current file.

» the Filename to change the active window.

» Select Toolbar to select or deselect toolbars.

Insert/Overtype Window
View Mode _ Number Select
Macro . Edited? Toolbar
Word Status Time and Date Cursor Line and Column \ Filename \ \
wiap~ \ T)
insert W |0B5Z05 Thu?23May 1936 |In 25/860 |cim 34 -+ |demofan N o |
The Text Bar
ED’s Text Bar provides a visual reminder of lines that have been edited and lines that have
been added. When debugging (5Bebugging” on page 61), the Text Bar marks the cur-
rent line and lines with breakpoints. You can activate the Text Bar by right-clicking on white
space to the left of any line, or by selectidgtions|Configuration|Display and
checking theText Bar Visible box.
New Line
\ do
Edited Line ® print =
\u pr]_nt *®* " ———_————

Breakpoint

/ pl‘int
Current Line

print x

1 - factorials"

*
> print =
* 2 - Fahrenheit to Celsius conversion™

Toolbars

Toolbars provide a quick way to issue commands with the mouse. ED comes with a variety
oftoolbars. Display different toolbars by pressing the Select Toolbar button on the status bar.

Point to a toolbar button to pop up quick help on that button. To issue the command, left-
click.

Lahey/Fujitsu Fortran 95 User’s Guide 53

Chapter 3 Editing and Debugging with ED

The Window Bar

ED’s window bar makes switching between open files easy. Left-click on a window tab to
make that window current. Right click on a tab to perform other operations on that file.

Getting Help

Get general help on ED by pressiRg. Get context-sensitive help by pressibigft-F1

Both general and context-sensitive help are also available through the Help menu. A quick
tour of ED is available througHelp|Help Contents . This is especially valuable if you

are new to ED and would like to get a glimpse of the features it offers. You can also view a
quick reference to ED’s shortcut keys by pressiigQ or by selectingHelp|Quick

Reference .

Managing Files

Creating A File From Scratch

To create a new file, seleEtle|]New . Select a file type (file extension). You now have an
empty file you can edit. Save the file by selectifigg|Save or by clicking on theSave

file button on the docked toolbar. You can also create a new file by clicking cbée
File for Editing button on the docked toolbar. TRée|Open dialog box appears.
Select a drive and directory and enter a name for the file. Click OK to create the file.

54 Lahey/Fujitsu Fortran 95 User’s Guide

Opening A File

File Open Ed
File ar Function Mame: [Space=completion] Filez... | QE. I
I".fu:ur =10 = f J Help | Cancel |
Files: *for = f30 = f Dirives: Directories:
abs.fa0 B = a “l = ch
achion.fa0 = | (&= IFa0

P =l
airfoil4.F30 =
airfcil4.for d: SE
airfoil 3. far E FAhzeushays
alloc.f30
arrchar Fan E h:shzeuzhays
assig%fnor E= khaeushlib
auta. . .
badimod, 90 == vhzeushin
beer.fA0 E m:Whzeush auy
E!g—'”t-[E:gD [E=] nthezeushepare
igarray.
bilmod (30 [E=il ghieeusiae [+
blabla.fa0 |
Right mouse button accesses Files Current Directary
File type: |Fortran [*for *f30~0) =] | SRV
’7 Lrl_s_t : P, ’7 [;ILEC':D[_','. LIStr% ¥ One filedwindow
* [n dizk Hiztary * [On dizk Higtary ¥ Keep directory
File informatiar:

Opening A File
Opening a file that already exists is also done uslitglOpen . You can choose to select

directories and files either from a list of those that exist or from a history of those most
recently used.

Files are opened in edit mode by default. To open a file in view-only mode, select
File|[View . Toggle between edit and view modes by pressiigr3

If you use include files, you can view them by right clicking on the filename in the INCLUDE
line in your code.

Lahey/Fujitsu Fortran 95 User’s Guide 55

Chapter 3 Editing and Debugging with ED

Syntax Highlighting

ED highlights Fortran syntax elements, like keywords, literal constants, and comments, with
different colors. This facility can be customized in several ways. To change the default col-
ors, select Options|Color Setup. To change the elements that ED highlights or to add new
elements of your own, edit the filang_for.iii , Whereiii are your initials.

By default, only files that end iffor ,.f90 , and.f use Fortran syntax highlighting. Other
file extensions are set to use no syntax highlighting. You can turn on syntax highlighting for
some 30 other languages by selectygions|File Extension Setup . Only files setup

with Fortran syntax highlighting or with no syntax highlighting can be saved, however.

Navigation

56

After you have opened a file, move through it using:
» the normal keyboard navigation key®ageUp, PageDown, Home End, etc.)
» the mouse on the scroll bar

e Goto|... tojump to a particular kind of location. Thoto menu lists many loca-
tions to jump to, most with quick keyboard equivalents.

Previous/Next Procedure

You can quickly move though your file by jumping from procedure to procedure using the
Ctrl-PageUp andCtrl-PageDown keys.

Function/Procedure List

ED will create a list of procedures in your file if you:

» ChooseGoto|Function List;

¢ PressAlt-F1; or

» Click the Function/procedure list button on the toolbar

You can then jump directly to any procedure by double clicking on its name in the Function/
procedure list.

Lahey/Fujitsu Fortran 95 User’s Guide

Find

Editing

Find
The Search menu provides a variety of ways to find and optionally replace text. You can
search for exact text or use regular expressions, where wildcard characaes?) can be

inserted in your search string. You can also search incrementatiyemental search
finds the next occurrence of text as you type it.

Matching Parentheses and Statements

You can move automatically to a matching object (a parenthesis or statement) by right click-
ing on an object. For example, in an expression, right-clicking on a parenthesis will jump to
the matching parenthesis. This is a real time-saver in putting together complicated error-free
expressions. Right-clicking on a DO statement jumps to the corresponding END DO state-
ment. Right-clicking on an IF statement jumps in succession to any ELSE or ELSE IF
statements and ultimately to the corresponding END IF statement.

To toggle between edit and view modes useAl&3 key. When in view mode the file is
protected from changes and is not locked, permitting other people to view the file at the same
time.

Undo and Redo

You can undo any editing or cursor movementin ED. To undo the previous operation, select
EditjUndo or presCtrl-Z . To redo the last operation you have undone, select
EditjRedo or pressCtrl-Y

Extended Characters
To type characters outside the range of your keyboard:

* Be sure the NumLock key is on.

* TypeAlt-0 ANSI character codto enter Microsoft Windows ANSI font characters
above 127.

* TypeAlt- OEM character codéo enter DOS extended characters above 127.

» Toenter characters below 32 suchas*B,"C, etc., select Edit|Verbatim Character,
then type the character. This prevents the control key sequence from being inter-
preted as an ED command.

Lahey/Fujitsu Fortran 95 User's Guide 57

Chapter 3 Editing and Debugging with ED

Blocks

A block is an area of marked text. Once marked, a block can be deleted, moved, copied,
searched, sorted, or printed.

Block Operations
ED recognizes three kinds of blocks: stream, line, and column:

» Stream blocksire the usual Windows marked blocks. They begin and end at any
locations you choose and include all characters in-between.

* Line blocksmark whole lines.
» Column blocksnark a rectangular area.

Marking a Block with the Keyboard
Position the cursor at the start of the block. Sekdotk and therStream Block , Line
Block , orColumn Block . Expand the block using the arrow kepageUp, andPageDown.

Marking a Block with the Mouse

Simply click and drag to mark a block with the mouse. To toggle between the three different
kinds of blocks, click the right mouse button while still holding down the left mouse button.

Marking a Word or Line

To mark a word, double-click on the word. Double click in white space left or right of a line
to mark the whole line.

Drag and Drop

You can move a marked block to a new location by clicking on the marked block, holding
the mouse button down while you move the block, then releasing the mouse button at the
desired location. You can copy rather than move a block by holding down the control key
while you drag and drop.

Coding Shortcuts

58

Words or constructs that you type repeatedly can be entered automatically or finished for you
by ED.

Templates

Templates are abbreviations for longer sequences of characters. These sequences can be one
or a few words or can comprise several lines. Chagsns|Language Words & Tem-

plates then pres€trl-PageDown to view the Fortran templates. When ED is installed a

file calledlang_for.iii (whereiii are your initials) is set up. To modify existing tem-

plates or add new ones, edit this file.

Lahey/Fujitsu Fortran 95 User’s Guide

Smartype

Templates are expanded by presdinsg or Space after typing a template abbreviation. You
can specify the number of characters befése or Space will cause template expansion by
selectingOptions|File Extension Setup|Templates & Word Wrap

Smartype

Smartype recognizes words you have already typed in your file. If you type the first few
characters of a word that appears earlier in the file, then press Esc or Space, the word will be
automatically completed for you. If there is an ambiguity you will be presented with a menu
of words to select from.

Smartype can be deactivated for the Space key by turningpeffe does Smartype in
Options|File Extension Setup|Templates & Word Wrap

Case Conversion

Case conversion changes the case of words you type to match instances of words earlier in
the file or to match words in thiang_for.iii file. In this way ED ensures consistency in
capitalization.

Case conversion can be toggled off or onOption|File Extension Setup

Code Completion
Code completion finishes open nesting levels introduced by keywords or parentheses. Code
completion is activated with thesc key. For example, if you've typed:

a=b*(c+(d-e
pressing Esc once will give

a=b*(c+(d-e)
and pressing Esc again will give

a=b*(c+(d-e))

Lahey/Fujitsu Fortran 95 User’s Guide 59

Chapter 3 Editing and Debugging with ED

Compiling from ED

60

Compiling Your Program

There are two ways of compiling your program while in ED. You can click on the Lahey
LF95 button from the toolbar, or selebbols|Programs|Lahey/Fujitsu LF95|Run

When you do so, a window will appear that captures the compiler’s output and shows the
compiler’s progress through your source file. Pressingrthkey will tile the source and
compile windows.

Alternately, you can select the DOS button and compile as descri&gkireloping with

LF95” on page 11. Redirecting the compiler’s output todhs.iii file (whereiii

are your initials) will enable you automatically to locate errors in your source, as described
below.

Locating Errors

ED automatically synchronizes your program source with errors detected by the compiler.
To browse through errors, chooSeto|Next Error or Goto|Previous Error , click on

the next or previous error button on the toolbar, or préisEpArrow or Alt-DownArrow

ED automatically moves the cursor to the appropriate location in your source file.

Lahey/Fujitsu Fortran 95 User’s Guide

Changing Compiler Options

Changing Compiler Options

To change the LF95 compile line used by ED, select Tool|Programs, then select the ‘General'
radio button, then select Lahey/Fujitsu LF95|Edit. The following variables may be used in
theCommand Line andWorking Directory fields.

Table 8: Command Line Variables

Variable Evaluates to

<NAME> Name of the current file including drive and path.

<PATH> Drive and path for the current file.

<FILE> FiIename of current file without drive\path and file
extension.

<EXT> Filename extension.

<CWD> Current working directory.

<ED_DIR> ED executable’s directory.

<ENTER> Prompts the user for a filename.

<1> User’s response from firstENTER>.

<2> User’s response from secorRENTER>.

<3> User’s response from thikENTER>.

<DATE> Current system date.

<INITIALS> Your initials.

<WORD> The word at the current cursor position.

Debugging

Lahey ED for Windows’ integrated debugger can run your program, set breakpoints, step a
line at a time, view the values of variables in your program in several different ways, and
change the values of variables while running your program. The current executable line and
any breakpoints are indicated with markers in the Text Bar'(Bee Text Bar” on page 53).

Lahey/Fujitsu Fortran 95 User's Guide 61

Chapter 3 Editing and Debugging with ED

Starting the Debugger

Note that with version 5.5 of LF95, the Lahey/ED debugging facility is off by default and is
replaced by WinFDB. However, you can still use the Lahey/ED debugger by selecting the
SOLD95 Toolbar from within ED using Options|Toolbars.

Before debugging your program you must compile it using-th@nd-winconsole or

-win switches (seéChanging Compiler Options;’ above, andCompiler and Linker
Switches”on page 17). They switch creates an additional file with debugging information.
This file ends with the extensiopdg. The-win or-winconsole switch creates a Win-
dows executable file. Start debugging by clicking onfeeug Program button in the

Lahey Fortran toolbar, or by selectifigol|Debug . Note that Lahey ED can be used to
debug both LF95 and LF90 programs. If you will use LF95’s Lahey ED to debug LF90 exe-
cutables, you must first delete any .ydg files that exist for these executables in the same
directory.

It is most convenient always to have the Lahey Fortran toolbar visible while debugging.
When prompted, enter the name of the executable file, including the filename extension
(.exe) and, ifthe file is notin ED’s current directory, a path. For example, if the executable
file myprog.exe isin a directory calledrograms ” below the root, you would enter

\programs\myprog.exe

ED will expand the Text Bar and put the current line icon next to the first executable line in
your program. It will also open the SOLD95W Output Window so that you can view actions
performed by the debugger. Once your program is loaded, click dbetngg Program but-

ton again to bring up the debug menu. You can also bring up the debug menu by selecting
Tool|Debug or by right-clicking in ED’s Text Bar.

Rur Program
Run to Current Line

Step Into
Step Ower
Checkpoints

Dizplay Y aniable
Watch Yariables

Reload Program
Cloze Debug Session

62 Lahey/Fujitsu Fortran 95 User’s Guide

Running Your Program

Running Your Program

To run your program, sele&un Program from the debug menu, press thé key, or click

on theRun Program button. Just running your program is not particularly useful. You will
want your program to stop occasionally by setting breakpoints or by running a line at a time.
In this way you can inspect or change the values of variables at troublesome locations in your
program.

To run to a particular line in your program, click on that line, then séteat to Current
Line from the debug menu.

Running a Line at a Time

To execute the current executable line in your program (marked with the current line marker
in the Text Bar), click on either theep Into or Step Over button, or selecstep Into

or Step Over from the debug menu. If the current line is a subprogram invocasitap,

Into will execute the current line and move the current line marker to the first executable
line in the subprogranstep Over will execute the entire invoked subprogram and move
the current line marker to the next executable line in the current subprogram.

Setting Breakpoints

Often when debugging you will want to have your program stop at a particular location in
your source code, or when a particular condition occurs. Such a stopping place is called a
breakpoint. To set a breakpoint, click on thieeckpoints button, or seleaCheckpoints

from the debug menu. The following dialog box displays:

Lahey/Fujitsu Fortran 95 User’s Guide 63

Chapter 3 Editing and Debugging with ED

Checkpointz - Demo_ 90 |

[V i0r Program Unit Entrgé IL'*'-HEY_DEMD j
I™ &t Line: 83
ariable Eelatian Wialue
[llE |SELECTION Bl |changes Bl
Set Breakpoint |
Checkpointz
Eemowe | Fiemm-'eglll
Close I Help |

To set a breakpoint on entry to a particular program unit, click ordtneProgram Unit
Entry checkbox, select the program unit from the list of program units, then clickeon
Breakpoint . The breakpoint will display in the€heckpoints list. You can remove a
breakpoint by highlighting it in the list and clickingemove.

To set a breakpoint on a particular line, first click on that line in your source, open the Check-
points dialog and click that Line: checkbox. Then click oSet Breakpoint . A
shortcut for this procedure is to simply left-click in the Text Bar next to the desired line.

To set a breakpoint on a particular condition, click he checkbox. You can set break-
points based on whether a condition holds true, suchasifjreater than00, or based on
when a value changes.

You can remove all breakpoints at once by clicking onReeove All button in the Check-
points dialog.

64 Lahey/Fujitsu Fortran 95 User’s Guide

Displaying the Values of Variables

Displaying the Values of Variables

Values of variables can be displayed three different ways. To display the value of a scalar
variable of an intrinsic type (REAL, COMPLEX, INTEGER, LOGICAL, or CHARACTER,

as opposed to a derived type), simply right click on the variable name. A box will appear
with the name of the variable and its value.

To display the value of any variable, including derived types and arrays and combinations
thereof, click on theisplay Variable button or selecbisplay Variable from the

debug menu. Select the variable from the list of variables provided. The name and value of
the variable appear in the SOLD95W Output Window.

To watch values of variables change as you step through your code, open the Watches Dialog
by clicking on theDpen Watches Dialog button or by selectin@pen Watches Dialog
from the debug menu. A Dialog like the following displays:

 WwWatch Yanables M= E3

A, CHESS

BLACK=-1
[1- °. GaME_BOARD
GamME_OVER=FALSE.

MOWE_MUMBER=1

USER_PLAYS=1
WHITE=1
WHOS_MOWVE=1

Ehange |

Cloze | Help |

In the above Watch DialogzAME_BOARIB an array. To expand the values of all elements
in the array, click on the+’ next to GAME_BOARICIlick on ‘-’ to collapse it again. This will
work for variables of derived type as well. The Watch Dialog can be resized by dragging its
edges or corners with the mouse.

Itis recommended that large arrays be kept collapsed while stepping through your program,
as updating the values of the elements of large arrays while stepping is time consuming.

Lahey/Fujitsu Fortran 95 User’s Guide 65

Chapter 3 Editing and Debugging with ED

Changing the Values of Variables

You can change the value of a variable in a Watch Dialog (see above) by clicking on it, then
changing its value in the space below and clickitiginge. Only scalar data, single elements
of arrays, and single components of derived types can be changed in this way.

Reloading your Program

To reload your program, seleReload Program from the debug menu. All checkpoints
will remain in effect.

Configuration

66

To change ED'’s configuration seleaptions|Configuration or pres¥11. Click onthe
appropriate tab to display and change a configurable item. Pressing the help button while in
one of the configuration dialog boxes brings up context-sensitive help on any of the features
in the dialog box.

Status Line
Controls display of the time, date, and window bar.

Display
Controls the display of windows, control characters, menus, and toolbars.

Fonts
Controls the type and size of the display font.

Colors
Controls the colors for syntax highlighting of your source.

Session Info

Controls various parameters for the way ED starts, including whether to restore the current
directory, whether to save the desktop state automatically on exit, how large a cache to use,
and how large a history list to keep.

Behavior
Controls keyboard emulation, cursor movement and insert/replace behavior.

Safety
Controls how backup copies of your source file are kept.

Locking
Controls how files are locked when accessed on a LAN.

Lahey/Fujitsu Fortran 95 User’s Guide

Command-Line
Debugging with FDB

FDB is a command-line symbolic source-level debugger for Fortran 95, C, and assembly pro-
grams. Use FDB if you feel more comfortable with a command-line debugger than with the
WinFDB Windows debugger, or if you need access to debugging commands not available in
WinFDB.

Before debugging your program you must compile it usingghswitch (se&Compiler and
Linker Switches”on page 13). They switch creates an additional file with debugging infor-
mation -- this file has the same name as the executable with the exteytgionDebugging
cannot be performed without the presence of the .ydg file in the same directory as the exe-
cutable file. FDB cannot be used on LF90 executables.

Starting FDB

To start FDB type:
FDB exefile

Where: exefileis the name of an executable file compiled with theoption.

Commands

Commands can be abbreviated by entering only the underlined letter or letters in the com-
mand descriptions. For exampkéll can be abbreviated simpkyandoncebreak can be
abbreviateab. All commands should be typed in lower case, unless otherwise noted

Lahey/Fujitsu Fortran 95 User's Guide 67

Chapter 4 Command-Line Debugging with FDB

Executing and Terminating a Program

run arglist

Passes tharglistlist of arguments to the program at execution time. Waglistis omitted,
the program is executed using the arguments last specifiadglit contains an argument
that starts with £" or ">", the program is executed after the I/O is redirected.

Run

Executes the program without arguments. The “R” should be upper case.

kil

Forces cancellation of the program.

param commandline arglist

Assign the program’s command line argument list a new set of values

param commandline

Display the current list of command line arguments

clear commandline

The argument list is deleted

auit
Ends the debugging session.

Shell Commands

cd dir
Change working directory tdir

pwd

Display the current working directory path

68 Lahey/Fujitsu Fortran 95 User’s Guide

Breakpoints

Breakpoints

General Syntax
break Jocation[? expi]

Wherelocationcorresponds to an address in the program or a line number in a source file,
andexprcorresponds to a conditional expression associated with the breakpoint. The value
of locationmay be specified by one of the following items:

« [file’]line specifies line numbdine in the source fildile. If omitted,file defaults
to the current file.
» proc[+]- offsef specifies the line number corresponding to the entry point of func-
tion or subroutingroc plus or minuffsetlines.
* [mod@]prod@inprod] specifies function or subroutirgrocin current scoping unit,
or internal proceduraproc within proc, or procedurgroc contained in module
mod
« *addr specifies a physical address (default radix is hexadecimal).
» If locationis omitted, it defaults to the current line of code

The conditional expressiaxprcan be constructed of program variables, typedef elements,
and constants, along with the following operators:

Minus unary operator (-)

Plus unary operator (+)

Assignment statement (=)

Scalar relational operator (<, <=, ==, /=, >, >=, .LT,, .LE,, .EQ., .NE., .GT., .GE.)
Logical operator (NOT., .AND., .OR., .EQV., .NEQV.)

break [’ file’] line

Sets a breakpoint at the line numtiee in the source fildile. If omitted, file defaults to the
current file. Note that the “apostrophes” in ‘file’, above, are the standard apostrophe charac-
ter (ascii 39).

break [’ file’] funcname

Sets a breakpoint at the entry point of the funcfiemcnamen the source fildile. If omitted,

file defaults to the current file. Note that the “apostrophes” in ‘file‘, above, are the standard
apostrophe character (ascii 39).

break *addr
Sets a breakpoint at addressir .

break
Sets a breakpoint at the current line.

Lahey/Fujitsu Fortran 95 User’s Guide 69

Chapter 4 Command-Line Debugging with FDB

cond ition # n expr
Associate conditional exprestiexprwith the breakpoint whose serial numbenidNote that
the “#” symbol is required.

cond jtion # n
Remove any condition associated with the breakpoint whose serial number is n. Note that
the “#” symbol is required.

oncebreak
Sets a temporary breakpoint that is deleted after the program is stopped at the breakpoint
once. OnceBreak in other regards, including arguments, works like Break.

regularbh reak " regex"

Set a breakpoint at the beginning of all functions or procedures with a name matching regular
expression regex.

delete location
Removes the breakpoint at locatitmtationas described in above syntax description.

delete [* file’] line

Removes the breakpoint for the line numbee in the source file specified dite. If omitted,

file defaults to the current file. Note that the “apostrophes” in ‘file’, above, are the standard
apostrophe character (ascii 39).

delete [’ file’] funchame

Removes the breakpoint for the entry point of the funcfisrtname in the source fildile.

If omitted, file defaults to the current file. Note that the “apostrophes” in ‘file’, above, are the
standard apostrophe character (ascii 39).

delete *addr
Removes the breakpoint for the addredsr .

delete #n
Removes breakpoint number

delete
Removes all breakpoints.

skip # n count
Skips the breakpoint numbarcounttimes.

70 Lahey/Fujitsu Fortran 95 User’s Guide

Controlling Program Execution

onstop #ncmd[;cmd2;cmd3...;cmdn]
Upon encountering breakpoint execute the specified fdb command(s).

show break
B
Displays all breakpoints. If using the abbreviation “B”, the “B” must be upper case.

Controlling Program Execution

continue [count]

Continues program execution until a breakpoint's count reahed Then, execution stops.

If omitted, count defaults to 1 and the execution is interrupted at the next breakpoint. Program
execution is continued without the program being notified of a signal, even if the program
was broken by that signal. In this case, program execution is usually interrupted later when
the program is broken again at the same instruction.

silentc_ontinue [count]

Same as Continue but if a signal breaks a program, the program is notified of that signal when
program execution is continued.

step [count]

Executes the nextountlines, including the current line. If omittedpuntdefaults to 1, and
only the current line is executed. If a function or subroutine call is encountered, execution
“steps into” that procedure.

silentstep [count]

Same as Step but if a signal breaks a program, the program is notified of that signal when
program execution is continued.

stepi [count]

Executes the nextountmachine language instructions, including the current instruction. If
omitted,countdefaults to 1, and only the current instruction is executed.

silentstepi[count]
Same as Stepi but if a signal breaks a program, the program is notified of that signal when

program execution is continued.

Lahey/Fujitsu Fortran 95 User’s Guide 71

Chapter 4 Command-Line Debugging with FDB

72

next [count |

Executes the nextountlines, including the current line, where a function or subroutine call
is considered to be aline. If omittechuntdefaults to 1, and only the current line is executed.
In other words, if a function or subroutine call is encountered, execution “steps over” that
procedure.

silentnext [count]
Same as Next but if a signal breaks a program, the program is notified of that signal when
program execution is continued.

nexti [count]

Executes the nextountmachine language instructions, including the current instruction,
where a function call is considered to be an instruction. If omittedntdefaults to 1, and
only the current instruction is executed.

silentnexti [count]Jor nin[count]
Same as Nexti but if a signal breaks a program, the program is notified of that signal when
program execution is continued.

until
Continues program execution until reaching the next instruction or statement.

until loc
Continues program execution until reaching the location orltoe

until *addr
Continues program execution until reaching the addaess.

until +|- offset
Continues program execution until reaching the line forward (+) or backwaodf¢etlines
from the current line.

until r_eturn
Continues program execution until returning to the calling line of the function that includes
the current breakpoint.

Displaying Program Stack Information

traceback [n]
Displays subprogram entry points (frames) in the stack, whé&ehe number of stack
frames to be processed from the current frame.

Lahey/Fujitsu Fortran 95 User’s Guide

Setting and Displaying Program Variables

frame [# n]

Select stack frame number If n is omitted, the current stack frame is selected. Note that
the “#” symbol is required.

upside [n]
Select the stack frame for the procedure n levels up the call chain (down the chainif nis less
than 0). The default value of nis 1.

downside [n]
Select the stack frame for the procedure n levels down the call chain (up the chain if nis less
than 0). The default value of nis 1.

show args

Display argument information for the procedure corresponding to the currently selected
frame

show locals
Display local variables for the procedure corresponding to the currently selected frame

showreg [$ r]

Displays the contents of the registen the current framer. cannot be a floating-point reg-
ister. If & is omitted, the contents of all registers except floating-point registers are displayed.
Note that the $ symbol is required.

show freg [$ fr]

Displays the contents of the floating-point regidiein the current frame. If 8 is omitted,
the contents of all floating-point registers are displayed. Note that the $ symbol is required.

show regs
Displays the contents of all registers including floating-point registers in the current frame.

show map
Displays the address map.

Setting and Displaying Program Variables

set variable = value
Setsvariableto value

Lahey/Fujitsu Fortran 95 User’s Guide 73

Chapter 4 Command-Line Debugging with FDB

74

set *addr = value
Sets*addr to value

set reg = value

Setsregto value reg must be a register or a floating-point register.

print [F][variable]
Displays the content of the program variakgiable by using the edit formak. If edit for-
matF is omitted, it is implied based on the type of variablariable can be a scalar, array,
array element, array section, derived type, or derived type elefenn have any of the fol-
lowing values:

x hexadecimal

d signed decimal

u unsigned decimal

o octal

f floating-point

c character

s character string

a address of variable (us&tariable " to denote I-value)

memprint [: FuN] addr
dump [: FUN] addr

Displays the content of the memory addradslr by using edit formaF. u indicates the dis-
play unit, andN indicates the number of units.can have the same values as were defined
for the Print command variable.

If omitted, f defaults tox (hexadecimal).
u can have any of the following values:

b one byte

h two bytes (half word)

w four bytes (word)

| eight bytes (long word/double word)

If uis omitted, it defaults tev (word). If nis omitted, it defaults to 1. Therefore, the two fol-
lowing commands have the same result:

Lahey/Fujitsu Fortran 95 User’s Guide

Source File Display

memprint addr
memprint :xwl addr

Source File Display

show source
Displays the name of the current file.

list now
Displays the current line.

list[next]
Displays the next 10 lines, including the current line. The current line is changed to the last
line displayed.

list prev_ious
Displays the last 10 lines, except for the current line. The current line is changed to the last
line displayed.

list around
Displays the last 5 lines and the next 5 lines, including the current line. The current line is
changed to the last line displayed.

list[’ file’] num
Changes from the current line of the current file to the line numinemnof the source fildile,
and displays the next 10 lines, including the new current linflelfs omitted, the current
file is not changed.

list +|- offset
Displays the line forward (+) or backward @jfsetlines from the current line. The current
line is changed to the last line displayed.

list[* file’] top,bot

Displays the source file lines between line numtmgrand line numbebotin the source file

file. If file is omitted, it defaults to the current file. The current line is changed to the last line
displayed.

list [func[tion] funcname
Displays the last 5 lines and the next 5 lines of the entry point of the funfitrconame

Lahey/Fujitsu Fortran 95 User's Guide 75

Chapter 4 Command-Line Debugging with FDB

76

disas
Displays the current machine language instruction in disassembled form.

disas *addrl [,*addr2 |

Displays the machine language instructions between adddels$and addresaddr2in dis-
assembled form. Hiddr2is omitted, it defaults to the end of the current function that contains
addresaddrl

disas funcname
Displays all instructions of the functidoncnamen disassembled form.

Automatic Display

screen [: F] expr
Displays the value of expression expr according to format F every time the program stops.

screen
Displays the names and values of all expressions set by the sdf¢erfrcommand above.

unscreen [#n]

Remove automatic display numhbe(“#” symbol reqgired). When #is omitted, all are
removed.

screenoff [#n]
Deactivate automatic display number When # is omitted, all are deactivated.

screenon [#n]
Activate automatic display number When #h is omitted, all are activated.

show screen
Displays a numbered list of all expressions set by the scré&@mfprcommand above.

Symbols

show function [* regex"]

Display the type and name of all functions or subroutines with a name that matches regular
expressiomegex Whenregexis omitted, all procedure names and types are displayed.

Lahey/Fujitsu Fortran 95 User’s Guide

Scripts

show variable [regex"]
Display the type and name of all variables with a name that matches regular expregsion
Whenregexis omitted, all variable names and types are displayed.

Scripts

alias emd "cmd-str"
Assigns the fdb command(s) amd-strto aliascmd

alias [cmd]
show alias [cmd]
display the aliagmddefinition. Whencmdis omitted, all the definitions are displayed.

unalias [cmd]
Remove the aliasmddefinition. Whencmdis omitted, all the definitions are removed.

Signals

signal sig action

Behavioractionis set for signasig. Please refer to signal(5) for the name which can be spec-
ified for sig. The possible values factionare:

stopped Execution stopped when signal sig encountered
throw Execution not stopped when signal sig encountered

show signal [sig]
Displays the set response for sigsal. If sigis omitted, the response for all signals is
displayed.

Miscellaneous Controls

param listsize num

The number of lines displayed by thet command is set toum The initial (default) value
of numis 10.

param prompt " str"
str is used as a prompt character string. The initial (default) valuilig “”. Note that the

double quotes are required.

Lahey/Fujitsu Fortran 95 User's Guide 77

Chapter 4 Command-Line Debugging with FDB

78

param printelements num
Set the number of displayed array elementsumwhen printing arrays. The initial (default)
value is 200. The minimum value afimis 10. Settingrumto 0 implies no limit.

param prm
Display the value of parametprm.

Files

show exec
Display the name of the current executable file.

param execpath [path]

Add pathto the execution file search path. gathis omitted, the value of the search path is
displayed. Note that this search path is comprised of a list of directories separated by
semicolons.

param srcpath [path]

Add pathto the source file search path when searching for procedures, variables petth If

is omitted, the value of the search path is displayed. Note that this search path is comprised
of a list of directories separated by semicolons.

show source
Display the name of the current source file.

show sources
Display the names of all source files in the program.

Fortran 95 Specific

breakall madl
Set a breakpoint in all Fortran procedures (including internal procedures) in nmadule

breakall func
Set a breakpoint in all internal procedures in produre.

show ffile
Displays information about the files that are currently open in the Fortran program.

Lahey/Fujitsu Fortran 95 User’s Guide

Communicating with fdb

show fopt
Display the runtime options specified at the start of Fortran program execution.

Communicating with fdb

Functions

In a Fortran 95 program, if modules and internal subprograms are used, functions are speci-
fied as the following:

A module subprogramubdefined inside a modulmoduleis specified asnodule@suh

An entry pointentdefined inside a moduleoduleis specified asnodule@ent

Aninternal subprogranmsubdefined inside a module subprogrambwithin a modulemod-
uleis specified asnodule@sub@insuh

An internal subprograrmsubdefined inside a subprograsubis specified asub@insuh

The name of the top level function, MAIN_, is not needed when specifying a function.

Variables
Variables are specified iidb in the same manner as they are specified in Fortran 95 or C.

In C, a structure member is specifiedwasiable membeior variable> membeif variable
is a pointer. In Fortran 95, a derived-type (i.e., structure) component is specified as
variablexsnember

In C, an array element is specifiedwamiabled membelf membey.... In Fortran 95, an array
element is specified a@riablel membermembey..)) . Note thatin Fortran 95, omission of
array subscripts implies a reference to the entire array. Listing of array contents in Fortran
95 is limited by theprintelements parameter (se®Miscellaneous Controls” on page

77).

Values

Numeric values can be of types integer, real, unsigned octal, or unsigned hexadecimal. Val-
ues of type real can have an exponent, for exargfléel0 .

In a Fortran 95 program, values of type complex, logical, and character are also allowed. Val-
ues of type complex are representedraalfpartimaginary-par). Character data is
represented ascharacter string' (the string is delimited by quotation marks, i.e., ascii 34).

Values of type logical are representedtas or .f.

Lahey/Fujitsu Fortran 95 User's Guide 79

Chapter 4 Command-Line Debugging with FDB

80

Addresses

Addresses can be represented as unsigned decimal numbers, unsigned octal numbers (which
must start with 0), or unsigned hexadecimal numbers (which must stardxvith0X). The
following examples show print commands with address specifications.

memprint 1024 (The content of the area addressedk@400 is displayed.)
memprint 01024 (The content of the area addressedkg214 is displayed.)
memprint 0x1024 (The content of the area addressedky024 is displayed.)

Registers
$BP Base Pointer
$SP Stack Pointer
$EIP Program counter

$EFLAGS Processor state register
$ST[0-7] Floating-point registers

Names

In Fortran 95 programs, a lowercase letter in the name (such as a function name, variable
name, and so on) is the same as the corresponding uppercase letter. The main program name
is MAIN_ and a subprogram name is generated by adding an underscaftef the corre-

sponding name specified in the Fortran source program. A common block name is also
generated by adding an underscorkdfter the corresponding name specified in the Fortran
source program.

Lahey/Fujitsu Fortran 95 User’s Guide

Windows Debugging
with WIinFDB

WinFDB is the Windows version of the FDB symbolic source-level debugger for Fortran 95,
C, and assembly programs. While debugging, you can watch the values of variables change
during program execution and set breakpoints with a mouse click. The WinFDB debugger
can run your program, set breakpoints, step a line at a time, view the values of variables in
your program in several different ways, and change the values of variables while running
your program. The current executable line and any breakpoints are indicated with markers
in the left margin of the source code display.

Before debugging your program you must compile it usingghswitch (se&Compiler and
Linker Switches”on page 17). They switch creates an additional file with debugging infor-
mation -- this file has the same name as the executable with the exteytgionDebugging
cannot be performed without the presence of the .ydg file in the same directory as the exe-
cutable file. WinFDB cannot be used on LF90 executables.

This chapter assumes a basic familiarity with Windows. It presents an overview of Win-
FDB's functionality. More detailed information is available through WinFDB’s on-line help.

How to Start and Terminate WinFDB

There are three ways to start the WinFDB debugger:

1. From the Windows command prompt
2. From the desktop icon or from the Start menu
3. From the Lahey ED developer

Starting from the command prompt
Type WINFDB followed optionally by the name of the executable file to be debugged:

Lahey/Fujitsu Fortran 95 User's Guide 81

Chapter 5 Windows Debugging with WinFDB

82

WINFDB [filename]

Unless the full path ofilenameis provided, WinFDB will assume it resides in the current
working directory.

Starting from the Windows desktop
Start the debugger by double-clicking the WinFDB icon if it is present (the desktop icon is
offered as an option at installation time); otherwise use the Start | Programs... dialog.

Starting from the ED Developer

There are two ways of starting the WinFDB debugger while in ED. You can click on the
Debug button from the toolbar, or sel@eiols|Debug. ED will assume the executable file
has the same name as the source file in the currently active edit window.

If prompted, enter the name of the executable file, including the filename extersien)(
and, if the file is not in ED’s current directory, a path. For example, if the executable file
myprog.exe s in a directory calledfrograms " below the root, you would enter

\programs\myprog.exe

Terminating the Debugger
Terminate the Debugger by selecting the Exit Debugger command from the File menu in the
debugger window.

Lahey/Fujitsu Fortran 95 User’s Guide

Debugger Window

Debugger Window

Menu bar

Tool bar

Current line
of execution

Status bar

See the figure below.

Fujitsu ‘Workbench Debugger- d:\demo‘\covitpl.exe - [... =]

File Program [Debug Mode ‘Window “iew Help

=8| x|

B ojo|noE| = iEEEE 2

i character=28 ch -

aaaaz do 48 kkk = 1,188088

afaa3 do 1 i=1.28

aaaay ch{i:iy = " '

gages 1 continue

a0aa6 call getarg{i1,ch)

aeaa7 do 18 i =1, 28

gaoag if{ch{i:i) .ne. " ') goto 28

gage? 18 continue

115150 B5) call c_test{ch)

aaat1 stop

a1z 28 do 381 = 1,28

ga813 if{ch{i:i) .eq. ' "} then

agat1hs chi{i:i) = "\@"

gaaic call c_test{ch}) -
4| | 3
Ready L
Debugger Window

The following items are visible in the above figure:

1. The source code display, which shows the the lines of source code corresponding to the
section of the program currently being executed. The left hand margin of this display shows
the line numbers of the code, along with symbols indicating the current line of execution and

breakpoints, if any.

2. The Menu bar, used for activating all WinFDB commands.

3. The toolbar, which contains icons that activate frequently used menu commands. These

commands can also be executed from the Menu Bar.

4. The status bar, which displays an explanation of each menu or toolbar command.

Lahey/Fujitsu Fortran 95 User’s Guide 83

Chapter 5 Windows Debugging with WinFDB

Debugger Menus

84

File Menu

The table below lists the File Menu commands:

Table 9: File Menu Commands

Command Name

Function

Open

Selects executable file to be debugged

Exit Debugger

Terminates the WinFDB debugger

Program Menu

The table below lists the Program Menu commands.

Table 10: Program Menu Commands

Command Name

Function

Restart Reruns the same program.
Specifies the argument(s) of the program to be debugg
Set Options and the runtime option(s) at execution (i.e., command-I

arguments)

Lahey/Fujitsu Fortran 95 User’s Guide

ed

Debug Menu

Debug Menu

The table below lists the Debug Menu commands.

Table 11: Debug Menu commands

Command Name

Function

Runs the program to be debugged; continues an execution

Go that stopped due to a breakpoint, etc.
Interrupt Pauses the execution of the visual step mode.
Runs the next statement. Runs up to the beginning of the
Step In function if the statement includes the function (i.e., “step
into”).
Step Over Runs up to the next line, assuming the function call is ope
line
Kill Stops the debugging session

Breakpoints...

For displaying, setting, and clearing breakpoints.

>

Watch... For selecting and displaying variables during executio
Registers Displays current values of CPU registers.
Traceback Displays the traceback information
Map Displays the modules currently loaded in memory.

Input Command...

mands” on page 67

Enter FDB commands for detailed debugging; the results
appear in the Input Command Log window. $d€2B"Com-

Mode Menu

The table below lists the Mode Menu commands.

Table 12: Mode Menu Commands

CommandName

Function

Visual Step

Activates the visual step mode

Lahey/Fujitsu Fortran 95 User’'s Guide

85

Chapter 5 Windows Debugging with WinFDB

Window Menu
The table below lists the Window Menu commands (note - the Window menu is displayed
only if one or more of the Debugger’s child windows are displayed):

Table 13: Window Menu commands

Command Name Function
Displays all open windows so that they overlap,
Cascade .) :
revealing the Title Bar for each window.
Tile Horizontally Displays debug information from left to right.
Tile Vertically Displays debug information from top to bottom

Arranges all the icons along the bottom of the win-

Arrange Icons
9 dow.

Close All Close all open windows

View Menu
The table below lists the View Menu commands:

Table 14: View Menu commands

Command Name Function
Toolbar Specifies whether to display the toolbar.
Status Bar Specifies whether to display the status bar.
Help Menu

The table below lists the Help Menu commands:

Table 15: Help Menu commands

Command Name Function
Help Topics Displays the help topics.
About Debugger Displays version information for the debugger.

86 Lahey/Fujitsu Fortran 95 User’s Guide

Using the Debugger

Using the Debugger

The debugger has the following functions:

» Starting the program to be debugged
» Setting and deleting breakpoints

* Running and stopping the program

» Displaying debug information

Starting the Program

The first step in debugging is to ensure that the program to be debugged is loaded into the
debugger. If the debugger is invoked from the command line or the ED Developer with an

executable file specified, the file is loaded automatically. If the executable file is not speci-
fied, follow these steps:

1. Click theOpen command in thé&ile menu to display th©pen File dialog box.

2. IntheOpen File dialog box, click or double-click the program to be debugged
(excutable file).

3. Click theOpen button.

After you complete these steps, start debugging by clickingstheommand in théebug

menu twice; once to load the executable, and once more to begin the debug session. The
source program window will open, and the finger icon will appear at the program starting
point. If the main program is compiled without specifying theoption, the source program
and the finger icon are not displayed.

Setting and Deleting Breakpoints

Setting a Breakpoint

You can stop program execution at any point by setting a breakpoint, allowing the status of
variables and registers to be examined. A breakpoint can only be set on an executable line of
code; it cannot be set at a comment or variable declaration, for example.

Start the program to be debugged and set the breakpoint when debugging enters start status.
To set a breakpoint at a line, position the mouse pointer on the line number in the source pro-
gram and click the left mouse button.

A breakpoint can also be set as follows:

1. Select the Breakpoints command from hebug menu to display th8reakpoints dia-
log box (see the figure below).

2. In the Position field in the Breakpoints dialog box, specify the line number for which the
breakpoint is to be set.

Lahey/Fujitsu Fortran 95 User’s Guide 87

Chapter 5 Windows Debugging with WinFDB

3. Click theAdd button.
4. Check that the line number appears in the breakpoint list; then clickKhatton.

5. The above step displays the breakpoint (flag) in the displayed source program. To set the
breakpoint for another line number, repeat steps (2) and (3).

Breakpaoints Ed

Eile: narne: oK |
Id:"xdemcu"-.cnv'xtplf

Cancel |
Location:
| Add

Ereakpointz List:

Hln R n =Ty Tl (wiEH
“dihdemotoowiipd 10
“dihdemotoowiipd 13

Delete

il

Clear

Releasing the Breakpoint
Some or all breakpoints that have been set can be deleted.

To delete a breakpoint at a line, position the pointer on the line number in the source program
(indicated with a flag) and click the left button.

A breakpoint can also be deleted as follows:

1. Selectth®reakpoints command from th®ebug menu to display the Breakpoints
dialog box.

2. IntheBreakpoints List field in the Breakpoints dialog box, click the line number
to be deleted.

3. Click theDelete button, then th©Kbutton.

All breakpoints can be deleted as follows:

88 Lahey/Fujitsu Fortran 95 User’s Guide

Running and Stopping the Program

1. Selectth®reakpoints command from th®ebug menu to display the Breakpoints
dialog box.
2. Click theClear button in the Breakpoints dialog box, then click thgbutton.

Running and Stopping the Program

Running the Program

To run the program until the first (or next) breakpoint, select@beommand from the

Debug menu. To step one line, entering a function call if present (“step into”), selestéhe
command from th®ebug menu. To step one line and treat a function call as one instruction
(“step over”), select thélext command from th®ebug menu.

You can execute the program in “Visual Step Mode” by usingviseal Step command
in theMode menu. Visual Step Mode allows you to run the program “slow motion”, seeing
each step as it is executed, and it works as follows:

When you select theéocommand from th®ebug menu in the visual step mode, the finger

icon moves line by line as the program is executed. This provides a means of visually check-
ing the program execution sequence. To pause the execution in the visual step mode, select
theinterrupt command from th®ebug menu.

Stopping the Program
To stop the program, select thdl command from th®ebug menu. The “debugging
enabled” status is released.

To restart debugging, see below.

Rerunning the Program
To restart debugging, reload the program by selectingtisgart command from th@ro-
gram menu.

Then, start the program by selecting thtecommand from th®ebug menu.

Displaying Debug Information

The debugger can display the following debug information:
* Variables

* Registers

» Traceback

e Load map
e Output

The displayed debug information is updated at the following times:

Lahey/Fujitsu Fortran 95 User's Guide 89

Chapter 5 Windows Debugging with WinFDB

* When a step run or line run is executed.
* When a program is stopped at a breakpoint.
* When a program running in the visual step mode is paused.

The display method for each type of debug information is listed below.

Displaying Variables
Do the following to display the contents of variables:

1. Select the Watch command from the Debug menu to display the Watch dialog box
(see the figure below).

2. Inthe Variable field, specify the variable to be displayed.

3. Click the Add button. The specified variable is then registered in the variable field.
When the program is executed, the current variable contents are displayed on the
right-hand side of the “=" symbol.

Variable contents are not displayed when any of the following is true:

» The program to be debugged has not been started.
* The local variable of another function or routine was specified.
» A non-used variable was specified.

To delete the registered variable, do one of the following:

1. Inthe Variable field, specify the variable name to be deleted and click the Delete
button.

2. Clickthe registered variable, then click the Delete button. If you click the Delete but-
ton without clicking a variable, the first variable in the variable field is deleted.

To delete all the variables registered in the variable field, click the Clear button.

i Watch

W ariable; I Cloze

i=0 Add

g2l = e Diclete

Clear

Flef |

i Ny

a0 Lahey/Fujitsu Fortran 95 User’s Guide

Displaying Registers

Displaying Registers

Do the following to display the register contents:
1. Select the Registers command from the Debug menu.

The current register contents are displayed in the Registers window (see the figure below).

SDRO 0x 00000008 (a) SDR1 =~
$DR2 Bx468b102% (1183518756) $DR3
$DR6 9x 00008008 39768) SDR7
4GS 9z 00000008 a) $FS

3ES 8x 00000023 (35} 3Ds
$EDI 0x 00000008 | a) SESI
$EBX 9x0000000c | 12} SEDX
$ECX 0x 00000004 (43 SEAX —
$EBP px0012Fe5y 1244756) SEIP
3cs px0000001b (27} SEFLA
$ESP Bx0012Fd58 12445 84) 4§58
Eflags flag detail ¢ 0-8 D=8 I-1 S=0 2-1
1] | v

Displaying a Traceback
Do the following to display a traceback:

1. Select the Traceback command from the Debug menu.

The current traceback information is displayed in the Traceback window (see the figure
below).

i Traceback E
#A 8xB8040813cd (m3gswh24 + B2351) () at line 71 in*l

#1 B=ze84A15ae (c_test + Bx2e) (argu={char =) Bz0d
#2 B=06483145 (MAIH_ + Bx1b9) () at line 18 in *d

-

4| | 4

Lahey/Fujitsu Fortran 95 User's Guide 91

Chapter 5 Windows Debugging with WinFDB

92

Displaying a Load Map

Do the following to display a load map:
1. Select the Map command from the Debug menu.

The current loaded modules are displayed in the Map window (see the figure below).

hddress Size File Hame -

Bz AaB4a1008 9z BA0A5a3an tp1.exe
Bx77dc1a89 Ax80\83bann ADUAPI 32 .d11
8z77e1108088 AxB084d208 RPCRT4.d11
8x77e71000 fx 0085 0end USER32 .d11
8z77ed1008 Gx00828400 GDI32.d11
Bx77fa1080 BxB885b4 A0 KERHEL32 .d11
Bx77Fr610080 AxB@BA5 63808 ntdll.dll

] 2

Entering FDB Commands

Do the following to enter FDB commands for more detailed debugging activity:

1. Select the “Input Command” command from the Debug menu.

2. Type acommand in the “Command” field in the “Input Command” dialog, or select

a command from the drop-down command history, or simply click OK to repeat the
last command (see FDBCommands” on page 67).

Lahey/Fujitsu Fortran 95 User’s Guide

Restrictions

The messages and results are displayed in the Input Command Log window (see the figure
below).

Fujitzu Workbench Debugger- d:\demotcovitpl.exe - [=] E4

@ FEile Program Debug Mode Window Miew Help _|E’|£|
|5 @ ponoE| FEEEE 2
The program: "d:wdemo‘couhtpl.exe"” starting. =

Breakpoint #8: MAIM {) at line 1 in “'d:‘demo‘c
#1 8x483897 (HMAIM_ + Bx18b) at line 7 in "'d:%
This breakpoint address is already defined.

#2 B8x483123 (MAIN_ + B8x197) at line 18 in "d:
#3 Bx48317d (MAIMN_ + Bx1f1) at line 13 in "d:
Stepped : MAIN () at line 2 in "d:\demo\couitp
Stepped : MAIH () at line 3 in "d:‘\demo\couitp
Stepped : MAIM () at line 4 in "'d:‘\demo‘\couitp
Continue program: "d:‘demo‘\couvitpi.exe"
Rrepakpnint #1: MATH_() at T1ine 7 in "d:zvdemnir
ﬁuntinue proqram: "d:\demu\cuu\tﬁ1.exe" -
14 3

Ready o

Restrictions

1. The Debugger will not debug a program that has been compiled by another vendor’s com-
piler, even if their debug option is specified. Other vendor’s debuggers will not debug a
program that has been compiled by LF95, even if the debug optigrig specified.

2. You can combine objects compiled by the Fujitsu Compiler with objects compiled by cer-
tain other compilers (s€&lixed Language Programming’on page 38). However, WinFDB

will not step into those parts of the programs which were compiled by the other vendor’s
compiler.

3. An adjustable array that is a dummy argument cannot be debugged if it appears at the
beginning of a procedure or a function.

Example:
line number
1 subroutine sub(x,y,i)
2 real x(5:i)
3 real y(i+3)

In this example, adjustable arraysndy cannot be debugged where the beginning of the
procedure is sub(line number 1).

Lahey/Fujitsu Fortran 95 User’s Guide 93

Chapter 5 Windows Debugging with WinFDB

94

4. The dummy argument of a main entry cannot be debugged at the sub entry.

Example:
subroutine sub(a,b)

entry ent(b)

In this example, the dummy argumentwhich is in the main entry’s argument list but not in
the sub entry ent, cannot be debugged. However, the dummy argument b, which is passed to
the sub entry ent, can be debugged.

5. A breakpoint cannot be set for an executable statement in an include file.
6. An array of an assumed size can be debugged only for the lower boundary.
7. A label cannot be debugged.

8. In include files that contain expressions or a #line statement, the C programs cannot be
debugged.

9. When in a Fortran program the continue statement has no instruction, the breakpoint is
automatically set at the next statement.

Example:
line number
1 integer i
2 :
3 assign 10 to i
4 10 continue
5 i=1

In the above example, if you set a breakpoint at line 4, the breakpoint is actually set at line 5.

10. If a Fortran program has a contains statement, the breakpoint cannot be set at its end
statement.

11. If the result of a function is one of the following, the step and next commands have no
effect:

- array

- derived type

- pointer

- character whose length is not a constant

12. An allocated array cannot be debugged except for the first element of the array.
13. If a pointer variable is a common element, the pointer variable cannot be debugged.

Example:
common /com/p
pointer (p.])

Lahey/Fujitsu Fortran 95 User’s Guide

Other Remarks

The above variable j cannot be debugged.

14. A dummy argument declared with the entry statement in a procedure cannot be debugged
except for the first element of the explicit-shape array and the top of the assumed type param-
eter string (including the pointervariable).

Example:
subroutine sl(a,i,c)
real a(i)
character*(*) c

entr)-/ ent(b,j,d)
The above cannot be debugged exeagpf andc(1:1)

15. When debugging a program using the VSW function, please note that Execution should
be used to restart the execution after returning from the call-back routine. If Step or Line is
used to restart the execution, breakpoints may not be ignored.

Other Remarks

1. In source level debugging, the executable file (.EXE) and its debugging information file
(.YDG) must exist in the same directory. In the same way, the dynamic link library (.DLL)
and its debugging information file must exist in the same directory.

2. In source level debugging, the prolog instructions of each function may cause the follow-
ing features not to work correctly:

- traceback indication
- next command

3. When searching the source files, the Debugger refers to the environment variable
FDB_SRC_PATH. There are two ways of specifying the environment variable:

Example 1: In the command prompt
c:\> set FDB_SRC_PATH=c:\users\fujitsu\prog;d:\common\lib\src
c:\> winfdb

The above specifies the full pathnames of the directory in which the source files exist. If there
are more than two directories, you may specify them with the separator ";". Then, invoke the
Debugger.

Example 2: In the Control Panel (Windows NT only)
Variable(V): FDB_SRC_PATH
Value(A): c:\users\fujitsu\prog;d:\commonl\lib\src

The above specifies environment variable FDB_SRC_PATH to each user’s environment
variable of the System in the Control Panel. In Windows 95/98, specify the environment vari-
able FDB_SRC_PATH in AUTOEXEC.BAT.

Lahey/Fujitsu Fortran 95 User’s Guide 95

Chapter 5 Windows Debugging with WinFDB

4. If the debug option is specified when linking, object filenames must be specified with full
pathnames except for the objects in the current directory.

5. If objects are linked with the debug option and static link libraries are in a different direc-
tory from the object files and debugging information files(.YDG), to debug the executable
file, specify the full path-names of the object files and the debugging information file to the
environment variable FDB_MERG_PATH.

Example: Specify the environment variable FDB_ MERG_PATH
set FDB_MERG_PATH=c:\users\fujitsu;e:\apl\users\lib\obj

In the above, the directory name is specified with full pathnames separated by a semicolon.
Note: The object file and debugging information file are searched as follows:
1. The directories specified in the environment variable FDB_MERG_PATH.

2. The directories which store the user’s library.

96 Lahey/Fujitsu Fortran 95 User’s Guide

LM Librarian

The Lahey Librarian, LM, can be used to create, modify, and inspect object library files.
Command-Line Syntax

LM [old-library-name][switches] [commands], [[list-filename][,[new-library-name]}

Where:
old-library-nameis the name of an existing library used as input.

switcheds zero or more command-line switches (described below).
commandss zero or more commands (described below).
list-filenameis the name of the listing file.

new-library-names the name of a new library to create if you do not want to update the old
library.

A file name can be specified on the command line as a complete file fdematne exi) or

can be given without an extension, in which case 386|LIB supplies a default extension of
.obj foran objectfile andiib for alibrary. There is no default extension for a listing file.

In addition, a complete or partial path may be specified with the file name. If none is given,
the current default device and directory are assumed.

There should be no delimiter between multiple commands or switches.

Switches

[EXTRACTALL

The [EXTRACTALL switch extracts all object modules from a specified library. Each
extracted object module becomes an object file.

Lahey/Fujitsu Fortran 95 User's Guide 97

Chapter 6 LM Librarian

Example
LM mylib/extractall;

/IPAgesize

The /PAgesize switch allows you to specify the page size (in bytes) of a library. Specifying
a bigger page size will enable you to store more objects. A smaller page size will resultin a
smaller library. The default page size is either 16 bytes or the page size of the existing
library.Valid page sizes are integral powers of 2 from 16 to 32768, inclusive. The syntax for
/PAgesize is:

IPA[gesizé:page-size
wherepage-sizas the page size in bytes.

Example
LM mylib/pa:16384;

/Help

The /Help switch prints a summary of syntax and usage for the library manager. The syntax
for /Help is:

/H[elp]

Example
LM/H;

Commands

98

Add Modules

The addition symbol«) appends the object file(s) following eacH ‘symbol to the end of
the library. Pathnames can be used if the object file is not in the current directory.

Example
LM mylib +myobj;

The objectmyobj.obj is added tanylib.lib

Delete Modules
The subtraction symbol § preceding an object module name deletes that module from the
library specified withold-library-name

Lahey/Fujitsu Fortran 95 User’s Guide

Replace Modules

Example
LM mylib -myobj;

The object modulenyobj is deleted frommylib.lib

Replace Modules

The subtraction and addition symbols § combine to form the Replace Modules command.
The Replace Modules command, followed by an object module name, replace that module
by deleting it from the library and then appending an object file with the same name as the
deleted module to the library.

Example
LM mylib -+myobj-+myobj2;

The object modulesiyobj andmyobj2 are replaced witimyobj.obj andmyobj2.obj

Copy Modules
The asterisk symbok{ copies the module following the asterisk into an object file with the
same name.

Example
LM mylib *myobj;

The object modulenyobj from mylib.lib is copied tomyobj.obj . The object module
myobj in the library is unaffected.

Move Modules

The subtraction symbol followed by an asterisk Y forms the Move Modules command,
which moves a specified object module to an object file of the same name.

Example
LM mylib -*myobj-*myobj2;

The object modulesiyobj andmyobj2 are deleted fronrmylib.lib andmyobj.obj and
myobj2.0bj are created.

Response Files

It is possible to place commonly used or long LM command-line parameters in a response
file. LM command-line parameters are entered in a response file in the same manner as they
would be entered on the command line. A new line in a response file is treated like a comma

Lahey/Fujitsu Fortran 95 User’s Guide 99

Chapter 6 LM Librarian

on the LM command line. The ampersand character (&) is used to continue a line in a com-
mand file. The ampersand character is valid only after an object module name or object
filename. A blank line is interpreted as the end of input to LM.

To invoke the response file, type:
LM @response-filename

whereresponse-filenamis the name of the response file.

Example

oldlib

+object+object2-module3&

*module4

listfile.Ist

newlib
This adds the objectshject andobject2 to what was inoldlib.lib , removes
module3 , and copiesnodule4 to module4.obj . The listing file is written to
listfile.Ist and the new library is calledewlib.lib

Interactive Mode

100

LM can be operated in interactive mode by typing just LM at the command prompt. You will
be prompted for input. The ampersand character is used to continue a long line of input. The
following session would perform the same operations as the command file above:

Example
Im
Library name: oldlib
Operations desired: +object+object2-module3&
Operations desired: *module4
List filename: listfile.Ist
Output library name: newlib

Lahey/Fujitsu Fortran 95 User’s Guide

Automake

Introduction

What Does It Do?

AUTOMAKE is a simple-to-use tool for re-building a program after you have made changes
to the Fortran and/or C source code. It examines the creation times of all the source, object
and module files, and recompiles wherever it finds that an object or module file is non-exis-
tent, empty or out of date. In doing this, it takes account not only of changes or additions to
the source code files, but also changes or additions to MODULEs and INCLUDEA files -
even when nested. For example, if you change a file which is INCLUDEd in half a dozen
source files, AUTOMAKE ensures that these files are re-compiled. In the case of Fortran 90,
AUTOMAKE ensures that modules are recompiled from the bottom up, taking full account
of module dependencies.

How Does It Do That?

AUTOMAKE stores details of the dependencies in your program (e.gAfiMCLUDE:S file

B) in a dependency file, usually calletitomake.dep '. AUTOMAKE uses this data to
deduce which files need to be compiled when you make a change. Unlike conventional
MAKE utilities, which require the user to specify dependencies explicitly, AUTOMAKE
creates and maintains this data itself. To do this, AUTOMAKE periodically scans source
files to look for INCLUDE and USE statements. This is a very fast process, which adds very
little to the overall time taken to complete the update.

How Do | Set It up?

The operation of AUTOMAKE is controlled by a configuration file which contains the
default compiler name and options, INCLUDE file search rule, etc. For simple situations,
where the source code to be compiled is in a single directory, and builds into a single execut-

Lahey/Fujitsu Fortran 95 User’s Guide 101

Chapter 7 Automake

able, it will probably be possible to use the system default configuration file. In that case there
is no need for any customization of AUTOMAKE— just typer to update both your pro-
gram and the dependency file.

In other cases, you may wish to change the default compiler name or options, add a special
link command, or change the INCLUDE file search rule; this can be achieved by customizing
a local copy of the AUTOMAKE configuration file. More complex systems, perhaps involv-
ing source code spread across several directories, can also be handled in this way.

What Can Go Wrong?

Not much. AUTOMAKE is very forgiving. For example, you can mix manual and AUTO-
MAKE controlled updates without any ill effects. You can even delete the dependency file
without causing more than a pause while AUTOMAKE regenerates the dependency data. In
fact, this is the recommended procedure if you do manage to get into a knot.

Running AUTOMAKE

To run AUTOMAKE, simply typeamn. If there is a configuration fileAUTOMAKE.FIQ in
the current directory, AUTOMAKE reads it. Otherwise, it starts the AUTOMAKE Config-
uration file editor, AMEDIT.EXE.

The AUTOMAKE Configuration File Editor

102

The AUTOMAKE Configuration File Editor (AMEDIT) is a Windows-based utility for cre-
ating and maintaining configuration files for use by AUTOMAKE. You can start it from a
Windows 95 or NT command prompt by typing

amedit
to create a new file, or
amedit myprojecffig

to edit an existing one. AMEDIT is also started automatically when AUTOMAKE first runs
in a directory with nC(AUTOMAKE.FIGfile.

Lahey/Fujitsu Fortran 95 User’s Guide

The AUTOMAKE Configuration File Editor

AUTOMAKE is running for the first time in this directory. In
order to continue, 1t needs to know at least the following:

* What compiler to use
* What files to compile
* The name of the executable file

Please check the entries below, or, if your program i more
complex, enter the AUTOMAKE editor to set up your project.

Compiler |Lahey Fortran 80 - Debug j‘

Campilation files |*.f9E| |

Target fila [Target.exe =

If you are creating a new file, the editor first presents a dialog containing a set of options suit-
able for most simple projects. The defaults are:

» touse LF95 with switches set for debugging. You can select other options, including
LF95 with switches set for optimization, from the drop-down list.

» to compile all files fitting*.f90 in the current directory. This can be changed, for
example ta-.for , by typing in the second box.

» tocreate an executable file calledget.exe . This can be changed by typing in
the third box, or by using the file selection dialog (click on the button at the right of
the box).

When you are finished, click “OK” to create the file.

If your project is more complicated than that—for example if you have files in more than one
directory, or you need special linker instructions—click on the “Editor” button and a new dia-
log with many more possibilities is displayed.

Lahey/Fujitsu Fortran 95 User’s Guide 103

Chapter 7 Automake

::-.—-‘-— Automake Configuration File Editor - automake fig

File
Seneral —Link Phase
Epilatinn 1 Target file |Target.exe Iﬁl
Link command |@”9EI @%rf -exe Yoex |J
options Ll | l”
Comments

Ei [

¥ |4 | Add Compilation 2l Lt Delete Phase Exit |

The pane on the left-hand side lists the sections iIMBIBOMAKE.FIGfile. When you click

on the section in the left-hand pane, details appear in the right hand pane. Typically there is
a general section, which specifies options, such as debug switches, which relate to the entire
process. One or more compilation sections follow this, each specifying a set of files to be
compiled together with the compiler options. Finally, there is usually a link section, in which
the link command is specified.

The link section, shown above, allows you to enter the executable file name and the link com-
mand (seéLINK=" on page 109 for an explanation of place markers suétraignd%ex).

There is a drop-down list of linker options which, once selected, can be added to the link com-
mand by clicking on the ‘+’ button. Finally, you can add comments as required in the box at
the bottom of the right-hand pane.

Compilation sections are similar to link sections, but with a few more options:

104 Lahey/Fujitsu Fortran 95 User's Guide

The AUTOMAKE Configuration File Editor

::-.—-‘-— Automake Configuration File Editor - automake fig

File
General —Cormnpilation Phasze
Link Compilation files ~ [* 80 |

Compile command |@I19E| -ap -chk -f50 -g -pca -stehk -trace -xref -w -c %A |J

options Ll |

Include files |

Ohject directory

I
Ohject extension |
I

Module directary

Cormrments

=l B

Aol ik Delete Phase Exit |

This time you must specify the files to be compiled (8€&.ES=" on page 107) and the
compile command (sé€OMPILE=" on page 107). As in the LINK section, there is a
drop-down list of compiler options that can be appended to the compile command by clicking
on the ‘+" button.

¥ |4 | Add Compilation

The other entries are all optional. They are:

» The directories to be searched for INCLUDE files (8&CLUDE=" on page 110)
» The target directory for object files (s€®@BJDIR=" on page 110)

» The object file extension (sé®BJEXT=" on page 110)

* The target directory foMODfiles (see’MODULE=" on page 110)

« Comments

New compilation sections can be added by clicking on “Add Compilation”, and deleted by
clicking on “Delete Phase”. The order of compilation sections can be changed using the
arrow buttons at the bottom left.

The General Section includes three check boxes:

Lahey/Fujitsu Fortran 95 User’s Guide 105

Chapter 7 Automake

» To specify whether AUTOMAKE should continue after a compilation error (see
"QUITONERROR” on page 111 antNOQUITONERROR” on page 111).

» To specify whether debugging data should be written to a file calléEtDMAKE.DBG
(see’DEBUG” on page 111).

* To specify whether a simple make file called AUTOMAKE.MAK should be written
as an aid to debugging (S84AKEMAKE” on page 111).

The Advanced button gives access to options that are not relevant for LF95.

f’,-,a‘- Automake Configuration File Editor - automake fig

—General

Eiatl;npllatlnn ! I Qwit on compilation ermor

I Create file with debugging information

[Create make style dependency file for debugging
Comments

Ei [

¥ |4 | Add Compilation

Aol ik | Delete Phase

Exit |

The AUTOMAKE Configuration File

The AUTOMAKE configuration file is used to specify the compile and link procedures, and
other details required by AUTOMAKE. It consists of a series of records of the form

keywordvalue

106 Lahey/Fujitsu Fortran 95 User's Guide

The AUTOMAKE Configuration File

or
keyword

wherekeywordis an alphanumeric keyword name, aralueis the string of characters
assigned to the keyword. The keyword name may be preceded by spaces if required. Any
record with a#', " ' or *' as the first non-blank character is treated as a comment.

The keywords which may be inserted in the configuration file are:

LF95

Equivalent to specifying the default LF95 compile and link commands.

COMPILE=@If95 -c %fi -mod %mo
LINK=@If95 %o0b -exe %ex -mod %mo

TheLF95 keyword should appear in armytomake.fig file that is to be used with LF95.

FILES=

Specifies the names of files which are candidates for re-compilation. The value field should
contain a single filename optionally including wild-cards. For example,

FILES=*.f90
You can also have multiple FILES= specifications, separated by AND keywords.

FILES=F90*.F90
AND
FILES=F77*.FOR
AND

Note that, with each new FILES= line. the default COMPILE= is used, unless a new COM-
PILE= value is specified after the FILES= line and before AND.

Note also that, if multiple FILES= lines are specified, then the %RF place marker cannot be
used in any COMPILE= lines.

COMPILE=

Specifies the command to be used to compile a source file. The command may contain place
markers, which are expanded as necessary before the command is executed. For example,

COMPILE=@If95 -c %fi

Lahey/Fujitsu Fortran 95 User’s Guide 107

Chapter 7 Automake

The string%fi ' in the above example is a place marker, which expands to the full name of
the file to be compiled. The following table is a complete list of place markers and their

meanings:

Table 16: COMPILE= Place Markers

Place Marker

Meaning

%SD

expands to the name of the directory containing the source file -
including a trailing\'".

%SF

expands to the source file name, excluding the directory and exten-

sion.

%SE

expands to the source file extension—including a leadihgFor
example is the file to be compiled t3source\main.for ', %SD
expands tof\source\ ', %SFto ‘'main ', and%SHEo "for .

%0OD

expands to the name of the directory containing object code, as
ified using theOBJDIR= command (see below), including a trailing
\

5pec-

%O0E

expands to the object file extension, as specified usin@BIEXT=
command (see below), including a leading

%ID

expands to the INCLUDE file search list (as specified using
INCLUDE=(see below))

%MO

expands to the name of directory containing modules (as specified

usingMODULE+see below))

%RF

expands to the name of a response file, created by AUTOMAKE
containing a list of source files. #hRHAs present, the compiler is
invoked only once.

%FI

is equivalent tSD%SF%SE

COMPILE=@If95 -c %fi -mod %mo
COMPILE=@If95 -¢ @%rf -1 %id

Itis possible to invoke the compiler using a command file (batch file, shell script etc.). How-
ever, on PCs, it is necessary to preface the batch file nameGith" or COMMAND/CFor

example

COMPILE=CALL fcomp %fi

Note that with LF95 the -c switch should always be used in a COMPILE= line.

108 Lahey/Fujitsu Fortran 95 User's Guide

The AUTOMAKE Configuration File

TARGET=

Specifies the name of the program or library file which is to be built from the object code.
Note that you will also have to tell the linker the name of the target file. You can do this using
a%EXplace marker (which expands to the file name specified UBMRGET3.

TARGET=f:\execs\MYPROG.EXE

If there is NOTARGET=keyword, AUTOMAKE will update the program object code, but will
not attempt to re-link.

LINK=

Specifies a command which may be used to update the program or library file once the object
code is up to date:

LINK=@If95 %o0b -exe %ex -mod %mo'
LINK=@If95 %o0d*%oe -exe %ex -mod %mo’
LINK=@If95 %rf -exe %ex -mod %mo'
You could use a batch file calleidat ' by specifying
LINK=CALL L
The following place markers are allowed in the command specified wsiNK- .

Table 17: LINK= Place Markers

Place Marker Meaning

expands to the name of the directory containing object code, as spec-
%0D ified using theOBJDIR= command (see below), including a trailing
\

expands to the object file extension, as specified usin@BEEXT=

0,
#OE command (see below), including a leading '

expands to a list of object files corresponding to source files spe¢

0,

#oB fied using allFILES= commands.

%EX expands to the executable file name, as specified USNRGET=

%MO expands to the name of directory containing modules (as specified
0 usingMODULE+£see below))

%RF expands to the name of a response file, created by AUTOMAKE

containing a list of object files.

Lahey/Fujitsu Fortran 95 User’s Guide 109

Chapter 7 Automake

110

INCLUDE=

May be used to specify the INCLUDE file search list. If no path is specified for an
INCLUDEd file, AUTOMAKE looks first in the directory which contains the source file, and
after that, in the directories specified using this keyword. The directory names must be sep-
arated by semi-colons. For example, on a PC, we might have:

INCLUDE=C:\include;C:\include\sys

Note that the compiler will also have to be told where to look for INCLUDEG files. You can
do this using &sID place marker (which expands to the list of directories specified using
INCLUDE).

SYSINCLUDE=

May be used to specify the search list for system INCLUDE files (i.e. any enclosed in angled
brackets), as in

#include <stat.h>

If no path is specified, AUTOMAKE looks in the directories specified using this keyword. It
does not look in the current directory for system INCLUDE files unless explicitly instructed
to. The directory names followingYSINCLUDE=must be separated by semi-colons.

OBJDIR=

May be used to specify the name of the directory in which object files are stored. For
example,

OBJDIR=0BJ\

The trailing\ ' is optional. IfOBJDIR=is not specified, AUTOMAKE assumes that source
and object files are in the same directory. Note that if source and object files are not in the
same directory, the compiler will also have to be told where to put object files. You can do
this using a@oOplace marker (which expands to the directory specified uSIBIDIR).

OBJEXT=
May be used to specify a non-standard object file extension. For example to specify that
object files have the extensiaabc ', specify

OBJEXT=ABC

This option may be useful for dealing with unusual compilers, but more commonly to allow
AUTOMAKE to deal with processes other than compilation (for example, you could use
AUTOMAKE to ensure that all altered source files are run through a pre-processor prior to
compilation).

MODULE=

May be used to specify the name of the directory in which module files are stored.

MODULE=MODS\

Lahey/Fujitsu Fortran 95 User’s Guide

Multi-Phase Compilation

The trailing\ ' is optional. IfMODULES4s not specified, AUTOMAKE assumes that source
and module files are in the same directory. Note that if source and module files are not in the
same directory, the compiler will also have to be told where to put module files. You can do
this using @sM@lace marker (which expands to the directory specified uSiOQULER

DEP=

May be used to over-ride the default dependency file name.

DEP=THISPROG.DEP

causes AUTOMAKE to store dependency datathisprog.dep ' instead of
‘automake.dep '

QUITONERROR

Specifies that AUTOMAKE should halt immediately if there is a compilation error.

NOQUITONERROR
Specifies that AUTOMAKE should not halt if there is a compilation error.

MAKEMAKE

Specifies that AUTOMAKE should create a text file callldTOMAKE.MAKoNtaining
dependency information.

DEBUG

Causes AUTOMAKE to write debugging information to a file call@dTOMAKE.DBG

LATESCAN

Delays scanning of source files until the last possible moment, and can, in some cases,
remove the need for some scans. However this option is NOT compatible with Fortran 90
modules.

CHECK=

May be used to specify a command to be inserted after each compilation. A typical applica-
tion would be to check for compilation errors. For example, under MS-DOS:

CHECK=IF ERRORLEVEL 2 GOTO QUIT

would cause the update procedure to abort if there is a compilation error.

Multi-Phase Compilation

Sometimes, more than one compilation phase is required. For example, if source files are
stored in more than one directory, you will need a separate compilation phase for each direc-
tory. Multiple phases are also required if you have mixed C and Fortran source, or if you need
special compilation options for particular source files.

Lahey/Fujitsu Fortran 95 User’s Guide 111

Chapter 7 Automake

The AND keyword may be inserted in your configuration file to add a new compilation phase.
You can reset the values BfLES=, COMPILEs INCLUDE=, OBJDIR=, OBJEXT=andMOD-
ULE=for each phase. All default to the value used in the previous phase, except that
OBJDIR= defaults to the new source directory.

The following example shows how this feature might be used with the LF95 compiler. The
same principles apply to other compilers and other platforms.

Example Configuration file for Multi-Phase

Compilation

Compilato n 1 - files in current directory

LF95

INCLUDE=\include

FILES=*.f90

OBJDIR=0bj

COMPILE=@If95 -c %fi -i %id -0 %o0d%sf%oe -tp -01
AND

Compilatio n 2 - files in utils\

INCLUDE= defaults to previous value (\include)

if OBJDIR= were not set, it would default to utils (NOT obj)
FILES=utils*.fo0

OBJDIR=utils\obj

COMPILE=@If95 -c %fi -i %id -0 %od%sf%oe -sav -chk
Relink

TARGET=current.exe

LINK=@If95 %o0b -exe %ex

Automake Notes

» As AUTOMAKE executes, it issues brief messages to explain the reasons for all
compilations. It also indicates when it is scanning through a file to look for
INCLUDE statements.

» Iffor any reason the dependency file is deleted, AUTOMAKE will create a new one.
Execution of the first AUTOMAKE will be slower than usual, because of the need
to regenerate the dependency data.

AUTOMAKE recognizes the INCLUDE statements in all common variants of For-
tran and C, and can be used with both languages.

« When AUTOMAKE scans source code to see if it contains INCLUDE statements, it
recognizes the following generalized format:

» Optional spaces at the beginning of the line followed by..
« An optional compiler control character, '%', '$' or '#', followed by..

The word INCLUDE (case insensitive) followed by..

112 Lahey/Fujitsu Fortran 95 User's Guide

Automake Notes

An optional colon followed by..

The file name, optionally enclosed between apostrophes, quotes or angled brackets.
If the file name is enclosed in angled brackets, it is assumed to be in one of the direc-
tories specified using the SYSINCLUDE keyword. Otherwise, AUTOMAKE looks

in the source file directory, and if it is not there, in the directories specified using the
INCLUDE keyword.

If AUTOMAKE cannot find an INCLUDE file, it reports the fact to the screen and
ignores the dependency relationship.

AUTOMAKE is invoked using a batch file calleM.BAT. There is seldom any rea-
son to modify the command file, though it is very simple to do so if required. It
consists of two (or three) operations:

Execute AUTOMAKE. AUTOMAKE determines what needs to be done in order to
update the system, and writes a batch file to do it. The switches which may be
appended to the AUTOMAKE command are:

TO=specifies the name of the output command file created by AUTOMAKE.

FIG= specifies the name of the AUTOMAKE configuration file.

Execute the command file created by AUTOMAKE.

Delete the command file created by AUTOMAKE. This step is, of course, optional.

Lahey/Fujitsu Fortran 95 User’s Guide 113

Chapter 7 Automake

114 Lahey/Fujitsu Fortran 95 User's Guide

The Sampler Tool

Tuning a program can significantly reduce its execution time. A specific section of a program
may take most of the processing time, so tuning that section may greatly speed up the pro-
cessing of the program. The Sampler tool helps you tune programs and detect bottlenecks.

Remarks:

1. When you tune a program, start by checking the cost for each function. If the cost of a func-
tion is high, the following two factors may be causes:

a. The function may include a redundant section.

b. The function itself may have no problems; however, it may be called excessively.

For the first cause, check the cost of the function source. For the second cause, check the
source cost of the function calling this function.

2. Thecostdescribed in this chapter is the summed result of execution locations extracted per
a specific time unit (per second, for example) based on a given sampling frequency. Toillus-
trate, the cost of function f in a program is the number of locations belonging to f from the
locations extracted per a specific time value.

Starting and Terminating the Sampler

Starting the Sampler
There are two ways to start the sampler:

1. From the Windows desktop icon
2. From the Windows command prompt

Starting from the Sampler icon
Start the sampler by double-clicking the Sampler icon on your Windows desktop if you chose
to have an icon at installation time; otherwise start it from3keet|Programs menu.

Lahey/Fujitsu Fortran 95 User's Guide 115

Chapter 8 The Sampler Tool

Starting from the Command prompt
Type

SAMP
followed by the <Enter> key.

Terminating the Sampler
To terminate the sampler, choose the Exit Sampler command from the File menu in the sam-
pler window.

The Sampler Window

See the figure below for the sampler window.

[.Ea Fujitsu Workbench Sampler - Calling Tree - d:\demo\cov\tpl_exe
File Collect Dizplay View Window Help
2| &85 % =[9)s] 2
E| Function Cost - d:\demo\cov\tpl.exe
83 _func_1_
[] 19 _ ncov_block
[| 18 HtSaveKey |
6 HtWriteFile
4 _ ncov_entra
= acrtused
¢4 Calling Tree - d:\demo\coviipl. exe M=l E jwe_xend
‘I call unex
__ GetExceptD
_C_tESt—_ _g_ach)
GetHoduleFil
GetLargestCo
= RtlCreateHea ™
I LA
_func_f_ _func_1_
— | .
<] [_‘d
Ready

The above figure illustrates the following items:

1. The Toolbar, which contains icons that activate frequently used commands. These
commands can also be executed from the Menu Bar.

116 Lahey/Fujitsu Fortran 95 User's Guide

Sampler Menus

2. The Status Bar, which displays an explanation of each menu command.
3. The “Function Cost” and “Calling Tree” windows, which are described later in this
chapter.

Sampler Menus
The sampler menus are outlined below.

File Menu
The table below lists the File menu commands.

Table 18: Commands for the File Menu

Command Function
SEIeCUFIES | f1c anc specifying sampling data output (emp) .
Print Print the displayed tuning information
Print Preview Display pages as they would appear if printed
Print Setup Configure the printer
Exit Sampler Terminate the Sampler

Remarks:

« The “Print” and “Print Preview” commands are displayed only if tuning information
is being displayed.

* The “Print” and “Print Preview” commands cannot be used for the function calling
relationship diagram.

Lahey/Fujitsu Fortran 95 User’s Guide 117

Chapter 8 The Sampler Tool

Sampler Menu

The table below lists the Sampler menu commands.

Table 19: Commands in the Sampler Menu

Command

Function

Execute

Run the program to collect tuning information

Executing Options

Specify command line arguments and runtime
options to the program and execute the program
collect tuning information

Function Cost

Display the cost for each function

Source Cost

Display the cost for each program unit

Calling Tree

Display the function calling relationship diagram
(calling tree)

Program Type: Fortran

Specify whether to display Fortran program
information for the Sampler Data

Program Type: C

Specify whether to display C program
information for the Sampler Data

Program Type: Other

or Fortran program information for the Sampler
Data.

Source File Directory

Specify the source file directory

Specify whether to display information other than|C

View Menu

The table below lists the View menu commands.

Table 20: Commands in the View Menu

Command

Function

Status Bar

Specify whether to display the status bar.

Toolbar

Specify whether to display the toolbar.

File Information

Specify whether to display file information

118 Lahey/Fujitsu Fortran 95 User's Guide

Using the Sampler

Window Menu

The table below lists the Window menu commands.

Table 21: Commands in the Window Menu

Command

Function

Cascade

Display all open windows so that they overlap,
revealing the Title bar for each window.

Tile Horizontally

Display the listed tuning information from left to
right.

Tile Vertically

Display the listed tuning information from top to
bottom.

Arrange Icons

Arrange all the icons along the bottom of the win
dow.

Close All

Close all open windows

Note: the Window menu is displayed only if tuning information is being displayed.

Help Menu

The table below lists the Help menu commands.

Table 22: Commands in the Help Menu

Command

Function

Help Topics

Display the Sampler help topics

About Sampler

Display version information for the Sampler.

Using the Sampler

The functions of the sampler are listed below. This section explains how to use these

functions.

» Collecting the tuning information
» Displaying the tuning information

Lahey/Fujitsu Fortran 95 User’s Guide 119

Chapter 8 The Sampler Tool

120

Collecting Tuning Information

In order to generate tuning information, the program must be compiled witlréloe

option (seé-[N]JTRACE” on page 33). To collect tuning information, run the program once,
following the steps outlined below:

1. Inthe sampler, select the “Select Files...” command from the File menu. The Select
Files dialog box appears.

2. Specify the Sample Data File, either by typing it in or browsing. The file must have
an extension of .smp. Note that selection through browsing will set the default
directory.

3. Specify the Executable File, either by typing it in or browsing. The file must have an
extension of .exe.

4. Select one of the following methods of running the program:

To run the program with the existing execution options:

a. Select the “Execute” command from the Sampler menu to run the program and col-
lect its tuning information, allowing the program to terminate normally.

b. To abort execution, click the Stop button in the window that is displayed while the
program is running (this may interfere with generation of sampler data).

To run the program with modified execution options (i.e., command-line arguments):

a. Select the “Executing Options” command from the Sampler menu. The Executing
Options dialog box appears.

b. Inthe Executing Options dialog box, specify the executing option. If the user pro-
gram uses default input-output, specify a redirection function such as “<“ or “>" in
the executing option.

c. Click the OK button.

d. Execute the program and collect its tuning information, allowing it to terminate
normally.

e. To abort execution, click the Stop button in the window that is displayed while the
program is running (this may interfere with generation of sampler data).

Note: In Windows 9x, if the message “Out of environment space” is displayed while running

a console-mode program from the Sampler, it means the environment space of the DOS shell
must be increased. This may be accomplished by by adding the line (assuming that the system
install directory is “c:\windows”)

SHELL=C:\WINDOWS\COMMAND.COM /P /E:32768

to the CONFIG.SYS file. It may also be accomplished by modifying the “Initial Environ-
ment” property of the file COMMAND.COM using Windows explorer.

Displaying Tuning Information
The sampler displays the following three items of tuning information.

Lahey/Fujitsu Fortran 95 User’s Guide

Displaying the Cost for Each Function

» Cost for each function
» Cost per line of the source level
» Function calling relationship diagram

Recompilation is not required for an object generated with the Fujitsu Fortran compiler. To
use the C compiler, specify the /Kline option at compilation.

The method of displaying each item of information is listed below.

Displaying the Cost for Each Function

Do the following to display the cost for each program unit:

In the sampler window, select tif@inction command from th®isplay menu. The func-
tion cost window appears. (See the figure below.)

Bl Function Cost - d:\demo\cov\tpl.exe

83 _func_1_ {d:\demo® =
19 _ ncov_block
HtSaveKey (E:3WHT4I
HtWriteFile (E:\HI
_ ncou_entrance
__acrtused
_jwe_xend
___call_unexpected
___GetExceptDLLinfo]
_g_aqcj
GetHoduleFileHameR
GetLargestConsoleW
RtlCreateHeap (E:*
HtOpenDirectoryObije
RtlResetRtlTranslal
__GetExceptDLLinfo
m3gswh24 {(d:ywdem ™

A v

-
f R Y S A S S S S R~ _ S

Displaying the Cost Per Line

Do the following to display the cost per line of the source level:

1. In the sampler window, select the Source command from the Display menu. The Open File
dialog box appears.

2. In the Open File dialog box, select the corresponding source program and click the Open
button. The cost per line of the source level appears. (See the figure below for function cost
per line of the source level window.)

The following procedures can also be used to display the cost per line of the source level:

Lahey/Fujitsu Fortran 95 User’s Guide 121

Chapter 8 The Sampler Tool

Double clicking the function name that corresponds to the source code in the function cost
window also shows the cost per line of the source code level.

214

215 ivcorr = =110

216 do 888 kkk = 1,70000000

217 B9 ivoomp = i2r0160T, 10%i2r016(2,3)

218 11 40160 if Civoomp + 1103 20080, 10180,

219 a6 10160 ivpass = ivpass + |

220 go to 0161

227 207160 iviail = ivfail + 1

277 a1 081 cont e |

223 ivtrom = 17

224 29 cvcomp =

225 ivcomp = 0

s a0 cveorr = 0017

227 a0 cvoome = c2n00100,1)

278 132 888 cont inue

229 if Covoomp Leq. "c017) ivcomp

230 if Civecomp - 1) 20170, 10170, 2

231 10170 ivpass - ivpass + | =
[« | M

The Calling Relationship Diagram

Do the following to display the function calling relationship diagram.
1. In the sampler window, select the Reference command from the Display menu.
2. The calling tree window appears. (See the figure below for the calling tree window.)

Click the left button in the box of file names in the calling tree window to display the Focus
and Detail menus. Select the Focus menu to display the calling relationship diagram from the
function; select the Detail menu to display detailed information. If the Focus Level is more

122 Lahey/Fujitsu Fortran 95 User's Guide

The Calling Relationship Diagram

than 1, press the left button outside the box to display the Top Level and Previous Level
menus. Select the Top Level menu to display the relationship diagram of jump level 1. Select
the Previous Level menu to display the previous relationship diagram.

i@ Fujitsu Workbench Sampler - _sn707_ _ (O] %]
File Collect Dizplay Wiew ‘window Help

2|38 =] =3+ 2]

six Calling Tree - d-\demo\cov\ipl_exe

snf07_ in didemolcowvitp3.f Fortran procedure
_=n70: | calling for

___ncov_entrance
__ncov_block
Ll __ncov_block
__ncov_block
__ncov_block
__ncov_block

called by
_func_1_ in d\demo\covitp3.f line 373
_tunc_1_ in d\demolcovitp3.f line 381

4 | D |

Ready S

Note: The cost information per line of the source level may differ slightly from the actual
cost, because it is affected by the measuring machine status when information is collected
(such as machine load status, number of logging users, and number of demons). The cost for
each function always has about the same rate for the same program.

Lahey/Fujitsu Fortran 95 User’s Guide 123

Chapter 8 The Sampler Tool

124 Lahey/Fujitsu Fortran 95 User's Guide

The Coverage Tool

One approach to program testing is to verify the operation range and coverage of the program
execution. The Coverage Tool provides the following information for programs coded in the
Fortran or C language:

» Executed and non-executed section information for each basic unit of execution flow
» Execution coverage information for each subroutine and function

Starting and Terminating the Coverage Tool

Starting the Coverage Tool
There are two ways to start the Coverage Tool:

1. From the Windows desktop icon
2. From the Windows command prompt

Starting from the desktop icon
Start by double-clicking the Coverage Tool icon on your Windows desktop if you chose to
have an icon at installation time; otherwise start it from $tet|Programs menu.

Starting from the Command prompt
Type

cov
followed by the <Enter> key.

Terminating the Coverage Tool
In the coverage window, terminate the coverage tool by selecting the Exit Coverage com-
mand from the File menu.

Lahey/Fujitsu Fortran 95 User's Guide 125

Chapter 9 The Coverage Tool

Coverage Window

See the figure below for the coverage window.

23 Fuijtitsu Workbench Coverage - _func_1_
File Coverage Yiew ‘Window Help
OS] ale] 2]
El tpl1_exe O] =]
Ho Call Segment Passed %
A 1 1 1 188.88
1 1 5 4 B@.00 [
2 1 5 4 B@.00 [
3 1 L [} AA_AR
LA 5 func_1_ [_ O] x|
5 ﬁ
6 86 go to 8611 -
7 87 I A 20Mma ivfail = ivfail + 1
8 sz ¥ 1 @811 continue r
9 89 ivtnum = 2
18 94 ivcorr = &
11 91 call sn782(2,1,2,6,i2dood,
12 92 ' 1 40828 if {ivcomp - 5) 2882¢
13 93 ¥ 1 18628 ivpass = iwvpass + 1
14 oy go to 8821
c 95 I 8 20828 ivfail = ivfail + 1
1] | 9% ¥ 1 @821 continue
97 ivtnum = 3 b
L
Ready s

The above figure illustrates the following items:

1. The Toolbar, which contains icons that activate frequently used commands. These com-
mands can also be executed from the Menu Bar.

2. The Status Bar, which displays an explanation of each menu command.

Coverage Menus

The coverage menus are outlined below.

126 Lahey/Fujitsu Fortran 95 User's Guide

File Menu

File Menu
The table below lists the File menu commands.

Table 23: Commands in the File Menu

Command Function
SelectFiles | g gr?c(ia 232???3.205 iil\?:rtrggeeg:f: E)?J?IpGU(t.?.)é?))v) file
Print Print the coverage information being displayed
Print Preview Display image as it would be printed
Print Setup Specify printer configuration.
File Search Path Specify the path for searching for the file.
Exit Coverage Terminate the coverage tool.

Note: the Print, and Print Preview commands are displayed only if coverage information is
being displayed.

Coverage Menu
The table below lists the Coverage menu commands.

Table 24: Commands in the Coverage Menu

Command Function

Execute Run the program to collect coverage information.

. Submit command line argument(s) and runtime
Executing .
. options to the program and execute the program|to
Options . .
collect coverage information
Execution Displaythe coverageinformationforall
Coverage Rate program units

Source File . o

Directory Specify the source file directory

Lahey/Fujitsu Fortran 95 User’s Guide 127

Chapter 9 The Coverage Tool

View Menu
The table below lists the View menu commands.

Table 25: Commands in the View Menu

Command Function
Status Bar Specifies whether to display the status bar.
Toolbar Specifies whether to display the toolbar.

Window Menu
The table below lists the Window menu commands.

Table 26: Commands in the Window Menu

Command Function

Displays all open windows so that they overlap

Cascade revealing the Title Bar for each window.

Displays the listed coverage information from left to

Tile Horizontally right

Displays the listed coverage information from top to

Tile Vertically bottom

Arranges all the icons along the bottom of the win
dow.

Arrange Icons

Close All Close all open windows

Note: the Window menu is displayed only if coverage information is being displayed.

Help Menu

The table below lists the Help menu commands.

Table 27: Commands in the Help Menu

Command Function

Help Displays the Coverage Tool help topics

About Coverage Displays version information for the coverage tool.

128 Lahey/Fujitsu Fortran 95 User's Guide

Using the Coverage Tool

Using the Coverage Tool

To compile a source program for the collection of coverage information, you must specify
-cover as an option at compilation. If the source program is compiled withoutdbeer
option specified, coverage information is not collected.

The coverage functions are listed below.

» Collecting coverage information
» Displaying coverage information

Collecting Coverage Information
To collect coverage information, run the program once.

Do the following to collect the information:

1. Inthe Coverage tool, select the “Select Files...” command from the File menu. The
Select Files dialog box appears.

2. Specify the Coverage Data File, either by typing itin or browsing. The file must have
an extension of .cov. Note that selection through browsing will set the default
directory.

3. Specify the Executable File, either by typing it in or browsing. The file must have an
extension of .exe.

4. Select one of the following methods for executing the program:

To execute the program with the existing execution options:

a. Select the “Execute” command from the Coverage menu to run the program and col-
lect its coverage information, allowing the program to terminate normally.

b. To abort execution, click the Stop button in the window that is displayed while the
program is running (this may interfere with generation of coverage data).

To execute the program with modified execution options (i.e., command-line arguments):

a. Select the “Executing Options” command from the Coverage menu. The Executing
Options dialog box appears.

b. Inthe Executing Options dialog box, specify the executing option. If the user pro-
gram uses default input-output, specify a redirection function such as '<' or ">'in the
option.

c. Click the OK button.

d. Runthe program and collect its coverage information, allowing the program to ter-
minate normally.

e. To abort execution, click the Stop button in the window that is displayed while the
program is executing (this may interfere with generation of coverage data).

Lahey/Fujitsu Fortran 95 User’s Guide 129

Chapter 9 The Coverage Tool

Note: In Windows 9, if the message “Out of environment space” is displayed while running

a console-mode program from the Coverage Tool, it means the environment space of the
DOS shell must be increased. This may be accomplished by by adding the line (assuming that
the system install directory is “c:\windows")

SHELL=C:\WINDOWS\COMMAND.COM /P /E:32768

to the CONFIG.SYS file. It may also be accomplished by modifying the “Initial Environ-
ment” property of the file COMMAND.COM using Windows explorer.

Storing & Merging Coverage Information

130

Collected coverage information can be stored. You can update and display the stored infor-
mation by assigning another argument to the executable program (merging the information).
If the program being tested requires input data, you can put sample data into a file and then
use that data for testing the program.

Storing Coverage Information

Coverage information is stored in the file specified by the “Select Coverage Data File” com-
mand in the File menu.

Merging Coverage Information
Follow these steps to merge coverage information with the existing coverage data file:

1. Use the “Select Coverage Data File” command in the File menu to specify the data
file containing the collected coverage information.

2. Use the “Select Executable File” command in the File menu to specify the same exe-
cutable file generated by (1) above as the Executable File.

3. Select the “Execute” or “Executing Options” command from the Coverage menu to
execute the program and collect its coverage information.

The new coverage information is now stored in the specified data file.

Displaying Coverage Information
The following items are displayed in the coverage information:

* Run coverage rate for each subroutine and function
« Executed and non-executed section corresponding to the source code

Follow these steps to display the information:

Lahey/Fujitsu Fortran 95 User’s Guide

Displaying Coverage Information

n

»

Select the “Select Coverage Data File” command from the File menu. The Coverage
Data File dialog box appears.

In the Coverage Data File dialog box, specify the coverage data file.

Select the “Select Executable File” command from the File menu. The Executable
File dialog box appears.

In the Executable File dialog box, specify the executable file.

Select the “Function” command from the Display menu to display the execution cov-
erage rate for each subroutine and function. (See the first figure below.) Then double-
click the subroutine or function to display the executed and non-executed sections of
the corresponding source code. (See the second figure below.)

E| tpl.exe !E
Ho Call Segment Passed S
] 2 1 1 100.80
1 2 5 4 go.ae@ []
2 2 5 4 go.ae@ []
3 2 5 4 go.ae@]
y 2 7 6 B85.71 I
c 2 5 4 go.00 I
6 2 22 15 68.18 [
7 2 17 10 58.82 |
8 2 155 128 77.42 I
9 6 6 ¢ 100.00 NG
10 2 5 100.00 NN
11 y 8 g 1o0o0.00 [N
12 3 6 ¢ 1o00.00 [N
13 3 6 6 1o00.00 [N
14 2 5 c +1e0.00 [N
15 1 3 3 100.00 I

[«] oy

Lahey/Fujitsu Fortran 95 User’s Guide 131

Chapter 9 The Coverage Tool

= func_1_ M=l 3
8y ¥ 1 48818 if {ivcomp + 47) 208818, 18818, j“
85 ¥ 1 10818 ivpass = iupass + 1
86 go to 8811
27 1 8 2pA10 ivfail = ivfail + 1 J
g8 ¥ 1 8611 continue
89 ivtnum = 2
98 ivcorr = &

91 call sn702(2,1,2,6,i2d861,i2dee2,i2d

902 9 1 LBo20 if (ivcomp - 5) 28020, 10020, 2

93 ¥ 1 16820 ivpass = iupass + 1

9y go to 8821

95 I 8 2a820 ivfail = ivfail + 1

9% ¥ 1 @821 continue

97 ivtnum = 3

o8 ivcorr = 17

99 call sn702(3,1,2,6,i2d081,i2d002,i2d
188 " 1 48830 if {ivcomp - 17) 28838, 18838,
101 ¢ 1 16838 ivpass = iupass + 1 -
1] ay

Remarks:

1. The coverage tool shows the executed and non-executed parts of each block. A block is a
set of statements that do not change the control of execution. The following instances may
separate a block:

a. Fortran: IF, CASE, DO and GOTO
b. C language: if, case, for and label

2. The following marks are placed at the beginning of the block:

a. Blue foot mark: the block which is executed for the first time
b. White foot mark: the block which is executed for the second or subsequent times.
c. Stick mark: the block that is never executed.

132 Lahey/Fujitsu Fortran 95 User's Guide

@ Utility Programs

This chapter documents the following utility programs:

. CFIG386.EXE
« HDRSTRIP.F90
« SEQUNF.F90
« TRYBLK.F90
« UNFSEQ.EXE
« WHICH.EXE
. RSE.EXE

CFIG386.EXE

CFIG386.EXE allows you configure switches directly into the linker to change its default
operation. These switches are automatically processed every time the program is run.

If CFIG386 is run with the name of an linker executable file as the only argument on the com-
mand line, it displays the current contents of the linker's configuration block. If itis run
without any arguments, a list of valid CFIG386 command-line switches is displayed.

Configuring New Switches

Following the linker name, you list one or more command switches. The switches are given
in the same format they are given on the command line for the program being configured.
The specified switches are added to the configuration block of the program after any switches
that are already there from any previous configurations.

Example
cfig386 386link -nomap -libpath c:\If9550\lib

Lahey/Fujitsu Fortran 95 User’s Guide 133

Chapter 10 Utility Programs

CFIG386 does not check the values of any of the switches or switch parameters it stores in
the program'’s configuration block. Thus, itis possible to configure invalid switch values into
the linker. You should always run the program after configuring it to make sure that the con-
figured switch values have the desired effect.

-Clear

The-Clear switch causes CFIG386 to erase the current contents of the program’s configu-
ration block. Any switches specified after the clear switch are added to the just-cleared
configuration block.

Example
cfig386 -clear 386link
cfig386 -clear 386link -nomap

HDRSTRIP.F90

HDRSTRIP.F90 is a Fortran source file that you can compile, link, and execute with LF95.
It converts LF90 direct-access files to LF95 style.

PENTEST.F90

PENTEST.F90 is a Fortran source file that you can compile, link, and execute with LF95. It
tests for the Pentium flaw that affects certain floating-point operations. It will notify you if
your chip exhibits the flaw.

SEQUNF.F90

SEQUNF.F90is a Fortran source file that you can compile, link, and execute with LF95. It
converts LF90 unformatted sequential files to LF95 style.

TRYBLK.F90

TRYBLK.F90 is a Fortran source file you can build with LF95. It tries a rangBIlodCK-
SIZE s and displays an elapsed time for each. You can use the results to determine an
optimum value for your PC to specify in your programs. Note that a parti@U@CKSIZE
may not perform as well on other PC’s.

134 Lahey/Fujitsu Fortran 95 User's Guide

UNFSEQ.EXE

UNFSEQ.EXE

UNFSEQ.EXHs an executable file that converts LF95 unformatted sequential files to LF90
style.

WHICH.EXE

WHICH.EXEis a utility to search the current directory and directories on the DOS path for all
.COM .EXE, and.BAT files matching a filename specification. It is useful for determining
which of a number of programs or batch files with the same name will be invoked.

Syntax
which filename

wherefilenameis the name of aCOM .EXE, or .BAT file without the extension.

Example
If the command

which make
displays the following

C:\LF9550\BIN\MAKE.EXE 47541 17:05 07-07-1994
C:A\F77L3\BIN\MAKE.EXE 46237 13:16 05-22-1994

you would know that thMAKE.EXEprogram in thes:\If9550\bin directory would be
invoked because\If9550\bin is listed beforec:\f7713\bin on the DOS path.

RSE.EXE

RSE redirects to standard output all output which would normally go to standard error.

Syntax
rse exename

whereexenamés the name of an executable file. RSE is particularly useful when attempting
to redirect runtime error messages to a disk file. Normally, runtime error messages from exe-
cutables created by LF95 will be sent to standard error. If you try to redirect program output
as follows

myprog > diskfile

program output will go to the file, but runtime error messages will go only to the screen. To
redirect runtime error messages to the file, use

rse myprog > diskfile

Lahey/Fujitsu Fortran 95 User’s Guide 135

Chapter 10 Utility Programs

136 Lahey/Fujitsu Fortran 95 User's Guide

Programming Hints

This appendix contains information that may help you create better LF95 programs.

Efficiency Considerations

In the majority of cases, the most efficient solution to a programming problem is one that is
straightforward and natural. It is seldom worth sacrificing clarity or elegance to make a pro-
gram more efficient.

The following observations, which may not apply to other implementations, should be con-
sidered in cases where program efficiency is critical:

» Start each array dimension at zero (not at one, which is the default). Thus, declare an
arrayAto beA(0:99) , notA(100) .

» One-dimensional arrays are more efficient than two, two are more efficient than
three, etc.

* Make a direct file record length a power of two.

* Unformatted input/output is faster for numbers.

* Formatted CHARACTER input/output is faster using:
CHARACTER*256 C

than:
CHARACTER*1 C(256)

Side Effects

LF95 arguments are passed to subprograms by address, and the subprograms reference those
arguments as they are defined in the called subprogram. Because of the way arguments are
passed, the following side effects can result:

Lahey/Fujitsu Fortran 95 User’s Guide 137

Chapter 11

Programming Hints

» Declaring a dummy argument as a different numeric data type than in the calling pro-
gram unit can cause unpredictable results and NDP error aborts.

» Declaring a dummy argument to be larger in the called program unit than in the call-
ing program unit can result in other variables and program code being modified and
unpredictable behavior.

» Ifavariable appears twice as an argument in a single CALL statement, then the cor-
responding dummy arguments in the subprogram will refer to the same location.
Whenever one of those dummy arguments is modified, so is the other.

» Function arguments are passed in the same manner as subroutine arguments, so that
modifying any dummy argument in a function will also modify the corresponding
argument in the function invocation:

y = x + f(x)

The result of the preceding statement is undefined if the funétiorodifies the
dummy argument.

File Formats

Formatted Sequential File Format

Files controlled by formatted sequential input/output statements have an undefined length
record format. One Fortran record corresponds to one logical record. The length of the unde-
fined length record depends on the Fortran record to be processed. The max length may be
assigned in the OPEN statement RECL= specifier. The carriage-return/line-feed sequence
terminates the logical record. If the $ edit descriptor or \ edit descriptor is specified for the
format of the formatted sequential output statement, the Fortran recordhdbaxclude the
carriage-return/line-feed sequence.

Unformatted Sequential File Format

Files processed using unformatted sequential input/output statements have a variable length
record format. One Fortran record corresponds to one logical record. The length of the vari-
able length record depends on the length of the Fortran record. The length of the Fortran
record includes 4 bytes added to the beginning and end of the logical record. The max length
may be assigned in the OPEN statement RECL= specifier. The beginning area is used when
an unformatted sequential statement is executed. The end area is used when a BACKSPACE
statement is executed.

138 Lahey/Fujitsu Fortran 95 User's Guide

Direct File Format

Direct File Format

Files processed by unformatted direct input/output statements have a fixed length record for-
mat. One Fortran record can correspond to more than one logical record. The record length
must be assigned in the OPEN statement RECL= specifier. If the Fortran record terminates
within a logical record, the remaining part is padded with binary zeros. If the length of the
Fortran record exceeds the logical recdhte remaining data goes into the next record.

Transparent File Format

Files opened with ACCESS="TRANSPARENT"” or FORM="BINARY" are processed as a
stream of bytes with no record separators. While any format of file can be processed trans-
parently, you must know its format to process it correctly.

Determine Load Image Size

To determine the load image size of a protected-mode program, add the starting address of
the last public symbol in the linker map file to the length of that public symbol to get an
approximate load image memory requirement (not execution memory requirement).

Link Time

Due to the error checking that 386LINK does, certain code can cause the linker to take longer.
For example, using hundreds to thousands of named COMMON blocks causes the linker to
slow down. Most of the additional time is spent in processing the names themselves because
Windows (requires certain ordering rules to be followed within the executable itself.

You can reduce the link time by reducing the number of named COMMON blocks you use.
Instead of coding:

common /al/ i

common /a2/ j

common /a3/ k

common /al1000/ k1000
code:

common /a/ ijk, ..., k1000

Link time may also be reduced by using theOMAPswitch.

Lahey/Fujitsu Fortran 95 User’s Guide 139

Chapter 11 Programming Hints

Year 2000 compliance

140

The "Year 2000" problem arises when a computer program uses only two digits to represent
the current year and assumes that the current century is 1900. A compiler can look for indi-
cations that this might be occurring in a program and issue a warning, but it cannot foresee
every occurrence of this problem. Itis ultimately the responsibility of the programmer to cor-
rect the situation by modifying the program. The most likely source of problems for Fortran
programs is the use of the obsolete DATE() subroutine. Even though LF95 will compile and
link programs that use DATE(), its use is strongly discouraged; the use of
DATE_AND_TIME(), which returns a four digit date, is recommended in its place.

LF95 can be made to issue a warning at runtime whenever a call to DATE() is made. This
can be accomplished by running a program with the runtime optiwhRy,li for
example,

myprog.exe -WI,Ry;li

For more information on runtime options, s&ntime Options” on page 143.

Lahey/Fujitsu Fortran 95 User’s Guide

Limits of Operation.

Limits of Operation.

Table 28: LF95 Limits of Operation

Item

Maximum

program size

4 Gigabytes or available memory (includ
ing virtual memory), whichever is smalle

=

number of files open concurrently

250, including pre-connected units 0, 5,
and 6

Length of CHARACER datum

65,000 bytes

1/0 block size

65,000 bytes

I/O record length

2,147,483,647 bytes

1/O file size

2,147,483,647 bytes

I/0 maximum number of records

2,147,483,647 divided by the value of
RECL= specifier

nesting depth of function, array section,
array element, and substring references

255

nesting depth of DO, CASE, and IF state-
ments

50

nesting depth of implied-DO loops

25

nesting depth of INCLUDE files

16

Lahey/Fujitsu Fortran 95 User’s Guide 141

Chapter 11 Programming Hints

Table 28: LF95 Limits of Operation

Item

Maximum

number of array dimensions

7

array size

The compiler calculates T for each array
declaration to reduce the number of calg
lations needed for array sections or arrg
element addresses. The absolute value
T obtained by the formula below must ng
exceed 2147483647, and the absolute
value must not exceed 2147483647 for
any intermediate calculations:

n i
T=11xs+ z |i><[|—| del><%

i=2 m=2

n: Array dimension number

s: Array element length

I: Lower bound of each dimension

d: Size of each dimension

T: Value calculated for the array declara

of

—

tion

142 Lahey/Fujitsu Fortran 95 User's Guide

Runtime Options

The behavior of the LF95 runtime library can be modified at the time of execution by a set
of commands which are submitted via the command line when invoking the executable pro-
gram, or via shell environment variables. These runtime options can modify behavior of
input/output operations, diagnostic reporting, and floating-point operations.

Runtime options submitted on the command line are distinguished from user-defined com-
mand line arguments by using a character sequence that uniquely identifies the runtime
options, so that they will not interfere with the passing of regular command line arguments
that the user’s program might be expecting to obtain via the GETCL(), GETPARMY(), or
GETARG() functions.

Command Format

Runtime options and user-defined executable program options may be specified as command
option arguments of an execution command. The runtime options use functions supported by
the LF95 runtime library. Please note that these optionsage-sensitive.

The format of runtime options is as follows:
exe_file [WI,[runtime options]..] [user-defined program arguments]

Whereexe_fileindicates the user’s executable program file. The string “/WI,” (or “-WI,”)
must precede any runtime options, so they may be identified as such and distinguished from
user-defined program arguments. Note that itis W followed by a lowercase L (not the number
one). Please note also that if an option is specified more than once with different arguments,
the last occurrence is used.

Lahey/Fujitsu Fortran 95 User’s Guide 143

Chapter 12 Runtime Options

Command Shell Variable

144

As an alternative to the command line, the shell variable FORT90L may be used to specify
runtime options. Any runtime options specified in the command line are combined with those
specified in FORT90L. The command line arguments take precedence over the correspond-
ing options specified in the shell variable FORT90L.

The following examples show how to use the shell variable FORT90L (the actual meaning
of each runtime option will be described in the sections below):

Example 1:
Setting the value of shell variable FORT90L and executing the program as such:

set FORT90L=-WI,e99,le
a.exe -WI,m99 /k

has the same effect as the command line
a.exe -WI,e99,le,m99 /k

The result is that when executing the program a.exe, the runtime options €99, le, and m99,
and user-defined executable program argument /k are in effect.

Example 2:
When the following command lines are used,

set FORT90L=-WI,e10
a.exe -WI,e99

the resultis that a.exe is executed with runtime option /e99 is in effect, overriding the option
€10 set by shell variable FORT90L.

Lahey/Fujitsu Fortran 95 User’s Guide

Execution Return Values

Execution Return Values

The following table lists possible values returned to the operating system by an LF95 execut-
able program upon termination and exit. These correspond to the levels of diagnostic output
that may be set by various runtime options:

Table 29: Execution Return Values

Return value Status

0 No error or level | (information message)

4 Level W error (warning)

8 Level E error (medium)

12 Level S error (serious)

16 Limit exceeded for level W, E, S error, or a level U

error (Unrecoverable) was detected
240 Abnormal termination
Other Forcible termination

Standard Input and Output

The default unit numbers for standard input, output, and error output for LF95 executable
programs are as follows, and may be changed to different unit numbers by the appropriate
runtime options:

Standard input: Unit number 5
Standard output: Unit number 6
Standard error output: Unit number O

Runtime Options

Runtime options may be specified as arguments on the command line, or in the FORT90L
shell variable. This section explains the format and functions of the runtime options. Please
note that all runtime options acase-sensitive

The runtime option format is as follows:

Lahey/Fujitsu Fortran 95 User’s Guide 145

Chapter 12

Runtime Options

/WI [,Cunit] [,M][,Q] [,Re] [,LRmfile] [, Tunit][,a [,dnum][,enum][,gnum][,i]
[lelv] [,munit] [,n][,punit] [,q] [,runit] [,u] [,X]

When runtime options are specified, the string “/WI" (where | is lowercase L) is required at
the beginning of the options list, and the options must be separated by commas. If the same
runtime option is specified more than once with different arguments, the last occurrence is
used.

Example:
a.exe /Wl,a,p10,x

Description of Options

C or C[unit]

The C option specifies how to process an unformatted file of IBM370-format floating-point
data using an unformatted input/output statement. When the C option is specified, the data of
an unformatted file associated with the specified unit number is regarded as IBM370-format
floating-point data in an unformatted input/output statement. The optional argumént
specifies an integer from 0 to 2147483647 as the unit number. If optional argumieist

omitted, the C option is valid for all unit numbers connected to unformatted files. When the
specified unit number is connected to a formatted file, the option is ignored for the file. When
the C option is not specified, the data of an unformatted file associated with unit nunmiber

is regarded as IEEE-format floating-point data in an unformatted input-output statement.

Example:
a.exe /WI,C10

M

The M option specifies whether to output the diagnostic message (jwe0147i-w) when bits of
the mantissa are lost during conversion of IBM370-IEEE-format floating-point data. If the M
option is specified, a diagnostic message is output if conversion of IBM370-IEEE-format
floating-point data results in a bits of the mantissa being lost. When the M option is omitted,
the diagnostic message (jwe0147i-w) is not output.

Example:
a.exe /IWI,M

Q

The Q option suppresses padding of an input field with blanks when a formatted input state-
ment is used to read a Fortran record. This option applies to cases where the field width
needed in a formatted input statement is longer than the length of the Fortran record and the
file was not opened with an OPEN statement. The result is the same as if the PAD= specifier
in an OPEN statement is setto NO. If the Q option is omitted, the input record is padded with
blanks. The result is the same as when the PAD= specifier in an OPEN statement is set to
YES or when the PAD= specifier is omitted.

146 Lahey/Fujitsu Fortran 95 User's Guide

Description of Options

Example:
a.exe /WI,Q

Re

Disables the runtime error handler. Traceback, error summaries, user control of errors by
ERRSET and ERRSAV, and execution of user code for error correction are suppressed. The
standard correction is processed if an error occurs.

Example:
a.exe /WI,Re

Ri
Disables runtime processing of quad precision exceptions.

Example:
a.exe /WIRi

Rm: filename

The Rm option saves the following output items to the file specified byikxeame
argument:

* Messages issued by PAUSE or STOP statements
» Runtime library diagnostic messages

» Traceback map

e Error summary

Example:
a.exe /WI,Rm:errors.txt

Ry
Enforces Y2K compliance at runtime by generating an i-level (information) diagnostic when-

ever code is encountered which may cause problems after the year 2000A.D. Must be used
in conjunction with li option in order to view diagnostic output.

Example:
a.exe /WILRYyi,li

TorT/[u_no]

Big endian integer data, logical data, and IEEE floating-point data is transferred in an unfor-
matted input/output statement. The optional argumenbis a unit number, valued between

0 and 2147483647, connected with an unformatted file. ffois omitted, T takes effect for

all unit numbers. If both T andd’_noare specified, then T takes effect for all unit numbers.

Lahey/Fujitsu Fortran 95 User’s Guide 147

Chapter 12

Runtime Options

Example:
a.exe /WI,T10

a

When the a option is specified, an abend is executed forcibly following normal program ter-
mination. This processing is executed immediately before closing external files.

Example:
a.exe /Wl,a

d/num] 1

The d option determines the size of the input/output work area used by a direct access input/
output statement. The d option improves input/output performance when data is read from or
written to files a record at a time in sequential record-number order. If the d option is speci-
fied, the input/output work area size is used for all units used during execution.

To specify the size of the input/output work area for individual units, specify the number of
Fortran records in the shell variable RtBF wherennis the unit number (sé8hell Vari-

ables for Input/Output”on page 151 for details). When the d option and shell variable are
specified at the same time, the d option takes precedence. The optional argumesipiec-

ifies the number of Fortran records, in fixed-block format, included in one block. The
optional argumemummust be an integer from 1 to 32767. To obtain the input/output work
area size, multiplpumby the value specified in the RECL= specifier of the OPEN statement.

If the files are shared by several processes, the number of Fortran records per block must be
1. If the d option is omitted, the size of the input/output work area is 4K bytes.

Example:
a.exe /WI,d10

e[num]

The e option controls termination based on the total number of execution errors. The option
argumennum specifies the error limit as an integer from 0 to 32767. Whemis greater

than or equal to 1, execution terminates when the total number of errors reaches the limit. If
enumis omitted omumis zero, execution is not terminated based on the error limit. However,
program execution still terminates if the Fortran system error limit is reached.

Example:
a.exe /Wl,el10

gnum

The g option sets the size of the input/output work area used by a sequential access input/
output statement. This size is set in units of kilobytes for all unit numbers used during exe-
cution. The argumemntumspecifies an integer with a value of 1 or more. If the g option is
omitted, the size of the input/output work area defaults to 8 kilobytes.

148 Lahey/Fujitsu Fortran 95 User's Guide

Description of Options

The g option improves input/output performance when a large amount of data is read from
or written to files by an unformatted sequential access input/output statement. The argument
numis used as the size of the input/output work area for all units. To avoid using excessive
memory, specify the size of the input/output work area for individual units by specifying the
size in the shell variable fxbf, wherexxis the unit number (sé8hell Variables for Input/
Output” on page 151 for details). When the g option is specified at the same time as the shell
variable fuxbf, the g option has precedence.

Example:

a.exe /WI,g10

i

The i option controls processing of runtime interrupts. When the i option is specified, the For-
tran library is not used to process interrupts. When the i option is not specified, the Fortran
library is used to process interrupts. These interrupts are exponent overflow, exponent under-
flow, division check, and integer overflow. If runtime option -i is specified, no exception
handling is taken. The u option must not be combined with the i option. Note that the i option
does not control quad-precision exceptions ($8& on page 147).

Example:

a.exe /WI,i

lerrivl errivl :{i|w]|e]|s}

The | option (lowercase L) controls the output of diagnostic messages during execution. The
optional argumengrrivl, specifies the lowest error level, i (informational), w (warning), e
(medium), or s (serious), for which diagnostic messages are to be output. If the | option is not
specified, diagnostic messages are output for error levels w, e, and s. However, messages
beyond the print limit are not printed.

i

The li option outputs diagnostic messages for all error levels.

w

The Iw option outputs diagnostic messages for error levels w, e, s, and u.

e

The le option outputs diagnostic messages for error levels e, s, and u.

S

The Is option outputs diagnostic messages for error levels s and u.

Lahey/Fujitsu Fortran 95 User’s Guide 149

Chapter 12

Runtime Options

Example:

a.exe /Wil le

mu_no

The m option connects the specified unit numbenoto the standard error output file where
diagnostic messages are to be written. Arguntemiois an integer from 0 to 2147483647.

If the m option is omitted, unit number 0, the system default, is connected to the standard
error output file. Seé&Shell Variables for Input/Output”on page 151 for further details.

Example:

a.exe /WI,m10

n

The n option controls whether prompt messages are sent to standard input. When the n option
is specified, prompt messages are output when data is to be entered from standard input using
formatted sequential READ statements, including list-directed and namelist statements. If
the n option is omitted, prompt messages are not generated when data is to be entered from
standard input using a formatted sequential READ statement.

Example:

a.exe /WI,n

pu_no

The p option connects the unit number noto the standard output file, whete nois an

integer ranging from 0 to 2147483647. If the p option is omitted, unit number 6, the system
default, is connected to the standard output file. 'Sell Variables for Input/Output”on

page 151 for further details.

Example:
a.exe /WI,p10

q

The g option specifies whether to capitalize the E, EN, ES, D, Q, G, L, and Z edit output char-
acters produced by formatted output statements. This option also specifies whether to
capitalize the alphabetic characters in the character constants used by the inquiry specifier
(excluding the NAME specifier) in the INQUIRE statement. If the g option is specified, the
characters appear in uppercase letters. If the g option is omitted, the characters appear in low-
ercase letters. If compiler optienfix is in effect, the characters appear in uppercase letters

so the g option is not required.

150 Lahey/Fujitsu Fortran 95 User's Guide

Shell Variables for Input/Output

Example:
a.exe /WI,q

ru_no

The r option connects the unit numhemoto the standard input file during execution, where
u_nois an integer ranging from 0 to 2147483647. If the r option is omitted, unit number 5,
the system default, is connected to the standard input file.”S&sl Variables for Input/
Output” on page 151 for further details.

Example:
a.exe /WI,r10

u

The u option controls floating point underflow interrupt processing. If the u option is speci-
fied, the system performs floating point underflow interrupt processing. The system may
output diagnostic message jwe0012i-e during execution. If the u option is omitted, the system
ignores floating point underflow interrupts and continues processing. The i option must not
be combined with the u option.

Example:
a.exe /Wlu

X

The x option determines whether blanks in numeric edited input data are ignored or treated
as zeros. If the x option is specified, blanks are changed to zeros during numeric editing with
formatted sequential input statements for which no OPEN statement has been executed. The
result is the same as when the BLANK= specifier in an OPEN statement is set to zero. If the
x option is omitted, blanks in the input field are treated as null and ignored. The result is the
same as if the BLANK= specifier in an OPEN statement is set to NULL or if the BLANK=
specifier is omitted.

Example:
a.exe /WI,x

Shell Variables for Input/Output

This section describes shell variables that control file input/output operations

FUnn = filname

The Fuhn shell variable connects units and files. The vatnes a unit number. The value
filenameis a file to be connected to unit numbemn. The standard input and output files
(FUO5 and FUO06) and error file (FUOQO) must not be specified.

Lahey/Fujitsu Fortran 95 User’s Guide 151

Chapter 12

Runtime Options

The following example shows how to connect myfile.dat to unit number 10 prior to the start
of execution.

Example:
set FU10=myfile.dat

FUnnBF = size

The FLhnBF shell variable specifies the size of the input/output work area used by a sequen-
tial or direct access input/output statement. The valul the FLhnBF shell variable

specifies the unit number. The size argument used for sequential access input/output state-
ments is in kilobytes; theizeargument used for direct access input/output statements is in
records. Theizeargument must be an integer with a value of 1 or moreizkargument

must be specified for every unit number.

If this shell variable and the g option are omitted, the input/output work area size used by
sequential access input/output statements defaults to 1 kilobytesiZzZBaegument for direct
access input/output statements is the number of Fortran records per block in fixed-block for-
mat. Thesizeargument must be an integer from 1 to 32767 that indicates the number of
Fortran records per block. If this shell variable and the d option are omitted, the area size is
1K bytes.

Example 1:
Sequential Access Input/Output Statements.

When sequential access input/output statements are executed for unit number 10, the state-
ments use an input/output work area of 64 kilobytes.

set FU10BF=64

Example 2:
Direct Access Input/Output Statements.

When direct access input/output statements are executed for unit number 10, the number of
Fortran records included in one block is 50. The input/output work area size is obtained by
multiplying 50 by the value specified in the RECL= specifier of the OPEN statement.

set FUL10BF=50

152 Lahey/Fujitsu Fortran 95 User's Guide

Lahey Technical
Support

Hours

Lahey Computer Systems takes pride in the relationships we have with our customers. We
maintain these relationships by providing quality technical support, an electronic mail (e-
mail) system, a web site, newsletters, product brochures, and new release announcements.
The World Wide Web site has product patch files, new Lahey product announcements, lists
of Lahey-compatible software vendors and information about downloading other Fortran
related software. In addition, we listen carefully to your comments and suggestions.

Lahey’s business hours are
7:45 A.M. to 5:00 P.M. Pacific Time Monday - Thursday
7:45 A.M. to 1:.00 P.M. Pacific Time Friday

Telephone technical support is available
8:30 A.M. to 3:30 P.M. Pacific Time Monday - Thursday
8:30 A.M. to 12:00 P.M. Pacific Time Friday

We have several ways for you to communicate with us:
 TEL: (775) 831-2500 (PRO version only)
« FAX: (775) 831-8123
 E-MAIL: support@lahey.com
« ADDRESS: 865 Tahoe Blvd.
P.O. Box 6091
Incline Village, NV 89450-6091 U.S.A.

Lahey/Fujitsu Fortran 95 User’s Guide 153

Chapter 13 Lahey Technical Support

Technical Support Services

154

Lahey provides free technical support to registered users. This support includes assistance
in the use of our software and in getting any bugs you may find in our software fixed. It does
not include tutoring in how to program in FORTRAN or how to use any host operating
system.

How Lahey Fixes Bugs

Lahey’s technical support goal is to make sure you can create working executables using
LF95. Towards this end, Lahey maintains a bug reporting and prioritized resolution system.
We give a bug a priority based on its severity.

The definition of any bug’s severity is determined by whether or not it directly affects your
ability to build and execute a program. If a bug keeps you from being able to build or execute
your program, it receives the highest priority. If you report a bug that does not keep you from
creating a working program, it receives a lower priority. Also, if Lahey can provide a
“workaround” to the bug, it receives a lower priority.

In recognizing that problems sometimes occur in changing software versions, Lahey allows
you to revert to an earlier version of the software until Lahey resolves the problem.

Lahey continues to fix bugs in a numbered version of LF95 until 60 days after the next num-
bered version is released.

Contacting Lahey

To expedite support services, we prefer written or electronic communications via FAX or e-
mail. These systems receive higher priority service and minimize the chances for any mis-
takes in our communications.

Before contacting Lahey Technical Support, we suggest you do the following to help us pro-
cess your report.

« Determine if the problem is specific to code you created. Can you reproduce it using
the demo programs we provide?
« If you have another machine available, does the problem occur on it?

Information You Provide
When contacting Lahey, please include or have available the information listed below.

For All Problems

1. The Lahey product name, serial, and version numbers.

2. Adescription of the problem to help us duplicate it. Include the exact error message
numbers and/or message text.

Lahey/Fujitsu Fortran 95 User’s Guide

Lahey Warranties

For Compiler Problems

1. Anexample of the code that causes the problem. Please make the example as small
as possible to shorten our response time and reduce the chances for any
misunderstandings.

2. Acopy of theLF95.FIG file (driver configuration file).
3. Command-line syntax and any options used for the driver or other tools.

For Other Problems
1. The brand and model of your system.
2. The type and speed of your CPU.

Lahey will respond promptly after we receive your report with either the solution to the prob-
lem or a schedule for solving the problem.

Technical Support Questionnaire

The Lahey Tech Support Questionnaire utility can be used to facilitate the gathering of crit-
ical information for your support request. It may even help you solve your problem on the
spot. It presents a series of dialogs that will guide you to provide the most pertinent informa-
tion, generating a file that you can attach to your e-mail to support@Ilahey.com. Start it from
the LF95 toolbar in Lahey ED Developer, or from the Lahey/Fujitsu Fortran 95 folder in your
Programs menu, or run TSQ.

World Wide Web Site

Our URL ishttp://iwww.lahey.com . Visit our web site to get the latest information and
product patch and fix files and to access other sites of interest to Fortran programmers.

Lahey Warranties

Lahey’s 30 Day Money Back Guarantee

Lahey agrees to unconditionally refund to the purchaser the entire purchase price of the prod-
uct (including shipping charges up to a maximum of $10.00) within 30 days of the original
purchase date.

All refunds require a Lahey Returned Materials Authorization (RMA) nhumber. Lahey must
receive the returned product within 15 days of assigning you an RMA number. If you pur-
chased your Lahey product through a software dealer, the return must be negotiated through
that dealer.

Lahey’s Extended Warranty

Lahey agrees to refund to the purchaser the entire purchase price of the product (excluding
shipping) at any time subject to the conditions stated below.

Lahey/Fujitsu Fortran 95 User’s Guide 155

Chapter 13

Lahey Technical Support

All refunds require a Lahey Returned Materials Authorization (RMA) humber. Lahey must
receive the returned product in good condition within 15 days of assigning you an RMA
number.

You may return a LF95 Language System if:

» Itis determined not to be a fullimplementation of the Fortran 90 Standard and Lahey
does not fix the deviation from the standard within 60 days of your report.

» Lahey fails to fix a bug with the highest priority within 60 days of verifying your
report.

» Allreturns following the original 30 days of ownership are subject to Lahey’s dis-
cretion. If Lahey has provided you with a source code workaround, a compiler patch,
anew library, or areassembled compiler within 60 days of verifying your bug report,
the problem is considered by Lahey to be solved and no product return and refund is
considered justified.

Return Procedure

You must report the reason for the refund request to a Lahey Solutions Representative and
receive an RMA number. This RMA number must be clearly visible on the outside of the
return shipping carton. Lahey must receive the returned product within 15 days of assigning
you an RMA number. You must destroy the following files before returning the product for
a refund:

» All copies of Lahey files delivered to you on the software disks and all backup
copies.
» Allfiles created by this Lahey Language System.

A signed statement of compliance to the conditions listed above must be included with the
returned software. Copy the following example for this statement of compliance:

I, (your name), in accordance with the
terms specified here, acknowledge that | have destroyed all backup copies of and all other
files created with the Lahey software. | no longer have in my possession any copies of the
returned files or documentation. Any violation of this agreement will bring legal action gov-
erned by the laws of the State of Nevada.

Signature:

Print Name:

Company Name:

Address:

Telephone:

Product: Version: Serial #:
RMA Number:

Refund Check Payable To:

156 Lahey/Fujitsu Fortran 95 User's Guide

Return Procedure

Return Shipping Instructions
You must package the software diskettes with the manual and write the RMA number on the
outside of the shipping carton. Shipping charges incurred will not be reimbursed. Ship to:

Lahey Computer Systems, Inc.
865 Tahoe Blvd.
P.O. Box 6091

Incline Village, NV 89450-6091

Lahey/Fujitsu Fortran 95 User’s Guide 157

Chapter 13 Lahey Technical Support

158 Lahey/Fujitsu Fortran 95 User's Guide

INDEX

-c, suppress linking switch 19
case conversion 59
CFIG386.EXE 133 E

-chk, checking switch 19 e runtime option 148

-chkglobal, global checking switch 21 ED for Windows 51, 67, 81, 115, 125
-co, display compiler options switch 21 blocks 58

dynamic link libraries 12

Symbols
.MOD filename extension 13

Numerics
386LINK environment variable 37

386LINK.EXE 12

A

a runtime option 148

AMEDIT 102

-ap switch, arithmetic precision 18

API
Windows 48

AUTOMAKE 101
CHECK= 111
COMPILE= 107
DEBUG 111
FILES= 107
LATESCAN 111
LF90 107
LINK= 109

MAKEMAKE 111
NOQUITONERROR 111
OBJDIR= 110
OBJEXT= 110
QUITONERROR 111
SYSINCLUDE= 110
TARGET= 109

AUTOMAKE configuration file

editor 102

B

-BANNER, Linker banner
switch 19

-block, blocksize switch 19

code completion 59
coding shortcuts 58
command files 14
LM 99
compiler 12, 17
controlling 17
errors 17
switches 17
compiling from ED for Windows 60
configuration of ED 66
Conflicts 14
console mode 35
-cover, generate coverage information
switch 21
Coverage Tool
-cover switch 21
creating a file 54

D

d runtime option 148
-dal, deallocate allocatables switch 21
-dbl, double switch 21
debugger 11
debugging
from ED 61
restrictions 93
with FDB 67, 115, 125
with WinFDB 93
DEMO.F90 6
direct file format 139

case conversion 59

changing compiler options 60

code completion 59

coding shortcuts 58

compiling 60

configuration 66

create file 54

debugging from 61

editing 57

exiting 52

extended characters 57

find 57

function/procedure list 56

help 54

managing files 54

matching parentheses and
statements 57

menu bar 52, 84

navigation 56

opening afile 55

previous/next procedure 56

screen 52

setup 51, 81

smartype 59

starting 51, 81

status bar 53

templates 58

toolbar 53

undo and redo 57

window bar 54

blocks in ED for Windows 58 disassembly 76 editing 57

Borland C++ 39, 42 distribution 8 editor 11

Borland Delphi 39, 47 divide-by-zero 33 Lahey ED for Windows 51, 67,
breakpoints 63, 69 -dll, dynamic link library switch 22 81, 115, 125

bugs 154 DLL_EXPORT 41

DLL_IMPORT 40

efficiency considerations 137
environment variables

Cc DLLs 12 386LINK 37
C Compiler User’s Guide 9 driver 11 FORTOOL 144
C runtime option 146 dummy argument 138 FUnn 151

Lahey/Fujitsu Fortran 95 User’s Guide 159

Index

FUnnBF 152
ERRATA.TXT 9
errors

compiler 17
-Exe, executable file name

switch 29

exiting ED for Windows 52
extended characters 57

F

fo0SQL Lite Help 9
-f90sql, fO0SQL Lite switch 22
file formats
direct 138
formatted sequential 138
transparent 138
unformatted sequential 138
-file, filename switch 22
FILELIST.TXT 9
filenames 12
.MOD extension 13
default linker extensions 37
object file 13
output file 13
source file 13
files
386LINK.EXE 12
CFIG386.EXE 133
ERRATA.TXT 9
HDRSTRIP.F90 134
LINKERR.TXT 9
PENTEST.F90 134
SEQUNF.F90 134
TELLME.EXE 134
TRYBLK.F90 134
UNFSEQ.EXE 135
WHICH.EXE 135
find text 57
-fix, fixed source-form switch 23
formatted sequential file
format 138
FORT90L environment
variable 144
-FULLWARN, linker warning
switch 34
function/procedure list 56
FUnn environment variable 151
FUNNBF environment
variable 152

G

g runtime option 148
-g, debug switch 23

H

HDRSTRIP.F90 134
help

ED for Windows 54
hints

determining load image size 139

efficiency considerations 137
file formats 138

performance considerations 139

side effects 137
hours 153

i runtime option 149

-i, include path switch 23

-implib, DLL library switch 24

import librarian 12

-import, import DLL function
switch 24

-in, IMPLICIT NONE switch 24

-info, display informational messages

switch 25
installation 3
invalid operation 33

L

Lahey ED for Windows 51, 67, 81,
115, 125

Lahey Fortran 90 Reference Manual 9

-li, Lahey intrinsic procedures
switch 25
-Lib, library files switch 25
-LIBPath, library path switch 25, 37
Librarian
JEXTRACTALL 97
/Help 98
/PAgesize 98
Syntax 97
librarian 11, 12, 97
library manager 97
library searching rules 37
limits of operation 141
linker 12
default filename extensions 37
library searching rules 37

160 Lahey/Fujitsu Fortran 95 User's Guide

rules 37
linker search rules 37
LINKERR.TXT 9
linking 37
LM 97
command files 99
response files 99
LM librarian
command-line syntax 97
load image size 139
-long, long integers switch 26
-Ist, listing switch 26

M

M runtime option 146

m runtime option 150

MAKE utility 101

make utility 11

-Map, linker map file switch 27

-MAPNames, linker map symbol
name length switch 27

-MAPWidth, linker map file width
switch 28

matching parentheses and
statements 57

-maxfatals, maximum fatal errors
switch 28

menu bar 52, 84

Microsoft Visual Basic 39, 45

Microsoft Visual C++ 39, 42

Mixed 38

-ml, mixed language switch 28, 40

ML_EXTERNAL 49

-mldefault, mixed language default
switch 28

-mod, module path switch 29

N

n runtime option 150
network installation 3
notational conventions 2

O
-0, object file name switch 29

-00, optimization level zero switch 29

-01, optimization level one switch 29
object filenames 13

-OneCase, case insensitive switch 34

OpenGL graphics 50

Index

opening afile 55
Optimization 29

-out, output file switch 29
output filenames 13
overflow 33

P

p runtime option 150

-pause, pause after program
completion 30

-pca, protect constant arguments
switch 30

PENTEST.F90 134

preconnected units, standard i/
o 145

previous/next procedure 56

-private, module accessibility
switch 30

program size 141

programming hints 137

-PUBList, public symbol ordering
switch 31

Q

Q runtime option 146

g runtime option 150

-quad, quadruple precision
switch 31

R

r runtime option 151
Re runtime option 147
README.TXT 8
README_APLTXT 8
README_ASSEMBLY.TXT 8
README_C.TXT 8
README_COMPATIBLE.TXT 9
README_F90GL.TXT 9
README_F90SQL.TXT 9
README_SERVICE_ROUTINES
TIXT 9

README_WISK.TXT 8
registering 2
registers, displaying in WinFDB 91
requirements

system 1
Resource Compiler 12
response files

LM 99

restrictions, debugging 93
return codes 15
return values, execution 145
Ri runtime option 147
Rm runtime option 147
runtime options

a 148

C 146

d 148

e 148

g 148

i 149

M 146

m 150

n 150

p 150

Q 146

g 150

r 151

Re 147

Ri 147

Rm 147

Ry 147

T 147

u 151

x 151
runtime options, syntax 146
Ry runtime option 147

S

Sampler Tool
-trace switch 33
-sav, SAVE local variables switch 31
scrollable window, -vsw switch 34
searching rules
library 37

SEQUNF.F90 134
setting up ED for Windows 51, 81
side effects 137
smartype 59
source filenames 13
SSL2 Extended Capabilities User’s

Guide 9
SSL2 Extended Capabilities User’s

Guide Il 9
SSL2 User’s Guide 9
-Stack, stack size switch 32
standard input/output units 145
starting ED for Windows 51, 81
static linking 49

Lahey/Fujitsu Fortran 95 User’'s Guide

-staticlink, static linking switch 32
status bar 53
-stchk, stack overflow check
switch 32
step 63,71
stepinto 63
step over 63
support services 143, 153
switches
-ap, arithmetic precision 18
-block, blocksize 19
-C, suppress linking 19
changing in ED 60
-chk, checking 19
-chkglobal, global checking 21
-co, display compiler options 21
compiler 17
-cover, generate coverage
information 21
cross-reference listing 36
-dal, deallocate allocatables 21
-dbl, double switch 21
description 13
-dll, dynamic link library 22
-f90sql, fO0SQL Lite 22
-file, filename 22
-fix, fixed source-form 23
-g, debug 23
-i, include path 23
-implib, DLL library 24
-import, import DLL
function 24
-in, IMPLICIT NONE 24
-info, display informational
messages 25
-li, Lahey intrinsic
procedures 25
linker
-BANNER, Linker
banner 19
-Exe, executable file
name 29
-FULLWARN, linker
warning 34
-Lib, library files 25
-LIBPath, library path 25,
37
-Map, map file 27
-MAPNames, map symbol

161

Index

name length 27 -wisk, Winteracter Starter Kit 35 switch 35
-MAPWidth,map file -wo, warn obsolescent 36 window bar 54
width 28 -zero, initialize variables to window, scrolling, -vsw switch 34
-OneCase, case zero 36 Windows 7, 35
insensitive 34 -swm, suppress warning message(s) Windows API 48
-PUBLIst, public sym- switch 32 Windows console-mode 35
bol ordering 31 syntax WinFDB 81
-Stack, stack size 32 LM command-line 97 command line entry 92
-TwoCase, case syntax highlighting 56 load map display 92
sensitive 34 system requirements 1 registers display 91
-long, long integers 26 restrictions 93
-Ist, listing 26 T traceback display 91
-maxfatals 28 T runtime option 147 ~ watch window 90
-ml, mixed language 28 t4, target 486 switch 33 Winteracter Starter Kit 7, 9
-midefault, mixed language technical support 154 WISK 7
default 28 Technical Support Questionnaire 155 WISKHelp 9 .
_mod, module path 29 TELLME.EXE 134 -Wlsk,- Winteracter Starter Kit
-0, object file name 29 templates 58 switch 35 _
-00, optimization level toolbar 53 -Wo, warn obsolescent switch 36
zero 29 -tp, target Pentium switch 33 World Wide Web 155
-01, optimization level -tpp, target Pentium Pro switch 33 X
one 29 -trace, location and call traceback for) _
-out, output file 29 runtime errors switch 33 X runtime option 151
-pause, pause after program transparent file format 139 -xref, _cross-reference listing
completion 30 -trap, trap NDP exceptions switch 33 switch 36
-pca, protect constant TRYBLK.F90 134
arguments 30 “TwoCase, case sensitive switch 34 Y
-private, module Y2K compliance, Ry runtime
accssiblity 30 U option 147
-quad, quadruple u runtime option 151
precision 31 underflow 33 Z
-sav, SAVE local undo and redo 57 -zero, initialize variables to zero
variables 31 unformatted sequential file switch 36

-staticlink, static linking 32

-stchk, stack overflow format 138

UNFSEQ.EXE 135

check 32
-SWm, suppress warning v
messages 32)
-t4, target 486 33 Visual Analyzer User’s Guide 9
-tp, target Pentium 33 -vsw, very simple windows switch 34

-tpp, target Pentium Pro 33
-trace, location and call trace- w
back for runtime errors 33 -w, warn switch 34

-trap, trap NDP -WARN, linker warning switch 34
exceptions 33 Warranties 155

-vsw, very simple warranties 155
windows 34 watch dialog 65

-w, warn 34 WHICH.EXE 135

-WARN, linker warning 34 -win, Windows switch 35

-win, Windows 35 -winconsole, Windows console-mode

162 Lahey/Fujitsu Fortran 95 User's Guide

	Getting Started
	System Requirements
	Manual Organization
	Notational Conventions
	Product Registration
	Installing Lahey/Fujitsu Fortran 95
	Network Installation
	Maintenance Updates
	Building Your First LF95 Program
	Generating the Executable Program
	Running the Program

	Building Your First WiSK Program
	Generating the Executable Program
	Run the Program

	What’s Next?
	Other Sources of Information
	Files
	Manuals (supplied both on-line and in hard copy)
	Manuals (supplied on-line only)
	Help Files
	Newsletters
	Lahey Web Page

	Developing with LF95
	The Development Process
	How the Driver Works
	Running LF95
	Filenames
	Source Filenames
	Object Filenames
	Output Filenames

	Switches
	Conflicts Between Switches

	Driver Configuration File (LF95.FIG)
	Command Files
	Passing Information
	Return Codes from the Driver
	Creating a Console-Mode Application
	Creating a Windows GUI application
	Creating a WiSK Application
	Creating a 32-bit Windows DLL
	Controlling Compilation
	Errors in Compilation
	Compiler and Linker Switches
	-[N]AP
	-[NO]BANNER
	-BLOCK blocksize
	-[N]C
	-[N]CHK
	-[N]CHKGLOBAL
	-[N]CO
	-[N]COVER
	-[N]DAL
	-[N]DBL
	-[N]DLL
	-[N]F90SQL
	-[N]F95
	-FILE filename
	-[N]FIX
	-[N]G
	-I path
	-IMPLIB
	-IMPORT
	-[N]IN
	-[N]INFO
	-[N]LI
	-Lib filename
	-LIBPath path
	-[N]LONG
	-[N]LST
	-[NO]Map filename
	-MAPNames nchars
	-MAPWidth nchars
	-[N]MAXFATALS number
	-ML target
	-MLDEFAULT target
	-MOD path
	-O0 and -O1
	-O filename
	-OUT filename
	-[N]PAUSE
	-[N]PCA
	-[N]PRIVATE
	-PUBList option
	-[N]QUAD
	-[N]SAV
	-[N]STATICLINK
	-Stack
	-[N]STCHK
	-[N]SWM msgs
	-T4, -TP, and -TPP
	-[N]TRACE
	 [N]TRAP exceptions
	-TwoCase and -OneCase
	-[N]VSW
	-[N]W
	-[NO]WARN and -FULLWARN
	-WIN or -WINCONSOLE
	-[N]WISK
	-[N]WO
	-[N]XREF
	-[N]ZERO

	Linking Rules
	Fortran 90 Modules
	Searching Rules
	Object File Processing Rules
	Library Searching Rules

	Mixed Language Programming
	Using DLLs
	What Is Supported
	Declaring Your Procedures
	Building Fortran DLLs
	Calling DLLs from Fortran
	Passing Data
	Delivering Applications with LF95 DLLs
	Fortran Calling Fortran DLLs
	C Calling Fortran DLLs
	Fortran Calling C DLLs
	Referencing DLL Procedures
	Microsoft Visual Basic Information
	Borland Delphi Information
	Delphi Calling Fortran
	Fortran Calling Delphi DLLs
	Examples
	Calling the Windows API

	Static Linking
	OpenGL Graphics Programs
	Recommended Switch Settings

	Editing and Debugging with ED
	Setting Up and Starting ED
	Startup

	Exiting ED
	The ED Screen
	The Menu Bar
	The Status Bar
	The Text Bar
	Toolbars
	The Window Bar

	Getting Help
	Managing Files
	Creating A File From Scratch
	Opening A File

	Syntax Highlighting
	Navigation
	Previous/Next Procedure
	Function/Procedure List
	Find
	Matching Parentheses and Statements

	Editing
	Undo and Redo
	Extended Characters
	Blocks

	Coding Shortcuts
	Templates
	Smartype
	Case Conversion
	Code Completion

	Compiling from ED
	Compiling Your Program
	Locating Errors
	Changing Compiler Options

	Debugging
	Starting the Debugger
	Running Your Program
	Running a Line at a Time
	Setting Breakpoints
	Displaying the Values of Variables
	Changing the Values of Variables
	Reloading your Program

	Configuration

	Command-Line Debugging with FDB
	Starting FDB
	Commands
	Executing and Terminating a Program
	run arglist
	Run
	kill
	param commandline arglist
	param commandline
	clear commandline
	quit

	Shell Commands
	cd dir
	pwd

	Breakpoints
	General Syntax
	break [’file’] line
	break [’file’] funcname
	break *addr
	break
	condition #n expr
	condition #n
	oncebreak
	regularbreak "regex"
	delete location
	delete [’file’] line
	delete [’file’] funcname
	delete *addr
	delete #n
	delete
	skip #n count
	onstop #n cmd[;cmd2;cmd3...;cmdn]
	show break

	Controlling Program Execution
	continue [count]
	silentcontinue [count]
	step [count]
	silentstep [count]
	stepi [count]
	silentstepi [count]
	next [count]
	silentnext [count]
	nexti [count]
	silentnexti [count] or nin [count]
	until
	until loc
	until *addr
	until +|-offset
	until return

	Displaying Program Stack Information
	traceback [n]
	frame [#n]
	upside [n]
	downside [n]
	show args
	show locals
	show reg [$r]
	show freg [$fr]
	show regs
	show map

	Setting and Displaying Program Variables
	set variable = value
	set *addr = value
	set reg = value
	print [:F][variable]
	memprint [:FuN] addr

	Source File Display
	show source
	list now
	list [next]
	list previous
	list around
	list [’file’] num
	list +|-offset
	list [’file’] top,bot
	list [func[tion] funcname
	disas
	disas *addr1 [,*addr2]
	disas funcname

	Automatic Display
	screen [:F] expr
	screen
	unscreen [#n]
	screenoff [#n]
	screenon [#n]
	show screen

	Symbols
	show function ["regex"]
	show variable ["regex"]

	Scripts
	alias cmd "cmd-str"
	alias [cmd]
	unalias [cmd]

	Signals
	signal sig action
	show signal [sig]

	Miscellaneous Controls
	param listsize num
	param prompt "str"
	param printelements num
	param prm

	Files
	show exec
	param execpath [path]
	param srcpath [path]
	show source
	show sources

	Fortran 95 Specific
	breakall mdl
	breakall func
	show ffile
	show fopt

	Communicating with fdb
	Functions
	Variables
	Values
	Addresses
	Registers
	Names

	Windows Debugging with WinFDB
	How to Start and Terminate WinFDB
	Starting from the command prompt
	Starting from the Windows desktop
	Starting from the ED Developer
	Terminating the Debugger

	Debugger Window
	Debugger Window

	Debugger Menus
	File Menu
	Program Menu
	Debug Menu
	Mode Menu
	Window Menu
	View Menu
	Help Menu

	Using the Debugger
	Starting the Program
	Setting and Deleting Breakpoints
	Setting a Breakpoint

	Releasing the Breakpoint
	Running and Stopping the Program
	Running the Program
	Stopping the Program

	Rerunning the Program
	Displaying Debug Information
	Displaying Variables

	Displaying Registers
	Displaying a Traceback
	Displaying a Load Map
	Entering FDB Commands

	Restrictions
	Other Remarks

	LM Librarian
	Switches
	/EXTRACTALL
	Example

	/PAgesize
	Example

	/Help
	Example

	Commands
	Add Modules
	Example

	Delete Modules
	Example

	Replace Modules
	Example

	Copy Modules
	Example

	Move Modules
	Example

	Response Files
	Example

	Interactive Mode
	Example

	Automake
	Introduction
	What Does It Do?
	How Does It Do That?
	How Do I Set It up?
	What Can Go Wrong?

	Running AUTOMAKE
	The AUTOMAKE Configuration File Editor
	The AUTOMAKE Configuration File
	Multi-Phase Compilation
	Automake Notes

	The Sampler Tool
	Starting and Terminating the Sampler
	Starting the Sampler
	Starting from the Sampler icon
	Starting from the Command prompt
	Terminating the Sampler

	The Sampler Window
	Sampler Menus
	File Menu
	Sampler Menu
	View Menu
	Window Menu
	Help Menu

	Using the Sampler
	Collecting Tuning Information
	Displaying Tuning Information
	Displaying the Cost for Each Function
	Displaying the Cost Per Line
	The Calling Relationship Diagram

	The Coverage Tool
	Starting and Terminating the Coverage Tool
	Starting the Coverage Tool
	Starting from the desktop icon
	Starting from the Command prompt
	Terminating the Coverage Tool

	Coverage Window
	Coverage Menus
	File Menu
	Coverage Menu
	View Menu
	Window Menu
	Help Menu

	Using the Coverage Tool
	Collecting Coverage Information

	Storing & Merging Coverage Information
	Storing Coverage Information
	Merging Coverage Information
	Displaying Coverage Information

	Utility Programs
	CFIG386.EXE
	Configuring New Switches
	-Clear

	HDRSTRIP.F90
	PENTEST.F90
	SEQUNF.F90
	TRYBLK.F90
	UNFSEQ.EXE
	WHICH.EXE
	RSE.EXE

	Programming Hints
	Efficiency Considerations
	Side Effects
	File Formats
	Formatted Sequential File Format
	Unformatted Sequential File Format
	Direct File Format
	Transparent File Format

	Determine Load Image Size
	Link Time
	Year 2000 compliance
	Limits of Operation.

	Runtime Options
	Command Format
	Command Shell Variable
	Execution Return Values
	Standard Input and Output
	Runtime Options
	Description of Options
	C or C[unit]
	M
	Q
	Re
	Ri
	Rm: filename
	Ry
	T or T[u_no]
	a
	d[num] 1
	e[num]
	gnum
	i
	lerrlvl errlvl: { i | w | e | s }
	mu_no
	n
	pu_no
	q
	ru_no
	u
	x

	Shell Variables for Input/Output
	FUnn = filname
	FUnnBF = size

	Lahey Technical Support
	Hours
	Lahey’s business hours are
	Telephone technical support is available
	We have several ways for you to communicate with us:

	Technical Support Services
	How Lahey Fixes Bugs
	Contacting Lahey
	Information You Provide
	For All Problems
	For Compiler Problems
	For Other Problems
	Technical Support Questionnaire
	World Wide Web Site

	Lahey Warranties
	Lahey’s 30 Day Money Back Guarantee
	Lahey’s Extended Warranty

	Return Procedure
	Return Shipping Instructions

